
QUALITY-CONTROLLED LOSSY IMAGE

COMPRESSION

By

Viresh Ratnakar

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Science)

at the

UNIVERSITY OF WISCONSIN { MADISON

1997

c

 Copyright by Viresh Ratnakar 1997

All Rights Reserved

i

Abstract

Digital images are occupying a rapidly increasing amount of storage and bandwidth in

today's computing and communication environments. This thesis presents the QCLIC

(Quality-Controlled Lossy Image Compression) framework as a fundamental way of

using lossy image compression to meet application needs while satisfying storage and

bandwidth constraints.

With lossy compression of images, there is a tradeo� between the amount of com-

pression and the quality of the resulting image. This tradeo� depends upon the image

being compressed, the compression method, and the choice of certain \tuning parame-

ters" used by the compression method. Naive choices of tuning parameters can result in

poor compression-quality tradeo�s. Moreover, choosing tuning parameters to exactly

achieve a compression or quality target is often a non-trivial problem. The QCLIC

framework enables applications to use a nearly optimal compression-quality tradeo�

pro�le of an image as a fundamental interface for accessing the image. Mapping an ap-

plication's own needs and constraints to compression/quality targets and constraints is

a natural way to access images, as opposed to the lower-level, compression technique-

speci�c interface provided by the tuning parameters themselves. To bridge the gap

between the compression-quality pro�le interface and the tuning parameters, compres-

sion technique-speci�c enabling technologies are needed.

Measuring the quality of a compressed image is an important issue. We survey

several compression techniques and quality metrics, and suggest strategies for designing

enabling technologies to allow their use in the QCLIC framework. A commonly used

quality metric, PSNR, is extended to make it more uniform across images. For JPEG,

ii

the most widely used lossy compression standard at present, there was no e�cient

enabling technology available, and the RD-OPT algorithm presented in this thesis �lls

that void. We use the QCLIC framework to e�ciently exploit compression-quality

tradeo�s across images, when sets of images are compressed together. We also describe

some test-bed applications that implement and use the QCLIC framework, to meet the

needs of real systems.

Quantization forms the key loss-controlling step in many image compression tech-

niques. The tuning parameters in a compression technique are typically just the pa-

rameters used by a quantization strategy. For mid-tread uniform scalar quantization

with reconstruction at mid-points of bins (a very commonly used strategy), we ana-

lyze and optimize the performance gains achieved by using adaptive zeroing thresholds,

when the source has Laplacian density. We show that the performance gains are about

the same as those achieved by using source-speci�c reconstruction levels, without the

overheads and added complexity. The RD-OPT algorithm for JPEG optimizes zero-

ing thresholds too, and the RD-OPT results con�rm the utility of this quantization

strategy, as predicted by the analysis.

iii

Acknowledgements

Miron Livny showed faith in me when I needed it, gave just the right nudges, and

conceded precisely the vast amount of freedom of exploration that I had dreamed

of. His vision lies in spotting interlocking patterns in apparently unrelated pieces, in

(literally!) knocking on just the right doors that would put a half-muttered idea to

excellent use. The whole world is a tree rooted at every man's personal Condor, and I

am eager to go out in the real world, QCLIC'ing all and sundry. For this and everything

else, I am deeply grateful to my advisor.

Prasoon Tiwari, now at IBM T.J. Watson Research Center, got me initiated into

\proper" research, initially by sheer dint of accosting me in the department elevator

every other week and demanding what I was up to. At just about the time when my

romance with theoretical computer science was ebbing, he led me into image compres-

sion (via fractal theory). He too showed faith in me when I needed it, and I consider

myself lucky to have always found the perfect helping hands.

Another bunch of able helping hands belonged to the infectiously enthusiastic re-

searchers at Xerox PARC, where I spent a summer working on rumor-mongering pro-

tocols for achieving consistency in replicated databases. Many thanks to Carl Hauser,

Dan Greene, and Al Demers, for giving me a \systems" perspective, which has proved

extremely useful.

During my summer internship at T.J. Watson, I acquired the much-needed back-

ground in image compression, thanks to frequent, stimulating, and spontaneous dis-

cussions with Ephraim Feig, Eric Viscito, Heidi Peterson, and Diego Garrido. In the

iv

Computer Sciences department, here at UW, all kinds of wonderful insights and reve-

lations were provided by Anne Condon, Yannis Ioannidis, Raghu Ramakrishnan, Tom

Reps, Debbie Joseph, and every other faculty member I came in contact with. Fellow

graduate students and research sta�, Jussi Myllymaki, Vishy Poosala, Michael Cheng,

Kevin Beyer, Tian Zhang, Kent Wenger, and countless others provided insights into

the faculty insights.

I had the best possible trio of roommates ever conceived of. Many thanks to Kam-

bainatham Harinarayan, the often-uncomplaining chai-maker, carom-foe sans compare,

and generally a froody gloop altogether. To Prakash Raman, for being there to give

me a swift ride at 7:57 AM, in time to rescue my grade-critical talk at 8:04 AM; for

countless \no-problem"s and much-appreciated simple \Oh"s. And bada thanks to Rat-

nakar Sonthi, for the intense, ine�able, and yet completely relaxed exchange of ideas,

ranging from the meaninglessly abstruse to the life-alteringly meaningful; for simply

understanding. Without these three to counter the often trying slumps rampant in a

graduate student's life, my Ph.D. path would have been ploddingly painful.

My family has always given me the strongest possible motivation. Sonali, my wife,

has been in Madison with me for the last two years, and I am forever indebted to her

for her patience, support, and love, and for simply being a fun-loving and wonderful

partner. My brother, Vishal, with whom I have yet another intense and ine�able

relationship, will undoubtedly drown himself and the rest of Kharkov in cognac for my

Ph.D. I owe a world of thanks to my parents. For the Rubik's cubes and the Manjaris,

for their sleepless nights and unspoken dreams, and for their belief in me. Dear Vasudha

and Balwant, we made it!

