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ABSTRACT

The problem of adjusting the color such that the output image from

a digital camera, viewed under a standard condition, matches the

scene observed by the photographer’s eye is called white-balance.

While most white-balance algorithms approach the problem using

the coefficient law (von Kries), the coefficient law has been shown

inaccurate. In this paper, we instead formulate the white-balance

problem using Jameson and Hurvich’s induced opponent response

chromatic adaptation theory. The solution to this white-balance

problem reduces to a single matrix multiplication. The experimen-

tal results using existing illuminant estimation methods verify that

the induced opponent response approach to solving the white-balance

problem yields more neutral colors in the white panels of the Mac-

beth color chart than the traditional methods. The computational

cost of the proposed method is virtually zero.

1. INTRODUCTION

Chromatic adaptation is a study of change in the photoreceptive

sensitivity of the human visual system (HVS) under various view-

ing conditions, such as illumination. Generally, the chromatic adap-

tation mechanism has the effect of discounting the illuminant, and

thus metameric colors under one illuminant often appear metameric

under another illuminant. In particular, a piece of white paper is be-

lieved to appear white regardless of the illuminant. A human vision

is said to have a color constancy property if a color of an object

appears invariant to the illuminant.

The von Kries coefficient law is a theory that describes the re-

lationship between the illuminant and the HVS sensitivity [7] and it

accounts for the approximate color constancy in the HVS [15] [11].

However, Hess, Pretori, and Wallach demonstrate that the coeffi-

cient law is false under the context of chromatic adaptation [5] [8]

[9]. Instead, Hurvich and Jameson suggest that the surround activ-

ity induces an opposite physiological response through incremental

processes [9].

The chromatic adaptation phenomenon poses a particularly chal-

lenging problem in digital photography. Because the measured light

intensity strongly depends on the illuminant, the captured image

often appears different from the scene the photographer sees. The

process of adjusting the image appearance to a different viewing

condition is commonly known as the white-balance problem. If

the end user of the output image is a human eye, it is critical to be

sensitive to the HVS chromatic adaptation mechanism. Although

a series of recent studies verifies the weaknesses in the the coeffi-

cient law, most existing white-balance algorithms are a combination

of the von Kries coefficient law and an illuminant estimation tech-

nique. Perhaps this is a testimony to the disconnectedness between

the engineering field and cognitive science.
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In this paper, we propose to formulate the white-balance prob-

lem using Jameson and Hurvich’s induced opponent response the-

ory (section 3.3). The solution to this problem also requires the

knowledge of the illuminant. In section 4, we will compare our

technique to the coefficient law-based white-balance solution using

the same illuminant estimation method. We show that the images

generated with the white-balance algorithm based on induced op-

ponent response appear more natural.

2. COLOR SCIENCE

2.1. Colorimetry
Colorimetry is the science of measuring color. More complete de-

tails of colorimetry are found in [22]. Here, we cover only the ba-

sics necessary to understand the white-balance algorithm.

There are four types of photoreceptors, one rod and three cones.

Under well-lit viewing conditions (photopic vision), cones, denoted

L, M, S, are are highly active and rods are inactive. In this paper,

we strictly assume photopic vision. Let λ ∈ R be spectral fre-

quency and l(λ) ∈ R+ be the spectrum distribution of a color at

frequency λ ∈ R. Let φj(λ) ∈ R+, j ∈ {1, 2, 3} be the cone

sensitivity function of L, M, S photoreceptors, respectively. Then

the following inner product models the response vector Φ(l) =
[Φ1(l), Φ2(l), Φ3(l)]

T ∈ R
3 of the cone photoreceptors to the

spectrum distribution l(·):

Φj(l) = 〈φj , l〉 =

∫

∞

−∞

φj(λ)l(λ)dλ. (1)

When Φ(l1) = Φ(l2) for given spectrum distributions l1(·) and

l2(·), l1(·) and l2(·) appear identical and are said to be metameric.

Let {p1(λ), p2(λ), p3(λ)} be three spectrum distributions of

colors, where Φ(pj) are linearly independent of each other. Then it

is easy to verify that Φ(w1p1 + w2p2 + w3p3) = Φ(l) if and only

if ~w = [Φ(p1), Φ(p2), Φ(p3)]
−1Φ(l) where ~w = [w1, w2, w3]

T .

The weights ~w is often referred to as the tristimulus values of l(·)
in color space defined by the primary colors {p1, p2, p3}.

2.2. Opponent Color
Hering proposed that there are two levels of interpreting a color in

the HVS: at the receptor level, and in the opponent color space [3].

