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MONADS AND ALGEBRAS

In the foregoing chapter, the adjoint functor theorem was seen to imply that the
category of algebras for an equational theory T always has a “free T -algebra”
functor, left adjoint to the forgetful functor into Sets. This adjunction describes
the notion of a T -algebra in a way that is independent of the specific syntactic
description given by the theory T , the operations and equations of which are
rather like a particular presentation of that notion. In a certain sense that we
are about to make precise, it turns out that every adjunction describes, in a
“syntax invariant” way, a notion of an “algebra” for an abstract “equational
theory.”

Toward this end, we begin with yet a third characterization of adjunctions.
This one has the virtue of being entirely equational.

10.1 The triangle identities

Suppose we are given an adjunction,

F : C -
� D : U.

with unit and counit,

η : 1C → UF

ε : FU → 1D.

We can take any f : FC → D to

φ(f) = U(f) ◦ ηC : C → UD,

and for any g : C → UD we have

φ−1(g) = εD ◦ F (g) : FC → D.

This we know gives the isomorphism

HomD(FC,D) ∼=φ HomC(C,UD).

Now put 1UD : UD → UD in place of g : C → UD in the foregoing. We
know that φ−1(1UD) = εD, and so

1UD = φ(εD)

= U(εD) ◦ ηUD.
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224 MONADS AND ALGEBRAS

And similarly, φ(1FC) = ηC , so

1FC = φ−1(ηC)

= εFC ◦ F (ηC).

Thus we have shown that the two diagrams below commute.

UD
1UD - UD

UFUD

UεD

-

ηUD
-

FC
1FC - FC

FUFC

εFC

-

FηC
-

Indeed, one has the following equations of natural transformations:

Uε ◦ ηU = 1U (10.1)

εF ◦ Fη = 1F (10.2)

These are called the “triangle identities.”

Proposition 10.1. Given categories, functors, and natural transformations

F : C -� D : U

η : 1C → U ◦ F
ε : F ◦ U → 1D

one has F a U with unit η and counit ε iff the triangle identities (10.1) and
(10.2) hold.

Proof. We have already shown one direction. For the other, we just need a natural
isomorphism,

φ : HomD(FC,D) ∼= HomC(C,UD).

As earlier, we put

φ(f : FC → D) = U(f) ◦ ηC
ϑ(g : C → UD) = εD ◦ F (g).
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MONADS AND ADJOINTS 225

Then we check that these are mutually inverse:

φ(ϑ(g)) = φ(εD ◦ F (g))

= U(εD) ◦ UF (g) ◦ ηC
= U(εD) ◦ ηUD ◦ g η natural

= g (10.1)

Similarly,

ϑ(φ(f)) = ϑ(U(f) ◦ ηC)

= εD ◦ FU(f) ◦ FηC
= f ◦ εFC ◦ FηC ε natural

= f (10.2)

Moreover, this isomorphism is easily seen to be natural.

The triangle identities have the virtue of being entirely “algebraic”—no
quantifiers, limits, Hom-sets, infinite conditions, etc. Thus anything defined by
adjoints, such as free groups, product spaces, quantifiers, . . . can be defined
equationally. This is not only a matter of conceptual simplification; it also has
important consequences for the existence and properties of the structures that
are so determined.

10.2 Monads and adjoints

Next consider an adjunction F a U and the composite functor

U ◦ F : C→ D→ C.

Given any category C and endofunctor

T : C→ C

one can ask:

Question: When is T = U ◦ F for some adjoint functors F a U to and from
another category D?

Thus, we seek necessary and sufficient conditions on the given endofunctor T :
C→ C for recovering a category D and adjunction F a U . Of course, not every
T arises so, and we’ll see that even if T = U ◦ F for some D and F a U , we
cannot always recover that adjunction. Thus a better way to ask the question
would be, given an adjunction what sort of “trace” does it leave on a category
and can we recover the adjunction from this?

First, suppose we have D and F a U and T is the composite functor T =
U ◦ F . We then have a natural transformation,

η : 1→ T.
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226 MONADS AND ALGEBRAS

And from the counit ε at FC,

εFC : FUFC → FC

we have UεFC : UFUFC → UFC, which we’ll call,

µ : T 2 → T.

In general, then, as a first step toward answering our question, if T arises from
an adjunction, then it should have such a structure η : 1→ T and µ : T 2 → T .

Now, what can be said about the structure (T, η, µ)? Actually, quite a bit!
Indeed, the triangle equalities give us the following commutative diagrams:

T 3 Tµ - T 2

T 2

µT

?

