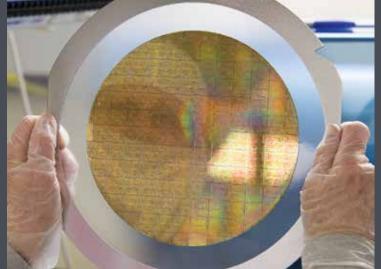
Radiation-hardened electronics product guide


Short-form

www.baesystems.com

Table of Contents

Overview	1
Standard components	
Memory	4
Microprocessors	6
FPGAs	6
ASSP interface components	8
Power converters	10
Single-board computer products	
RAD750 [®] single-board computers	14
RAD5545 [®] single-board computers & products	16
RAD750 [®] 6U extended flexible architecture	18
Interface, microcontroller, and evaluation boards	18
ASIC technologies	
ASIC technology	22
ASIC design kit	24
ASIC design flow	24
ASIC entry points/technology access	25
ASIC design tools	25
IP cores	26
Services	
Services	30
Quality and performance excellence	30
Glossary	
Abbreviations and acronyms	31

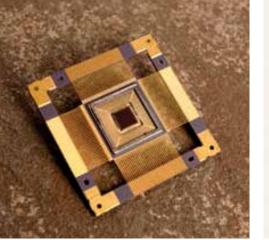
Technology center for radiation-hardened and high-reliability electronics

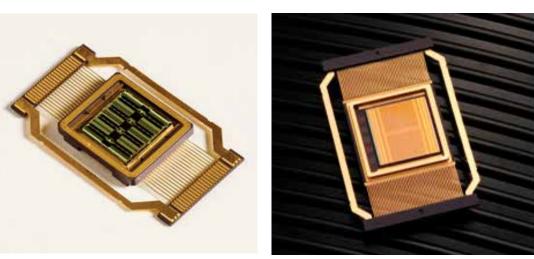
Overview

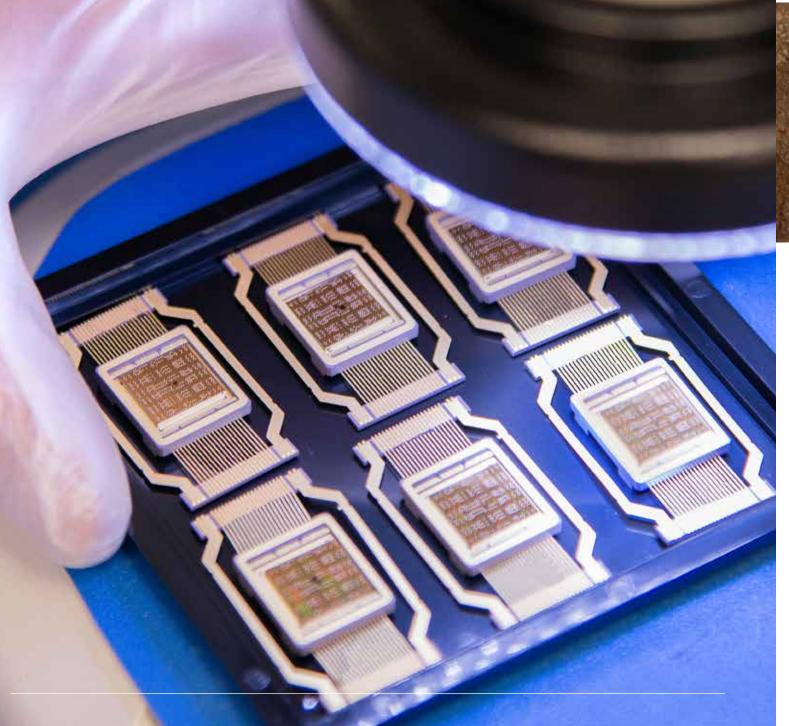
BAE Systems is a global defense, security, and aerospace

BAE Systems' space test facility provides logic and memory company, delivering a full range of products and services testers for components and flying probe and card testers for for air, land, and naval forces, as well as advanced circuit card assemblies. The facility has full environmental electronics, information technology solutions, and testing capability for both components and cards, including a customer support services. J.L. Shepherd Cobalt-60 Gamma source for on-site total-dose testing at military-standard (MIL-STD) dose rates and a thermal The company develops and produces a wide array of radiation vacuum chamber for card test. Failure analysis instruments hardened space products, from standard components and include photoemission and scanning electron microscopes, and single-board computers, to complete system payloads. focused-ion beam systems that support process diagnostics BAE Systems specializes in a broad domain of radiationand semiconductor repair. Electrical test equipment includes hardened electronics, including application-specific integrated the Advantest V93000 smart scale System-on-chip (SoC) test circuits (ASICs), application-specific standard products (ASSPs), system with 1024 signals installed and a capacity of up to 4000 microprocessors, memories, Field Programmable Gate Arrays signal pins. Speeds as high as 8 Gbps are available. (FPGAs), and single-board computers. With more than 1,000 computers in space, including the 16-bit GVSC1750, the BAE Systems also has extensive experience developing and 32-bit RAD6000[®] CPU, and the RAD750[®] family of products, performing tests at linear accelerator, flash X-ray, heavy-ion, BAE Systems' space computers have logged over 10,000 years proton and neutron test facilities. in orbit.

The Space Products and Processing group in Manassas, Virginia The BAE Systems Manassas and foundry partner fabrication has been providing products and system-level solutions to the facilities are included in the Defense Logistics Agency (DLA) commercial, military, and space communities since the early Qualified Manufacturer List (QML) for production of avionics 1980s. Our latest family of Power Architecture[®] computer and radiation-hardened space parts. products, based on a radiation-hardened version of the 32/64bit e5500 processor core, includes single-core and multi-core Qualification under the Department of Defense (DoD) based single board computers, such as the RAD5545[®] SBC.

