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Abstract

In this paper, the RD-OPT algorithm for optimizing Discrete Cosine Trans-

form quantization tables [RL95] is extended to incorporate global thresholding.

Performance gains are possible by zeroing o� some DCT coe�cients in DCT-

based image compression. We describe a global thresholding scheme, in which

the zeroing thresholds for coe�cients can be arbitrarily di�erent from those

determined by the quantization table. Unlike local thresholding [CR95], the

zeroing decisions are not made separately for each image block. This simpli�es

the use of thresholding, is easier to optimize and is almost as e�ective as local

thresholding.

1 Introduction

The Discrete Cosine Transform (DCT) [ANR74] lies at the heart of most commonly

used lossy image and video compression schemes [PM93, MP91]. The extent of com-

pression achieved depends upon the coarseness of quantization of the transform coe�-

cients. Most DCT-based compression schemes use uniform scalar quantization of the

coe�cients, as determined by a table of quantizers. The RD-OPT algorithm [RL95]

is a technique to optimize these quantization tables in an image-speci�c manner. RD-

OPT has the advantages of being fast, and optimizing jointly over a wide range of

compression rates, as compared to other DCT quantization table optimization tech-

niques such as [WG93, MS93].

Within the framework of compression via DCT and quantization tables, it is pos-

sible to improve performance (i.e., the rate-distortion tradeo�), by selectively setting

some coe�cients to zero. This allows �ner quantizer scales for the coe�cients that are

retained, and does not add any complexity to the decoder. A technique for making

the zeroing decisions can be found in [CR95], which is an extension of the quanti-

zation table optimization scheme of [WG93]. However, making the zeroing decisions



on a per-coe�cient basis in large images is computationally expensive. Further, the

algorithm in [CR95] needs to be rerun, every time a new rate of compression is de-

sired. We extend RD-OPT here, to determine global Threshold Tables that decide

the zeroing cuto� levels (or thresholds) for each DCT coe�cient. We also present

performance results and analysis of global thresholding.

2 Global Thresholding

The 8� 8 DCT-based image compression process divides the image into 8� 8 blocks,

transforms each block using the DCT, quantizes the coe�cients, and stores them using

variable-length entropy coding such as Hu�man coding. Quantization of coe�cients

is typically speci�ed by a table of 64 quantizer scales, called the quantization table.

For an image block f , if

^

f represents the block of DCT coe�cients, and Q is the

quantization table, then the quantized coe�cients,

^

f

Q

are calculated as:

^

f

Q

[n] =

^

f [n]==Q[n]; 0 � n � 63:

Here == represents division followed by rounding to the nearest integer

1

.

If the quantization table entry Q[n] is q, then the n

th

DCT coe�cient gets quan-

tized to zero when its absolute value is less than q=2. Global thresholding allows us

to increase this zeroing threshold above q=2. Let T [64] be a table of non-negative real

numbers, called the threshold table. We de�ne global thresholding as follows: if for

any image block f , j

^

f [n]j < T [n], then set

^

f [n] to zero in the quantization step. The

combined result of quantization and thresholding is represented as the block

^

f

Q;T

.

De�ne

x===(q; t) =

(

0 if jxj < t

x==q otherwise:

Then,

^

f

Q;T

[n] =

^

f [n]===(Q[n]; T [n]): We refer to this step as quantization by the pair

(Q; T ).

The table T need not be included with the compressed image, as the decompressor

does not need to know the thresholds. The decompressor simply multiplies each

quantized/thresholded coe�cient by the quantization table entry, to calculate its

approximation of the original DCT coe�cients.

2.1 Splitting distortion into DCT coe�cients

The distortion between the original image blocks and the decompressed image blocks

is the same as that between the original DCT coe�cient blocks and the reconstructed

(quantized and dequantized) coe�cient blocks. We use this fact to split the distortion

resulting from the use of any (Q; T ) into 64 coe�cient-wise component. We denote the

contribution of the n

th

coe�cient (when quantized by (q; t)) to the total distortion

by D

n

(q; t).

1

For any b > 0, a==b =

�

b

a

b

+ 0:5c if a � 0

�b

�a

b

+ 0:5c if a < 0.