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Rate-Quality Tradeo� : 3

1.1.1 Quality-Control : 5

1.2 The QCLIC-Image object : 8

1.2.1 QCLICS: QCLIC-Image Sets : 10

1.3 Methodology and Thesis Organization : : : : : : : : : : : : : : : : : : 12

2 Image Compression: Theory and Techniques 14

2.1 Notation : 14

2.2 Quality Metrics : 15

2.2.1 Distortion-Based Metrics : 17

2.2.2 Psycho-Visual Metrics : 27

2.2.3 Other Quality Metrics : 29

2.3 Image Compression Framework : 30

2.4 Symbol Encoding : 32

2.4.1 Fixed-Length Codes : 32

2.4.2 Variable-Length Codes : 33

2.5 Quantization : 36

2.5.1 Scalar Quantization : 38

vi

2.6 ECQ for Laplacian Density : 43

2.6.1 Optimizing the MT-T-M Quantizer for Laplacian Density : : : : 51

2.7 The JPEG Standard : 57

2.7.1 The Discrete Cosine Transform : : : : : : : : : : : : : : : : : : 58

2.7.2 JPEG Quantization and Encoding : : : : : : : : : : : : : : : : : 61

2.8 Image Compression with Wavelets : 65

2.8.1 Quantization and Tuning Parameters in SPIHT : : : : : : : : : 69

2.9 Vector Quantization : 70

2.10 Fractal-Based Image Compression : 71

2.11 Progressive Compression : 74

2.12 A Comparison of Various Image Compression Techniques : : : : : : : : 75

3 The QCLIC Framework 78

3.1 The Structure of a QCLIC-Image : 78

3.1.1 The QCLIC-Image Methods : 81

3.1.2 An Illustrative Example : 84

3.2 Compression Methods and Enabling Technologies : : : : : : : : : : : : 84

3.2.1 JPEG Image Compression : 86

3.2.2 Wavelet-Based Image Compression : : : : : : : : : : : : : : : : 88

3.2.3 Vector Quantization : 89

3.3 QCLICS: Sets of QCLIC-Images : 90

3.3.1 Illustration of Rate-Quality Tradeo� Across Images : : : : : : : 90

3.3.2 Measuring Rate and Quality For Image Sets : : : : : : : : : : : 91

3.3.3 Rate-Quality Optimization for Sets of Images : : : : : : : : : : 93

3.3.4 The QCLICS Algorithm : 94

vii

3.3.5 Performance : 98

3.4 Implementation and Evaluation : 101

3.4.1 Rate-Quality Curve Based Interactive Compression : : : : : : : 101

3.4.2 QclicBrowse: An Image Browser With Quality Control : : : : : 102

3.4.3 TASVIR: an Image Server : 103

4 RD-OPT: QCLIC for JPEG 107

4.1 Previous Work : 107

4.2 Overview : 109

4.3 Thresholding : 111

4.4 RD-OPT Details : 113

4.4.1 Gathering Histograms : 114

4.4.2 Building Rate and Distortion Tables : : : : : : : : : : : : : : : 115

4.4.3 Optimizing R(Q; T) against D(Q; T) : : : : : : : : : : : : : : : 116

4.5 Performance : 118

4.5.1 Thresholding Gains : 121

4.5.2 Complexity : 123

4.5.3 Accuracy : 129

4.5.4 Progressive JPEG : 130

4.5.5 Other Quality Metrics : 132

4.5.6 Achieving Rate Targets Exactly : : : : : : : : : : : : : : : : : : 132

5 Conclusion 134

5.1 Contributions : 135

5.2 Future Work : 136

viii

Bibliography 138

ix

List of Tables

1 QCLICS performance with target R

�

. : : : : : : : : : : : : : : : : : : 100

2 QCLICS performance with target Q

�

. : : : : : : : : : : : : : : : : : : 100

3 QCLICS average running time per image in seconds. : : : : : : : : : : 100

4 Comparison of PSNR's for local and global thresholding at various rates

for Lena. : 123

5 Number and values of quantizers at each coarseness. : : : : : : : : : : 124

x

List of Figures

1 Rate-quality tradeo� associated with lossy image compression. : : : : 3

2 Optimal and sub-optimal rate-quality tradeo� illustrated. : : : : : : : 6

3 Quality comparison at constant PSNR. : : : : : : : : : : : : : : : : : : 19

4 Quality comparison at constant SNR. : : : : : : : : : : : : : : : : : : 22

5 PSNR/N calculation illustrated. : 23

6 Knee PSNR (P

N

) for the four test images. : : : : : : : : : : : : : : : : 24

7 Quality comparison at constant PSNR/N. : : : : : : : : : : : : : : : : 25

8 Quality comparison at constant PQS. : : : : : : : : : : : : : : : : : : 28

9 General lossy image compression framework. : : : : : : : : : : : : : : 31

10 Interval partitioning step in arithmetic coding. : : : : : : : : : : : : : 36

11 Scalar quantization. : 38

12 Lagrangian minimization only picks points on the convex hull. : : : : 41

13 The point that minimizes R + �D: 42

14 Mid-riser uniform quantizer for a Laplacian source with � = 0:1:Decision

levels are shown for q = 10: 44

15 Performance of di�erent quantization strategies on a Laplacian pdf. : : 46

16 Mid-tread uniform quantizer for a Laplacian source. Decision levels are

shown for q = 10: 47

17 Mid-tread thresholding quantizer (MT-T-M) for a Laplacian source. De-

cision levels are shown for q = 10; T = 7:5: Reconstruction levels are at

10n; for each bin n. : 50

xi

18 The 8 � 8 image block used to illustrate the DCT. Each small square

corresponds to a single pixel in the block. : : : : : : : : : : : : : : : : 60

19 JPEG compression steps. : 64

20 First two stages of a discrete wavelet transform. : : : : : : : : : : : : 66

21 The tree structure of wavelet coe�cients. : : : : : : : : : : : : : : : : 68

22 Fractal decompression via convergence to �xed-point. : : : : : : : : : 73

23 Structured elements of a QCLIC-Image. : : : : : : : : : : : : : : : : : 80

24 Rate-quality tradeo� across two images. : : : : : : : : : : : : : : : : : 91

25 Sample images used for testing QCLICS. : : : : : : : : : : : : : : : : : 99

26 QclicBrowse snapshot. : 104

27 DEVise snapshot showing Tasvir controls. : : : : : : : : : : : : : : : : 106

28 The convex hull of R-D points that is retained by RD-OPT for La-

grangian minimization. : 117

29 Performance of RD-OPT with and without thresholding, for Lena. : : 119

30 Performance of RD-OPT with and without thresholding, for Baboon. : 120

31 Performance of RD-OPT with and without thresholding, for Peppers. 121

32 Optimized quantization table and quantization/threshold table for Lena

at 1.0 bpp. : 122

33 RD-OPT running time as a function of coarseness of search, at various

levels of threshold range t. : 125

34 Rate-PSNR plots at various levels of coarseness, with t = 20: : : : : : 126

35 PSNR increases as the number of thresholds tried increases, but achieves

its maximum very soon (Lena at 1.0 bpp). : : : : : : : : : : : : : : : : 127

36 RD-OPT running time as a function of image size. : : : : : : : : : : : 128

xii

37 Actual vs. predicted PSNR for the three test images. : : : : : : : : : : 129

38 Actual vs. predicted rate for the three test images. : : : : : : : : : : : 130

39 Progressive JPEG compression of the test images at around 1.0 bpp,

with four AC scans of comparable sizes. : : : : : : : : : : : : : : : : : 131

1

Chapter 1

Introduction

This thesis presents the concept of quality-controlled lossy image compression (QCLIC)

as a fundamental framework for e�cient management of large amounts of image data.

Digital images and video are essential components of today's computing and communi-

cation environments. With rapid increases in storage capacity, computational capabil-

ity, network bandwidth, and the rapid expansion of the World Wide Web, the amount

of image-data is only likely to grow. Compared to \traditional" data, digital images use

up exorbitantly large amounts of storage space: a single 600� 600 color image uses up

roughly one megabyte of space, comparable to the space needed for the entire text of a

�ve hundred-page book. The amount of \information" present in this image megabyte

is clearly much lesser than that in the book; the image could merely be the cover page of

the book in a multimedia document. The disproportionately low \information/bytes"

ratio for images (compared to other, traditional components of multimedia) makes

storing, moving, and manipulating these bulky data items a tremendous challenge for

applications.

Unlike traditional data, it is usually hard to quantify the amount of information in

a digital image. Consider a large image that is uniformly gray everywhere. For this

image, the information can easily be described in just a few bytes that indicate that

\the image has width W , height H, and is uniformly gray at level G everywhere."

Now, consider a uniformly gray image with pixel values G everywhere, except at a

2

small number of isolated pixels which have the value G+ 2: For all practical purposes,

this image is identical to the previous one, without any additional information: the

anomalous pixels are probably just noise associated with the image capture device. On

the other hand, if the \anomalous" pixels have some structure, such as being present

along the edges of a rectangle, then they probably constitute information.