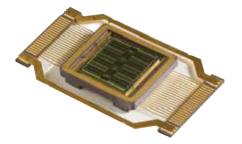

QML program involves a rigorous validation process by a panel of government agencies and customers. Qualified Packaging manufacturers understand user requirements and technical processes to produce and constantly improve high-quality, BAE Systems offers a wide range of wirebond and flip-chip reliable integrated circuits and modules. BAE Systems' space hermetic packages to support space, military, avionics, and product portfolio is certified and qualified to DLA performance commercial ASICs and memories. These include families of specifications MIL-PRF-38535 and MIL-STD-883 for QML Class ceramic quad flat packs, ceramic column grid arrays, plastic ball V and Q, including Radiation Hardness Assurance (RHA) and grid arrays with glob-top, and stacked and unstacked die in support for legacy requirements. The facility is accredited as a multichip modules. DoD category 1A trusted source aggregator, covering design, test, packaging, and assembly services. The accreditation expresses the Defense Department's confidence in BAE Systems' ability to deliver trusted microelectronics equipment and services to U.S. government end users.

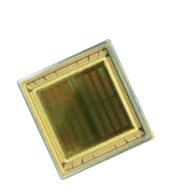

Testing

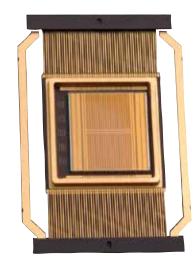

Quality

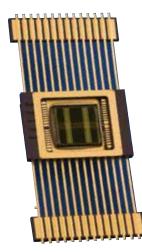
2

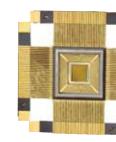
Standard components

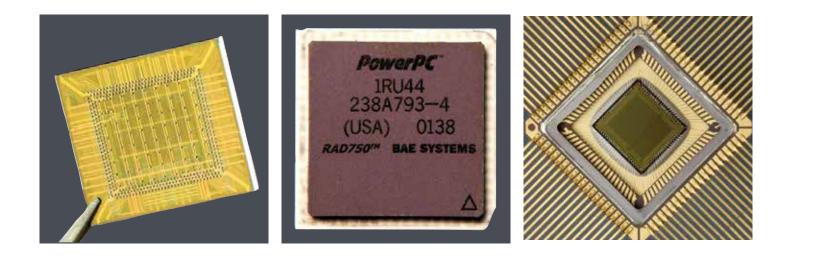





Reliable, radiation-hardened, space-qualified, hermetically-sealed, and military-screened components


Memory

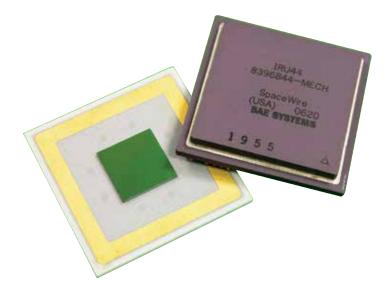

Memory	Part number (P/N)	Description	Configuration	Voltage (V)	Typical access/ clock (ns)	Total-dose (rad[Si])	Single-event upset (upsets/bit-day)	Latch-up immune	Package	Qualified	SMD number
SRAM	251A172	MILLENNIUM	512k x 32	2.5/3.3	12	>100k	<1E-10	Yes	84-lead FP	Internally qualified	N/A
SRAM	251A137	MILLENNIUM	512k x 40	2.5/3.3	12	>100k	<1E-10	Yes	84-lead FP	Internally qualified	N/A
SRAM	8427352	INDEPENDENCE	512k x 32	1.5/3.3	17	>1M	<1E-12	Yes	86-lead FP	Q, V	5962H13235
SRAM	8427352	INDEPENDENCE	512k x 32	1.5/3.3	20	>1M	<1E-12	Yes	86-lead FP	Q, V	5962H13235
SDRAMs	8515862	4-HI STACK	128M x 16	3.3	7	>50k	<1E-9	Yes	54-lead SOP	Internally qualified	N/A
PROM	238A790		32k x 8	3.3 TTL	60	>500k	immune	Yes	28-lead FP	Q,V	5962G02502
PROM	197A807		32k x 8	5.0 CMOS/TTL	27	>200k	immune	Yes	28-lead FP	Q,V	5962R96891
C-RAM	8406746		256k x 8	3.3	Read: 70 Write: 1000	>500k	<1E-11	Yes	40-lead FP	Q, V-pending	5962G08240
C-RAM	8406746		512k x 8	3.3	Read: 70 Write: 1000	>500k	<1E-11	Yes	40-lead FP	Q, V-pending	5962G08241

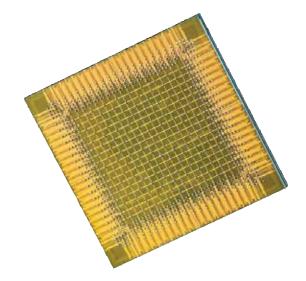


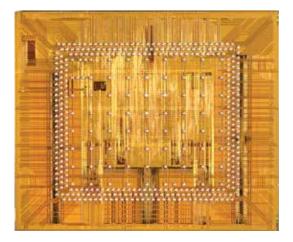
Microprocessors*

Microprocessors	Part number (P/N)	Speed	Voltage (V)	Total-dose (rad[Si])	Single-event upset errors/bit-day 90% geo (W.C.)	Latch-up immune	Package (CCGA)	Qualified	SMD number
RAD750 [®] V2	8447257	200 MHz	1.9/3.3	>1M	<1.0E-10	Yes	360-pin	Q,V	5962H12229
RAD5545 [®] SoC V1.1	8507255	466MHz	1.8/2.5/3.3	1M	<2E-9	Yes	1752-pin	In-Progress	TBD
RAD5545 [®] SoC V1.2	8556754	466MHz	1.8/2.5/3.3	1M	<2E-9	Yes	1752-pin	In-Progress	TBD
RAD510 [®] SoC	Coming Soon								