µ
- T

µ

?

µ ◦ µT = µ ◦ Tµ (10.3)

T
ηT - T 2 � Tη

T

T

µ

?

=

�

=
-

µ ◦ ηT = 1T = µ ◦ Tη (10.4)

To prove the first one, for any f : X → Y in D, the following square in C
commutes, just since ε is natural.

FUX
FUf- FUY

X

εX

?

f
- Y

εY

?
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MONADS AND ADJOINTS 227

Now take X = FUY and f = εY to get the following:

FUFUY
FUεY- FUY

FUY

εFUY

?

εY
- Y

εY

?

Putting FC for Y and applying U therefore gives this

UFUFUFC
UFUεFC- UFUFC

UFUFC

UεFUFC

?

UεFC
- UFC

UεFC

?

which has the required form (10.3). The equations (10.4) in the form

UFC
ηUFC- UFUFC �

UFηC UFC

UFC

UεFC

?

=

�

=
-

are simply the triangle identities, once taken at FC, and once under U . We
record this data in the following:

Definition 10.2. A monad on a category C consists of an endofunctor T : C→
C, and natural transformations η : 1C → T , and µ : T 2 → T satisfying the two
commutative diagrams above, that is,

µ ◦ µT = µ ◦ Tµ (10.5)

µ ◦ ηT = 1 = µ ◦ Tη. (10.6)

Note the formal analogy to the definition of a monoid. In fact, a monad is
exactly the same thing a monoidal monoid in the monoidal category CC with
composition as the monoidal product, G⊗ F = G ◦ F (cf. section 7.8). For this
reason, the equations (10.5) and (10.6) above are called the associativity and
unit laws, respectively.

We have now shown the following:
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228 MONADS AND ALGEBRAS

Proposition 10.3. Every adjoint pair F a U with U : D→ C, unit η : UF →
1C and counit ε : 1D → FU gives rise to a monad (T, η, µ) on C with

T = U ◦ F : C→ C

η : 1→ T the unit

µ = UεF : T 2 → T.

Example 10.4. Let P be a poset. A monad on P is a monotone function T : P →
P with x ≤ Tx and T 2x ≤ Tx. But then T 2 = T , that is, T is idempotent.
Such a T , that is both inflationary and idempotent, is sometimes called a closure
operation and written Tp = p̄, since it acts like the closure operation on the
subsets of a topological space. The “possibility operator” �p in modal logic is
another example.

In the poset case, we can easily recover an adjunction from the monad. First,
let K = im(T )(P ) (the fixed points of T ), and let i : K → P be the inclusion.
Then let t be the factorization of T through K, as indicated in:

P
T - P

K

i

-

t

-

Observe that since TTp = Tp, for any element k ∈ K we then have, for some
p ∈ P , the equation itik = ititp = itp = ik, whence tik = k since i is monic. We
therefore have:

p ≤ ik implies tp ≤ tik = k

tp ≤ k implies p ≤ itp ≤ ik

So indeed t a i.

Example 10.5. Consider the covariant powerset functor

P : Sets→ Sets

which takes each function f : X → Y to the image mapping im(f) : P (X) →
P (Y ). Let ηX : X → P(X) be the singleton operation

ηX(x) = {x}

and let µX : PP(X)→ P(X) be the union operation

µX(α) =
⋃
α.

The reader should verify as an exercise that these operations are in fact natural
in X and that this defines a monad (P, {−},

⋃
) on Sets.
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ALGEBRAS FOR A MONAD 229

As we see in these examples, monads can, and often do, arise without coming
from evident adjunctions. In fact, the notion of a monad originally did occur
independently of adjunctions! Monads were originally also known by the names
“triples” and sometimes “standard constructions.” Despite their independent
origin, however, our question “when does an endofunctor T arise from an
adjunction?” has the simple answer: just if it is the functor part of a monad.

10.3 Algebras for a monad

Proposition 10.6. Every monad arises from an adjunction. More precisely,
given a monad (T, η, µ) on the category C, there exists a category D and an
adjunction F a U , η : 1→ UF , ε : FU → 1 with U : D→ C such that

T = U ◦ F
η = η (the unit)

µ = UεF .

Proof. We will first define the important category CT called the Eilenberg-Moore
category of T . This will be our “D.” Then we need suitable functors

F : C -� CT : U.

And, finally, we need natural transformations η : 1 → UF and ε : FU → 1
satisfying the triangle identities.

