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a b s t r a c t

In what follows, we introduce the notion of representational information (information con-
veyed by sets of dimensionally defined objects about their superset of origin) as well as an
original deterministic mathematical framework for its analysis and measurement. The
framework, based in part on categorical invariance theory [30], unifies three key constructs
of universal science – invariance, complexity, and information. From this unification we
define the amount of information that a well-defined set of objects R carries about its finite
superset of origin S, as the rate of change in the structural complexity of S (as determined
by its degree of categorical invariance), whenever the objects in R are removed from the set
S. The measure captures deterministically the significant role that context and category
structure play in determining the relative quantity and quality of subjective information
conveyed by particular objects in multi-object stimuli.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Ever since its inception 63 years ago, Shannon’s mathematical theory of communication [23,24] and the information mea-
sure on which it is based has significantly shaped the way that engineers, physicists, cognitive scientists, biologists, and stat-
isticians think about information as a measurable quantity [2,3]. Shannon’s information measure (SIM) may be traced to the
intuition that the more improbable an event is, the more informative it is. To explain, let x be a discrete random variable.
How much information is received when we observe a particular value of this variable? Shannon’s measure assumes that
if a highly probable value for x is detected, then the receiver has gained very little information. Accordingly, if a highly
improbable value is detected, the receiver has gained a great amount of information. In other words, the amount of infor-
mation received from x depends on its probability distribution p(x). SIM is then defined as a monotonic function (i.e., the
log function to some base, usually base 2) of the probability of x as follows:

hðxÞ ¼ �log2 pðxÞ: ð1:1Þ

The idea of linking the probability of an event to its subjective information content as shown in equation 1.1 above has been
challenged by many authors, and most recently by Devlin [7] and Luce [19]. The basic criticism being that the measure does
not conform to intuitions regarding what humans deem informative. For example, Luce concludes: ‘‘The question remains:
Why is information theory not very applicable to psychological problems despite apparent similarities of concepts? . . . in my opin-
ion, the most important answer lies in the following incompatibility between psychology and information theory. The elements of
choice in information theory are absolutely neutral and lack any internal structure; the probabilities are on a pure, unstructured set
whose elements are functionally interchangeable’’. The structural component Luce refers to is most clearly manifested by
experiments on relational judgments such as those reported in [11,29].
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More telling is the fact that SIM is not consistent with empirical data from experiments that have attempted to establish a
connection between information and specific cognitive performance and phenomena. Naturally, these criticisms should be
tempered by the fact that the aim of Shannon’s theory of communication and of SIM was to characterize information in
terms of the transmission and readability of data from the standpoint of electronic systems and not human cognizers [6].
For a genetic history and insight into the aims of Shannon’s proposal the reader is referred to [18,22]. However, this fact
did not discourage a myriad of social and cognitive researchers from attempting, without success, to use SIM to account
for a wide variety of cognitive and behavioral phenomena (the reader is referred to Luce [19] for specific examples). These
failures originate from three key restricting aspects of the measure: first, information is operationalized and mediated by
ordered sequences of symbols as had been the case in previous models of information such as Hartley’s [13]; secondly,
the axioms of probability theory (and in particular, the independence axiom) prevent the measure from capturing the impact
that context has on events and the subjective nature of probability judgments by human observers; finally, the theory is for-
mulated in terms of event uncertainty (and expectancy) and not in terms of the relational information that is present with
certainty in a set of objects.

These limitations appear more severe in view of the fact that there are many situations in the social, psychological, and
information sciences where calculating the amount of information conveyed by sets of objects about other sets of objects is
important: for example, (1) to determine which subsets of a data set can best summarize its content (under a particular size
constraint), (2) to characterize how informative different types of categories (i.e., sets of related objects) and partial catego-
ries influence concept learning in human cognizers and machines, (3) to eliminate redundant information from datasets, (4)
to compute the prototypical objects of a data set, (5) to account for pattern perception in human and machine cognition, and
(6) to measure the amount of contextual information associated with the elements of a set of objects. Note that in each of
these situations, relational or contextual information plays a significant role. Thus, in order to develop such a measure, one
must depart drastically from the tenets of classical information theory as based on probabilities.

In this paper, we take one such departure by introducing a notion of information that is antithetical to the three restrictive
aspects of SIM listed above. Representational information (RI) is the information that is conveyed or carried by a particular
object or, more generally, a finite non-empty set of objects, say R, about its non-empty superset of origin S, where S is finite
and has a certain type of structure (see Fig. 1). By ‘‘object’’ we mean an entity defined in terms of a preset number of dimen-
sions and dimensional values or features. We shall give a more precise definition of these concepts in the following section.

Representational information theory (RIT) is based on five principles: (1) humans communicate via concepts or, in other
words, mental representations of categories of objects (where a category is simply a set of objects that are related in some
way), (2) therefore, concepts are the mediators of information, not strings, (3) but concepts are relationships between qual-
itative objects in the environment that are defined dimensionally, (4) the degree of homogeneity of a category (i.e., to what
extent its objects are indistinguishable) is characterized quantitatively by its degree of categorical invariance [30,32], and (5)
the degree of structural complexity of a category is a function of its degree of categorical invariance and its cardinality (i.e.,
size) [30,32]. The first three principles are frequently adopted by researchers in the field of human concept learning as may
be found in [4,8,11,16,30], while principles four and five form the basis of the theory proposed by Vigo [30,32]. Combined,
they support the proposition that the information conveyed by a set of objects R in respect to its superset of origin S is the
rate of change in the structural complexity of S whenever the objects in R are removed from S. Thus, the notion of ‘‘the degree
of surprise of an event’’ as the basis for measuring information is replaced by the notion of ‘‘the rate of change of the struc-
tural complexity of a concept’’ or, equivalently, the rate of change of the structural complexity of the category (in intension)
from which the concept is learned.

