
Open Source WSJT

Status, Capabilities, and Future Evolution

Joe Taylor, K1JT

12th International EME Conference

Würzburg, August 25–27, 2006

Introduction

The software program WSJT originated in 2001 as part of an attempt to find opti-

mum or near-optimum coding and modulation schemes for weak signal communication on

the amateur VHF/UHF bands. My initial experiments were made with phase shift keying

(PSK) on meteor scatter paths, but the first practical system made available to others used

continuous-phase, 4-tone frequency shift keying (4-FSK) at 441 baud with noncoherent de-

modulation and a unique self-synchronizing method. This mode, called FSK441, is now the

predominant one used for amateur meteor scatter communication throughout the world. A

detailed description of it was published in the December 2001 issue of QST.1

In late 2001 I began experimenting with a 44-tone FSK system keyed at 5.38 baud,

designed primarily for EME. A version of WSJT including the JT44 protocol was released

in early 2002, and the first EME contacts with it were made soon afterward. A description

of JT44 appeared in the June 2002 issue of QST.2 A few months later the JT6M mode was

introduced, using 44-FSK at 21.5 baud—a keying rate well suited to working ionospheric

scatter on the 50 MHz band. The JT44 and JT6M modes worked well, but some early users

more knowledgeable than I about digital communication techniques suggested that forward

error-correction (FEC) might be beneficial, especially on the EME path. I was intrigued,

but badly in need of education. Some months of study and many questions of experts were

required before I could usefully proceed in this direction.

By late 2003 a new mode called JT65 had been designed and tested successfully on

both terrestrial and EME paths. JT65 is a departure from previous WSJT modes in that it

uses structured messages to allow lossless compression of callsigns and grid locators. With

such compression, FEC enhancement becomes a necessity. The low-rate Reed Solomon code

selected for JT65 makes a good match for the chosen FSK modulation, which consists of 64

1J. Taylor, K1JT, “WSJT: New Software for VHF Meteor-Scatter Communication,” QST December 2001,
pp. 36–41.

2J. Taylor, K1JT, “JT44: New Digital Mode for Weak Signals,” QST June 2002, pp. 81–82.

orthogonal data tones and a 65th tone used for time and frequency synchronization. A state-

of-the-art, award-winning “algebraic soft decision” algorithm3 decodes received messages,

and message averaging permits the decoding of messages too weak to be copied in a single

transmission.

Several features were added to the JT65 decoder during its first year, including auto-

matic frequency control to correct drifting signals and a hinted decoding procedure that takes

advantage of a callsign database to suggest hypothetical messages to be compared against

received data. Laboratory simulations were carried out to measure JT65’s performance and

reliability, and these measurements were confirmed by on-the-air experience. A user-level

description of JT65 was published in the June 2005 issue of QST,4 and full technical details

of the JT65 protocol and its implementation within WSJT published a few months later

in QEX.5 JT65 has become popular because it offers an opportunity for even modest-sized

stations (single yagis and 150 Watts) to make dozens of unique EME QSOs at 144 MHz.

Open Source

Recognizing that I am not getting any younger, and hoping that the considerable effort

put into WSJT modes might evolve into even better things for amateur radio, in 2005 I un-

dertook a major re-write of the program so that it could be made “open source.” This goal

was accomplished by the end of 2005; the program’s source code, written in a combination

of Python, Fortran, and C, is now available to anyone6 under the terms of the GNU General

Public License.7 Working with the benefit of an open repository for the code, a core group of

highly competent programmers are now actively engaged as the WSJT development team.8

Sharing their valuable know-how, these individuals have compiled, operated, and made en-

hancements to WSJT on the Windows, Linux, and FreeBSD platforms. More than 200 other

people have downloaded and studied the WSJT source code, as well, and many have offered

valuable advice and counsel to the development team. The team welcomes new members,

and there are many opportunities for good ideas in coding theory, digital signal processing,

3R. Koetter and A. Vardy, “Soft-Decision Algebraic Decoding of Reed Solomon Codes,” in IEEE Trans-
actions on Information Theory, 49, 2809–2825, 2003.

4J. Taylor, K1JT, “EME with JT65,” QST, June 2005, pp. 80–82.