Lossy compression techniques try to modify and organize the image data to unravel

the structure of the information present in the image. Discarding the \noise" part

of this structure usually makes the remaining \information" much more amenable to

compression. The amount of information retained, or the quality of the compressed

image, decreases as the image is compressed more and more. Traditionally, the focus of

lossy compression has been on compressing images as far as possible while letting the

quality of the compressed image remain visually indistinguishable from the original.

However, lossy compression o�ers much more than that. The structured reorganization

of image data inherent in lossy compression can be used as a summarizing tool for

images. An image can be compressed down to an extremely small size, by discarding all

but the lowest level of information (such as the average pixel values in 8�8 blocks), and

this low-level summary can be used by resource-constrained applications to decide their

\interest" in the image. The situation is similar to summaries of books. A summary

will give only a rough idea of the contents of a book (sometimes it can even give a false

idea). But it is an essential tool for readers who want to choose to read only a certain

kind of books, among the available multitude. For example, in a vast multimedia image

library, remote users will select and retrieve images based on several criteria that could

include quickly browsing through low-quality summaries of the images.

Unlike books, images can be summarized to any desired level of quality with lossy

3

compression. This enables applications to choose the level of image information based

on their needs and resource constraints (such as diskspace). Quality can be used as a

tuning knob to best satisfy the needs under the constraints. This observation is the

driving force for our research. For e�ciently using quality as a tuning knob, good

quality metrics are needed to characterize the information-content of lossy-compressed

images. Further, the compression-quality tradeo� needs to be characterized accurately.

Finally, e�cient quality-control techniques are needed to compress images accurately

to any desired quality.

1.1 Rate-Quality Tradeo�

The tradeo� between quality and amount of compression is seen from the rate-quality

tradeo� curve (Figure 1). Rate is a convenient, uniform way of expressing the amount

Q
u

a
lit

y

Rate

Sub-optimal tradeoff

Optimal tradeoff

A

B

C

Figure 1: Rate-quality tradeo� associated with lossy image compression.

4

of compression. Rate is simply the bits used per pixel (bpp) in the compressed image.

Thus, an uncompressed color image with each color plane (red, green, and blue) stored

with 1-byte precision has a rate of 24 bpp.

The notion of quality of a compressed image with respect to the original is intuitively

obvious. In practice, there is no universal metric that can adequately capture this

intuitively obvious concept. Several useful approximations exist, and we shall discuss

them in some detail. For the purpose of illustrating the rate-quality tradeo�, we will

refer to quality without specifying an actual metric, and assume it to be a suitable

measure of the information-content of a lossy-compressed image.

The rate-quality tradeo� is determined by four factors: compression method, image

characteristics, quality metric, and tuning parameters. For a given image, compression

method, and quality metric, the rate and quality of compression depend on certain

parameters passed to the compression algorithm, which we refer to as the \tuning

parameters." For example, for JPEG compression [JPG], these tuning parameters are

the quantization tables that determine how coarsely each spatial frequency is stored.

The rate-quality tradeo� resulting from a particular choice of parameters may not be

the best possible. Figure 1 shows how the rate-quality space consists of three areas.

The dark curve shows the optimal rate-quality tradeo� points. For a given rate, the

corresponding point on this curve is the best quality that can be achieved at that rate,

by varying the tuning parameters. The area above the optimal curve cannot be realized

by any choice of tuning parameters. The shaded area under the optimal curve is the

sub-optimal tradeo� area. A poor choice of tuning parameters results in a rate-quality

point in the sub-optimal area. The rate-quality points A, B, and C shown in Figure 1

are illustrated in Figure 2, for JPEG compression. Point C corresponds to a very poor

5

choice of the tuning parameters, and illustrates the need to achieve tradeo�s close to

the optimal curve.

Some general trends are observed in the shape of typical rate-quality curves. At

extremely low rates, the quality is very poor. The quality increases sharply for a while

as the rate is increased, and then levels o� to a slower rise. After a certain rate the

compressed image gradually becomes virtually indistinguishable from the original, to

the human eye.

From an information theory perspective, the sharp increase in quality lasts while

information about the rough, overall structure of the image is being encoded (which

has low entropy), and the leveling-o� occurs when the compressor starts encoding the

�ne detail and random noise associated with pixel intensities (which has high entropy).

1.1.1 Quality-Control

Applications that discard the original (uncompressed) image because of storage con-

straints try to compress images as much as possible, without making the quality-loss

visually detectable. Typically, this point occurs around the transition between the

sharp-rise and slow-rise sections of the rate-quality curve. This motivates the useful-

ness of the following paradigm for image compression: when a user wishes to compress

an image, she is presented with the rate-quality curve. The user speci�es a compres-

sion target by choosing a point on the curve. The compressor then presents the image

exactly meeting the speci�ed target, using the appropriate tuning parameters. The

user can further re�ne her selection by interacting with this rate-quality curve-based

presentation of the image. This simple and fundamental quality-control operation on

images is typically missing in image compression systems, and forms the basic idea of

6

Compression with nearly optimal

rate-quality tradeoff

Rate = 0.22 bpp (Size: 7.2 Kbytes)

Compression with nearly optimal

rate-quality tradeoff

Rate = 1.0 bpp

Compression with extremely

sub-optimal rate-quality tradeoff

Rate = 3.8 bpp (Size: 124.5 Kbytes)

C

A

 (Size: 32.8 Kbytes)

B

Figure 2: Optimal and sub-optimal rate-quality tradeo� illustrated.

7

our thesis.

Quality-control does not necessarily imply choosing an image quality that is visually

indistinguishable from the original. The idea is general|the rate/quality targets spec-

i�ed can be arbitrary. Consider an image-browser application. Suppose the browser

can decode images compressed using method C, and uses a quality metric Q. Such a

browser will make requests of the following nature, to a remote image server:

Send me the image \foo" using compression method C such that the quality,

using metric Q, is exactly Q

B

:

Initially, the user will set a low value for the browse quality Q

B

; and then for images

of interest, she will repeat the call with higher Q

B

: The image server may have pre-

compressed the image \foo" to a number of quality levels (with progressive compression

techniques a single compressed image can be pruned to achieve this), or may compress-

on-demand. Exactly how the server implements this basic QCLIC functionality would

depend upon factors such as available computational and storage resources, response-

time constraints, network speed, and compression method.

Digital images may also be intended for sophisticated analyses done by computers,

apart from and along with human viewing. Often, the errors in the analysis can be

bounded in terms of the quality (using a convenient, application-speci�c metric) of the

lossy compressed image. Consider, for a simpli�ed example, classi�cation software that

classi�es multispectral image pixels into three classes, A; B; and C: Suppose the task

is to �nd those images out of a large set that have at least 5% of class C pixels, and

it can be shown that for lossy compressed images with quality � Q, the classi�cation

error in each class is at most 1%: Then the classi�er can be used on compressed images

retrieved at quality Q; and only the images with � 4% class C pixels need be considered

8

for full analysis. This represents a substantial improvement in e�ciency, especially if

the images are retrieved over a slow network.

Thus, our notion of quality-control is the following ability: for a given image, a

given compression method, and a given quality metric, compress the image precisely

to a given rate target or a given quality target.