This idea is in accord with human intuitions about what is informative. Consider that a concept is defined as a mental
representation of a category of objects (i.e., a set of objects that are related in some way) [20,30]. Now, if we think of each
element R of the power set of S (the power set of S is the set containing all the subsets of S) as a representation of S, then,
whenever a receiver receives a representation R of a category S, what is being received is compressed information about the
concept associated with the set S. How do we measure the information carried by R about S? If R carries a large amount of
information about S, then the absence of its elements from S should either greatly increase or decrease the structural com-
plexity of S. Which means that either S carries a great amount of compressed information as to what R is like or what R is not
like. Under this supposition, we propose that the key to measuring representational information (i.e., what R is like according
to S) lies in measuring the relative contribution that R makes to the structural complexity of S. If the absence of R (its objects)

Fig. 1. Schematic of stages in the transmission and reception of representational information. Note that for each environmental categorical stimulus (sets of
objects) a concept is acquired by the receiver (conceptualizer) which indicates that the information has been transferred. The condensed representation
of the original category (consisting of two objects in the diagram above) is acquired as a partial concept which approximates to various degrees the nature
of the original category depending on how much information it carries about it. Our representational information measure determines precisely that
amount of information.
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in S drastically decreases the complexity of S (and as we shall see, its comprehensibility), then R is not representationally
informative about S; if on the other hand, the complexity of S drastically increases without the elements in R, then R is very
representationally informative about S. We shall give examples and formalize this idea in the next four sections.

Finally, it should be noted that this quantitative notion of information is abstract and dimensionless. That is, representa-
tional information, we posit, is not a qualitative physical property such as length, mass, and Kelvin temperature that can be
measured by how much of the qualitative property is present. Rather, representational information is a relative and abstract
higher order property measured by the rate of change in the complexity of a stimulus set.

As mentioned, RIT is diametrically opposed to the three general aspects of Shannon’s communication theory listed above
in that: (1) we replace the notion of a symbolic sequence with that of a concept structure; (2) we base representational infor-
mation on a deterministic theory known as ‘‘categorical invariance theory’’ and not on probability theory; and lastly, (3) we
abandon the notion of an event as a source of information, replacing it instead by sets of objects. In the next section, we shall
define in formal terms the notions of a representation, an object, a category, and a concept. In Section 3 we will introduce the
reader to categorical invariance theory [30,32]. In Section 4, structural complexity is defined. After these preliminaries, we
introduce our measure of representational information in Section 5 as a function of the degree of invariance and structural
complexity of a category. Section 6 briefly covers some potential applications of RIT and Section 7 covers some of the limits of
RIT and future research directions.

2. Objects, categories, category structures, and representations

A category is a finite set of objects that are related in some way. A ‘‘well-defined’’ category is a category whose content is
defined by a Boolean algebraic rule (we shall explain what this means later in this section).1 Objects are entities defined in
terms of a number of preset binary dimensions. Although it may be possible to extend RIT to n-ary valued dimensions (n P 2),
this paper only discusses rules involving binary values. Take, for example, a set of objects defined over the three binary dimen-
sions of shape (triangular or circular), color (black or white), and size (large or small). There are 23 = 8 possible objects that may
be defined with these three dimensions. An example of one such object is a triangle that is black and small. Using binary vari-
ables x, y, and z to represent the dimensions of shape, color, and size respectively, we can represent the object in terms of the
conjunctive rule or product rule xyz from Boolean algebra (in other words, the rule ‘‘x and y and z’’) when x = triangular,
y = black, and z = small. Furthermore, we can represent the alternative value of a binary dimension x with a superscript prime
symbol as in x0. So that, using the variable assignments above, a circle that is black and small may be represented by the Boolean
rule x0yz. Henceforth, we shall denote binary dimensions with lower case letters of the English alphabet and with such letters
accompanied by integer (n P 1) subscripts: e.g., w, x, y, z; w1, . . . , wn; x1, . . . , xn; y1, . . . , yn; z1, . . . , zn.

A logical ‘‘addition’’ of such products using the ‘‘or’’ operator (represented by the symbol ‘‘+’’) is known as a Boolean func-
tion in DNF or disjunctive normal form (see [14,28] for a discussion of the disjunctive normal form of a Boolean function).
Functions in DNF are useful in giving a verbatim description of a category. For example, a category consisting of a triangle
that is black and small and a rectangle that is black and small and a rectangle that is white and large may be defined alge-
braically by the following DNF function, xyz + x0yz + x0y0z0, where, once again, the variables with an adjacent prime symbol
denote the alternative possible value of the variable (e.g., when x = triangular, x0 = rectangular). Because these functions
act as membership rules for a category, we shall refer to them as concept functions. In this paper, concept functions will
be represented by italicized capital letters of the English alphabet (e.g., F, G, H), while the sets that such functions define
in extension will be denoted by function symbols with a set bracket on top. For example, if F is a Boolean function in
DNF,

z}|{
F is the category that it defines.

Concept functions are useful in spelling out the logical structure of a category. For example, suppose that x stands for blue,
x0 stands for red, y stands for circular, and y0 stands for square, then the two-variable algebraic expression x0y + xy defines the
category consisting of two objects: one ‘‘red and round’’ and the other ‘‘blue and round’’. Clearly, the choice of labels in the
expression is arbitrary. Hence, there are many Boolean expressions that define the same category structure and, likewise,
different categories with the same structure may be defined by the same Boolean expression. For example, making x0 stand
for square instead of red and making y stand for blue instead of round defines the structurally equivalent category consisting
of a ‘‘blue square’’ object and a ‘‘blue circular’’ object, where the relationships between the dimensional values remain the
same. These structurally equivalent categories form category types (or distinct structures) and may be represented by a sin-
gle concept function. A class of well-defined category types whose category instances are defined by D dimensions and con-
tain p objects is called a D[p] family. For instance, the well-defined category described above belongs to the 2[2] family since
it is comprised of two objects that are defined by two dimensions (color and shape). For a catalog of these category structures
see [1,9,13].