FPGAs

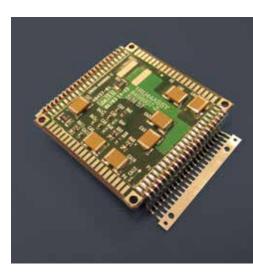

FPGAs	Part number (P/N)	Voltage (V)	Logic cells	Total-dose (rad[Si])	Single-event upset effective LET 90% geo (C-module)	Single-event upset effective LET 90% geo (S-module)	Latch-up immune	Package (CQFP)	Qualified	SMD number
RH1020B	197A805	5	2000	>150k	3.6	120	Yes	84-lead	Q, V	5962R90965
RH1280B	197A806	5	8000	>100k	5.7	1.8	Yes	172-lead	Q, V-pending	5962R92156

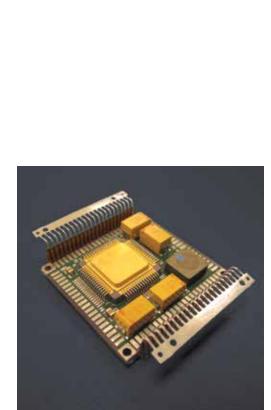




ASSP interface components

Interface components	Part number (P/N)	Voltage (V)	Total-dose (rad[Si])	Single-event upset (upsets/bit-day)	Interfaces	Data rates	Embedded microcontroller (MIPs)	Embedded memory	Latch-up immune	Package	Qualified	SMD number
Enhanced PowerPCI	8395188	2.5/3.3	>200k	<1E-10	PCI 2.2, UART, IEEE 1149.1, memory (PROM, EEPROM, SRAM, SDRAM), RAD750/PowerPC, programmable discretes	PCI peak bandwidth (32bit, 33MHz): 132MB/s write, 126MB/s read	4	128 kb	Yes	624 CCGA	Q	5962R08A04
SpaceWire	8396844	2.5/3.3	>200k	<1E-9	Dual PCI 2.2, UART, IEEE 1149.1, memory (PROM, EEPROM, SRAM, SDRAM), SpaceWire (4-ports with router), programmable discretes	PCI peak bandwidth (32 bit, 33 MHz): 132MB/s write, 126MB/s read SpaceWire bandwidth: 195 Mb/s at 260 MHz	6	256 kb	Yes	624 CCGA	Q	5962R08A03
RADNET™ SpW-EP SpaceWire Endpoint ASSP	8455613	1.5/3.3	>1M	<1E-11	UART, IEEE 1149.1, memory (PROM, EEPROM, C-RAM, SRAM), SpaceWire (1 redundant port with RMAP), programmable discretes, SPI, dual I2C, external FIFO, selectMap	SpaceWire bandwidth: 240 Mb/s at 320 MHz	16	256 kb	Yes	360 CCGA	Internally qualified	Pending




ASSP interface components

Interface components	Part number (P/N)	Voltage (V)	Total-dose (rad[Si])	Single-event upset (upsets/bit-day)	Interfaces	Data rates	Latch-up immune	Package
RADNET™ 1616-XP radiation- hardened serializer/ deserializer crosspoint switch ASSP	8504720	0.95/3.3	1M	<8E-14	16 SerDes receivers with programmable input equalizer and integrated 50 Ohm termination. 16 SerDes drivers with programmable drive level, programmable de-emphasis and integrated 50 Ohm output impedence. I2C up to 1M baud JTAG port	3.125 Gbps	Yes	269CCGA
RADNET™1848-PS radiation-hardened serial RapidIO packet switch ASSP	8544363	0.95/1.8, 2.5 or 3.3	1M	<2E-9	18 serial RapidIO ports across 48 lanes I2C master/slave JTAG slave	3.125 Gbaud/lane	Yes	728CCGA

Power converters

Power converters	Part number (P/N)	Voltage (V) [In]	Voltage (V) [Out]	Latch-up immune	Total-dose	Package	Output current	Qualified
RAD [®] POL-14P	8522724	3.1 to 5.5 VDC	0.8 V to 85% Input	Yes	100k	84-pin FP	14A single, 22A pair	Qualified
RAD [®] POL-14S	8522729	3.1 to 5.5 VDC	0.8 V to 85% Input	Yes	100k	44-pin FP	14A	Qualified
RAD [®] POLDDR-09P	8507027	3.1 to 6 VDC	0.8 V to 85% Input	Yes	100k	44-pin FP	7.5A	Qualified

Single-board computer products

RAD750[®] 3U cPCI

RAD750[®] 6U cPCI

RAD5545[®] SBC

Notes:

All boards can be customized. For more information, please call the Manassas facility at 571-364-7777. All boards contain an Embedded Microcontroller (EMC) within their respective Bridge ASICs. All assemblies will be manufactured to IPC J-STD-001FS

Over 1,000 BAE Systems processors on more than 300 satellites with over 10,000 years of space operation