The mapping between compression parameters and resulting rate and quality may

not be obvious. If an image I is compressed using a compressor C that takes tuning

parameter �; then the compressed image C(I; �) has a certain rate and a certain quality,

determined by �: Figuring out a � for a given rate or quality target is often a hard

problem. Thus, to do quality-control, we need enabling technologies speci�c to image

compression methods that can meet the following demands:

1. Given a rate or quality target, �nd � such that C(I; �) meets the target precisely.

2. Make sure that the resulting rate-quality tradeo� is close to optimal.

For some compression methods, these two objectives are hard to achieve (such as with

JPEG), whereas for others they are easier (such as with common wavelet-based com-

pression schemes [Sha93, SP96a, ZASB95]).

1.2 The QCLIC-Image object

A QCLIC-Image is an object that supports two basic methods:

1. QCLIC-GetCurve(C;Q; curve-constraints); and

2. QCLIC-Compress(C;Q; target; compression-constraints):

9

Here, C speci�es a compression method, and Q is a quality metric. QCLIC-GetCurve

returns a rate-quality curve for the image. The parameter curve-constraints speci�es

restrictions such as minimum/maximum rate/quality, number of curve points needed,

etc. The curve would be returned as a sequence of (rate, quality) pairs. A good imple-

mentation needs to also ensure that the curve returned is optimal or nearly optimal.

The method QCLIC-Compress returns compressed images according to the speci�ed

target and constraints. QCLIC-Compress(C;Q; target; compression-constraints) returns

a compressed image using compression method C and quality metric Q: The parameter

target speci�es either a rate target, or a quality target. The parameter compression-

constraints can specify several constraints, such as a tolerance allowed in achieving

target. For selective retrieval, compression-constraints can also specify a particular

piece of the compressed image to be returned. For example, for using progressive

transmission, the �rst call can demand just the �rst 1000 bytes of the compressed

image|subsequent calls will demand the remaining bytes progressively. Once again,

a good implementation will try to optimize the rate-quality tradeo� in choosing the

tuning parameters.

Speci�c application-based implementations of the QCLIC framework need only sup-

port a limited number of possibilities for the parameters C; Q; curve-constraints, and

compression-constraints, depending on their needs and available resources. For exam-

ple, the QCLIC framework also supports retrieval of the original image, with lossless

or no compression. Speci�c implementations may choose not to support this function-

ality, if they do not have the storage resources and/or do not need the lossless image.

Typically, scienti�c applications (where each pixel intensity is potentially meaningful

data) such as medical imagery require the lossless image to be retained.

10

1.2.1 QCLICS: QCLIC-Image Sets

There are several applications where sets of images need to be compressed together.

Using the QCLIC framework, and aggregate quality metrics for sets of images, we can

also optimize rate-quality tradeo�s across several images, and provide quality-control.

The rate-quality curve and related concepts extend naturally to sets of images using

aggregate quality metrics such as \average quality." As a simple example, consider the

multimedia application of packing a large number of images on a CD-ROM. The total

available space must be distributed over the images so as to maximize the set quality.

At a conceptual level, a set of QCLIC-Images is also an object very similar to the

QCLIC-Image object. It supports the methods:

1. QCLICS-GetCurve(C;Q

S

; curve-constraints); and

2. QCLICS-Compress(C;Q

S

; target; compression-constraints):

These have exactly the same form as those for a single QCLIC-Image. The parame-

ter C speci�es a compression method, and Q

S

is a quality metric for sets of images,

de�ned in terms of an underlying quality metric Q for individual images. The pa-

rameters curve-constraints and compression-constraints can specify (in addition to the

constraints discussed for QCLIC-Image),

1. Minimum and maximum constraints on rate and quality for some or all of the

individual images,

2. Weights for the rates of individual images (quality weights are included in the

quality metric Q

S

), and

3. Selection and interleaving constraints, which specify which pieces of the com-

pressed images are to be returned, and how they are to be interleaved (this

11

applies only to QCLICS-Compress).

We will show how to build the QCLICS functionality using the methods of QCLIC-

Image, and discuss some useful quality metrics for sets of images. Note that the set may

be a dynamically constructed subset of a large number of images, as in the following

example. Consider an image database server application. Remote clients can make

queries such as:

Find all images of potential airforce bases in this geographical area.

The server processes the query using meta-data and/or content-based searching. The

result is a set of images that is to be shipped to the client, over an available bandwidth,

with a response-time constraint. The server can use QCLICS to �gure out how much

each image is to be compressed, using an overall quality metric. If the server simply

divides the available bandwidth equally among the images, easy-to-compress images

might hog too much bandwidth while some hard-to-compress images might be delivered

at extremely poor quality.

Another application of QCLICS is for digital cameras. A digital camera needs to

store the captured images in a limited amount of on-device memory. Typically, vendors

like to promise the consumer that the camera can hold a certain number of images (say

24) before they are downloaded to his home computer. Like the previous application,

here too it is inappropriate to simple divide the available memory equally over the 24

images. On the other hand, if 23 images have been shot, and the 24th happens to

be a hard-to-compress image, some quality must be \chipped o�" the existing images

to create more room for the last image. The QCLICS methods can be used for both

partitioning the currently available memory, as well as chipping o� to create more room,

so that the overall quality is maximized.

12

1.3 Methodology and Thesis Organization

The functionality of the QCLIC-Image object may not be directly available for the

compression method and quality metric used. To realize the QCLIC framework, en-

abling technologies are needed for speci�c compression methods and speci�c quality

metrics. Our methodology was to consider speci�c image compression techniques and

devise technologies to allow their use in the QCLIC framework, for a variety of quality

metrics. Several applications were implemented to serve real needs and to test and

evaluate the QCLIC framework. The image data used in our tests included the stan-

dard \image-compression test images" as well as a large number of images gathered

from various scientists at the University of Wisconsin-Madison.

Chapter 2 presents a review of the theory behind commonly used image compression

tools, and surveys several quality metrics and speci�c compression techniques. In the

context of uniform scalar quantization, which is a key tuning step in several compression

methods, we present an analysis of entropy-constrained quantization for the Laplacian

probability density, which is a good model of the transformed image data used in image

compression. We use the analysis to optimize a class of quantizers for the Laplacian

pdf.

Chapter 3 presents the QCLIC framework, and the issues involved in realizing it,

for a number of image compression methods. For most of these, the requisite enabling

technologies are evident and are described in their entirety. Chapter 3 also presents

algorithms for implementing the QCLICS functionality for sets of QCLIC-Images. The

performance of the QCLIC framework is evaluated from the standpoint of several sys-

tems that we have implemented.

13

For the JPEG image compression standard, which is the most commonly used im-

age compression technique at present, the QCLIC framework is non-trivial to realize.

We have developed a comprehensive enabling technology, the RD-OPT algorithm, for

achieving the QCLIC functionality with JPEG. RD-OPT forms the subject of Chapter

4. Chapter 5 presents our conclusions along with related work and directions for future

research.

14

Chapter 2

Image Compression: Theory and

Techniques

In this chapter we review some common image compression techniques. Digital images

can be produced by a variety of sources such as scanners, CCD cameras, magnetic

resonance imaging, tomography, etc. Usually, the original (\real world") image is

converted from analog to digital by the image-generating device. There is a quality loss

associated with this sampling, and it is important to design it carefully [Pra91]. Here,

we assume that the sampled rectangular arrays of pixel intensities are the original data,

and think of quality of compressed images with respect to this array as the reference. An

additional source of digital images is image-creating software, which directly produces

the \rectangular array of samples."