5J. Taylor, K1JT, “The JT65 Communications Protocol”, QEX, September-October 2005, pp. 3–12.

6Source code can be downloaded from http://developer.berlios.de/projects/wsjt/.

7Text of the GPL may be found at http://www.gnu.org/copyleft/gpl.html

8Team members presently include DL3LST, K1JT, KK7KA, N4HY, OH6EH, ON/G4KLX, VA3DB, and
James Courtier-Dutton.

user-interface design, and the like. Most of us are amateurs in some or all of these areas,

and we have much to learn! For those interested in programming details, an Appendix to

this paper provides a structural overview of the WSJT program as of version 5.9.

Present Status

Unlike commercially engineered hardware or software, WSJT is a just-for-fun activity

that has been pursued for its educational benefits and a desire to push forward the amateur

weak-signal frontier. Part of the fun, and large portions of the educational benefits, are

closely related to the program’s status as a work always in progress. New ideas are frequently

tried and tested, and when successful they may lead to new program features. I expect that

this trend will continue and perhaps even accelerate as new people become involved.

Despite continuing program evolution, the basic capabilities of WSJT have been essen-

tially stable since 2003 for the FSK441 and JT6M modes and since early 2005 for JT65. It

appears that JT65 has become the mode of choice for the majority of amateur VHF EME

contacts, except perhaps during CW-only contests or activity weekends. The reasons are

easy to understand, and can be summarized in the following table summarizing minimum

usable signal levels for various classes of JT65 messages and decodings:

Message type Minimum S/N (dB)

Arbitrary message, including plain text . . . −24

Callsign in database (Deep Search) −28

Arbitrary message, with averaging −29

Message synchronization −30

Shorthand RO, RRR, 73 −32

The tabulated signal levels are quoted in dB relative to the noise power in a nominal SSB

transceiver’s 2500 Hz bandwidth. They measurements are based on numerical simulations

using the JT65B submode, with simulated Rayleigh fading and controlled amounts of ad-

ditive white gaussian noise. Additional details of the simulation results are contained in

Figure 1.

For comparison, it is useful to note that signals begin to become audible around −16 dB

on the WSJT scale (or +1 dB in 50 Hz bandwidth), depending somewhat on the details of

receiver and ear-brain filtering. When copying messages of similar complexity, JT65 generally

outperforms human-copied Morse code by 10–15 dB.

Fig. 1.— Percentage of simulated JT65B transmissions copied correctly, as a function of signal-
to-noise ratio in 2500 Hz bandwidth. KV indicates Koetter-Vardy algorithm, while KV2 and KV4
indicate Koetter-Vardy decoding of the averages of 2 and 4 transmissions, respectively. DS indicates
the Deep Search algorithm, “Sync” indicates achievement of time and frequency synchronization,
and “Shorthand” indicates copy of the special messages RO, RRR, and 73.

JT65 has some characteristics that require getting used to. Unlike the more traditional

coding and modulation methods widely employed in amateur weak-signal work, the relia-

bility of copy with JT65 is not incrementally degraded as signals approach the minimum

usable levels. Instead, one normally sees a whole message decoded correctly, or not at all.

When hinted decoding (the so-called Deep Search decoder) is used, only hypothetical mes-

sages combining CQ or the user’s own callsign with a callsign and locator from the callsign

database will be tested against the received information. A stranger callsign—one not in

the database—cannot be copied this way, nor can any plain text message. Such messages

must be decoded by the general purpose Koetter-Vardy decoder, using message averaging if

necessary.

The JT65 protocol is reasonably robust in the presence of low-level interference such

as weak birdies. The decoders in WSJT cope well when several JT65 signals are present

simultaneously, often allowing the operator to copy each signal separately even if they over-

lap in time and frequency.9 The protocol’s shorthand messages are an extremely effective

and reliable way of exchanging minimal signal reports, acknowledgments, and end-of-QSO

indications (RO, RRR, 73). Other message formats are available to convey multi-valued

signal reports, suitably tagged with callsigns, whenever circumstances make them desirable.

During the development of WSJT, and especially while working on the EME-capable

modes JT44 and JT65, I have enjoyed and benefited from a wide range of input from others.