To begin, CT has as objects the “T -algebras,” which are pairs (A,α) of the
form α : TA→ A in C, such that

1A = α ◦ ηA and α ◦ µA = α ◦ Tα. (10.7)

A
ηA - TA T 2A

Tα- TA

A

α

?

1
-

TA

µA

?

α
- A

α

?

A morphism of T -algebras,

h : (A,α)→ (B, β)

is simply an arrow h : A→ B in C, such that,

h ◦ α = β ◦ T (h)
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230 MONADS AND ALGEBRAS

as indicated in the following diagram.

TA
Th- TB

A

α

?

h
- B

β

?

It is obvious that CT is a category with the expected composites and identities
coming from C, and that T is a functor.

Now define the functors,

U : CT → C

U(A,α) = A

and

F : C→ CT

FC = (TC, µC).

We need to check that (TC, µC) is a T -algebra. The equations (10.7) for
T -algebras in this case become:

TC
ηTC- T 2C T 3C

TµC- T 2C

TC

µC

?

1
-

T 2C

µTC

?

µ
- TC

µ

?

But these come directly from the definition of a monad.
To see that F is a functor, given any h : C → D in C, we have

T 2C
T 2h- T 2D

TC

µC

?

Th
- TD

µD

?

since µ is natural. But this is a T -algebra homomorphism FC → FD, so we
can put

Fh = Th : TC → TD

to get an arrow in CT .
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ALGEBRAS FOR A MONAD 231

Now we’ve defined the category CT and the functors

C
F -

�
U

CT

and we want to show that F a U . Next, we need the unit and counit:

η̄ : 1C → U ◦ F
ε : F ◦ U → 1CT

Given C ∈ C, we have

UF (C) = U(TC, µC) = TC.

So we can take η̄ = η : 1C → U ◦ F , as required.
Given (A,α) ∈ CT ,

FU(A,α) = (TA, µA)

and the definition of a T -algebra makes the following diagram commute:

T 2A
Tα- TA

TA

µA

?

α
- A

α

?

But this is a morphism ε(A,α) : (TA, µA)→ (A,α) in CT . Thus we are setting

ε(A,α) = α.

And ε is natural by the definition of a morphism of T -algebras, as follows. Given
any h : (A,α)→ (B, β), we need to show

h ◦ ε(A,α) = ε(B,β) ◦ Th.

But by the definition of ε, that is, h ◦ α = β ◦ Th, which holds since h is a
T -algebra homomorphism.

Finally, the triangle identities now read as follows:

1. For (A,α) a T -algebra

U(A,α) - U(A,α)

UFU(A,α)

Uε(A,α)

-

ηU(A,α) -
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232 MONADS AND ALGEBRAS

which amounts to

A - A

TA

α

-

ηA
-

which holds since (A,α) is T -algebra.
2. For any C ∈ C

FC - FC

FUFC

εFC

-

FηC
-

which is

TC - TC

T 2C

µC

-

TηC -

which holds by one of the unit laws for T .

Finally, note that we indeed have

T = U ◦ F
η = unit of F a U.

And for the multiplication,

µ̄ = UεF

we have, for any C ∈ C,

µ̄C = UεFC = Uε(TC,µC) = UµC = µC .

So µ̄ = µ and we are done; the adjunction F a U via η and ε gives rise to the
monad (T, η, µ).

Example 10.7. Take the free monoid adjunction,

F : Sets -� Mon : U.
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ALGEBRAS FOR A MONAD 233

The monad on Sets is then T : Sets → Sets, where for any set X, T (X) =
UF (X) = “strings over X.” The unit η : X → TX is the usual “string of length
one” operation, but what is the multiplication?

µ : T 2X → TX

Here T 2X is the set of strings of strings,

[[x11, . . . , x1n], [x21, . . . , x2n], . . . , [xm1, . . . , xmn]].

And µ of such a string of strings is the string of their elements,

µ([[x11, . . . , x1n], [x21, . . . , x2n], . . . , [xm1, . . . , xmn]]) = [x11, . . . , xmn].

Now, what is a T -algebra in this case? By the equations for a T -algebra, it
is a map,

α : TA→ A

from strings over A to elements of A, such that

α[a] = a

and

α(µ([[. . .], [. . .], . . . , [. . .]])) = α(α[. . .], α[. . .], . . . , α[. . .]).

If we start with a monoid, then we can get a T -algebra α : TM →M by:

α[m1, . . . ,mn] = m1 · . . . ·mn

This clearly satisfies the required conditions. Observe that we can even recover
the monoid structure from m by u = m(−) for the unit and x · y = m(x, y)
for the multiplication. Indeed every T -algebra is of this form for a unique monoid
(exercise!).