2.1 Notation

A digital image I is a W �H rectangular array of pixel intensities, with width W and

height H: The pixel values (intensities) are referred to as I(i; j); where 0 � i � H � 1

and 0 � j � W � 1: For \grayscale" images, the pixel intensities are integers in some

range [0;M]: For \color" images, each pixel intensity I(i; j) is a vector in some color

space, such as (Red, Green, Blue). We identify the pixel values in a particular color

15

plane (say R, or red) using the notation I

R

(i; j): The pixel intensities in each plane are

integers in some range [0;M]: Typically, M = 2

m

� 1; so that each color of a pixel can

be represented using m bits. The most commonly used precision is m = 8 (M = 255):

We use the term \compression technique" loosely, to describe general concepts as

well as speci�c methods. We use the term \compression method" to strictly imply

a �xed compression algorithm and decompression algorithm. Thus, a compression

method C consists of an encoder (also denoted by C), and a decoder (denoted by D

C

).

The compressed image produced by a compression method C from an image I is denoted

by C(I). In addition, C might require some parameters (the \tuning" parameters), and

if they are not evident from the context, we will add them as arguments, as in C(I; �):

The rate of compression for the compressed image C(I) is

jC(I)j

WH

bpp, where jC(I)j is the

size of C(I) in bits.

Usually, the decompressed image is uniquely determined by a compressed image,

except for variations resulting from oating-point computations. For simplicity, we will

often refer to pixels I

0

(i; j) of a compressed image I

0

= C(I); when strictly speaking,

we should use I

00

= D

C

(C(I)) instead of I

0

; where D

C

is the decompression algorithm.

2.2 Quality Metrics

As described in Chapter 1, the rate-quality curve for lossy compression depends upon

four factors: compression method, image characteristics, quality metric, and tuning

parameters. This section describes some commonly used quality metrics.

We identify three uses of image quality metrics:

1. For a given image and compression method, measure and compare the information

content at di�erent rates.

16

2. Evaluate and optimize di�erent compression methods so as to maximize the qual-

ity of an image at any particular rate. Thus, for a compression method C with

tuning parameter �; the quality metric can be used to choose � such that the

measured quality is maximized for the resulting rate. Further, to compare com-

pression methods C

1

and C

2

, the quality metric can be compared at a �xed rate.

3. Serve as a comparison method across images being compressed together, so that

the total available space or bandwidth can be divided equitably.

There is no single metric well suited for all three uses. Here, we survey some of the

commonly used metrics (and propose one new metric), and present evaluations in terms

of the above three uses. A complete discussion of the merits and demerits of various

quality metrics is beyond the scope of this thesis. Image quality metrics constitute an

active research area. Here, we simply present an overview.

A quality metric is supposed to quantify the information-content of a compressed

image. Unfortunately, the term \information-content" is hard to de�ne for images.

Moreover, the notion of \information" for an image can di�er from application to

application. For example, in satellite imagery, clouds may be noise to geologists and

information to meteorologists. For this reason, scienti�c applications typically need to

de�ne their own domain-speci�c metrics.

For common images used simply as \pictures," the notion of information is intu-

itively obvious: the quality of a compressed picture is determined by the amount of

di�erence the human eye can discern between it and the uncompressed original. Thus,

a good quality metric needs to incorporate the characteristics and limitations of the

human visual system (HVS) [Kel89]. Unfortunately, there is no precise way of doing

17

that, as the HVS is highly subjective and hard to model [Kel89, Pra91]. Several em-

pirical approximations exist, with widely varying complexities. In practice, the simple,

tractable metrics are more commonly used rather than the complex but arguably better

ones.

Quality metrics for color images (in terms of the HVS) aren't as well understood

as for grayscale images. A color �delity measure should quantitatively measure just

noticeable color di�erences between images, taking into account the complex processes

occurring in the HVS [Kel89, Pra91]. Color images are usually compressed after con-

version to the (Y,Cb,Cr) color space, where the Y plane (luminance) characterizes the

brightness of the image and the chrominance planes (Cb and Cr) determine the col-

ors. Each pixel (R,G,B) is mapped via a simple transformation to a (Y,Cb,Cr) triplet

[Sch85]. This is useful for two reasons: the correlation between the Y, Cb, and Cr

planes is lesser than that between R, G, and B. Further, the human eye is less sensitive

to high frequencies in the chrominance planes [VB67, Mul85]. The latter fact is usually

utilized by subsampling the chrominance planes before encoding. In the presence of

such subsampling, we will measure quality relative to the subsampled image itself.

2.2.1 Distortion-Based Metrics

The most popular quality metrics are based on distortion

1

, or mean-square error (MSE).

For aW�H image plane I; approximated by a compressed image plane I

0

; the distortion

D(I

0

; I) is computed as:

D(I

0

; I) =

1

WH

X

0�i<H

X

0�j<W

(I

0

(i; j)� I(i; j))

2

:

1

Usually, distortion is used synonymously with \quality loss" in general, but we will consistently

use it to mean MSE only.

18

Higher distortion implies poor quality (low information-content). The popularity of

distortion-based metrics stems from the tractability of distortion. Not only is the

mean-square error easy to compute, it can be tracked, analyzed and optimized through

the compression process.

The most widely used distortion-based quality metric is Peak Signal to Noise Ratio

(PSNR) (measured in decibels), which, for grayscale images, is de�ned as

PSNR = 10 log

10

M

2

D(I

0

; I)

dB:

Here M is the peak signal (the maximum possible value of a pixel), and \dB" is short

for decibels.

For color images, the simplest way to calculate the PSNR is to use average distortion

over all the color planes. If D

Y

(I

0

; I); D

Cb

(I

0

; I); and D

Cr

(I

0

; I) are the mean-square

errors for the Y, Cb, and Cr planes, respectively, then:

PSNR = 10 log

10

3M

2

D

Y

(I

0

; I) +D

Cb

(I

0

; I) +D

Cr

(I

0

; I)

dB:

If the chrominance planes have been subsampled, then PSNR is calculated by weighing

the distortions according to the subsampled plane sizes. We will use this as our PSNR

calculation technique for color images, unless otherwise speci�ed.

This PSNR extension for color images is ad-hoc, like almost every quality metric for

color images. For some applications (for example those requiring very low rates), it is

useful to give more weight to the luminance distortion. Sometimes it is more natural to

use a vector of PSNR's rather than combining the di�erent plane-PSNR's into a single

value.

For a given compression method, PSNR is a useful measurement of the amount of

information at a given rate. This is especially the case for scienti�c imagery. PSNR

19

Sailboat

Lena Baboon

Splash

PSNR: 30.00 dB, SNR: 24.31 dB

PSNR/N: 0.80, PQS: 0.97

PSNR: 30.00, SNR: 24.55 dB

PSNR/N: 1.21, PQS: 2.69

PSNR: 30.00 dB, SNR: 24.85 dB

PSNR/N: 0.93, PQS: 1.91

PSNR: 30.00 dB, SNR: 23.15 dB

PSNR/N: 0.81, PQS: -1.53

Figure 3: Quality comparison at constant PSNR.