Dozens of experienced EME practitioners have been approached for advice and have willingly

shared their views; excellent suggestions have been volunteered from an even larger number.

Most recently the enlarged WSJT development team has contributed very significantly, as

well. Inevitably, we have not satisfied all requests, but the evident popularity of JT65 seems

to indicate that a good balance of features and capabilities has been achieved. Operating

experience with JT65 now extends over some 2.5 years, and with that experience a heavy

dependence on scheduled QSOs is rapidly fading away. As everyone at this conference knows,

the thrill of an unexpected response to one’s CQ directed at the moon can be a captivating

experience.

Not surprisingly, some operators who are more comfortable with traditional coding and

modulation techniques have stayed with the modes they like best—and that is as it should be.

Morse code with on-off keying remains an extremely powerful and capable communication

protocol, one that has much greater flexibility and a wider range of utility than the special-

purpose protocols of WSJT.

Looking Ahead

I have mentioned that WSJT is a work in progress. What lies ahead? What might be

the most telling motivations for future changes or additions? What about other possible

implementations of the various signaling protocols developed for WSJT—perhaps in com-

pletely independent programs, or perhaps in new programs that might begin with some or

all of the code base of WSJT, but then evolve quite separately? “Open source” means that

the program code is freely available to anyone, and may be used or modified for any purpose,

as long as the same licensing conditions are passed on to all users. My personal view is that

these possible courses of future development are all highly desirable, and would bring good

things to our hobby in this information age. I hope that at least some of them will come to

pass.

9All JT65 transmissions are timed to start on a UTC minute; the JT65B signal bandwidth is about
355 Hz.

Some good ideas for future development are already being discussed. Two members of

the present WSJT development team (KK7KA and ON/G4KLX) have some clever ideas

about protocols that could be especially effective for microwave EME. Another member

(N4HY) is working on an open-source version of a soft-decision Reed Solomon decoder, one

that might outperform the Koetter-Vardy algorithm now used in WSJT. I have made early

tests of a meteor-scatter mode that shows promise of significant advantages over FSK441,

while retaining its desirable features, and also of a potential enhancement to JT65. I will

comment only briefly on the latter ideas in this written paper; with good luck, some on-the-

air performance measurements will be available in time for oral presentation at the Würzburg

conference.

During the original design of JT65 I had in mind its possible use in terrestrial VHF/UHF

contests. I also thought it might be desirable for standard JT65 messages to include QSO

information beyond the minimal exchanges of callsigns and single-valued signal reports. After

discussion with many others I settled on including the grid locator of the transmitting station

in the basic message structure and allowing for multi-valued numerical signal reports. I also

decided to place the majority of necessary information for a minimal valid QSO in the first

exchanged messages—the ones containing callsigns, grid locators, and default OOO signal

reports.

The exchange of grid locators is unnecessary, and not particularly useful in EME QSOs.

They could reasonably be omitted. Further performance advantages might be gained by

spreading the transmitted information more evenly over the procedural stages of a QSO.

I outlined one way of doing this in a talk at the 11th International EME Conference, two

years ago, and received favorable responses about it then and afterward. These ideas have

now been developed further, and I am working on a possible superset of JT65 that would

accommodate them in a backward-compatible way. An up-to-date progress report on that

work will be presented at Würzburg.

Appendix: Programmer’s Overview of WSJT

WSJT is a computer program designed to facilitate Amateur Radio communication under
extreme weak-signal conditions. Three distinct coding and modulation methods are provided:
FSK441 for communication by meteor-scatter techniques on the VHF bands; JT6M for meteor and
ionospheric scatter, primarily on the 6 meter band; and JT65 for the very challenging Earth-Moon-
Earth path. Each mode uses constant-envelope, phase-continuous FSK with keying rates and total
bandwidths chosen to optimize effectiveness for the different propagation types, consistent with the
limitations of typical amateur equipment.

WSJT runs under recent versions of the Windows, Linux, and FreeBSD operating systems.
The program’s user interface is written in the elegant and freely available language called Python.
The Python code runs without changes on any supported platform, as long as the necessary modules
are installed. The remaining source code can be compiled under Windows, Linux, FreeBSD, and
Macintosh OS/X. Platform-dependent versions of FFTW, PortAudio, and libsamplerate need to
be installed.