13

Flexible architecture and a wide range of processing options

RAD750® 3U single-board computers

Product nam (Released, Prelin		Card format	RAD750 [®] processor	RAD750 [®] processor	Bus speed	Supply voltage	L2 cache	SRAM	SDRAM	EEPROM	SuROM	I/O connector	Test connector	(
Flight	Prototype	-	version	(MHz)	(MHz)	±5%								
8515742-1	8516746-1	3U	V2	182	33	3.3	No	No	1 GB	None	64 KB PROM 1 – 256 KB EEPROM 2 – 128 KB EEPROM 4 – 64 KB EEPROM	Hypertronics	37-Pin Micro-D)
8515742-2	8516746-2	3U	V2	182	33	3.3	No	No	1 GB	None	64 KB PROM 1 – 256 KB EEPROM 2 – 128 KB EEPROM 4 – 64 KB EEPROM	Hypertronics	37-Pin Micro-D	1
8515744-1	8516747-1	3U	V3	198	33 or 66	3.3	No	No	1 GB	None	64 KB PROM 1 – 256 KB EEPROM 2 – 128 KB EEPROM 4 – 64 KB EEPROM	Hypertronics	37-Pin Micro-D)
8515744-2	8516747-2	3U	V3	198	33 or 66	3.3	No	No	1 GB	None	64 KB PROM 1 – 256 KB EEPROM 2 – 128 KB EEPROM 4 – 64 KB EEPROM	Hypertronics	37-Pin Micro-D	1
8523313-1 (TOR)	N/A	3U	V3	198	33 or 66	3.3	No	No	1 GB	None	64 KB PROM 1 – 256 KB EEPROM 2 – 128 KB EEPROM 4 – 64 KB EEPROM	Hypertronics	37-Pin Micro-D	Y

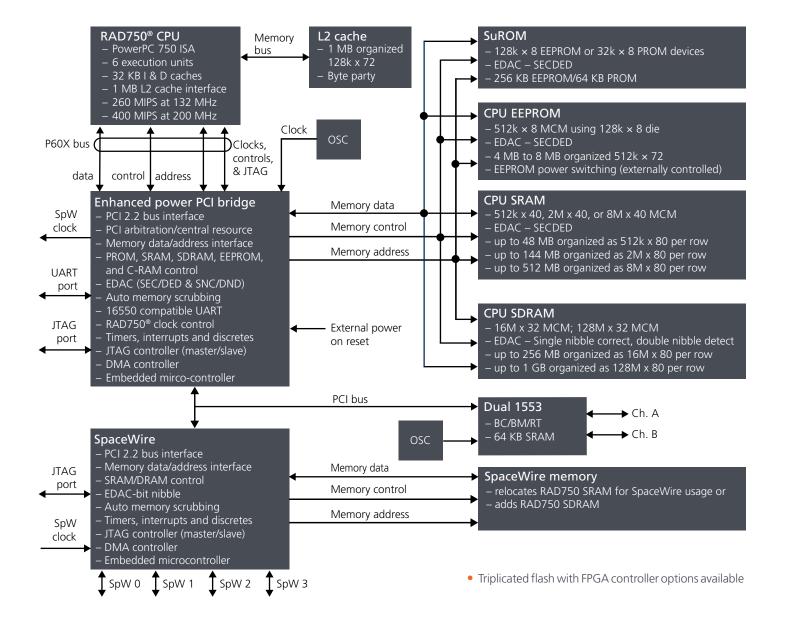
RAD750[®] 6U single-board computers

Product nan	t name (PN)		Card	RAD750 [®]	SRAM	Non-volatile Memory	SuROM	Connector
Flight	EDU	Prototype	- format	processor (MHz)		(EEPROM or MRAM)		
Various*	Various*	Various*	6U-160 or	116 to 180	8, 12, 16, 20, or 24	4MB	64 KB PROM	Hypertronics or Airborn 300-pin
Please contact th ordering and cust	lease contact the factory for more information on rdering and customizing Flight, EDU, and Prototype uni		6U-220				64KB PROM (256 KB EEPROM-EDU/PROTO)	
							256KB PROM (1MB EEPROM-EDU)	

15

or	On-card POR	On-card power control EEPROM	SpaceWire	1553
D	Yes	No	No	No
D	No	No	No	No
D	Yes	No	No	No
D	No	No	No	No
D	Yes	No	No	No
	On-card PC	DR	Power cont	rol

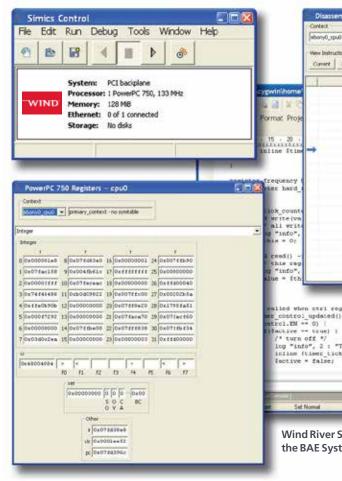
Available on some versions


Version dependent

RAD5545® single-board computers

Product na	ame (PN)		Card format	RAD5545 [®] quad core processor (MHz)	L2/L3 Cache	RAM (DDR3)	Flash	Connector	Daughter card expansion slot	SpaceWire
Flight	EDU	Prototype								
*Please contact EDU, and Proto	t the factory for more otype units.	information on Flight,	6U-220	Up to 466 x 4 cores 5.6 GIPS	L2: 512 KB- core L3: 1 MB x 2	Up to 4 GB	Up to 1 GB	SpaceVPX	Yes	16 ports up to 320 MHz (4 ports via expansion sl

