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Now, we are moving towards the topic about nonequilibrium thermal dy-
namics. But we don’t yet plan to go too far away. Assuming there is a situation
that slightly differs from equilirium, our task is to find out the time evolution
of the situation, or more simply, to find out the steady state. One will be
amazed by the result that steady state 6= equilibrium state. And that’s
the key point why diffusion, current, viscosity occur. All these can be classified
as transportation, which make up the fancy thermal dynamic world!

We start with some conceptions. Consider a box of gas. There all collsions
between them all the time. So for each of the particles, the time evolution can
be viewed as a stochastic process

Figure 1: semiclassical stochastic process

In order to discribe it more detailly, we introduce the phase space, or some-
times called the µ space. A phase space is a six-dimention space, whose co-
ordinates are ~q and ~p, the generalized coodinates of one particle. The time
evolution of a particle is represented as a line with orirentation in the phase
space.

Figure 2: phase space and trajectory

However, the key concept in our discussion is that we are in ”semi-classical”
world. Classical world is just a limit of quantum rule. So ”trajectory” is a vague
concept in quantum world due to Heisemberge uncertainty principle. If we want
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to know the distribution of particles of a system in phase space, the smallest
block, or unit, we can use is planck constant h. That’s the semiquantum part.

Then it is safe to derive the distribution function f(~p, ~q, t) , which are defined
as:

f(~p, ~q, t) · d
3~pd3~p
h3 =the number of partialces within (~p, ~p+ d~p), (~q, ~q + d~q)

Hence, ∫
µ

d3~pd3~p

h3
f(~p, ~q, t) = N (1)

• Validity of distribution function

Using Dirac-Ferimion distribution at τ = 0 to check if this relation is correct:

fF.D.(~p) =
1

exp( ε−µτ ) + 1
= Θ(εF − ε)

Where εF = h̄2

2m (3π2n)2/3∫
µ

d3~pd3~p

h3
f(~p, ~q, t) =

V

h3
· 2 · 4

3
πpF

3 = V · n = N

Which coincides with the definition of f

• Collison Correction

In classical mechanics, we know that a small piece of ”area” in phase space
remains the same value when it is evolving with time. The proof is rather
simple: time-evolution can be considered as a canonical transformation mapping
qi(t1), pj(t1) to qi(t2), pj(t2). Let xi be a coordinate in phase space. According
to canonical transformation:

~x(t2) = M~x(t1), dA(t2) = |det(M)|dA(t1) (2)

Where M is a symplectic matrix, satisfying MTM =J . J =
(

0 Es
−Es 0

)
is the

standard metric matrix of sympletic space.
It is easy to derive that |det(M)| = 1. So the ”area” is not changed.
And if the particle numbers within this area is conserved, then this can also

be the proof of Liouville theorm. In our notation, it is equivalent to df
dt = 0.

However, the particles within the area (~p, ~p+d~p), (~q, ~q+d~q) are not conserved
owning to collisons between particles. Some will scatter in and some will scatter
out. So the collison correction is now very important.

df

dt
= (

∂f

∂t
)
collison

(3)

Expanding the left-hand-side, we get the prototype of Boltzmann transport
equation:

∂f

∂t
+ ~v · ∇qf + ~Fex · ∇pf = (

∂f

∂t
)
collison

(4)
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Where Fex is equal to ~̇p.
How to quantitatively express (∂f∂t )

collison
? That’s a difficlut task. And the

main assumption that the system is not too far away from equilibrium will soon
shows its power.

Figure 3: collison correction

• Relaxation Time Approximation

Figure 4: slightly variation distribution

For a system that is closed to equilibrium, f−f0
f0

<< 1 holds.
Boltzmann assumes that:

the rate of scattering in=f0 · γc
the rate of scattering out=−f · γc

Hence,

(
∂f

∂t
)
collison

= −(f − f0) · γc = −f − f0

τc
(5)

Where τc = γc. τc has more clear physical meaning: it is the relaxation time
scale for f to varify near f0.

If there is no external force and the system remains homogenous(uniform).
Then Fex = 0,∇rf = 0.
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f = f(~p, t) satisfies:

(
∂f

∂t
) = −f − f0

τc
(6)

This gives the exact soulution :

f(~p, t) = f0(~p) + [f(0)− f0]exp(− t

τc
)

As t → ∞, f → f0. The steady state here is the same as equilbrium state.
Again collisons between molecules are important to explain why mosy system
thermalize.