20

does not correlate too well with the response of the HVS [MKA96]. The reason is

that PSNR does not take into account the structure in the error (each pixel error is

equally important), whereas for the HVS, errors in certain areas of the image (such as

uniform backgrounds) are less tolerable than others. Arti�cial examples can be easily

constructed to show that an improvement in PSNR may actually be a degradation

in visual quality. In practice, this seldom happens, except for very small changes

in PSNR. A compressed image with higher PSNR does have better visual quality,

as any reasonable compression technique itself utilizes the image structure. Usually,

the problem is that for roughly the same PSNR, visual quality can be substantially

better if the coding pays more attention to the visual structure [AE97]. This problem

can be �xed to some extent by using a perceptually weighted distortion in the PSNR

calculation. For example, for image compression using the discrete cosine transform

(DCT) [ANR74], distortion can be calculated in the DCT coe�cient space, with more

weight given to the lower frequencies. An example of a perceptual weighing scheme

of this kind appears in [CVC95]. Perceptually weighted PSNR o�ers a good way to

approximate visual quality as it can also be analyzed, tracked, and optimized through

the compression process.

Another problem with PSNR is that PSNR comparisons across images are usually

inconclusive: two di�erent images with identical PSNR's can have radically di�erent

visual qualities. Figure 3 shows four test images compressed to the JPEG format, each

at a PSNR of 30 dB. Each image is a 256 � 256 grayscale 8-bit image. For images

such as \Baboon" that have a lot of small detail ignored by the eye, a PSNR of 30

dB is fairly good, visually. For an image with a large, uniform background, such as

\Splash," 30 dB is a rather poor quality. The other quality metric values listed in the

21

�gure (SNR, PSNR/N, PQS) will be discussed shortly.

Normalized PSNR

As seen in Figure 3, PSNR is not a good comparative measure across images. One

commonly used approach for normalizing distortion is to use Signal to Noise Ratio

(SNR), which, for grayscale images, is de�ned as

SNR = 10 log

10

S(I)

D(I

0

; I)

dB;

where S(I) is the mean-square pixel intensity for the uncompressed image I: That is,

S(I) =

1

WH

P

0�i�H�1

P

0�j�W�1

(I(i; j))

2

: For color images, we will take the mean-

square pixel value over all the color planes as S(I):

Unfortunately, this normalization is often not good enough. Figure 4 shows that at

a constant SNR value of 25 dB, the four test images exhibit di�erent visual qualities,

mimicking the constant-PSNR case. The problem is that the normalizing factor, S(I);

is not enough to capture the overall \complexity" of an image, which depends on the

spatial location and correlation between pixel values too.

We propose a normalized quality measure called PSNR/N, which uses a normal-

ization technique based directly on the rate-PSNR curve for any speci�c compression

method. As observed before, the rate-quality curve typically exhibits a sharp rise, fol-

lowed by a leveling-o�. Intuitively, the sharp rise lasts while the highly structured,

high-level information of the image is being coded, and the leveling-o� represents cod-

ing of the �ner details. We use the knee of the curve (the transition between sharp-rise

and leveling-o�) to normalize the curve. For a given compression method, we obtain

the optimal (or nearly optimal) rate-PSNR curve for the entire span of rates possible.

We approximate this curve using a least-squares �t with two line segments, and use

22

Sailboat

Lena Baboon

Splash

PSNR: 30.68 dB, SNR: 25.00 dB

PSNR/N: 0.82, PQS: 1.20

PSNR: 30.47 dB, SNR: 25.00 dB

PSNR/N: 1.22, PQS: 2.78

PSNR: 30.14 dB, SNR: 25.00 dB

PSNR/N: 0.93, PQS: 1.97

PSNR: 31.87 dB, SNR: 25.00 dB

PSNR/N: 0.86, PQS: -0.29

Figure 4: Quality comparison at constant SNR.

23

N

P
N

P

Best least-squares fitting piecewise

 linear curve with two lines

Normalized PSNR/N = PSNR

Rate

P
S

N
R

Figure 5: PSNR/N calculation illustrated.

the PSNR at the intersection of the two lines to normalize. If P

N

is the PSNR at the

knee, that is, at the intersection of the two lines, then a PSNR value of P is normal-

ized to a PSNR/N value of

P

P

N

: Figure 5 illustrates the calculation of PSNR/N, and

Figure 6 shows the rate-PSNR curves for the four test images (using optimized JPEG)

along with the least-squares �tting line segments. Figure 7 shows the four test images

compressed at a constant PSNR/N value of 1:00 (i.e., at the knee). The correlation

in visual qualities is seen to be much better than that with SNR or PSNR. However,

the \Baboon" image seems to be at a slightly lower visual quality than the others (the

coding of the \easy" part of the \Baboon" image lasted till a very low \knee" PSNR,

P

N

; before the rest of the hard-to-code detail took over). The computation complexity

of this normalization is not much: given a rate-PSNR curve with n points, we obtain

the least-squares �ts for each possible partitioning of the points into two consecutive

24

15

20

25

30

35

40

45

50

55

0 0.5 1 1.5 2 2.5 3 3.5 4

Rate (bpp)

P
S

N
R

 (
d
B

)

Splash

Lena

Sailboat

Baboon

Figure 6: Knee PSNR (P

N

) for the four test images.

parts, and retain the best �t. For each partitioning, the coe�cients of the linear ap-

proximations and the resulting errors are obtained easily using closed-form expressions

involving sums, sums of products, and sums of squares of the (x; y) values. By building

incremental tables of these sums, the �t for each partition can be computed in constant

time. To illustrate this, consider the term S

m;n

x

=

P

n

i=m

bpp

i

, needed for the computa-

tion of the linear �t. The sum-of-x table (S

x

[0 : : : n]), given by S

x

[i] =

P

i

j=1

bpp

j

, can

be computed once, and then used to compute any S

m;n

x

as S

x

[n]�S

x

[m�1] in constant

time. The time taken to build all the tables is O(n). Hence the overall complexity is

also O(n), rather than O(n

2

).

25

Sailboat

Lena Baboon

Splash

PSNR/N: 1.00, PQS: 2.51

PSNR: 37.52 dB, SNR: 31.81 dB

PSNR/N: 1.00, PQS: 3.29

PSNR: 24.89 dB, SNR: 19.44 dB

PSNR/N: 1.00, PQS: 1.37

PSNR: 32.42 dB, SNR: 27.27 dB

PSNR/N: 1.00, PQS: 2.56

PSNR: 37.04 dB, SNR: 30.13 dB

Figure 7: Quality comparison at constant PSNR/N.

26

Rate-Distortion Theory

For analysis of compression techniques using distortion-based quality metrics, there

is a richly developed theory. In 1948, Shannon showed that the minimum rate (bits

per sample) required to code a sequence of discrete samples with a given probability

distribution (a \discrete source") can be calculated using the entropy function [Sha48].

Moreover, he showed in [Sha48] that the entropy bound could be achieved arbitrarily

closely (\noiseless coding theorem"). We will discuss entropy in the context of encoding

transformed and/or quantized images with the fewest number of bits, in Section 2.4.

In 1959, Shannon extended this to include a �delity criterion [Sha59], and this paper

was the foundation for rate-distortion theory. Rate-distortion theory was originally

developed in the context of signal transmission, and deals with the following problem:

\Given a sequence of signal values with a known probability density function, what is

the minimum rate required to encode the sequence at a given level of distortion?" The

minimum rate required for distortion D is represented by the rate-distortion function,

R(D) [Dav72, Ber71].