Product name (PN)	Card form	RAD5545 [®] quad con at processor (MHz)	re L2/L3 Cache	RAM (DDR3)	Flash	Connector	Daughter card expansion slot	SpaceWire	Serial rapid I/O	Secure boot	Security encryption engine
Flight EDU Proto	type										
*Please contact the factory for more information on EDU, and Prototype units.	Flight, 6U-22	0 Up to 466 x 4 cores 5.6 GIPS	L2: 512 KB- core L3: 1 MB x 2	Up to 4 GB	Up to 1 GB	SpaceVPX	Yes	16 ports up to 320 MHz (4 ports via expansion slot)	4 ports up to 3.125 Gbaud	Yes	Yes
RAD5545® support produ	cts										
Product name (PN)	Features		Backplane slots			Integrated po output voltag		Other features			
RAD5545 [®] SpaceVPX ELMA Electronics E-Frame Test Chassis	integrate • Customiz • Addition	 Commercial VPX test fixture with integrated power supply Customized 5 slot backplane Additional Peripherals available upon request 1 standar 3 SpaceV 1 custor 1 custor 3 SpaceV 1 custor 1 custor 3 SpaceV 1 standar 			RAD750SBC	 +5V@40A +3.3V@20A +12V@6A -12V@3A 	A	 SpaceWire/ethernet adapter JTAG/I2C test probes for debug Pass through VPX connections to backside connectors for access to all backplane I/O and installation of a rear transition module Open access to front panel and FPGA for accessing programming ports and integration with the "orange Box" 			
Product name (PN)	Processor		Memory			PCI express		Features			
RAD5545® P5020 development system (P5020DS)	1333MH • Multiple	OGHz core with z DDR3 data rate SysClk inputs for ng various device ies	 Dual unbuffered D modules with ECC memory, 1333MH 128MB NOR flash 1GB NAND flash SPI-based 128MB flash SPI-based 128KB E SD card interface 	(72-bit bus) Iz data rate lash		 Two x4 expre Can support XAUI-Riser a RISER option 	Freescale's and SGMIII-PEX-	 FMC SpaceWire card add Hi-Tech Global FPGA card Code Warrior USB tap Two 1553 I/O channels Cable insert for four lanes Two dual UARTs JTAG/COP Aurora high-speed connect Two vertical SATA connect Two high-speed USB con One type A and one micro Eight general-purpose I/O 	with Xilinx V6 image s of sRIO at 3.125Gba ector ctors trollers oAB receptacle	5	d discrete IO


Daughtercards

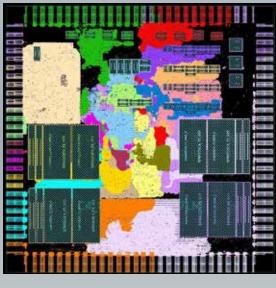
Software tools

Wind River[®] Simics provides a virtualized instance of the RAD750[®] component, designed specifically to support software development efforts. This full system simulator includes the RAD750[®] microprocessor and the devices found on the RAD750[®] 3U, 6U, and 6U extended boards. The simulator reduces risks and allows software development long before physical hardware is available. This helps ensure that projects are finished on time and within budget.

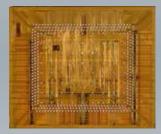
Wind River[®] Simics is a registered trademark of Wind River.

Interface, microcontroller, and evaluation boards

Product name (PN)	Part number (P/N)	Card format			SRAM	SDRAM	EEPROM	SuROM	Connector	On-card POR	Power control EEPROM	SpaceWire
SpaceWire 4-port router evaluation board	8421831-1	6U	6	No	8 MB	None	None	256 KB EEPROM	CompactPCI	No	No	4-port with ro


	pu0		
	ry_context - no sy	ntable	Context Step
	ry_conced - no sy	ne ope	And a second sec
Cons	Enter address	<u> </u>	System Step
	the Real Property lies and the real Property lies and the	Instruction lwsx r11, r10, r0	
		srwi 19,13,8	
		1huo #0,1(#4)	
		xor r3, r11, r9	
		xor 10, 13, 10	
		elwinm e0, e0, 2, 22, 3	19
1	1007643960	1wix r11, r10, r0 srwi r9, r3,8	
0	x07f43970	1bzu c0,1(c4)	
0	x07±43974	xor r3, r11, r9	
		xor r0, r3, r0	
		rlwinm r0, r0, 2, 22, 1 lwix r11, r10, r0	19
0	x07fd3984	stwi 19,13,8	
0	x07£43988	1bzu r0,1(r4)	
		xor r3, r11, r9 xor r0, r3, r0	
0	x07£63990	xor £0, £3, £0	247
		riwing #0, #0, 2, 22, 1	9
		1wix r11, r10, r0 srwi r9, r3,8	
0	x07fd39a0	1bzu r0,1(r4)	
		xor r3, r11, r9	
gister u }	pdated		
5-5 C			
Turning	off timer t	icks":	
K.ESBOVE	(NULL) :		
			and the second sec
	_	005 File son 2762	4 chies selected.
		lattorm tor	E
	virtual p		
		processor	The second se
tems R	AD750®	processor	
tems R	AD750®		
tems R	AD750®	processor	
tems R	:AD750®	processor 553	
tems R	:AD750®	processor	
tems R	:AD750®	processor 553	
tems R	:AD750®	processor 553	
tems R	:AD750®	processor 553	
	:AD750®	processor 553	
tems R	:AD750®	processor 553	
tems R	:AD750®	processor 553	
tems R	:AD750®	processor 553	