• Diffusion

It is worthwhile to tell the micorscopic scenario of diffusion from conducting
current (such as eletric current). In pure diffusion, there’s no external force. The
only variation from equilibrium is caused by the gradient of particle density ∇n.
The amazing result is that now the steady state is no longer the equilibrium
state!!

Figure 5: diffusion caused by density gradient

First, we make a wild guess: the local thermal equilibrium

f0(~r, ~p) =
1

exp( ε−µ(~r)
τ ) + 1

(7)

Secondly, for steady state without external field, Fex = 0,∂f∂t = 0. The
Boltzmann transport equation gives:

~p

M
∇rf = −f − f0

τc
(8)

⇒ f = f0 − τcvx
∂f

∂x

It is still hard to solve f . Considering it is slightly variant from f0. Leaving
to the first term approximation,

f ≈ f0 − τcvx
∂f0

∂x
6= f0 (9)
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The diffusion current Jxn is the average of the whole µ- space:

Jxn = n 〈vx〉 =
1

V

∫
d3~rd3~p

h3
f(~r, ~p)vx =

1

V

∫
d3~rd3~p

h3
(f0 − τcvx

∂f0

∂x
)vx (10)

Note that the equilibrium distribution f0(~r, ~p) = f0(~r, ~−p)
By chain rule (in low temperature limit f is a step function):

∂f

∂x
=
∂f

∂µ

dµ

dx
= δ(ε− µ)

dµ

dx

⇒ Jxn =
−τc
V

∫
d3~r

∫
d3~p

h3
v2
xδ(ε−µ)

dµ

dx
=
−τc
V

∫
d3~r

∫
d3~p

h3
v2cos2θδ(ε−µ)

dµ

dx
(x)

(11)
Take degeneracy of Fermion into account, choosing 2s+ 1 = 2

Jxn =
−τc
V

∫
d3~r

∫
2
d3~p

h3
v2cos2θδ(ε− µ)

dµ

dx
(x)

Now, it’s time change variables from momentum to energy. Using the iden-

tities: ε = p2

2m , p = h̄k

2

∫
d3~p

2πh̄
=

∫
dεD(ε)

V
=

∫
dεd(ε) (12)

Where D(ε)dε = 4πV
h3 (2m)

3
2
√
εdε , d(ε) = D

V = 4π
h3 (2m)

3
2
√
ε

⇒ Jxn =
−τc
V

∫
d3~r

∫
dεδ(ε− µ) · 1

3
v2 dµ

dx
(x) =

−τc
V

∫
d3~r

1

3
v2
F d(εF )

dµ

dx
(13)

Chain Rule again:

dµ

dx
=
dµ

dx
· dn
dx

=
dεF
dx
· dn
dx

=
2εF
3n
· dn
dx

=
1

d(εF )

dn

dx

Finally:

Jxn = −
∫
d3~r

V
· 1

3
τcv

2
F

dn

dx
= −〈1

3
τcv

2
F

dn

dx
〉 ≈ −1

3
τcv

2
F

dn

dx
(14)

The last approximation comes from the assumption that we are consider a small
area (~r, ~r + ∆~r).

Comparing with Fick’s law:

~Jn = −D∇n
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The diffusion constant D at not low temperature is:

⇒ D =
1

3
τcv

2
F (15)

What about high temperature limit? Consider ideal gas approximation.

f0 = exp(−ε− µ
τ

), µ(x) = τ log(
n(x)

nQ
), nQ = (

mτ

2πh̄2 )
3
2

Equation (10) changes to:

Jxn = − τc
m2h3nQ

∫
dpxdpydpzp

2
xexp(−

p2
x + p2

y + p2
z

2m
)
dn

dx
= −τcτ

m

dn

dx

⇒ D =
τcτ

m
(16)

Note that pure diffusion is caused by collisons only.

• Conducting Current

Figure 6: Conducting Current

A pure eletric current is caused by external field (such as electrimagnetic
field). So we may assume that it is homogenous, ∇n=0.