We have now given constructions back and forth between adjunctions and
monads. And we know that if we start with a monad T : C→ C, and then take
the adjunction,

FT : C -� CT : UT

then we can get the monad back by T = UT ◦ FT . Thus, in particular, every
monoid arises from some adjunction. But are CT , UT , FT unique with this
property?

In general, the answer is no. There may be many different categories D and
adjunctions F a U : D → C, all giving the same monad on C. We have used
the Eilenberg-Moore category CT , but there is also something called the “Kleisli
category,” which is in general different from CT , but also has an adjoint pair to
C giving rise to the same monad (see the exercises).
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234 MONADS AND ALGEBRAS

If we start with an adjunction F a U and construct CT for T = U ◦ F , we
then get a comparison functor Φ : D→ CT , with

UT ◦ Φ ∼= U

Φ ◦ F = FT

D Φ - CT

C

UT

�

FT
-

U

-
F

�

In fact, Φ is unique with this property. A functor U : D → C is called
monadic if it has a left adjoint F a U , such that this comparison functor is an
equivalence of categories,

D
Φ
∼=
- CT

for T = UF .
Typical examples of monadic forgetful functors U : C→ Sets are those from

the “algebraic” categories arising as models for equational theories, like monoids,
groups, rings, etc. Indeed, one can reasonably take monadicity as the definition
of being “algebraic.”

An example of a right adjoint that is not monadic is the forgetful functor
from posets,

U : Pos→ Sets.

Its left adjoint F is the discrete poset functor. For any set X, therefore, one has
as the unit the identity function X = UF (X). The reader can easily show that
the Eilenberg-Moore category for T = 1Sets is then just Sets itself.

10.4 Comonads and coalgebras

By definition, a comonad on a category C is a monad on Cop. Explicitly, this
consists of an endofunctor G : C→ C and natural transformations,

ε : G→ 1 the counit

δ : G→ G2 comultiplication

satisfying the duals of the equations for a monad, namely

δG ◦ δ = Gδ ◦ δ
εG ◦ δ = 1G = Gε ◦ δ.
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We leave it as an exercise in duality to verify that an adjoint pair F a U with
U : D → C and F : C → D and η : 1C → UF and ε : FU → 1D gives rise to a
comonad (G, ε, δ) on D, where

G = F ◦ U : D→ D

ε : G→ 1

δ = FηU : G→ G2.

The notions of coalgebra for a comonad, and of a comonadic functor, are
of course also precisely dual to the corresponding ones for monads. Why do we
even bother to study these notions separately, rather than just considering their
duals? As in other examples of duality, there are actually two distinct reasons:

1. We may be interested in a particular category with special properties not
had by its dual. A comonad on SetsC is of course a monad on (SetsC)

op
,

but as we now know, SetsC has many special properties that its dual does
not have (e.g. it is a topos!). So we can profitably consider the notion of a
comonad on such a category.

A simple example of this kind is the comonad G = ∆ ◦ lim←− resulting
from composing the “constant functor” functor ∆ : Sets→ SetsC with the
“limit” functor lim←− : SetsC → Sets. It can be shown in general that the
coalgebras for this comonad again form a topos. In fact, they are just the
constant functors ∆(S) for sets S, and the category Sets is thus comonadic
over SetsC.

2. It may happen that both structures—monad and comonad—occur together,
and interact. Taking the opposite category will not alter this situation! This
happens for instance when a system of three adjoint functors are composed:

L a U a R C

R -

� U

L -

D

resulting in a monad T = U ◦ L and a comonad G = U ◦R, both on C. In
such a case, T and G are then of course also adjoint T a G.

This arises, for instance, in the foregoing example with R = lim←−, and
U = ∆, and L = lim−→ the “colimit” functor. It also occurs in propositional
modal logic, with T = 3 “possibility” and G = � “necessity,” where the
adjointness 3 a � is equivalent to the law known to modal logicians as
“S5.”

A related example is given by the open and closed subsets of a topological
space: the topological interior operation on arbitrary subsets is a comonad
and closure is a monad. We leave the details as an exercise.
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10.5 Algebras for endofunctors

Some very basic kinds of algebraic structures have a more simple description
than as algebras for a monad, and this description generalizes to structures that
are not algebras for any monad, but still have some algebra-like properties.