SpaceWire evaluation board



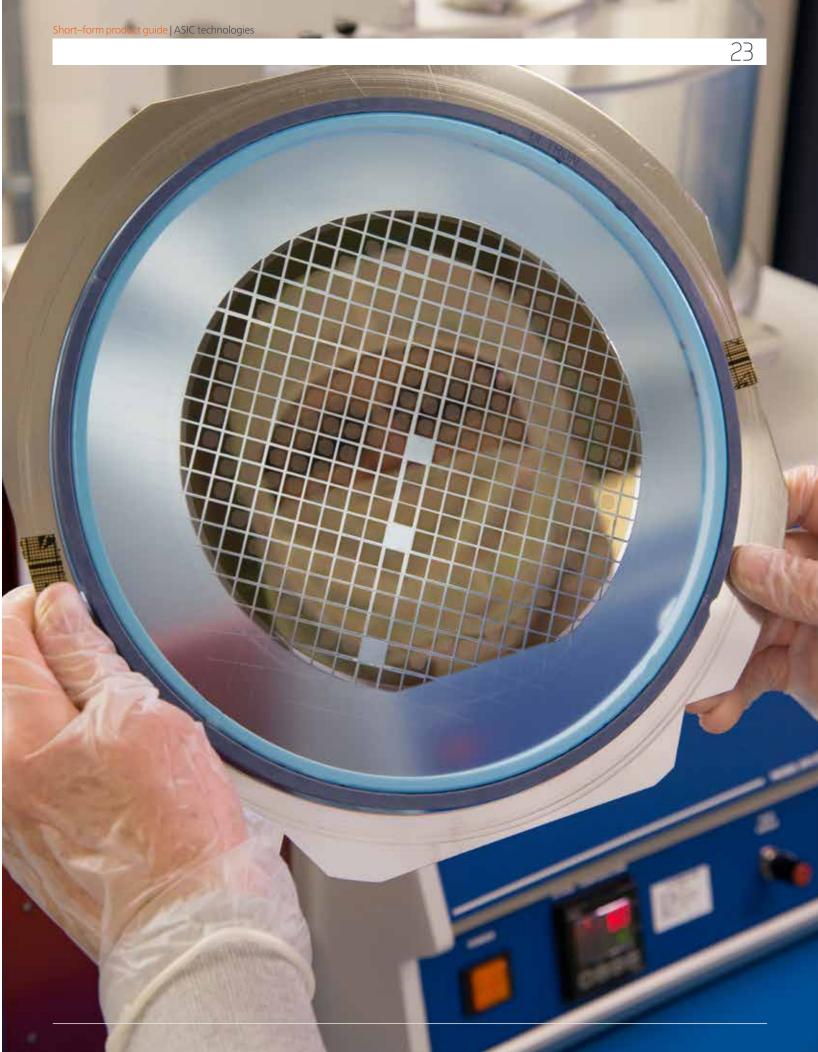
Short–form product guide | ASIC technologies

ASIC technologies

Design

21

Final product



High density, optimized power and performance

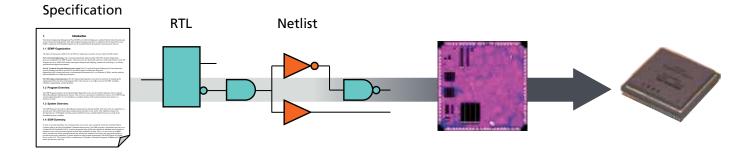
Flexible engagement models, state-of-the-art deep sub-micron design flow

ASICtechnology

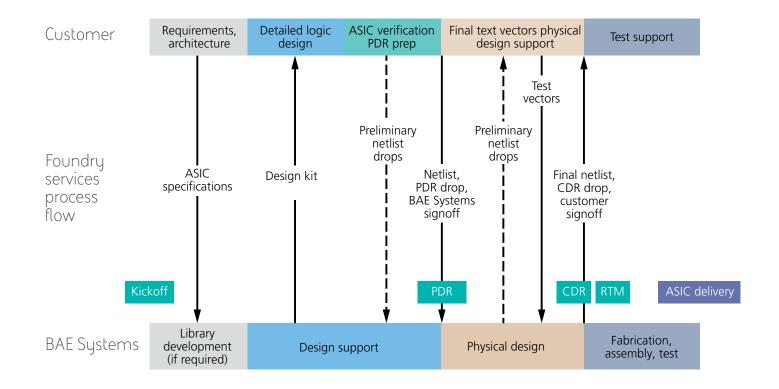
Technology parameters	RH45 [®] technology	RH14
Technology	SOI	FinFET
Process node (nm)	45	14
Voltages (V)	0.95 I/O Voltages: 1.5 / 1.8 / 2.5 / 3.3	0.8/1.8/2.5
Wireable gates (millions)	up to 300	up to 800
Maximum core frequency	1.5 GHz	
High-speed logic island max frequency	2 GHz	5GHz
Metal levels	10	
Radiation tolerance — total dose	1 Mrad(Si)	300K rad(s)
ASIC library options		
Standard cell	A	A
Structured ASIC	_	
Mixed signal extensions	A	Α
Memory options		
Single port	А	A
Dual port	А	A
Power management options		
Clock gating (by design or through synthesis)	А	A
Multi-vt design libraries	A	A
Low-voltage library extensions	A	A
Package options		
CMOS/LVCMOS	A	A
CCGA	A	A
CQFP	A	A
Number of signal IO supported	up to 1100	
C4 flip chip	A	A
Wire bond	A	A
I/O options		
LVDS	A	D
SERDES	up to 3.125 Gbps	Up to 10 Gbps (D)
SSTL	А	A
HSTL	А	A
Schmitt trigger	А	D
LVCMOS	1.8 V, 2.5 V, 3.3 V	

A = Available


P = Planned or in development


D = In development

L = Legacy products only


ASIC design kit

ASIC entry points/technology access

ASIC design flow

ASIC design tools

Supplier	Function
Synopsys	ASIC (standard-cell/gate-array) library c static timing analysis, custom circuit des voltage drop analysis, SSO, signal integ
Mentor	VHDL/verilog simulation, LVS/DRC verif
Cadence	Custom circuit/analog design and layou
TSSI	Manufacturing test pattern conversion

cell characterization, logic/physical/test synthesis, physical design, esign and layout, formal/LVS/DRC verification, electromigration and grity, custom circuit simulation (fast SPICE), design for test

25

ification, DFT insertion and test compression

but

n

IP cores

IP cores	Description	Further information
GFI	Generic FIFO interface	The GFI core enables the transp consisting of separate transmit transfers between the OCB and transfers between the OCB and controlled via a linked-list descr
GPIO	Generic peripheral input/output	General purpose input and out
12C	Inter- integrated circuit serial bus	I2C is a two-wire, bi-directional exchange between devices. It is over a short distance among m collision detection and arbitrati control the bus simultaneously
JTAG	Joint test action group	The JTAG slave core provides a t compliant IEEE Standard 1149. four subcores: an OCB master s subcore, and the JTAG slave bo
MDL	Manchester data link	The MDL core consists of a sepa transmitter module (a parallel-t converter) are used to provide s RS-422 physical interface.
MISC	Miscellaneous	The miscellaneous core has a se control and status information. signals for connection to other
P60X	60x bus	The 60x bus core is an electroni the PowerPC family of processo
PCI	PCI - 32 and 64 bit, tgt, mstr, init.	The PCI core provides a PCI mas function. The PCI core provides interface. Internal buffering of control necessary to operate th this core.
RIF	SpaceWire router interface	The RIF core enables the transpo accomplishes this with separate controlled via a linked-list descr
PLL	Rad-hard, phase-locked loop	The PLL core is used for clock de to a common external system c design, wide lock-in range: 30 frequency ratio.
SEMC	Embedded	High performance version of El