Category structures such as those cataloged in [9] have been studied from the standpoint of the concepts they convey to
humans (for a non-technical introduction to concepts and the connection between categories and concepts the reader is re-
ferred to [20,31]). Indeed, one of the primary goals of theories of concept learning is to be able to predict the degree of dif-
ficulty experienced by humans when learning concepts from different types of category structures (see Fig. 2 below for
examples of instances of category structures). A typical experimental paradigm used to determine the degree of learning
difficulty of an instance of a category structure consists of showing the members of the category along with the members

1 By convention, we shall say that the empty set is also a well-defined category.
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of the complement of the category (the set of objects definable by the D dimensions that are not in the category) one at a
time for a certain period of time. For each object presented, the human subject presses one of two buttons indicating whether
the object belongs or does not belong to the category, after which a prompt is shown indicating whether or not the object
was classified correctly: the presumption being that if the subject has acquired the concept associated with the category, she
should be able to classify all the objects correctly. After the subject reaches a performance criterion (e.g., 100% correct), the
next block of trials begins in order to test another instance of the same or of another category structure.

A second way of testing concept learning performance involves a training phase where subjects are shown the entire in-
stance of a category structure (i.e., all the objects of the category simultaneously as opposed to one at a time) for a certain
amount of time. Subjects are then asked to classify objects as described above but without corrective feedback. Under the
first protocol, degree of concept learning difficulty is operationalized by the number of trials necessary to reach the correct-
ness criterion. Under the second protocol, degree of learning difficulty is operationalized by the percentage of classification
errors.

One of the most important families of category structures that has been studied empirically using both of these ap-
proaches (and others) is the 3[4] family consisting of six category structures or types (for a proof that there are precisely
six distinct structures in this family, see [1,15]). In a now classic experiment, Shepard et al. [25] observed the following
increasing learning difficulty ordering in the part of human subjects: I < II < [III, IV, V] < VI (with types III, IV, and V of approx-
imately the same degree of difficulty). Fig. 2 illustrates visual instances of the 3[4] family structure types in the form of sim-
ple geometric shapes. This 3[4] family ordering has been empirically replicated numerous times by several researchers
[17,21,25,32].

Since the ultimate goal of this paper is to characterize representational information in terms of the transmission of con-
cepts as mediated by category structures, it is important to appreciate the robustness of this and other empirical results like
it. Vigo [30,32] introduced the first general invariance principle able to account successfully for this and other similar results.
Based on this principle, Vigo [30,32] introduces a candidate mathematical law of invariance that makes accurate predictions
about the degree of concept learning difficulty of the structures in the 3[4] family and, in principle, any well-defined category
structure. The law has been verified empirically for a wide range of category structures and links degree of concept learning
difficulty to the structural complexity of a category. That is, the structural complexity of any category as defined by Vigo
[30,32] is consistent with empirical findings on the degree of difficulty experienced by humans while apprehending concepts
from well-defined categories.

Before embarking on the details of the representational information measure, we shall first define the notion of a repre-
sentation (or ‘‘representative’’) of a well-defined category. A representation of a well-defined category S is any subset of S.
The power set }(S) is the set of all such representations. Since there are 2|S| elements in }(S), then there are 2|S| possible rep-
resentations of S (|S| stands for cardinality or size of the set S). Some representations capture the structural (i.e., relational)
‘‘essence’’ or nature of S better than others. In other words, some representations carry more representational information
(i.e., more conceptual significance) about S than others. For example, consider a well-defined category with three objects
defined over three dimensions (color, shape, and size) consisting of a small black circle, a small black triangle, and a large
white circle. The small black circle better captures the character of the category as a whole than does the large white circle.

In addition, it would seem that: (1) for any well-defined category S, all the information in S is conveyed by S itself, and
that (2) the empty set / carries no information about S. The aim of our measure is to measure the amount and quality of
conceptual information carried by representations or representatives of the category S about S while obeying these two basic
requirements and capturing the conceptual significance of S.

Fig. 2. Instances of the 3[4] category types where x represents the color dimension, y represents the shape dimension, and z represents the size dimension.

4850 R. Vigo / Information Sciences 181 (2011) 4847–4859
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3. Categorical invariance

Vigo [30,32] defines categorical invariance as the high-order property of a well-defined category to stay the same (in re-
spect to its object content) after its objects are transformed relative to each of their defining dimensions. To illustrate this
idea, consider the category containing a triangle that is black and small, a circle that is black and small, and a circle that
is white and large. This category is described by the concept function xyz + x0yz + x0y0z0. Let’s encode the features of the objects
in this category using the digits ‘‘1’’ and ‘‘0’’ so that each object may be representable by a binary string. For example, ‘‘111’’
stands for the first object when x = 1 = triangular, y = 1 = small, and z = 1 = black. Thus, the entire set can be encoded by {111,
011, 000}. If we transform this set in terms of the shape dimension by assigning the opposite shape value to each of the ob-
jects in the set, we get the perturbed set {011, 111, 100}. Now, if we compare the original set to the perturbed set, they have
two objects in common with respect to the dimension of shape. Thus, two out of three objects remain the same. This is a
measure of the partial invariance of the category with respect to the dimension of shape. The first pane of Fig. 3 illustrates
this transformation. Doing this for each of the dimensions, we can form an ordered set, or vector, of values consisting of these
partial invariants which we refer to as the structural or logical manifold of the concept function or category type (see Fig. 3).

Formally, these partial invariants can be represented in terms of a vector of discrete partial derivatives of the concept
function that defines the Boolean category. This is shown in Eq. (3.3) below where K(F) stands for the logical manifold of
the concept function F and where a ‘‘hat’’ symbol over the partial differentiation symbol indicates discrete differentiation
(for a detailed and rigorous explanation, see [30]).

Discrete partial derivatives are completely analogous to continuous partial derivatives in Calculus. Loosely speaking, in
Calculus, the partial derivative of an n variable differentiable (and therefore continuous) function f(x1, . . . , xn) is defined as
how much the function value changes relative to how much the input value(s) change as seen below:

of x1; . . . ; xnð Þ
oxi

¼ lim
Dxi!0

f x1 . . . ; xi þ Dxi; . . . xnð Þ � f x1; . . . ; xnð Þ
xi þ Dxið Þ � xi

: ð3:1Þ

On the other hand, the discrete partial derivative, defined by the equation below (where x0i = 1 � xi with xi 2 f0;1g) is totally
analogous to the continuous partial derivative except that there is no limit taken because the values of xi can be only 0 or 1:

ôF x1; . . . ; xnð Þ
ôxi

¼
F x1 . . . ; x0i; . . . xn
� �

� F x1; . . . ; xnð Þ
x0i � xi

: ð3:2Þ

The value of the derivative is ±1 if the function assignment changes when xi changes, and the value of the derivative is 0 if the
function assignment does not change when xi changes. Note that the value of the derivative depends on the entire vector
(x1, . . . , xn) (abbreviated as ~x in this article) and not just on xi. As an example, consider the concept function AND, denoted
as Fð~xÞ ¼ Fðx1; x2Þ ¼ x1x2 (Equivalently, we could also write this function as in the examples under Section 2 as F(x, y) = xy.
Because this is more readable than the vector notation, we shall continue using it in other examples.) Also, consider the par-
ticular point~x ¼ ð0;0Þ. At that point, the derivative of the concept function AND with respect to x1 is 0 because the value of
the concept function does not change when the stimulus changes from (0, 0) to (1, 0). If instead we consider the point(0, 1),
the derivative of AND with respect to x1 is 1 because the value of the concept function does change when the stimulus
changes from (0, 1) to (1, 1).

Fig. 3. Logical manifold transformations along the dimensions of shape, color, and size for an instance of a category type from the 3[3] family. The fourth
pane underneath the three top panes contains the pairwise symmetries revealed by the shape transformation.
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Accordingly, the discrete partial derivatives in Eq. (3.3) below determine whether a change has occurred in the category in
respect to a change in each of its dimensions. The double lines around the discrete partial derivatives give the proportion of
objects that have not changed in the category and are defined in Eq. (3.4) below:

KðFÞ ¼ ôF x1; . . . ; xDð Þ
ôx1

�����
�����; ôF x1; . . . ; xDð Þ

ôx2

�����
�����; . . . ;

ôF x1; . . . ; xDð Þ
ôxD

�����
�����

 !
: ð3:3Þ

KiðFÞ ¼
ôF x1; . . . ; xDð Þ

ôxi

�����
����� ¼ 1� 1

p

X
~xj2

z}|{
F

ôFð~xjÞ
ôxi

�����
�����

2
64

3
75: ð3:4Þ

In the above definition (Eq. (3.4)),~x stands for an object defined by a vector of D dimensional values (x1, . . . , xD). The general
summation symbol represents the sum of the partial derivatives evaluated at each object~xj from the Boolean category

z}|{
F (this

is the category defined by the concept function F). The partial derivative transforms each object~xj in respect to its ith dimen-
sion and evaluates to 0 if, after the transformation, the object is still in

z}|{
F (it evaluates to 1 otherwise). Thus, to compute the

proportion of objects that remain in
z}|{
F after changing the value of their ith dimension, we need to divide the sum of the partial

derivatives evaluated at each object~xj by p (the number of objects in
z}|{
F ) and subtract the result from 1. The absolute value

symbol is placed around the partial derivative to avoid a value of negative 1 (for a detailed explanation, see [30]).
Relative degrees of total invariance across category types from different families can then be measured by taking the

Euclidean distance of each structural or logical manifold (Eq. (3.3)) from the zero logical manifold whose components are
all zeros (i.e., (0, . . . , 0)). Thus, the overall degree of invariance U of the concept function F (and of any category it defines)
is given by the equation below:

U F x1; . . . ; xDð Þð Þ ¼
XD

i¼1

ôF x1; . . . ; xDð Þ
ôxi

�����
�����

" #2
2
4

3
51=2

: ð3:5Þ

Using our example from pane one in Fig. 3, we showed that the original category and the perturbed category have two ele-
ments in common (out of the three transformed elements) in respect to the shape dimension; thus, its degree of partial
invariance is expressed by the ratio 2/3. Conducting a similar analysis in respect to the dimensions of color and size, its log-
ical manifold computes to 2

3 ;
0
3 ;

0
3

� �
and its degree of categorical invariance is

U x1x2x3 þ x01x2x3 þ x01x02x03
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

� �2

þ 0
3

� �2

þ 0
3

� �2
s

� :67: ð3:6Þ

Note that the concept function xyz + x0yz + x0y0z0 used in our example at the beginning of Section 3 has been rewritten in an
entirely equivalently form as x1x2x3 þ x01x2x3 þ x01x02x03 in order to be consistent with the vector notation introduced above.
Henceforth, we shall use both ways of specifying concept functions and it will be left to the reader to make the appropriate
translation. We do this since the non-vector notation is more intuitive and less confusing to comprehend structurally.

Invariance properties facilitate concept learning and identification. More specifically, the proposed mathematical frame-
work reveals the pairwise symmetries that are inherent to a category structure when transformed by a change to one of its
defining dimensions. One such pairwise symmetry is illustrated in the bottom pane of Fig. 3. The more of these symmetries,
the less the dimension is useful in determining category membership. In others words, the dimensions associated with high
invariance do not help us discriminate the perturbed objects from the original objects in terms of category membership. Con-
sequently, these particular dimensions do not carry ‘‘diagnostic’’ information about their associated category; however, they
signal the presence of redundant information.

This redundant information is useful because it identifies first hand which aspects of the categorical stimulus could be
ignored while learning the concept and while attempting to construct membership rules. Conversely, the lower the degree
of invariance of a category, the more impact its dimensions have on the character of the category as a whole due to their
mutual interdependency and the more mutually distinguishable the members of the category are. In short, the degree of cat-
egorical invariance of a category may be construed as either a measure of the degree of mutual distinctiveness or, more di-
rectly, as a measure of the overall degree of likeness (homogeneity) between the elements of the category. This property can
be easily seen when comparing category type 1 to category type 6 in Fig. 2. Note that any possible pattern between dimen-
sional values or features in type 6 is broken up by the way that these values are distributed throughout the objects without
any particular one being dominant.