Use Ja to represent one component of the current, Ja =(charge density)×(drift
velocity)

Ja =
q

V

∫
d3~rd3~p

(2πh̄)
3 (2s+ 1)f(~p) · va ≈ q

∫
d3~p

(2πh̄)
3 (2s+ 1)f(~p) · va (17)

BTE:
~Fex · ∇pf = −f − f0

τc
(18)

⇒ f ≈ f0 − qτc∇pf0 · ~E

The same as we have done before:
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Ja = −q2τc

3∑
b=1

∫
d3~p

(2πh̄)
3 (2s+ 1)

∂f0

∂pb
Ebva (19)

Comparing with :

Ja =

3∑
b=1

σabEb

⇒ σab = −q2τc

3∑
b=1

∫
d3~p

(2πh̄)
3 (2s+ 1)

∂f0

∂pb
va

Again, we will consider low temperature limit first:

−∂f0

∂pb
= −∂f0

∂ε

∂ε

∂pb
=
∂f0

∂µ
vb ≈ δ(ε− εF )vavb

Substitude into σab

σab = q2τc

∫
d3~p

h3
(2s+ 1)δ(ε− εF )vavb (20)

Which tells us some properties coincides with ohm’s law.
Ohm’s Law:

• Symmetric σab = σba

• Diagonalized σab = δabσ

Futher calculation is similar to what we have done before:∫
d3~p

h3
(2s+ 1)(...) =

∫
dεd(ε)(...)

Angular average:
∫
dθcos2θ = 1

3
Finally:

σ = q2τc

∫
dεd(ε)δ(ε− εF )

1

3
v2 =

1

3
q2τcv

2
F d(εF ) (21)

d(εF ) = 3n
2εF

will cancel the quantum quantity v2
F , making it seem classical.

σab = δab
nq2τc
M

(22)

Which gives us the famous Drude conductivity derived from classcial assump-
tions.

It’s worthwhile to pay attention to the meaning of δ(ε−εF ). The delta func-
tion tells us only the Fermions(eletrons) close to the Fermi surface contributes
to conducting, which really converses with the classical thought of all eletrons
are contributing to the current with a relatively slow velocity ve. This can be
checked also by the Ferimion velocity vF in σ.
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Figure 8: the correct understanding of
current

Figure 9: classical understanding

Now let’s try to compute one more quantity, mobility µ̃.

µ̃ =
〈u〉
E

(23)

But we know that :

qn〈u〉 = J = σE

Hence,

µ̃ =
q

M
× τc (24)

This can be a method to attain τc. Experimentally, one is easy to get the
ratio of a charged particle by mass spectrometer and µ̃ is also availabel.

*High temperature limit:

σab = δab ·
n

3τ
q2τc〈v2〉 =

nq2τc
M

δab (25)

Which gives the same result as in low temperature limit!!

• Fluctuation and Dissipation Theorem

We all really know that D(high temperature)= ττc
M , which is proportional to

thermal fluctuation.

⇒ D

µ̃
=
τ

q

qD = µ̃τ (26)

The right-hand-side is related to dissipation with factor 1
σ

Consider the criterion for equilibrium f0.
If f = f0 = 1

exp( ε+qV−µ
τ )+1

, then:

~v · ∇rf + ~F · ∇pf = 0 (27)
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Substitue into (27), we obtain:

~v · [∇µ+ (
ε+ qV − µ

τ
)∇τ ] = 0 (28)

holds for arbitrary ~v.
⇒ ∇µ = 0,∇τ = 0. i.e. µ = const, τ = const
The same as we have discussed in thermal dynamics.
The last part of our story will be Einstein relation. Consider high tempera-

ture limit. When we have external field as well as gradient of density, what will
happen? The answer is: if it reaches equilibrium, (diffusion)+(drift current)=0

Equilibrium distribution is:

f0 ≈ exp(−
ε+ qV − µ

τ
)

In previous lecture, we know that:

µ− qV (~r) = τ log(
n

nQ
) (29)

Taking gradien on both side of (29).

−q∇V = τ
1

n
∇n (30)

JD = q ~Jn = −qD∇n =
q2nD

τ
∇V (31)

Which gives us the diffusion part.
As for the drift part:

~Jd = nq〈 ~ud〉 = −nqµ̃∇V (32)

From ~Jd + ~JD = 0, we get:

nq(
qD

τ
− µ̃)∇V = 0 (33)

Again, the diffusion-dissipation relation is embeded in BTE:

qD = µ̃τ (34)
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