Since his proposal, there have been numerous experiments confirm-

ing that low-level image processing (spatial [12] [14] [13], tempo-

ral [21], chromatic adaptation [8] [9]) is being performed in this

opponent color space. The colors red, green, yellow, and blue are

called the unique hues; the opponent color theory asserts that red

neutralizes green, and yellow neutralizes blue. Hurvich and Jame-

son’s experiment is credited with giving conclusive evidence that

the opponent color system exists in the HVS, and this theory con-

tinues to have many proponents [4] [12] [20] [19] [18].

Let l(λ) be the spectral distribution of a light at the frequency

λ, as before. At the basic level, opponent color representation is



assumed to be formed by taking a linear combination of the cone

response Φ(l) ∈ R
3 (though recent work reveals that the trans-

formation is slightly more complicated than that [13]). That is,

let M ∈ R
3×3 be a non-singular color conversion matrix from

L, M, S cone responses to the opponent color space. Then ~v =
MΦ(l) where ~v = [v1, v2, v3]

T , consisting of a achromatic chan-

nel v1 and chromatic channels v2 (red-green) and v3 (yellow-blue).

Large positive v2 (v3) values have large red (yellow) values; large

negative v2 (v3) values have large green (blue) values. The op-

ponent color system is difficult to derive precisely. Typically, the

M ∈ R
3×3 matrix is computed from measurements made in visual

experiments [10] [8] [12].

2.3. Chromatic Adaptation

There is a considerable amount of literature reported on how the

HVS sensitivity to color changes when the human eye adjusts to the

chromaticity of the background. This property is called chromatic

adaptation, and some have sought to characterize it [7] [9].

The von Kries coefficient law has been popularized by many

[7] [17] [2]. It asserts that the sensitivity of each cone type adapts

to changes in viewing conditions by controlling the amplitude of

φj [7]. Suppose lS(·) is the spectral distribution of the surround-

ing field color that a human eye has adopted to, and let lF(·) be the

spectral distribution of the focal field color that are observing. Ac-

cording to the von Kries coefficient law, the HVS response to the

focal field color is

ΨK,j(lF, lS) =

∫

∞

−∞

djφj(λ)lF(λ)dλ = djΦj(lF), (2)

where φj(·), Φ(·) is defined as before, and dj the proportionality

constant. Furthermore, (2) is attributed to chromatic adaptation

mechanism by assuming that the magnitudes of d1, d2, d3 are in-

versely proportional to Φ1(lS), Φ2(lS), Φ3(lS), respectively [7].

It has been shown, however, that (2) is an inaccurate model

for chromatic adaptation [9]. Instead, a series of psycho-visual ex-

periments yielded a different chromatic adaptation model called in-

duced opponent response [8] [9]. As before, let lF(·) be the spectral

distribution of the focal field color and lS(·) be the spectral distribu-

tion of the surrounding field color. The HVS response to the focal

(ΨF) and the surrounding (ΨS) are

ΨF(lF, lS) = M−1(c(MΦ(lF))
n −~iF)

ΨS(lS, lF) = M−1(c(MΦ(lS))
n −~iS), (3)

where ~un means [un
1 , un

2 , un
3 ]T . Here, c is a constant, n is the trans-

ducing constant, and~iF and~iS are the induced activities in the focal

and surrounding, respectively. The matrix M ∈ R
3×3 represents a

color space transformation from L, M, S to opponent color space.

The induced responses are proportional to the response to the in-

ducing fields:

~iF = kMΨS(lS, lF) ~iS = kMΨF(lF, lS), (4)

where k is some constant which usually depends on the size of the

inducing field. It was found that when lF and lS are isoluminant then

n = 1 [5]. When the stimuli are neutral, instead, n = 1/3 [6] [9].

Interactions between the several inducing elements is approximated

as a weighted average [5].

2.4. Image Acquisition Models
In this paper, we make several assumptions about the image sensor.

Let l(λ) be the spectral distribution of a light at frequency λ. The

Fig. 1. Two different viewing conditions. The goal of the white-

balance algorithm is to make the two scenes appear identical.

sensor response Θ(l) ∈ R
3 to light l is modeled as

Θj(l) = 〈θj , l〉 =

∫

∞

−∞

θj(λ)l(λ)dλ, (5)

where θj(λ) ∈ R+, j ∈ {1, 2, 3} are the sensor sensitivity func-

tions for red, green, and blue pixel components, respectively. θj(·)
is usually characterized by the color filter array. Furthermore, the

sensor is called colorimetric if for all l, there exists a matrix Mθ,φ ∈
R

3×3 such that Φ(l) = Mθ,φΘ(l). In this paper, we assume that

the sensor response is colorimetric.

3. WHITE-BALANCE ALGORITHM

3.1. White-Balance Problem
The problem of color constancy poses a difficult challenge to digi-

tal photography. The output color from a camera often differs from

how it appeared to the eyes of the photographer that took the pic-

ture. Problem of correcting the output color from a camera is called

white-balance. But what is the criteria for this correction? The au-

thors believes that this is an often misunderstood issue. With the a

priori knowledge that the observer of the output image is a human

eye, the task of white-balance algorithm is to adjust the color such

that the output image viewed under a standard condition matches

the scene observed by the photographer’s eye.