Image compression techniques commonly transform the pixel data to decorrelate

it. The transformed data can usually be approximated by a Gaussian or Laplacian

distribution [Pra91, RG83]. The rate-distortion function for a Gaussian sequence (of

independent identically distributed Gaussian elements with variance �

2

) has been found

to be [Ber71]:

R(D) =

8

>

>

<

>

>

:

1

2

log

2

(

�

2

D

) �

2

> D

0 �

2

� D

This has also been extended to stationary Gaussian sources with a known covariance

matrix. The rate-distortion function for arbitrary distributions is hard to compute,

27

but the Gaussian case can be used to provide both upper and lower bounds [Ber71].

Practical image compression methods can be evaluated in terms of how close they come

to the theoretical rate-distortion function. Notice the similarity of the Gaussian rate-

distortion function with PSNR and SNR. The rate-PSNR curve for images, after an

initial sharp rise, levels o� to nearly a straight line. The linear shape can be understood

in terms of the R(D) function above.

2.2.2 Psycho-Visual Metrics

These metrics try to directly assess the HVS response to lossy image compression by

modeling the results of extensive subjective tests [AP92, Wat93, MKA96]. Here, we

review the Picture Quality Scale metric being developed by Algazi et al [MKA96].

The PQS quality metric is designed to correlate with the Mean Observation Score

(MOS) evaluation of a large set of test images. For each test image, a number of ob-

servers were asked to give a rating on a \scale of impairment" from 0 (very poor quality)

to 5 (excellent quality). Intermediate points on the scale were labeled as \perceptible

and very annoying loss," \perceptible and slightly annoying loss," \perceptible but not

annoying loss," etc. The average MOS rating for each image was calculated. The PQS

uses �ve di�erent carefully designed measures of quality loss (including distortion). A

principal components analysis was done on these to �nd uncorrelated factors, and then

multiple regression analysis was used to �nd weights for these eigen-factors that gave

the best correlation with the MOS scores. The current PQS implementation works best

for 256� 256 grayscale images, at moderate to high qualities. The MOS itself did not

have enough range to distinguish between low qualities.

Figure 8 shows the test images JPEG-compressed to a constant PQS (2.51 on a

28

Sailboat

Lena Baboon

Splash

PSNR: 34.39 dB, SNR: 28.71 dB

PSNR/N: 0.92, PQS: 2.51

PSNR: 32.17 dB, SNR: 27.03 dB

PSNR/N: 0.99, PQS: 2.51

PSNR: 29.27 dB, SNR: 23.82 dB

PSNR/N: 1.18, PQS: 2.51

PSNR: 36.99 dB, SNR: 30.09 dB

PSNR/N: 1.00, PQS: 2.51

Figure 8: Quality comparison at constant PQS.

29

scale from 0 to 5, which translates to \perceptible and mildly annoying artifacts").

The correlation between the visual qualities of the four images is much better than with

the other metrics (PSNR, SNR, PSNR/N). Note that in some of the previous images

(Figures 3 and 4), the PQS values are negative, as some of the \factors" were outside the

design range at such poor qualities. This limited application range (moderate to high

quality, 256� 256 grayscale images) may be relaxed as more research is done. A more

serious problem is that PQS measurement is computationally complex, and certainly

not amenable to analysis through the compression process. Compression algorithms

can optimize PQS only through searching for the optimal parameters by evaluating the

PQS at each point (and navigating the search space in some ordered fashion, such as

following the best gradient). This is very expensive, and in practice, the best use of

PQS is as a calibration tool to uniformly assess qualities across images and compression

methods.

We note that of the three quality metrics, PSNR, SNR, and PSNR/N, PSNR/N

o�ers the best compromise in terms of tractability and correlation with visual quality

(both subjectively and in terms of PQS values), as seen in Figure 7.

2.2.3 Other Quality Metrics

For scienti�c applications, the quality of a lossy image is the utility of an analysis

done on it, when compared to the same analysis done on the uncompressed original.

There has been a lot of work done on evaluating compressed images for medical use

[LRF

+

92, MDS

+

91, CGO94]. In situations where the image analysis is done by a person

(such as medical diagnosis), quality metrics are evaluated by conducting extensive

subjective tests (on the \experts" in the �eld). One common approach for evaluating

30

quality for diagnostic use is to use Receiver Operating Characteristic (ROC) analysis

which measures the tradeo� between \false positive results" and \true positive results."

If the intended use of an image is some analysis done by a computer, then it's easier

to measure the quality of the analysis (compared to, say medical diagnosis by doctors).

Often, the accuracy of the analysis can be bounded in terms of the mean-square error.

Such correlations (between mean-square error and application-speci�c image quality)

can be extremely useful. Using the QCLIC framework, clients can retrieve compressed

images from remote servers, run their analysis software on the compressed images, and

use the error bounds to recover only a small subset of \interesting" images for full

analysis.

2.3 Image Compression Framework

In this section we present an overview of the common elements of image compression.

There are many excellent references for detailed discussions of these [NH95, Jai89, JR94,

Pra91, BK95, JN84].

Image compression relies on two fundamental traits of pixel intensities in image

data: redundancy and irrelevancy [JN84]. Redundancy relates to statistical properties

of images, while irrelevancy relates to the \observer" (human or computer) using the

image. Redundancy can be spatial (due to correlation between neighboring pixels) or

spectral (due to correlation between color planes or spectral bands). In addition, for

video imagery, there can be temporal redundancy as well, due to correlation between

consecutive frames. Irrelevancy results from the insensitivity of the HVS or the analysis

algorithm to very small details in the image, which include the noise introduced in the

image acquisition process.

31

and expose relevance order

Decomposition to remove redundancy

Quantization to discard/approximate

irrelevant pieces

Symbol encoding

Compressed image

Original image

Figure 9: General lossy image compression framework.

A good compression technique needs to decompose the image data so as to remove

the redundancy and order the data in order of relevance. This decomposition is usually

done by transforming the image data to a \spatial frequency" domain. It is usually

lossless, except for oating point calculation errors in practical implementations. This

organized information is then subjected to quantization which exploits the relevance

order to discard or approximately retain the less relevant pieces. The quantization step

produces the loss in quality. Typically, the tuning parameters for a compression method

are just the parameters for a particular quantization strategy. Finally, the quantized

data is encoded into bits that form the compressed image. This encoding does not

introduce any further loss. These steps are shown in Figure 9. These steps are highly

32

interdependent. For example, symbol encoding can be done much more e�ciently via

entropy coding techniques (such as Hu�man coding [Huf52]), if the reorganization and

quantization produce a representation with low entropy. The e�cacy of quantization

depends upon the accuracy of the relevance order imposed by the decomposition step.

The heart of an image compression technique is its decomposition step: symbol

encoding and quantization are rather general, and common approaches are used in

all image compression techniques. For this reason, we discuss symbol encoding and

quantization �rst. Subsequent sections present some compression techniques along with

their decomposition mechanisms and the speci�c avors of quantization and symbol

encoding used by them.

2.4 Symbol Encoding

This step involves the coding of a sequence of symbols (produced by quantization of

the decomposed image) into a small number of bits, so that the input sequence can

be recovered exactly from the coded bits. This process is also known as lossless or

noiseless encoding.

2.4.1 Fixed-Length Codes

Some applications require the use of �xed-length codewords, for simpler implementa-

tions (such as simple bu�ering requirements) or because of other constraints. For exam-

ple, if it is important for an image compression application to randomly access arbitrary

pieces of an image, �xed-length codewords may be more suitable than variable-length

codewords. For an input sample alphabet with N symbols, the rate required, using

�xed-length codewords, is dlog

2

Ne bits per sample. If N is a power of 2; then this is

33

the least possible rate with �xed-length codewords. If N is not a power of 2; the rate

can be improved by grouping together blocks of input symbols. If blocks of k symbols

are used, then the rate is

d

log

2

N

k

e

k

: It is readily seen that this approaches log

2

N as

k !1: Thus, increasing the block size leads to more e�cient coding, at the expense of

increased complexity and reduced \random-access" capability. Beyond a certain size,

the gain in rate anyway becomes insigni�cant.