Finally, we should mention that the categorical invariance principle is not equivalent to factoring out variables from the
concept function formulae (in disjunctive normal form) that define the category structure. To recognize this, note that the
variables of the sixth and last concept function in the table (i.e., type 3[4]–VI) in Fig. 2 may be factored out in several ways:
yet, the degree of invariance of the concept function is zero. In principle, there are an infinite number of similar examples
that demonstrate this important fact.
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4. Structural complexity

Using the definition of categorical invariance (Eq. (3.5) above), we define the structural complexity W of a well-defined
category

z}|{
F and its subjective structural complexity w. The structural complexity of a well-defined category

z}|{
F is directly pro-

portional to the cardinality of the category or size (i.e., the number of elements in the category) and indirectly proportional to
a monotonically increasing function f of the degree of invariance of the concept function F that defines the category. This
relationship is expressed formally by Eq. (4.1) below. The intuition here is that the raw complexity measured by the number
of items in the category is cut down or diminished by the degree of set homogeneity or patternfullness of the category as
measured by its degree of invariance (see Section 3 for an explanation of categorical invariance and set homogeneity):

W
z}|{
F
	 


¼ p
f UðFÞð Þ : ð4:1Þ

The simplest function that meets the above criterion is the identity function. Thus, we use it as a baseline standard to define
the structural complexity of a category. Moreover, since the degree of categorical invariance U of the concept function F can
potentially be equal to zero, we have added a 1 to it to avoid division by zero in 4.1 above. Then, the structural complexity W
of a category

z}|{
F is directly proportional to its cardinality and indirectly proportional to its degree of invariance (plus one):

W
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: ð4:2Þ

Although 4.2 above is a good predictor of the subjective structural complexity of a well-defined category (as indicated by
how difficult it is to apprehend it) [30,32], it has been shown empirically that subjective structural complexity judgments
may more accurately obey an exponentially decreasing function of its degree of invariance [30,32]. Thus, we define the sub-
jective structural complexity w of a category

z}|{
F as being directly proportional to its cardinality and indirectly proportional to

the exponent of its degree of invariance:

w
z}|{
F
	 


¼ pe�U Fð Þ ¼ pe
�
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ôxi

�����
�����

" #2" #1=2

: ð4:3Þ

There are parameterized variants of Eqs. (4.2) and (4.3) above with cognitively motivated parameters [30,32].2 The param-
eterized versions of the measures, while less parsimonious, do account for individual differences in the perception of the struc-
tural complexity of a well-defined category and, consequently, the subjective degree of difficulty experienced by human
observers when acquiring concepts from their corresponding well-defined categories.

5. Representational information

With the preliminary apparatus introduced in Sections 2–4, we are now in a position to introduce a measure of represen-
tational information that meets the goals set forth in the introduction to this paper. In general, a set of objects is informative
about a category whenever the removal of its elements from the category increases or decreases the structural complexity of
the category as a whole. That is, the amount of representational information (RI) conveyed by a representation R of a well-
defined category

z}|{
F is the rate of change of the structural complexity of

z}|{
F. Simply stated, the representational information

carried by an object or objects from a well-defined category
z}|{
F is the percentage increase or decrease (i.e., rate of change

or growth rate) in structural complexity that the category experiences whenever the object or objects are removed.3

More specifically, let
z}|{
F be a well-defined category defined by the concept function F and let the well-defined category R be

a representation of
z}|{
F (i.e., R #

z}|{
F or R 2 }ð

z}|{
FÞ). Then, if

z}|{
G ¼

z}|{
F � R, the amount of representational information �ho of R in respect

to
z}|{
F is determined by Eq. (5.1) below where j

z}|{
Fj and j

z}|{
Gj stand for the number of elements in

z}|{
F and in

z}|{
G, respectively:

2 For the readers’ convenience, the parameterized variant of Eq. (4.3) as introduced in [32] follows: w
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. The parameter ai

stands for a human observer’s degree of sensitivity to (i.e., extent of detection of) the invariance pattern associated with the ith dimension (this is usually a
number in the closed real interval [0, 1]). k is a scaling parameter (a real number greater than 0) that indicates the overall ability of the subject to discriminate
between mental representations of logical manifolds known as ideotypes (a larger number indicates higher discrimination) and c is a constant parameter in the
closed interval [0, 1] which captures possible biases displayed by observers toward invariant information (c is added to the numerator and the denominator of
the ratios that make up the logical or structural manifold of the well-defined category). Finally, s is a parameter that indicates the most appropriate measure of
distance as defined by the generalized Euclidean metric (i.e., the Minkowski distance measure). In our investigation [30,32], the best predictions are achieved
when s = 2 (i.e., when using the Euclidean metric). Please note that it has been shown that using the scaling parameter k alone in equation (4.3) (without the
help of any other of the aforementioned parameters) enables (4.3) to account for over 95% of the variance in the human concept learning data. Optimal
estimates of these free parameters on the aggregate data provide a baseline to assess any individual differences encountered in the pattern perception stage of
the concept learning process and may provide a basis for more accurate measurements of subjective representational information.

3 We could simply define the representational information of a well-defined category as the derivative of its structural complexity. We do not because our
characterization of the degree of invariance of a concept function is based on a discrete counterpart to the notion of a derivative in the first place.
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Likewise, let
z}|{
F be a well-defined category defined by the concept function F and let the well-defined category R be a repre-

sentation of
z}|{
F (i.e., R #

z}|{
F or R 2 }ð

z}|{
FÞ). Then, if

z}|{
G ¼

z}|{
F � R, the amount of subjective representational information �hs of R in re-

spect to
z}|{
F is determined by Eq. (5.2) below:
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Note that definitions 5.1 and 5.2 above yield negative and positive percentages. Negative percentages represent a drop in
complexity, while positive percentages represent an increase in complexity. Thus, RI has two components: a magnitude
and a direction (just as the value of the slope of a line indicates both magnitude and direction). For humans, the direction
of RI is critical: for example, a relatively large negative value obtained from 5.1 and 5.2 above indicates a small amount
of RI, while a relatively large positive value indicates a large amount of RI. In the following examples, it will be shown that,
intuitively, the RI values make perfect sense for representations of the same size (i.e., with the same number of objects). In
fact, it should be noted that, in general, it is not meaningful to compare RI values of representations of different cardinality or
size if one wishes to cancel out the effect that category size alone could have on complexity reduction. Indeed, it should be
noted that when comparing RI values for representations of different sizes, there will be cases when a smaller representation
(e.g., a singleton) may in fact be more representationally informative than a representation with a greater number of objects.
This is due to the fact that the smaller representation informs us more efficiently about the structural pattern underlying the
category of origin or source category

z}|{
F. In other words, representational information as a whole tells us which representa-

tions are relatively better at compressing the relational and qualitative information in
z}|{
F.