User Interface

The principal Python source-code files and their purposes include:

1. wsjt.py: Defines the main-screen graphical user interface (GUI) for user interaction; or-
chestrates all event-driven and time-shared activities.

2. specjt.py: Provides real-time display of received signals as two-dimensional “waterfall”
spectra, with bandwidths and scrolling rates suitable for each mode.

3. options.py: Provides entry fields for user-defined parameters.

4. astro.py: Displays astronomical data for sun, moon, sky temperature, etc.

Several smaller Python files serve a number of minor utility functions.

Background Tasks

The main Python-coded procedures make calls to external routines compiled from code written
in Fortran or C. A variety of global data is shared among modules through common blocks defined in
Fortran. The Python code runs in a single thread, although timers make the functions of the several
main modules appear concurrent. Fortran routines create additional threads used for soundcard
I/O and the encoding and decoding of user messages.

As a small part of its overall task, the decoder for JT65 invokes an external program named
KVASD (or KVASD.EXE) located in the main WSJT directory. If this program is present it uses
information on received 64-FSK symbols and attempts to decipher it according to a Reed Solomon
(63,12) code, using the algebraic soft-decision algorithm of Koetter and Vardy3. If KVASD is not
present, WSJT uses its own internal hard-decision Reed Solomon decoder instead. Interprocess
communication between WSJT and KVASD takes place through a shared disk file. KVASD is
not an integral part of WSJT; its algorithm is patented, and the source code is the property
of CodeVector Technologies, LLC. However, compiled versions of KVASD may be freely used in
conjunction with WSJT for the purposes of amateur radio weak-signal communication.

Operation Sequence

WSJT execution starts at the top of Python file wsjt.py. The other Python modules are
loaded and executed as needed. Fortran routines are called to start a high-priority thread that
handles continuous A/D and D/A streams, as well as a background thread for decoding received
or previously recorded signals. The top-level Python code determines the overall state of program
operation, for example “Idle,” “Monitoring,” or “Transmitting.” In normal usage the operator puts
the program into “Auto” mode, which results in a timed sequence of alternating transmission and
reception intervals.

Other Open-Source Software used in WSJT

WSJT 5.9 uses the following open source libraries:

1. FFTW, by Matteo Frigo and Steven Johnson, for computing Fourier transforms.

2. PortAudio, by Ross Bencina and Phil Burk, for audio I/O.

3. ALSA, “Advanced Linux Sound Architecture.” For details, see http://www.alsa-project.org/.

4. Secret Rabbit Code or libsamplerate, by Erik de Castro, for accomplishing band-limited
resampling of data.

5. RS, by Phil Karn, KA9Q, for Reed Solomon encoding and hard-decision decoding.

Partial List of Functions and Subroutines

In the following list of procedure names and descriptions, indentation gives a rough idea about
the relative dependencies of functions.

Audio initialization, message encoding, and display computations:

blanker.f90 Noise blanker

fivehz.f90 Called by PortAudio callback at 5 Hz rate

flat2.f Flatten the spectrum for waterfall display

pix2d65.f90 Compute pixels for waterfall display

pix2d.f90 Compute pixels for waterfall display

runqqq.f90 Execute another process

wsjtgen.f90 Generate Tx waveforms

abc441.f90 Part of FSK441 generator

gen65.f Generate JT65 waveform

chkmsg.f Check a JT65 message for presence of ’OOO’

encode65.f Encode a JT65 message

getpfx1.f Handle extra DXCC prefixes

getpfx2.f Handle extra DXCC prefixes

graycode.f Convert binary to/from Gray code

grid2k.f Convert grid locator to integer

interleave63.f Interleave JT65 symbols

nchar.f Convert number, letter, space to 0-36

packcall.f Routines for JT65 source encoding

packdxcc.f Encode DXCC prefix

packgrid.f Encode grid locator

packmsg.f Assemble parts of a message

packtext.f Encode a plain text message

pfx.f List of add-on DXCC prefixes

gen6m.f Generate JT6M waveform

gentone.f Generate tone for JT6M message

gencw.f Generate CW waveform

morse.f Convert ascii to morse dits

gencwid.f Generate a CW ID message

gcom1.f90 Global variables shared among Fortran, Python,

gcom2.f90 and C routines

gcom3.f90

gcom4.f90

Astronomical calculations:

astro.f Computes Az, El, Doppler for Sun, Moon, etc.