As a familiar example, consider first the underlying structure of the notion of
a group. We have a set G equipped with operations as indicated in the following:

G×G
m- G �

i
G

1

u

6

We do not assume, however, that these operations satisfy the group equations
of associativity, etc. Observe that this description of what we will call a “group
structure” can plainly be compressed into a single arrow of the form:

1 +G+G×G
[u, i,m]- G

Now let us define the functor F : Sets→ Sets by:

F (X) = 1 +X +X ×X

Then a group structure is simply an arrow,

γ : F (G)→ G.

Moreover, a homomorphism of group structures in the conventional sense

h : G→ H,

h(uG) = uH

h(i(x)) = i(h(x))

h(m(x, y)) = m(h(x), h(y))

is then exactly a function h : G→ H such that the following diagram commutes.

F (G)
F (h)- F (H)

G

γ

?

h
- H

ϑ

?
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ALGEBRAS FOR ENDOFUNCTORS 237

where ϑ : F (H) → H is the group structure on H. This observation motivates
the following definition.

Definition 10.8. Given an endofunctor P : S → S on any category S,
a P -algebra consists of an object A of S and an arrow,

α : PA→ A.

A homomorphism h : (A,α)→ (B, β) of P -algebras is an arrow h : A→ B in S
such that h ◦ α = β ◦ P (h), as indicated in the following diagram:

P (A)
P (h)- P (B)

A

α

?

h
- B

β

?

The category of all such P -algebras and their homomorphisms will be denoted as:

P -Alg(S)

We will usually write more simply P -Alg when S is understood. Also, if there
is a monad present, we will need to be careful to distinguish between algebras
for the monad and algebras for the endofunctor (especially if P is the functor
part of the monad!).

Example 10.9. 1. For the functor P (X) = 1 + X + X × X on Sets we have
already seen that the category GrpStr of group structures is the same
thing as the category of P -algebras,

P -Alg = GrpStr.

2. Clearly, for any other algebraic structure of finite “signature,” that is,
consisting of finitely many, finitary operations, there is an analogous
description of the structures of that sort as algebras for an associated
endofunctor. For instance, a ring structure, with two nullary, one unary,
and two binary operations is given by the endofunctor

R(X) = 2 +X + 2×X2.

In general, a functor of the form

P (X) = C0 + C1 ×X + C2 ×X2 + · · ·+ Cn ×Xn

with natural number coefficients Ck, is called a (finitary) polynomial
functor, for obvious reasons. These functors present exactly the finitary
structures. The same thing holds for finitary structures in any category S
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238 MONADS AND ALGEBRAS

with finite products and coproducts; these can always be represented as
algebras for a suitable endofunctor.

3. In a category such as Sets that is complete and cocomplete, there is
an evident generalization to infinitary signatures by using generalized or
“infinitary” polynomial functors, that is, ones with infinite sets Ck as
coefficients (representing infinitely many operations of a given arity), infinite
sets Bk as the exponents XBk (representing operations of infinite arity),
or infinitely many terms (representing infinitely many different arities
of operations), or some combination of these. The algebras for such an
endofunctor

P (X) =
∑
i∈I

Ci ×XBi

can then be naturally viewed as generalized “algebraic structures.” Using
locally cartesian closed categories, one can even present this notion without
needing (co)completeness.

4. One can of course also consider algebras for an endofunctor P : S → S that
is not polynomial at all, such as the covariant powerset functor P : Sets→
Sets. This leads to a proper generalization of the notion of an “algebra,”
which however still shares some of the formal properties of conventional
algebras, as shall be seen below.

Let P : Sets→ Sets be a polynomial functor, say

P (X) = 1 +X2

(what structure is this?). Then the notion of an initial P -algebra gives rise to a
recursion property analogous to that of the natural numbers. Specifically, let

[o,m] : 1 + I2 → I

be an initial P -algebra, that is, an initial object in the category of P -algebras.
Then, explicitly, we have the structure

o ∈ I, m : I × I → I

and for any set X with a distinguished element and a binary operation

a ∈ X, ∗ : X ×X → X

there is a unique function u : I → X such that the following diagram commutes.

1 + I2 P (u)- 1 +X2

I

[o,m]

?

u
- X

[a, ∗]

?
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This of course says that, for all i, j ∈ I,

u(o) = a

u(m(i, j)) = u(i) ∗ u(j).

which is exactly a definition by structural recursion of the function u : I → X.
Indeed, the usual recursion property of the natural numbers N with zero 0 ∈ N
and successor s : N→ N says precisely that (N, 0, s) is the initial algebra for the
endofunctor,

P (X) = 1 +X : Sets→ Sets

as the reader should check.
We next briefly investigate the question: When does an endofunctor have an

initial algebra? The existence is constrained by the fact that initial algebras,
when they exist, must have the following noteworthy property.