And this is consistent with the fact that the measure above measures both: (1) the magnitude of relational information in S
that is captured by its representation (as the rate of change in structural complexity), and (2) the quality (or goodness) of the
representation (as the direction of that rate of change). Another way of interpreting this duality is by thinking of RI as mea-
suring goodness of representation in terms of the percentage of relational information captured by the representation (i.e.,
how faithful is the representation to its source), and in terms of the parsimony or minimality of the representation in respect
to its source. However, contrary to this dual character of the measure, multiple object representations may be fallaciously
perceived as more informative than single object representations if considered on the basis of size alone. Thus, when running
human experiments on subjective information judgments, experimenters should take care that these two aspects of the
measure are understood and differentiated. On the other hand, if the user is only interested in the magnitude of RI, then tak-
ing the absolute value of 5.1 and 5.2 above will yield the desired values.

Finally, note that the measure yields zero percent information only when R is the empty set. This is consistent with the
assumption that the empty set does not convey relational information about its category of origin. On the other hand, when R
is

z}|{
F itself, it carries all the relational information possible about

z}|{
F, and as anticipated, its RI value in magnitude alone is 100%

or 1; however, this value is negative since there is a decrease in complexity. As such, it conveys little RI. This makes sense
because when a category represents itself, there is no compression at all, and therefore, no simplification. Thus, a bad rep-
resentation or bad ‘‘relational information compressor’’ of a well-defined category

z}|{
F, when quality and magnitude are both

considered, is
z}|{
F itself.

Using Eq. (5.2) above, we can compute the amount of subjective representational information associated with each repre-
sentation of any category instance defined by any concept function. Take the category defined by the concept function
xyz + x0yz + x0y0z0 where x = triangular, y = black, and z = small used in Section 3 as an example (Fig. 5 displays the category).
To be consistent with the vector notation introduced under Section 3, this concept function can also be written as:
x1x2x3 þ x01x2x3 þ x01x02x03, and as before, we leave it up to the reader to make the necessary translation. As under Section 3,
the objects of this category may be encoded in terms of zeros and ones, and the category may be encoded by the set {111,
011, 000} to facilitate reference to the actual objects. The amount of subjective representational information conveyed by
the singleton (single element) set containing the object encoded by 111 (and defined by the rule xyz) in respect to the category
encoded by {111, 011, 000} (and defined by the concept function xyz + x0yz + x0y0z0‘)) is computed as shown in 5.3 and 5.4 below:

�hs f111gjf111;011;000gð Þ ¼
w

z}|{
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� w
z}|{
F
	 


w
z}|{
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 ¼

z}|{
G
��� ��� � e�U x0yzþ x0y0z0ð Þ �

z}|{
F
��� ��� � e�U xyzþ x0yzþ x0y0z0ð Þ

z}|{
F
��� ��� � e�U xyzþ x0yzþ x0y0z0ð Þ ð5:3Þ

Next, we use compute the value of U(xyz + x0yz + x0y0z0) as in example 3.6 above and compute U(x0yz + x0y0z0) using its logical
or structural manifold (0,0,0) and get:
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�hs f111gjf111; 011;000gð Þ ¼

z}|{
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��� ��� � e�U x0yzþ x0y0z0ð Þ �

z}|{
F
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z}|{
F
��� ��� � e�U xyzþ x0yzþ x0y0z0ð Þ ¼ 2e�0 � 3e�:67

3e�:67 � 2� 3 � :51
3 � :51

� :30

ð5:4Þ

Similarly, if we compute the results for the remaining two singleton (single element) representations of the set {111, 011,
000}, we get the values shown in the table of Fig. 4 above. These illustrate that the representation {000} is relatively less
informative in respect to its category of origin {111, 011, 000} since the absence of 000 results in a 52% reduction in the
structural complexity of

z}|{
F (i.e., �.52). Likewise, the other two singleton representations are more informative since the

presence of their elements (111 and 011, respectively) in
z}|{
F increase the structural complexity of

z}|{
F by 30%. The reader is

directed to Fig. 5 above, showing a visuo-perceptual instance of the category structure, in order to confirm these results
intuitively.

Fig. 6 shows the information conveyed by the single element representations of the six category structures in the 3[4]
family of structures (see Fig. 2 for visuo-perceptual instances of each type). Information vectors containing the amount of
information conveyed by each single object representation are given in the information column. Note that each of the single
element representations of category structures 3[4]–1, 3[4]–2, and 3[4]–6, respectively convey the same amount of
information.

As mentioned under Section 1, it should be noted that this quantitative notion of information is a relative, abstract, and
dimensionless. That is, representational information, we posit, is not a qualitative physical property such as length, mass, and
Kelvin temperature that can be measure by how much of the qualitative property is present. Rather, representational infor-
mation is a relative and abstract higher order property measured by the rate of change in the complexity of the structure of
the stimulus set.

Furthermore, in general, representational information is non-additive at the level of singleton representations (i.e., rep-
resentations with a single object). In other words, since the total representational information conveyed by a well-defined
category is simply a percentage computed in respect to itself, this value may not be computed by simply adding the repre-
sentational information of each singleton subset of the category. The reason is that each singleton representation generates a
different context that bears a different quantitative relation to its set of origin S: thereby generating unsystematic percent-
ages. That this is the case is clear from Fig. 6. If RI were additive at the level of singleton representations, it would have to be
the case that for each of the six well-defined categories listed, the sum of the RI of its singleton representations would be
equal to 1, which is clearly not the case.

Although, under particular constraints, it may be the case that an additive property would hold for particular kinds of
representations or subsets of a well-defined category, this is a matter that will require further investigation. Indeed, we be-
lieve that it is this resistance to an easy additive characterization that makes the RI measure extremely effective in capturing
contextual effects. As such, it would seem that structural sensitivity comes at some cost and that, if a highly constraint addi-
tive property were possible, it would be under conditions involving a high degree of contextual independency between the
objects in some of the representations of the well-defined category.