To make this point clear, we refer to the example in fig. 1.

Let Ψ(lF, lS) be a HVS response to the focal field light lF when

the eye has adapted to the surrounding light lS. The right sys-

tem in fig. 1 shows a scene lit by a red illuminant observed by the

photographer’s human eye. Assuming that the eye has adapted to

the red illuminant, the system’s HVS response to the color l(λ)
is Ψ(l, red light). The left system shows a human eye observing

display device viewed under a yellow illuminant. Assuming that

the eye has adopted to the yellow illuminant, its HVS response is

Ψ(w1p1 +w2p2 +w3p3, yellow light), where p1(λ), p2(λ), p3(λ)
are the spectrum distribution of the primary colors of the phosphors

used in the CRT monitor, and ~w = [w1, w2, w3]
T is the tristimulus

value controlling the intensity of pi(·), respectively. Note that ~w is

the output from the camera. The purpose of the white-balance al-

gorithm is to process sensor data inside the digital camera such that

the two systems in fig. 1 are equivalent. That is, we would like to

find ~w such that

Ψ(l, red light) = Ψ(w1p1 + w2p2 + w3p3, yellow light) (6)

3.2. Common Approaches to White-Balance
Following the example in fig. 1, let lR and lY be the spectral density

of the red and yellow illuminants in (6), respectively. In this section,

we assume that lY and lR are known.

Nearly all commercial digital cameras sold today assume a vari-

ation of the von Kries coefficient law, even though the model is

inaccurate and inadequate [5] [9]. Nevertheless, let us solve (6)

assuming the von Kries coefficient law ΨK(·, ·). Suppose

Ψ(lF, lS) = ΨK(lF, lS) = diag(d1, d2, d3)Φ(lF).



Substituting this into (6), the solution ~w to (6) is given by

~w = [ΨK(p1, lY), ΨK(p2, lY), ΨK(p3, lY)]
−1ΨK(l, lR) (7)

= [Φ(p1), Φ(p2), Φ(p3)]
−1

diag

(

e1

d1
,
e2

d2
,
e3

d3

)

Mθ,φΘ(l),

where dj and ej are inversely proportional to Φj(lY) and Φj(lR),

respectively.

3.3. Jameson-Hurvich Model

We continue to assume that lR and lY are made available. In this

section, we propose an alternative to the existing white-balance al-

gorithms by solving (6) assuming a chromatic adaptation model

ΨF(·, ·) instead of the von Kries coefficient law [4] [5] [8] [9] [6].

We begin by combining (3) and (4). After simplifying,

ΨF(lF, lS) = M−1((MΦ(lF))
n − k(MΦ(lS))

n),

where, without loss of generality, c = 1−k2. Experiments indicate

that n = 1 when lF and lS are isoluminant [9]. The method for

choosing an appropriate value for n in the general case, however, is

not very well understood. We, therefore, approximate the formula

by operating as if stimuli are isoluminant (with n = 1):

ΨF(lF, lS) = M−1

(

MΦ(lF) − k

(

m1Φ(lF)

m1Φ(lS)

)

BMΦ(lS)

)

where B = diag(0, 1, 1) and m1 ∈ R
1×3 is the first row of M

(hence m1Φ(l) is the achromatic channel value of l in opponent

color space). Above,
m1Φ(lF)
m1Φ(lS)

normalizes the induction response

MΦ(lS) using the ratio between the luminance values of the fo-

cal and surrounding stimuli, and
m1Φ(lF)
m1Φ(lS)

= 1 when lF and lS are

isoluminant. Matrix B = diag(0, 1, 1) is used because the tech-

niques for estimating the illuminants lY and lR are inherently limited

to evaluating the chromatic content of the illuminant only. Because

m1Φ(lF) is scalar, the above formula simplifies significantly:

ΨF(lF, lS) =

(

I −
k

m1Φ(lS)
M−1BMΦ(lS)m1

)

Φ(lF)

where I ∈ R
3×3 is an identity matrix. Define L(·, ·) ∈ R

3×3 as

L(~v, k) = I −
k

m1~v
M−1BM~vm1.

Now we are ready to solve the white-balance equation. Substituting

Ψ(·, ·) = L(Φ(lS), k)Φ(lF) to (6),

~w = [Φ(p1), Φ(p2), Φ(p3)]
−1L(Φ(lY), k2)

−1

L(Φ(lR), k1)Mθ,φΘ(l). (8)

The equation above is significant for computational costs. Φ(pj)
can be pre-computed. The digital camera output ~w can be com-

puted from image sensor data Θ(l) with a single matrix multiplica-

tion. This implies that the white-balance step and the color space

conversion, which is also a matrix multiplication, can be combined

into a single matrix multiplication procedure, making the computa-

tional cost of the white-balance algorithm virtually zero.