Lemma 10.10.(Lambek). Given any endofunctor P : S → S on an arbitrary
category S, if i : P (I)→ I is an initial P -algebra, then i is an isomorphism,

P (I) ∼= I.

We leave the proof as an easy exercise.
In this sense, the initial algebra for an endofunctor P : S → S is a

“least fixed point” for P . Such algebras are often used in computer science to
model “recursive datatypes” determined by so-called “fixed point equations”
X = P (X).

Example 10.11. 1. For the polynomial functor,

P (X) = 1 +X2

(monoid structure!), let us “unwind” the initial algebra,

[∗,@] : 1 + I × I ∼= I.

Given any element x ∈ I, it is thus either of the form ∗ or of the form
x1@x2 for some elements x1, x2 ∈ I. Each of these xi, in turn, is either of
the form ∗ or of the form xi1@xi2, and so on. Continuing in this way, we
have a representation of x as a finite, binary tree. For instance, an element
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of the form x = ∗@(∗@∗) looks like:
x

∗
�

∗@∗
-

∗
�

∗
-

We can present the monoid structure explicitly by letting

I = {t | t is a finite, binary tree}

with:

∗ = “the empty tree”

@(t1, t2) = t1@t2

=

t1@t2

t1
�

t2

-

The isomorphism,

[∗,@] : 1 + I × I → I

here is plain to see.
2. Similarly, for any other polynomial functor,

P (X) = C0 + C1 ×X + C2 ×X2 + · · ·+ Cn ×Xn

we can describe the initial algebra (in Sets),

P (I) ∼= I

as a set of trees with branching types and labels determined by P .
For instance, consider the polynomial

P (X) = 1 +A×X

for some set A. What is the initial algebra? Since,

[∗,@] : 1 +A× I ∼= I
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we can unwind an element x as:

x = ∗ or a1@x1

x1 = ∗ or a2@x2

. . .

Thus we essentially have x = a1@a2@ · · ·@an. So I can be represented as
the set A-List of (finite) lists of elements a1, a2, . . . of A, with the structure:

∗ = “the empty list”

@(a, `) = a@`

The usual procedure of “recursive definition” follows from initiality. For
example, the length function for lists length : A-List → N is usually
defined by:

length(∗) = 0 (10.8)

length(a@`) = 1 + length(`) (10.9)

We can do this by equipping N with a suitable P (X) = 1+A×X structure,
namely,

[0,m] : 1 +A× N→ N
where m(a, n) = 1 + n for all n ∈ N. Then by the UMP of the initial
algebra we get a unique function length : A-List→ N making a commutative
square:

1 +A×A-List
1 +A× length- 1 +A× N

A-List

[∗,@]

?

length
- N

[0,m]

?

But this commutativity is, of course, precisely equivalent to the equations
(10.8) and (10.9) above.

In virtue of Lambek’s lemma, we at least know that not all endofunctors can
have initial algebras. For, consider the covariant powerset functor P : Sets →
Sets. An initial algebra for this would give us a set I with the property that
P(I) ∼= I, which is impossible by the well-known theorem of Cantor!

The following proposition gives a useful sufficient condition for the existence
of an initial algebra.

Proposition 10.12. If the category S has an initial object 0 and colimits of
diagrams of type ω (call them “ω-colimits”), and the functor

P : S → S
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preserves ω-colimits, then P has an initial algebra.

Proof. Note that this generalizes a very similar result for posets already given
above as Proposition 5.34. And even the proof by “Newton’s method” is
essentially the same! Take the ω-sequence

0→ P0→ P 20→ · · ·

and let I be the colimit

I = lim−→
n

Pn0.

Then, since P preserves the colimit, there is an isomorphism

P (I) = P (lim−→
n

Pn0) ∼= lim−→
n

P (Pn0) = lim−→
n

Pn0 = I

which is seen to be an initial algebra for P by an easy diagram chase.

Since (as the reader should verify) every polynomial functor P : Sets → Sets
preserves ω-colimits, we have:

Corollary 10.13. Every polynomial functor P : Sets → Sets has an initial
algebra.

Finally, we ask, what is the relationship between algebras for endofunctors and
algebras for monads? The following proposition, which is a sort of “folk theorem”,
gives the answer.

