

Center for Air Transportation Systems Research Operationalizing Contrail Avoidance (Virtual) Workshop

FRAMING THE WORKSHOP

Lance Sherry (CATSR/GMU) Andy Lacher (NASA Langley Research Center)

September 7th, 2022

Workshop Purpose

Begin the dialog in the air transportation community about contrail avoidance

- Scientists continue to work to reduce the uncertainty in the magnitude of the contrail contribution to climate change
- What additional information is needed to develop a mitigation approach?
- What incentives/policy changes may be required?
- What operational changes need to be implemented

Dialog will inform NASA's aeronautics research plans

Aviation Contribution to Radiative Forcing

Kärcher, Formation and radiative forcing of contrail-cirrus, Nature Communications, 2018

Table 1 Characteristics of contrails and contrail cirrus			
AIC	Short-lived	Long-lived	
Ice cloud type	Contrail	Persistent contrail	Contrail cirrus
RF potential	Negligible	Small	Large

Aviation Radiative Forcing (Uncertainty)

Lee et al., Atm Env, 2021

$C_{10}H_{22} + 15.5 O_2 + 3.76 (15.5N_2) \rightarrow 11H_2O + 10CO_2 + 3.76(15.5N2) + 10.6 \text{ kcal/g}$

Water Droplets

Net Radiative Forcing from (Ice) Clouds

Contrails scatter/absorb/reflect back to Earth 33% outgoing "thermal" radiation

Contrail Mitigations Alternatives

Sherry L, Thompson T. Primer on Aircraft Induced Clouds and Their Global Warming Mitigation Options. *Transportation Research Record*. 2020;2674(11):827-841

Contrail Avoidance by Flight Planning (Navigational Avoidance)

Contrail Avoidance

Analysis US Airspace (2017)

- Contrails are generated by only avg. 15% of the daily flights (max 34%).
- Location of contrails depends on atmospheric conditions (ISSRs)
 - south-eastern and mid-Atlantic region
 - Pacific Coast.
- Contrail formation avoided by increasing the Cruse Flight Level by between 2000' and 4000' feet
- Due to low air density at Cruise Flight Levels, the additional fuel burn required to climb to the higher cruising altitude is mitigated by reduced fuel burn due to reduced Drag at the higher altitude.

Denis Avila, Lance Sherry, Terry Thompson (2019) Roger Teoh, Ulrich Schumann, Arnab Majumdar, and Marc E. J. Stettler (2020) Rosenow J, Fricke H, Luchkova et al. (2018) Center for Air Transportation Systems Research @ GMU

Additional Cost of Crz FL Change

Flexibility in Crz FL

Sorenson (1987) Jensen, Hansman (2014)

Assumptions & Questions

<u>Assumptions</u>

- Magnitude of ERF Contrails is Significant
- Magnitude of ERF from Contrails significant impact on Earths Temperature Structure
- Navigational Avoidance of Contrails is pursued

<u>Questions</u>

- Process and Tools for Flight Planning for Contrail Avoidance?
 - ISSR Forecast accuracy?
 - Contrail Formation and Persistence Model accuracy?
 - Fuel-burn, CO2, NOx trade-offs?
- Airspace complexity, congestion?
- Compliance, Verification?
- Incentives?