IP cores	Description	Further information
OCB	On-chip bus	The OCB (on-chip bus) is a cross-bar network used to connect various on-chip functional blocks, often referred to as cores. The OCB has the following two implementation versions: low-performance OCB for interconnecting cores that do not have a high-bandwidth requirement and for providing isolation of high-bandwidth cores from cores with lesser performance requirements. High performance OCB for interconnecting cores that require high-bandwidth data paths.
OCB	Extension	Extends OCB off-chip and includes OCB Master and OCB Slave
AMCC	Advanced memory controller core	The advanced memory controller core (AMCC) is designed to interface to external memory (SDRAM, SSRAM, SRAM, or ROM). SRAM can refer to non-synchronous devices as well as non-volatile devices such a NVRAM or C-RAM. ROM can refer to any type of read-only memory device (e.g., ROM, PROM, EEPROM, Flash ROM).
AXI to Wishbone Slave only Bridge	Bridge	Bridges an AXI Slave interface to Wishbone Master Interface
mBIST	Built in self-test	The BIST core provides a comprehensive set of design-for-testability features. It contains the circuitry necessary to perform functional, lab, and manufacturing testing of a chip, and may be configured for chips of different sizes and with different testability requirements. Functions supported by the BIST core include clock control, hardware and software reset, logic BIST, array BIST, scan string connection, labscan, mode signal generation, OCD/OCR control signal generation, and manufacturing test modes.
TCB	Test control block	The TCB core supports the following functions: test core, memory BIST support, JTAG support, reset logic, manufacturing test support, oscillator and register control, system clock divide, phase-locked loop (PLL) management, and power management.
D1553	DDC 1553 support	The D1553 core provides the necessary support logic to map a DDC ACE-core into an OCB-based, system-on-chip environment. The DDC ACE-core provides a complete MIL-STD-1553 B solution.
DDC 1553	DDC enhanced Min-ACE	The enhanced mini-ACE family (enhanced mini-ACE, micro-ACE, mini-ACE mark 3, micro-ACE TE) of MIL-STD-1553 terminals enable complete interfaces between a host processor and a 1553 bus. These terminals integrate dual transceiver, protocol logic, and 4K words or 64K words of RAM. The BC/RT/MT versions with 64K words of RAM include built-in RAM parity checking.
DMAC	DMA controller	The DMA controller core provides a simple descriptor-based DMA engine that can perform data transfers between any two address spaces accessible via its OCB interface. The DMA controller will operate on descriptor control blocks stored in linked-list format off the OCB address space. Beyond setting up the DMA descriptors, no other host CPU support is required.
EMC	Embedded microcontroller	The EMC core offers a simple, micro-controlled sequencer that provides flexibility for handling reset-initialization sequences and error-handling functions. The EMC core is a RISC-based micro-controller that provides simple, logical, arithmetic, branch, and vector interrupt capabilities.
FIFO	First in, first out	The EXT_FIFO core provides the capability to map a general FIFO interface (GFI) core transmit and receive ports to an off-chip FIFO interface. It also enables the data-width adjustment from the 4-byte GFI interface to a single-byte external interface
FLASH	Non-volatile flash memory controller	The flash controller provides an interface to the triple modular redundant 8-bit flash memory. It also provides execution of supported flash commands and buffering of flash data and status via a 64-bit SkyBlue interface. The TMR flash controller is able to detect and correct errors on the flash read data path. It supports selectable interrupt conditions, logging of both correctable and uncorrectable TMR errors, and provides power switching control to flash memory.

sport of data between the OCB and a generic user interface it, receive, and configuration ports. The GFI core masters data nd transmit port using a transmit DMA engine. It also masters data nd receive port using a receive DMA engine. Both DMA engines are criptor chain.

Itput at the chip or board level.

al serial bus that offers a simple and efficient method of data is most suitable for applications requiring occasional communication nany devices. The I2C standard is a true multi-master bus including ition that prevents data corruption if two or more masters attempt to y.

a test access port (TAP) and associated logic to support a fully 9.1a JTAG interface to the OCB. The JTAG slave core consists of r stub subcore, the JTAG OCB/decoder subcore, the JTAG slave/TAP oundary subcore.

parate transmitter module and a separate receiver module. The -to-serial converter) and the receiver module (a serial-to-parallel e serialized, one-way data transfer between two terminals over the

set of registers mapped to the slave OCB interface that provide n. It also provides several primary I/O signals along with sideband er cores within the ASIC.

nic circuit that transmits and receives data over the 60x bus used by sors, a memory controller interface, and an OCB.

aster and target interface and an optional PCI central resource es an OCB application interface that is asynchronous to the PCI f data and command queues is provided by the core along with all he interfaces and buffers. There are 32- and 64-bit versions of

port of data between the OCB and the SpaceWire router core. It te transmit DMA engine and a receive DMA engine. Each engine is criptor chain.