Proposition 10.14. Let the category S have finite coproducts. Given an
endofunctor P : S → S, the following conditions are equivalent:

1. The P -algebras are the algebras for a monad. Precisely, there is a monad
(T : S → S, η, µ), and an equivalence:

P -Alg(S) ' ST

between the category of P -algebras and the category ST of algebras for the
monad. Moreover, this equivalence preserves the respective forgetful functors
to S.

2. The forgetful functor U : P -Alg(S)→ S has a left adjoint

F ` U.

3. For each object A of S, the endofunctor

PA(X) = A+ P (X) : S → S

has an initial algebra.

Proof. That (1) implies (2) is clear.
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For (2) implies (3), suppose that U has a left adjoint F : S → P -Alg and
consider the endofunctor PA(X) = A + P (X). An algebra (X, γ) is a map γ :
A + P (X) → X. But there is clearly a unique correspondence between the
following three types of things:

γ : A+ P (X)→ X

P (X)

A
α
- X

β

?

α : A→ U(X,β)

Thus the PA-algebras can be described equivalently as arrows of the form
α : A → U(X,β) for P -algebras (X,β). Moreover, a PA-homomorphism h :
(α,U(X,β)) → (α′, U(X ′, β′)) is just a P -homomorphism h : (X,β) → (X ′, β′)
making a commutative triangle with α and α′ : A → U(X ′, β′). But an initial
object in this category is given by the unit η : A → UFA of the adjunction
F ` U , which shows (3).

Indeed, given just the forgetful functor U : P -Alg→ S, the existence of initial
objects in the respective categories of arrows α : A → U(X,β), for each A, is
exactly what is needed for the existence of a left adjoint F to U . So (3) also
implies (2).

Before concluding the proof, it is illuminating to see how the free functor
F : S → P -Alg results from condition (3). For each object A in S, consider the
initial PA-algebra α : A+ P (IA)→ IA. In the notation of recursive type theory,

IA = µX .A+ P (X)

meaning it is the (least) solution to the “fixed point equation”

X = A+ P (X).

Since α is a map on the coproduct A + P (IA), we have α = [α1, α2], and we
can let:

F (A) = (IA, α2 : P (IA)→ IA)
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To define the action of F on an arrow f : A → B, let β : B + P (IB) → IB be
the initial PB-algebra and consider the diagram

A+ P (IA) ....................
A+ P (u)

- A+ P (IB)

B + P (IB)

f + P (IB)

?

IA

α

?
......................................

u
- IB

β

?

The right-hand vertical composite β ◦ (f + P (IB)) now makes IB into a PA-
algebra. There is thus a unique PA-homomorphism u as indicated, and we can set

F (f) = u.

Finally, to conclude, the fact that (2) implies (1) is an easy application of
Beck’s Precise Tripleability Theorem, for which we refer the reader to section
VI.7 of Mac Lane’s (1971) “Categories Work.”

10.6 Exercises

1. Let T be the equational theory with one constant symbol and one unary
function symbol (no axioms). In any category with a terminal object, a
natural numbers object (NNO) is just an initial T-model. Show that the
natural numbers

(N, 0 ∈ N, n+ 1 : N→ N)

is a NNO in Sets, and that any NNO is uniquely isomorphic to it (as a
T-model).
Finally, show that (N, 0 ∈ N, n+ 1 : N→ N) is uniquely characterized (up
to isomorphism) as the initial algebra for the endofunctor F (X) = X + 1.

2. Let C be a category and T : C→ C an endofunctor. A T -algebra consists
of an object A and an arrow a : TA→ A in C. A morphism h : (a,A)→
(b, B) of T-algebras is a C-morphism h : A→ B such that h◦a = b◦T (h).
Let C be a category with a terminal object 1 and binary coproducts.
Let T : C → C be the evident functor with object-part C 7→ C + 1 for
all objects C of C. Show (easily) that the categories of T -algebras and
T-models (T as above) (in C) are equivalent:

T -Alg ' T-Mod.
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Conclude that free T -algebras exist in Sets, and that an initial T -algebra
is the same thing as a NNO.

3. (“Lambek’s Lemma”) Show that for any endofunctor T : C → C, if i :
TI → I is an initial T -algebra, then i is an isomorphism.
Hint: Consider a diagram of the following form, with suitable arrows.

TI - T 2I - TI

I

i

?
- TI

T i

?
- I
?

Conclude that for any NNO N in any category, there is an isomorphism
N + 1 ∼= N . Also, derive the usual recursion property of the natural
numbers from initiality.