Finally, note that singleton representations that are considered in isolation (i.e., without a category of origin from which
they get their representational meaning) as well-defined categories, only have two representations (the empty set and the
full set). However, the same singleton categories acting as representations of a well-defined category S, may be regarded as
the minimal size representations of S, or as the representational atoms of S. If these representational atoms form the base of a
pyramid-like structure made up of the representations of S, then, at the very top of the pyramid is the maximal represen-
tation of S containing |S| objects.

Fig. 4. Amount of information conveyed by all the possible single element representations of
z}|{
F.

Fig. 5. Category instance of xyz + x0yz + x0y0z0 concept function.
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6. Potential applications

As enunciated in the abstract of this paper, the aim of RIT is to provide an alternative mathematical account of the nature
of information that may contribute to overcoming the practical and conceptual failures of SIT in cognitive research. Thus, RIT
introduces an ‘‘in principle’’ approach to overcoming the limitations of SIT. However, beyond providing an alternative the-
oretical way of understanding and measuring information as a representational and cognitive quantity, the notion of repre-
sentational information and its measurement may be useful in more pragmatic settings. Some potential applications of the
present theory include: (1) database analysis, (2) rule mining as in [27], (3) modeling and implementation of conceptual pro-
cesses in artificial and human cognitive systems (e.g., artificial classifiers as in [10], robot perception as in [12], and AI ex-
perts), and 4) information compression.

Indeed, all four domains can significantly benefit from the kind of data compression that we believe underlies human con-
ceptual behavior. For example, in the first five sections of this paper we have argued that RIT acts on the assumption that
humans are sensitive to certain invariance patterns as the basis of concept formation and that these patterns provide the
human code for optimal compression of information and parsimonious decision making. In contrast, in SIT, compressibility
of information is grounded on the probability distribution function (of the random variable representing the event) as a
descriptive rule that summarizes or characterizes the event space. This approach, for the reasons enumerated under Sec-
tion 1, does not capture the structural or relational properties (known with certainty) about compound stimuli. However,
in RIT, it is precisely these relatively few relations between the stimuli, and not the potentially complicated and only partially
known statistical distributions of many stored categorization instances or categorization events (see discussion under Sec-
tion 2 above), that is the basis of the compression process. Thus, RIT potentially offers more effective information compres-
sion for the above tasks.

Likewise, RIT may be useful for: (1) determining which subsets of a data set can best summarize its content (under spe-
cific size constraints), (2) to characterize how informative different types of concepts and partial concepts are to human and
artificial cognitive systems, (3) to eliminate redundant information from datasets, and (4) to determine the prototypical ele-
ments of data sets when measures based on frequencies, the mean, or the median are inadequate.

For these applications, the aim is not to compute the representational information of each subset or representation of a
set (hence the allusion to a ‘‘size constraint’’ in the previous paragraph) but of some adequate subsets or representations as
dictated by the problem domain (we will illustrate this point later in this section). Indeed, computing the representational
information conveyed by each representation of a ‘‘very large’’ well-defined category is currently intractable. That is, the
problem is solvable in theory but not in practice. More specifically, no polynomial time algorithm is known for generating
every subset of a finite set. Although the computation is easy, writing down all possible 2n subsets for a set containing n ob-
jects (or for 2n � 2 subsets when excluding the two vacuous cases of the empty set and the set itself) will take a long time for
any known computer when n is ‘‘large’’. The algorithmic complexity of an algorithm capable of such a feat is O(2n) or expo-
nential [16].

To illustrate this point, it would take Tianhe-1A, the current world’s fastest computer, capable of approximately 2.566
quadrillion floating point operations per second, roughly one week to compute RIT for all possible representations of a
well-defined category containing 71 objects. The situation compounds when one considers that after each representation
(subset) of a category is generated, its degree of invariance must be computed as well. Vigo [30] reduced the invariance
detection problem to the problem of evaluating truth-tables, which is also a problem of exponential complexity in respect
to the number of dimensions over which the category is defined. Although by using distributed algorithms and parallel archi-
tectures these computations would take significantly less time, there is a clear computational and practical limit to the no-
tion of computing the quantity of representational information conveyed by every possible representation of a well-defined
category containing many objects. At the same time, it should be said that for inputs of 20–30 objects and 20–30 dimensions
the above computations are quite tractable and would be perceived as instantaneous when performed by a personal
computer.

Fig. 6. Amount of information conveyed by all the possible single element representations of six different category types or concept functions.
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On the other hand, this limitation is of no consequence with respect to the kind of empirical research and the kinds of
behaviors calling for explanation in cognitive science and cognitive psychology. This is due to the perceptual and memory
limitations of the human cognitive system and to the highly simplified stimuli normally used in laboratory experiments.
That is, in humans, fields of view are spatially constrained and the number of readily (i.e., immediately, consciously, and
overtly) discriminable objects and dimensions in such spaces are usually relatively small. This makes the computation of
representational information for every representation of a set of well-defined compound stimuli (i.e., a well-defined cate-
gory) quite tractable. Moreover, humans are not able to discriminate more than a few dimensions consciously without con-
siderable deliberation, unless these are overt in saliency and highly distinct. Moreover, in many cases, the most relevant
representations of perceived categories are those ranging from a single object to four objects (defined over two to four
dimensions) since this range presumably falls within the limit of the working memory capacity of most humans [5].

At the beginning of this Section 1 listed a number of potential applications for RIT. As mentioned, these applications are
feasible when appropriate size constraints on sets of stimuli are met. Such situations arise whenever a heuristic search on a
large database yields a relatively small number of alternatives that are then presented to a human agent to act upon. These
alternatives (represented as well-defined categories in RIT) can then be organized, analyzed, and altered in terms of their RI.
Typically, only singleton representations consisting of a single alternative (i.e., object) would be of interest in such applica-
tions (which, incidentally, would greatly simplify the computations described above). The general idea is to, after a prelimin-
ary rough search order the results in terms of their amount of representational information. This should facilitate the
efficient detection and processing of information by human agents.

Systems that can benefit from the above prescription include expert systems, search engines, databases, and data mining
engines: in short, any system for which it is conceivable that a query initiated by an agent may produce multiple alternatives.
Next, we give an example of such a prescription which in general applies to the other potential applications listed above.
Consider the task of searching for a particular webpage via an internet search engine. Let’s assume that such a search pro-
duces 1000 results. Suppose that these 1000 results (as is normally the case) are laid out in a specific order by some relevance
heuristic, and that they are presented 20 items (webpage links) at a time, each with a short name and description.