2.2 Splitting rate into DCT coe�cients

The degree of compression achieved is usually expressed in terms of the rate of the

compressed image, which is the number of bits used per pixel:

rate =

size of compressed image in bits

number of pixels in the image

:

Low rates are achieved when the quantized blocks

^

f

Q;T

have similar entries (low

entropy). The most common case is that of a coe�cient being quantized to zero. The

more zeros there are in

^

f

Q;T

, the fewer bits it would take to store it. Thus, increasing

the entries in Q and T tends to decrease the rate. We denote the rate resulting with

the use of tables (Q; T ) as R(Q; T ).

DCT has the nice property of being very close to the Karhunen-Loeve-Hotelling

tranform, a transform that produces uncorrelated coe�cients [ANR74]. The lack

of correlation between coe�cients allows the rate to be decomposed as a sum of

contributions from individual coe�cients. It has been shown in [RFVK94] that the

coe�cient-wise average of entropies of the quantized DCT coe�cients is a very good

estimate of the rate resulting from two-pass Hu�man coding of runlengths. This

allows us to approximate R(Q; T ) as a sum of rates of individual coe�cients. Let

R

n

(q; t) be de�ned as

R

n

(q; t) =

1

64

Entropyf(

^

f [n]===(q; t))g;

Where the entropy is measured over all the blocks in the image

2

. Then

R(Q; T ) �

63

X

n=0

R

n

(Q[n]; T [n]): (1)

Thus, R(Q; T ) can be decomposed into a sum of contributions from individual coef-

�cients, just like D(Q; T ).

2.3 Analysis of global thresholding

Consider a uniform scalar quantizer with step size q. Let the total number of samples

be N , and of these, let kx be the number that get quantized to 0, and x be the number

that get quantized to 1. To analyse global thresholding, we calculate the decrease

in rate (empirical entropy) and the increase in distortion resulting from zeroing o� a

fraction �x of the samples that were getting quantized to 1. If the mean distance of

these samples from the value q=2 is �, then it can be shown that:

Decrease in rate, �R(�) =

x

N

log

2

(k + �)

k+�

(1� �)

1��

k

k

; and

2

If (

^

f [n]===(q; t)) takes the value v in a fraction p

v

> 0 of all blocks

^

f , then this entropy is

�

P

v

p

v

log

2

p

v

:



Increase in distortion, �D(�) =

x

N

2q��:

The optimization problem of minimizing distortion while keeping the rate under

some �xed budget is equivalent to minimizing the Lagrangian R + �D in the sense

that solutions to the latter at each non-negative � are solutions to the former for some

rate budget. Then, for a given �, the zeroing threshold (i.e., the fraction �) should

be set so as to maximize the resulting drop in the Lagrangian, �R(�) � ��D(�).

Typically, this drop increases for a while as � increases from 0 , and then decreases.

Note that the above results are general in the sense that they apply to uniform

scalar quantization of arbitrary signals. Here, they have been applied to the DCT

coe�cient samples, for which k is large (as most coe�cients get quantized to zero),

and hence thresholding is especially e�ective.

3 The RD-OPT algorithm extended for global thresh-

olding

In this section, we describe the RD-OPT algorithm for optimizing quantization and

threshold tables with respect to rate-distortion tradeo�s for a given image. This is

very similar to optimizing the quantization tables alone as in [RL95], hence only the

aspects pertaining to thresholding are described.

It is desirable to have low rate (high compression) and low distortion (high qual-

ity). However, varying (Q; T ) has opposite e�ects on distortion and rate. The distor-

tion D(Q; T ) tends to increase and the rate R(Q; T ) tends to decrease as the entries

in Q and T are made larger. The tradeo� between D(Q; T ) and R(Q; T ) is di�erent

for di�erent images.

RD-OPT takes an image I as input and optimizes quantization and threshold

tables for a wide range of rates and distortions. Only integral entries are considered

for threshold tables, but arbitrary precision is possible at the cost of higher complexity.

Recall that RD-OPT calculates the contributions of individual coe�cients to the

total rate and total distortion, and then runs a Dynamic Programming algorithm to

minimize two sums [RL95]. For each coe�cient n and for each possible quantizer

scale q, the contribution to total rate of the n

th

coe�cient is calculated as R[n][q],

and the contribution to total distortion as D[n][q]. Thresholding can be included in

a straightforward manner: the individual contributions of each coe�cient are now

calculated for each possible q, and for each possible threshold t. We use thresholds t

that are multiples of 0:5, so that the DCT statistics (which are histograms of coe�-

cient counts over bins of size 0:5) can be used to predict rate (entropy) and distortion

accurately.