4. Given categories C and D and adjoint functors F : C→ D and U : D→ C
with F a U , unit η : 1C → UF , and counit ε : FU → 1D, show that

T = U ◦ F : C→ C

η : 1C → T

µ = UεF : T 2 → T

do indeed determine a monad on C, as stated in the text.
5. Assume given categories C and D and adjoint functors

F : C � D : U

with unit η : 1C → UF and counit ε : FU → 1D. Show that every D in
D determines a T = UF algebra Uε : UFUD → UD, and that there is a
“comparison functor” Φ : D → CT which, moreover, commutes with the
“forgetful” functors U : D→ C and UT : CT → C.

D Φ - CT

C

UT

�

U

-

6. Show that (P, s,∪) is a monad on Sets, where

• P : Sets → Sets is the covariant powerset functor, which takes each
function f : X → Y to the image mapping

P (f) = im(f) : P (X)→ P (Y )



“chap10”
2009/6/1
page 246i

i
i

i

i
i

i
i

246 MONADS AND ALGEBRAS

• for each set X, the component sX : X → P (X) is the singleton
mapping, with

sX(x) = {x} ⊆ X

for each x ∈ X;

• for each set X, the component ∪X : PP (X) → P (X) is the union
operation, with

∪X(α) = {x ∈ X | ∃U∈α. x ∈ U} ⊆ X

for each α ⊆ P (X).

7. Determine the category of (Eilenberg-Moore) algebras for the (P, s,∪)
monad on Sets defined in the foregoing problem. (Hint: consider complete
lattices.)

8. Consider the free a forgetful adjunction

F : Sets -� Mon : U

between sets and monoids, and let (T, ηT , µT ) be the associated monad
on Sets. Show that any T -algebra α : TA → A for this monad comes
from a monoid structure on A (exhibit the monoid multiplication and unit
element).

9. (a) Show that an adjoint pair F a U with U : D→ C and η : UF → 1C

and ε : 1D → FU also gives rise to a comonad (G, ε, δ) in D, with

G = F ◦ U : D→ D

ε : G→ 1 the counit

δ = FηU : G→ G2

satisfying the duals of the equations for a monad.
(b) Define the notion of a coalgebra for a comonad, and show (by

duality) that every comonad (G, ε, δ) on a category D “comes from” a
(not necessarily unique) adjunction F a G such that G = FU and ε
is the counit.

(c) Let End be the category of sets equipped with an endomorphism,
e : S → S. Consider the functor G : End→ End defined by

G(S, e) = {x ∈ S | e(n+1)(x) = e(n)(x) for some n}

equipped with the restriction of e. Show that this is the functor part
of a comonad on End.

10. Verify that the open and closed subsets of a topological space give rise to
comonad and monad, respectively, on the powerset of the underlying point-
set. Moreover, the categories of coalgebras and algebras are isomorphic.
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11. (Kleisli category) Given a monad (T, η, µ) on a category C, in addition to
the Eilenberg-Moore category we can construct another category CT and
an adjunction F a U , η : 1 → UF , ε : FU → 1 with U : CT → C such
that:

T = U ◦ F
η = η (the unit)

µ = UεF

This category CT is called the Kleisli Category of the adjunction, and is
defined as follows:

• the objects are the same as those of C, but written AT , BT , . . .,

• an arrow fT : AT → BT is an arrow f : A→ TB in C,

• the identity arrow 1AT
: AT → AT is the arrow ηA : A→ TA in C,

• for composition, given fT : AT → BT and gT : BT → CT , the
composite gT ◦ fT : AT → CT is defined to be

µC ◦ TgT ◦ fT

as indicated in the following diagram:

A
gT ◦ fT- TC

TB

fT

?

TgT
- TTC

µC

6

Verify that this indeed defines a category, and that there are adjoint
functors F : C → CT and U : CT → C giving rise to the monad as
T = UF , as claimed.

12. Let P : Sets→ Sets be a polynomial functor,

P (X) = C0 + C1 ×X + C2 ×X2 + · · ·+ Cn ×Xn

with natural number coefficients Ck. Show that P preserves ω-colimits.
13. The notion of a coalgebra for an endofunctor P : S → S on an arbitrary

category S is exactly dual to that of a P -algebra. Determine the final
coalgebra for the functor

P (X) = 1 +A×X

for a set A. (Hint: Recall that the initial algebra consisted of finite lists
a1, a2, . . . of elements of A.)
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