Furthermore, suppose that we represent each short name and description corresponding to each webpage as an object
with 17 dimensions. Then, one could construct a well-defined category consisting of 17 dimensions and 20 objects. A useful
way of ordering the 20 displayed webpages would be in terms of their subjective representational information content in
respect to all 20 pages as a whole. Of course, this can be done for all 50 groups of 20 webpages, 20 pages at a time. Such
a calculation is quite tractable for a modern home PC capable of 25 gigaflops: indeed, it would be perceptually instantaneous,
as would be the generation of the truth-table of a Boolean formula in disjunctive normal form consisting of 17 variables (see
the discussion on algorithmic time complexity above).

7. Conclusion and research directions

In this paper, we first introduced the notion of representational information. Representational information is the rela-
tional and qualitative information carried by subsets of a well-defined category S about S. The ability to measure represen-
tational information is useful when it is necessary to determine the essential information embedded in a finite set of objects
defined in terms of dimensional values. We then introduced an original deterministic mathematical framework for the mea-
surement and analysis of representational information based on the unification of three fundamental constructs of universal
science: invariance, complexity, and information. We called this program representational information theory or RIT. To our
knowledge, this marks the first time that a seamless, overt, and direct marriage between these fundamental ideas has been
suggested to characterize information.

Moreover, RIT is based on a set of assumptions that are antithetical to the intuitions underlying Shannon information.
First, in RIT, the mediators of information are concepts and not strings. Secondly, RIT is object driven and not event driven.
The assumptions being that only an information theory grounded on concept formation can adequately account for subjec-
tive information judgments, and that only an object driven theory is capable of giving an adequate account of concept for-
mation as the basis of information. Finally, unlike theories bound by the independence axiom of classical probability theory,
RIT may account for the contextual effects that multiplicity of objects (and events) shown concurrently may have on sub-
jective information judgments.

The deterministic nature of RIT stands also as a unique aspect of the theory, for although alternative ways of interpreting
information continue to be proposed (for example see [26]), the vast majority of these continue to rely on some core notion
of uncertainty. RIT assumes that the human observer knows with certainty the relational information in the stimulus set and
in its representations. In contrast, since SIT is based on event probabilities, it naturally assumes that only partial information
from the relevant domain is known to the observer at different points in time.

Also, it is worth noting that, although RIT is able to overcome key weaknesses in SIT, it may seem to fall short in one re-
spect: in RIT the information conveyed by a representation R of S is about the well-defined category S. But, it has been aptly
suggested that, there may be several well-defined source categories, say S1, . . . , Sn, with the same representation R. Since RIT
assumes that the source category S is known along with its representation R, all these possible categories would be presum-
ably known by the observer along with the representational signal R. Thus, R would have different information values
depending on its source.

R. Vigo / Information Sciences 181 (2011) 4847–4859 4857



Author's personal copy

In view of this, a question arises: can RIT tell us which source set Si an observer will act on given the representation R? We
think that it can, since, at its core, RIT assumes that humans are sensitive to certain invariance patterns that account for con-
cept formation, and that these patterns (and the way that they are detected) provide the human code for optimal information
compression and for parsimonious decision making. Thus, for example, if R conveys more representational information
about S1 than it does about any other possible source set S1, . . . , Sn known to the observer, then S1 will be chosen. In other
words, we propose that in situations involving multiple categories of origin, human receivers will follow a principle of par-
simony and will focus on the category of origin for which R is most informative. Another future research direction of the
current work is to design and conduct experiments to test this hypothesis.

We claimed under Section 6 that RIT may be applied to areas other than human cognition. For example, we proposed that
RIT may be useful for increasing the comprehensibility and accessibility of results from database searches by organizing
them according to their amount of subjective representational information. Some potential applications of this approach in-
clude: (1) database analysis; (2) modeling and implementation of conceptual processes in artificial cognitive systems (e.g.,
machine, robot, and AI expert, cognition) and human cognitive systems; (3) information compression, and many more. How
exactly, and to what extent, these applications will benefit from RIT is still to be determined and is certainly beyond the
scope of this theoretical proposal to address. We hope that the brief but specific application example outlined under Section 6
will spur an interest on the other potential applications of RIT. We believe that such efforts will help researchers gain further
insight into the nature of information in their domain of interest.

Less encouraging is the fact that although the representational information measure we have proposed is effective in cap-
turing relational information generated by context, the measure is limited in a number of ways. For one, it only applies to
categories that are well-defined (i.e., dimensionally defined) or, in other words, to sets whose membership content is spec-
ified in terms of an algebraic rule. In addition, the rules considered in this paper are rules consisting of Boolean algebraic
operations and binary variables representing the dimensions of the objects in the category. This lack of flexibility is compen-
sated by the parsimony of the measure and the fact that the conceptual behavior of humans in respect to these well-defined
categories have been found to be empirically lawful. Furthermore, many natural categories may be reduced to this simple
binary scheme which highlights the structural sketches of categories in the complex world we live in.

Notwithstanding, a future research challenge is to extend categorical invariance theory [30] and, therefore, RIT to many-
valued dimensions. Such an extension would be challenging for it would have to offer an alternative way of representing the
stimulus objects in terms of rules that can capture the relationships between all the dimensional values that take part in
their description. The difficulty lies in the way that negation is interpreted in Boolean algebra as a two-state operator. Some
kind of multivalued logic with a different notion of negation from the classical Boolean notion may seem promising but may
not be very elegant.

In spite of this limitation, we hope that the ideas introduced in this paper will pave the way to alternative information
measures that take into account what we know about the ability of humans to form concepts, and about the intimate rela-
tionship (specified here) between three of the most fundamental constructs in science: invariance, complexity, and
information.

Note added in proof

A generalization of categorical invariance theory which overcomes the limitations of RIT listed under sections 6 and 7, and
which generalizes RIT to continuous dimensions, has been developed by the author. Also, a program that computes repre-
sentational information is freely available from the author. Please, contact the author for details.
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