azdist.f Computes azimuth, distance, etc., between two locators

coord.f Spherical trig utility

dcoord.f Spherical trig utility in double precision

deg2grid.f Convert lat/long (degrees) to grid locator

dot.f Compute dot product

ftsky.f Get sky temperature from data file

geocentric.f Convert geodetic to geocentric coords

GeoDist.f Compute azimuth and distance between two locators

grid2deg.f Convert grid locator to lat/long

moon2.f Compute moon location at specified date and time

MoonDop.f Compute lunar doppler shift and related quantities

sun.f Compute sun location at specified date and time

toxyz.f Convert from polar to cartesian coordinates

General Utilities:

db.f Compute decibels from ratio

igray.f Gray code

indexx.f Sort routine

set.f Move, add, zero, ...

pctile.f Sort an array and get specified percentile

rfile2.f Read a binary file

sort.f Sort an array

cutil.c Fortran wrappers for some basic C functions

FFTs:

fftw3.f Fortran definitions for FFTW

four2a.f Wrapper to make FFTW look like four2

four2.f FFT in Fortran

ps.f Compute power spectrum

xfft.f Real to complex FFT wrapper

xfft2.f Real to complex FFT wrapper

Decoding Routines:

wsjt1.f Top-level decoding routine; handles FSK441 especially

avesp2.f Computes average spectrum

bzap.f Find and remove birdies

detect.f Measure power in FSK441 tones

flatten.f Flatten the spectrum

longx.f Decode normal FSK441 messages

lpf1.f Quick-and-dirty lowpass filter

mtdecode.f Multi-tone decoding

ping.f Find pings

s2shape.f Flatten the 2d spectrum

smooth.f Smooth by boxcar averaging

spec2d.f Compute 2d spectrum for FSK441

stdecode.f Decode FSK441 shorthand messages

sync.f Synchronize FSK441 data

wsjt65.f JT65 decoder

afc65.f AFC for JT65

avemsg65.f Decode average message

decode65.f Decode JT65 message

deep65.f Deep search decoder

demod64a.f Compute probabilities of transmitted symbols

extract.f Extract message from JT65 symbol probabilities

flat1.f Flatten the passband

getsnr.f Compute snr or shorthand message

k2grid.f Convert integer to 4-digit grid locator

limit.f Clipper for JT65

peakup.f Interpolate to find fractional-bin peak

setup65.f Initialize pseudorandom sync vector

short65.f Detect JT65 shorthand messages

slope.f Remove a straight-line slope

spec2d65.f Compute 2d spectrum for JT65

spec441.f Compute spectra for FSK441 decoding

sync65.f Synchronize a JT65 signal

unpackcall.f Unpack callsign

unpackgrid.f Unpack grid locator

unpackmsg.f Unpack a JT65 message

unpacktext.f Unpack a plain text message

xcor.f Compute cross-correlation for JT65 sync

decode6m.f Decode a JT6M signal

syncf0.f First frequency sync

syncf1.f Second freq sync

synct.f First time sync

avemsg6m.f Get average JT65 message

JT65code.f Example program to illustrate and test JT65

coding and decoding

Hard-Decision Reed Solomon encoder and decoder:

decode_rs.c Karn’s RS decoder

encode_rs.c Karn’s RS encoder

init_rs.c Initialization routine

wrapkarn.c Wapper for Fortran

C Functions for Audio and T/R switching:

jtaudio.c Audio I/O, calls PortAudio routines

padevsub.c Select desired audio device

ptt.c PTT via serial port DTR/RTS

ptt_linux.c PTT via serial or parallel ports (*nix)

resample.c Wrapper for resample routine

start_alsa.c Start audio streams using ALSA

start_threads.c Start audio and decoder threads