Then, for any (Q; T ), the rate of compression is

R(Q; T ) =

63

X

n=0

R[n][Q[n]][T [n]];



and the distortion is

D(Q; T ) =

63

X

n=0

R[n][Q[n]][T [n]]:

Algorithm RD-OPT

Input: An image I of widthW and height H, with pixel values in the range [0 : : :M ].

Output: Optimized DCT quantization tables Q and threshold tables T .

Step 1. Gather DCT statistics for the image.

Step 2. Use the statistics to calculate R[n][q][t] and D[n][q][t] for each possible (q; t).

Step 3. Use dynamic programming to optimize R(Q; T ) against D(Q; T ).

The details of these steps are exactly as in [RL95]. The only di�erence is the extra

freedom in choosing thresholds along with quantizer scales.

3.1 Complexity

Let MAXRATE be the largest value of rate (after discretization by multiplying with

a large integer constant). If all thresholds are allowed to be in the range 0 : : : 255,

and all quantization table entries in the range 1 : : : 255, then each row of the dynamic

program may require uptoMAXRATE�255�256 steps, which is prohibitively expensive.

We reduce this with the following observations:

1. If the n

th

coe�cient has maximum value C < 255 in the entire image, Q[n]

need not be more than 2C + 1, and T [n] need not be bigger than C. This is

useful for higher-frequency coe�cients.

2. For Q[n] = q, T [n] is usually in the interval [q=2; 2q]. This is an empirical

observation, but is very useful for reducing complexity.

3. If for the n

th

coe�cient the total number of (Q[n]; T [n]) pairs possible (after

the previous two reductions) is greater than MAXRATE, then it is better to

precompute the best (q; t) pair for each of the MAXRATE possible (discretized)

values of R[n][Q[n]][T [n]]. In fact, R[n][Q[n]][T [n]] will typically span a much

smaller range than MAXRATE. This usually results in two orders of magnitude

reduction in complexity.

4 Using the Lagrangian instead of Dynamic Pro-

gramming

Instead of using Dynamic Programming to optimize R(Q; T ) against D(Q; T ), one

can use the Lagrangian minimization approach. Given a � > 0, we �nd Q and T



22

24

26

28

30

32

34

36

38

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 (
d

B
)

Rate (bpp)

Scaled default tables
RD-OPT

RD-OPT with thresholding

Figure 1: Performance results for Lena

that minimize R(Q; T ) + �D(Q; T ). This is readily done by choosing each q = Q[n]

and t = T [n] so as to minimize R[n][q][t] + �D[n][q][t]. This has the advantage that

for a given q, not all t values need be tried: starting at t = q=2, t needs only to

be increased until the Lagrangian stops decreasing. With the Lagrangian approach,

however, a search for � needs to be done when a target rate or distortion is speci�ed.

5 Performance

Figure 1 shows the PSNR-Rate plots for JPEG compression of Lena using various

quantization strategies. RD-OPT with global thresholding gives a PSNR gain of

about 2dB at most bit rates. This is comparable to the results with local thresholding

in [CR95]. For example, at 1.0 bits per pixel, RD-OPT with global thresholding gives

a PSNR of 39.3 dB, as compared to 39.6 dB for [CR95]. The advantage here is that

with one execution of RD-OPT, quantization and threshold tables can be obtained for

a wide range of rates, while other optimization strategies such as [WG93, MS93, CR95]

need to be used repeatedly, every time a new rate/quality setting is needed.

Figure 2 and Figure 3 show the PSNR-Rate plots for two scienti�c images, Brain

and CloudySky, respectively. Brain is a 665 � 810 grayscale image of a cat's brain,

while CloudySky is a 1024� 512 grayscale image of a canopy with cloudy sky in the

background. For both these images, global thresholding along with quantization table

optimization results in an improvement of 1-2 dB.

Note that many perceptually weighted distortion measures can be used in RD-

OPT [RL95], and this remains true for the thresholding extension.
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Figure 2: Performance results for Brain
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Figure 3: Performance results for CloudySky



6 Conclusion

We have introduced the notion of global thresholding, which can be used to improve

the performance of DCT-based image compression. Global thresholding provides a

conceptually simple way to exploit the advantages of thresholding possible (within

the JPEG syntax, for example), without the complexity of local thresholding which

makes zeroing decisions on a per-coe�cient basis. It gives almost equally high quality

improvements. In addition, global thresholding can be easily incorporated into most

existing JPEG compressors, by giving them the threshold table as a parameter. This

separates the optimization itself from the actual compression.
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