de-skewing in ASIC chips. The internal ASIC clocks are phase-aligned clock. The PLL features include a fully integrated mixed-mode PLL 0 – 250 MHz, and programmable 1x-10x output-to-input

emc

Services

IP cores	Description	Further information
SERDES	Serializer/ deserializer	The SERDES product reduces board complexity by converting a wide data bus and clock into a serial data stream transmitted through a twisted pair. It supports a series of industry standard protocols, and up to 3.125 Gbps full duplex.
SRAM	Static random- access memory	The SRAM core is designed to store blocks of data addressed and mapped onto the OCB.
TMR	Flash controller	TMR version of the flash controller
UART	Universal asynchronous receiver/ transmitter	The UART core transmits and receives data through the serial port, allowing for programmability and implementing the requirements of the 16550 UART.
SPI MESH	Serial peripheral interface MESH	A microcontroller that controls four SPI interfaces- programmable from the OCB. It has a master OCB interface to write back data it receives from the SPI ports. It can support up to eight controllers, and a total of 32 SPI interfaces. The interface also supports a bypass mode where the microcontroller is not used.
DDMA- AXI	Dual DMA controller to AXI	The DMA controller core provides a simple descriptor-based DMA engine that is able to perform data transfers between any two address spaces accessible via its AXI interface. The controller will operate on descriptor control blocks that are stored in linked list format off the AXI address space. Beyond setting up the DMA descriptors, no other host CPU support is required

Qualified, trusted and accredited

29

Design, packaging, assembly, testing, and screening

Services

Services	Description
Design	Expertise in ASIC, FPGA, custom and semi-custom designs. Experienced designers in the areas of digital and mixed signal design, comprehensive logical and physical design methodologies, and the art of identifying and realizing efficient implementations tuned for power-performance and platform execution. Familiarity with design integration for unique and emergent technologies. Flexible engagement models and entry points from specification to GDSII.
FPGA to ASIC conversions	Established FPGA-to-ASIC conversion method, based on experience from internal and external development programs. Mapping of design and constraints handled in a structured manner, exploiting target ASIC technology features. Multiple FPGA to single ASIC conversions available.
Advanced packaging	Broad selection of cost-effective, space-qualified technologies for high-density packaging to meet the needs of high-performance applications. Offers DSCC full military-standard screens. Wide range of qualified flip-chip, wirebond and hermetic ceramic packages available. Memory stacking offered for increased density. Qualified, high-reliability and high-performance ceramic column grid array (CCGA) packages for military and plastic ball grid array (BGA) for commercial applications are available.
Advanced testing	Capabilities include logic and memory testing at wafer and module levels, with full mil-spec temperature test capabilities. Services include test program development through full production including static and dynamic burn- in. Extensive chip diagnostic experience and expertise with scan and other DFT techniques, fault isolation, schmoo plotting and parametric analysis. Support during design is available.
Failure analysis	Expertise in advanced failure analysis techniques. Failure analysis instruments include photo-emission, transmission and scanning electron microscopes and a focused-ion-beam system that supports technology development and semiconductor diagnostics. Destructive physical analysis (DPA), fault localization and characterization, prohibited materials analysis and counterfeit inspection services available.

Quality

- AS9100 quality management system
- Trusted source
- Category 1A

(Design services, aggregation services, broker services, packaging/assembly services, testing services)

- QML (V, Q, RHA)
 - Class V or Q (radiation hardened space qualified)
 - Class K, H, or E (hybrid multi-chip module compliant)

 Technology conformance inspections (TCI) and screening per MIL-PRF-38535 and MIL-STD-883

Abbreviations and acronyms

ASIC	Application-specific integrated circuit
ASSP	Application-specific standard product
ATPG	Automatic test pattern generation
AXI	Advanced eXtensible interface
CCGA	Ceramic column grid array
CDR	Critical design review
CGA	Column grid array
cPCI	CompactPCI
CPU	Central processing unit
CQFP	Ceramic quad flat pack
C-RAM	Chalcogenide random access memory
DLA	Defense Logistics Agency
DRC	Design rule check
DMAC	Direct memory access controller
DSCC	Defense Supply Center Columbus
EDU	Engineering development unit
EEPROM	Electrically erasable programmable read-only memory
En-PPCI	Enhance PowerPCI ASIC
FIFO	First-in first-out memory
FP	Flatpack
FPGA	Field-programmable gate array
GVSC1750	Generic VHSIC spaceborne computer - MIL-STD-1750
HSTL	High speed tranceiver logic
I2C	Inter-integrated circuit serial bus
IP core	Intellectual property core
LVDS	Low voltage differential signal
LVS	Layout versus schematic

MIL-STD	Military standard
N/A	Not applicable
NV	Non-volatile
OSC	Oscillator
PCI	Peripheral component interface
PDR	Preliminary design review
P/N	Part number
POR	Power-on reset
Power Ctrl	Power control
PROM	Programmable read-only memory
QML	Qualified manufacturer list
RMAP	Remote memory access protocol
RTL	Register transfer logic
SDRAM	Synchronous dynamic random
	access memory
SERDES	Serializer/deserializer
Si	Silicon
SMD	Standard microcircuit drawing
SoC	System-on-chip
SPI	Serial peripheral interface bus
SPICE	Simulation program with integrated
	circuit emphasis
SRAM	Static random access memory
SSRAM	Synchronous static random access memory
SSTL	Stub series terminated logic
SuROM	Start-up read-only memory
VHDL	VHSIC hardware description language
VHSIC	Very-high-speed integrated circuit

Short-form product guide Radia	ation-hardened electronics
----------------------------------	----------------------------

32	
Notes	Notes

For more information contact:

BAE Systems 9300 Wellington Road Manassas, Virginia 20110-4122 T: 571 364 7777 W: www.baesystems.com/space Cleared for open publication on 02/17

Disclaimer and copyright

This document gives only a general description of the product(s) and service(s) and, except where expressly provided otherwise, shall not form any part of any contract. From time to time, changes may be made in the products or the conditions of supply. BAE SYSTEMS is a registered trademark of BAE Systems plc. ©2017 BAE Systems. All rights reserved. CS-18-G05 ES-C4ISR-030420-0035