Finally, because the sizes of the focal and surrounding fields are

unavailable, the parameter values k1 and k2 are adaptively chosen.

Let ΩMAX be a set of K brightest pixels in the image. Following the

examples of MacAdam’s reflectance efficiency theory [1], we are

Fig. 2. Macbeth Color Chart used to calibrate the camera.

Fig. 3. Images taken with no white-balance algorithms. The solid

colors represent illuminants detected by (left) gray-world [11] and

(right) method in [16].

interested in choosing k1 and k2 such that pixels in ΩMAX are neutral

(i.e. close to lY). Mathematically, we solve the following:

min
k1k2

∑

i∈ΩMAX

‖N [Φ(p1), Φ(p2), Φ(p3)]~wi‖
2, (9)

where ~wi is the ith pixel value according to (8). If we set N =
BML(Φ(lL), 1), then the multiplication by N measures the chro-

maticity difference between [Φ(p1), Φ(p2), Φ(p3)]~wi and lY, nor-

malized by m1Φ(lY). Let M1 = L(Φ(lR), 1)−I , M2 = L(Φ(lY), 1)−
I , and w̄ =

∑

i∈ΩMAX
~wi. The solution to (9) has a closed form:

[

k1

k2

]

=

[

w̄T MT
1 NT NM1w̄ −w̄T MT

1 NT NM2w̄
−w̄T MT

1 NT NM2w̄ w̄T MT
2 NT NM2w̄

]−1

[

w̄T NT NM1w̄
−w̄T NT NM2w̄

]

.

4. EXPERIMENTAL RESULTS

The images used in our experiments are taken from Texas Instru-

ments camera evaluation board DM270 DDS, equipped with a Sony

3 mega-pixel CCD sensor and Ricoh lens module. Unprocessed raw

sensor data is acquired from these cameras, and the experimental

results shown below are processed using Matlab codes simulating

the image pipeline in a digital camera. The color conversion ma-

trix is calibrated using Macbeth color chart shown in fig. 2, taken

on a typical cloudy day in Ithaca, New York (approximates a D55
illuminant). A reader of this paper should also calibrate her display

using fig. 2 in order to see the results properly. We assume that CRT

monitor with γ = 2.2 is viewed with eye adapted to monitor white.

Fig. 3 shows indoor images processed without a white-balance

algorithm applied. The adjacent solid colors show illuminant es-

timation using (left) gray-world method and (right) the method in

[16]. Fig. 4 shows the same sensor data processed with a variety

of white-balance methods. In each respective scene, the images in

the first row assumed the illuminant estimated from the gray-world

method, while the images in the second row assumed the illumi-

nant color estimated from the method in [16]. The images in the

left columns were generated using (7), while the images in the right

Table 1. CIELAB ∆ab distance between the white panel and a

neutral white. Left, middle, right correspond to images in fig. 4.

illuminant chromatic ∆ab

estimation adaptation left middle right

gray-world von Kries 1.2353 1.2526 3.5937

method in [16] von Kries 3.0351 0.8294 5.2194

gray-world proposed 0.8454 0.7062 0.8456

method in [16] proposed 0.8143 0.7062 0.8456



Fig. 4. TI CCD camera sensor data, processed with various white-balance methods. See text.

columns use the proposed formula, (8). The images generated using

(7) often suffer from a hazy appearance, while the colors processed

using (8) are slightly desaturated. Overall, the images generated by

(8) appear more natural than those using (7) (though not perfect).

The colors observed in the white panels in the Macbeth chart give a

rough indication of how well the algorithms work—we would like

an object, whose reflectance spectral distribution is constant, to ap-

pear neutral in the output image. The solid-color squares in the

center of each figure show the colors taken from the white panels.

Table 1 shows the CIELAB ∆ab distance between the processed

white panel color and a neutral white. Compared to the images gen-

erated by (7), the images generated by the proposed white-balance

formula yield more neutral colors in the white panels, regardless of

the method of illuminant estimation assumed.

5. CONCLUSION

In this paper, we formulated the white-balance problem using Jame-

son and Hurvich’s induced opponent response chromatic adaptation

theory. This is in a sharp contrast to the von Kries approach to the

white-balance problem. Approximation with a scaling constant was

introduced to operate as if the focal and surrounding fields were iso-

luminant. The solution to the white-balance problem reduces to a

single matrix multiplication. The experimental results, using the

basic and the state-of-the-art illuminant estimation methods, verify

that the induced opponent response approach to solving the white-

balance problem yields more neutral colors in the white panels of

the Macbeth color chart than the traditional methods. The algo-

rithm is computationally efficient, because it can be combined with

the color conversion step in the image pipeline.
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