2.4.2 Variable-Length Codes

Variable-length codes encode the information produced by a source more e�ciently

by assigning shorter codewords to frequently occurring symbols, minimizing the rate

(the expected codeword length). The best rate that can be achieved in this fashion

is bounded by the entropy function. For a discrete memoryless stationary source S of

symbols over an alphabet of size N; the entropy, H(S); is de�ned as

H(S) = �

N

X

i=1

p

i

log

2

p

i

bits/symbol:

Here p

i

is the probability of occurrence of the i

th

symbol

2

. Shannon showed that this is

a lower bound for the rate required to encode the source. For sources with memory, the

entropy de�nition is easily extended using joint probabilities. Note that the entropy is

lower for \skewed" distributions that have high probabilities for a very small number

of symbols.

Shannon also showed that the entropy bound can be achieved arbitrarily closely,

using block coding with variable-length codes. The coding techniques used for this are

also known as entropy coding techniques. We briey review two of the most common

entropy coding techniques.

2

For entropy calculations, 0 log

2

0 � 0:

34

Hu�man Coding

Hu�man coding [Huf52] produces codes which satisfy the pre�x condition: No codeword

is the pre�x of any other codeword. Thus, a sequence of codewords can be uniquely

mapped to a sequence of symbols. To construct the Hu�man codes for a given source,

the original alphabet is repeatedly shrunk by merging the two symbols with least prob-

abilities, until only two symbols remain. One of these is assigned the codeword `0' and

the other is assigned `1'. The composite symbols are then broken up (in reverse order

of the merging), with codewords �0 and �1 assigned to the symbols that were merged

to form the composite symbol with codeword �:

It can be shown that if all the symbol probabilities are negative powers of two,

Hu�man coding achieves the entropy bound exactly. In practice, symbol probabilities

can be arbitrary, and Hu�man coding may be ine�cient as each codeword length is

an integer (the optimal codeword length for a symbol with probability p

i

is � log

2

p

i

).

In this case, it can be shown that by using Hu�man coding on blocks (of length k)

of symbols, the entropy bound is achieved in the limit as k ! 1: However, this

convergence may be slow, and the implementation complexity grows exponentially with

k. A better strategy, in some cases, is to use a composite symbol alphabet that groups

together runs of frequently occurring symbols into one composite symbol (this is known

as run-length encoding).

Often, symbol probabilities may not be stationary (for example, in an image, they

may change from area to area). In this case, Hu�man coding, which assumes a station-

ary source, is suboptimal. Dynamic Hu�man coding schemes [Knu85, Vit87], adaptively

adjust the codewords through the encoding process, to take into account varying symbol

probabilities, but their implementations are complex.

35

Practical implementations of Hu�man coding usually make several simpli�cations

(such as limiting the maximum codeword length) for reducing the complexity, at the

cost of a slight increase in rate.

Arithmetic Coding

In Hu�man coding there is a codeword for each symbol or block of symbols. Arithmetic

coding directly assigns a full code to the entire sequence of symbols. The idea, due to

Elias [Eli63], is to partition the interval [0; 1) into non-overlapping subintervals, one for

each possible sequence of symbols, such that the length of the subinterval corresponding

to a sequence is equal to its probability of occurrence. A sequence is coded by specifying

the corresponding subinterval. The subinterval partitioning is done iteratively: using

a �xed ordering of the symbols in the alphabet, the current interval is partitioned

into pieces whose lengths are proportional to the probabilities of occurrence of the

alphabet symbols. Out of these newly created subintervals, the one corresponding to

the next input symbol is chosen. This process is repeated for the entire sequence of

input symbols. Figure 10 illustrates the interval partitioning step in arithmetic coding.

An input sequence is coded by specifying the corresponding subinterval. It can be

shown that if the probability of occurrence of the sequence s is p

s

; then the subinterval

for s can be speci�ed using d� log

2

p

s

e bits. Thus, each sequence can be coded within

one bit of its ideal length.

As presented here, arithmetic coding is hard to implement, because the precision re-

quired to carry out the arithmetic for subinterval partitioning increases with the length

of the sequence to be coded. Practical implementations use several simpli�cations (such

36

Subinterval corresponding to the string

α of length i-1 over a binary alphabet

0 a b 1

1ba0 a+(b-a)p

Subinterval corresponding to the string

p = Pr[symbol number i is 0]

α1

Figure 10: Interval partitioning step in arithmetic coding.

as normalizing the interval size at each step and rounding) to use �xed-precision arith-

metic [PMLA88, Lan84, WNC87]. Arithmetic coding can easily adapt to changing

source statistics. In fact, IBM's Q-coder [PMLA88] and the QM-coder used in JPEG

[PM93] are arithmetic coders with adaptive estimation of symbol probabilities being

an integral part of the encoder itself. In practice, arithmetic coding can perform up to

10% better (in terms of rate) than Hu�man coding, but it is used less often because it

is a patented technique.

2.5 Quantization

The symbols encoded by entropy coding are the output of the quantization step, which

is the key loss-controlling step in image compression. The task of the quantization

step is to take the decomposed image data and produce an approximation of it, using

37

a smaller number of symbols, while allowing a minimal loss in quality. Typically, the

image decomposition step produces a structured representation, with a relevance or-

dering of the di�erent pieces of the structure. For example, a discrete cosine transform

decomposition produces blocks of spatial frequency coe�cients, with the low frequency

coe�cients containing more information than the higher frequency coe�cients. Quan-

tization must take into account this ordering to maximize the quality while minimizing

the rate.

In this section, we review some commonly used quantization techniques. Quantiza-

tion can be classi�ed as scalar quantization or vector quantization. Scalar quantization

quantizes each input signal value individually, while vector quantization jointly quan-

tizes blocks (or vectors) of signal values. Scalar quantization is a special case of vector

quantization, and is simpler to implement. For memoryless sources (where the signal

values are independent), scalar quantization performs nearly as well as vector quanti-

zation [GG92]. Usually, the image decomposition step produces largely uncorrelated

data. While lack of correlation does not necessarily imply independence (except for

Gaussian sources), in practical cases, performance gains of vector over scalar quanti-

zation of decorrelated data are not enough to warrant the added complexity [JR94].

Vector quantization is typically used as an image compression technique by itself (with-

out the decomposition step), as the raw pixel intensities are highly correlated. For this

reason, we just discuss scalar quantization here, while vector quantization is discussed

as a complete image compression technique.

38

Input

O
u

tp
u

t

Reconstruction levels

Decision levels

Figure 11: Scalar quantization.

2.5.1 Scalar Quantization

A scalar quantizer maps real numbers to a countable set of reconstruction levels, r

i

,

based on ordered decision levels, d

i

. If the input x is in the decision interval (d

i

; d

i+1

]

then the output y is r

i

(Figure 11). Each reconstruction level r

i

also lies in the corre-

sponding decision interval, (d

i

; d

i+1

].

In practice, the total number of reconstruction levels is �nite. For an input signal

with a given probability density function p(x); the goal is to design a scalar quantizer

that will minimize the distortion while achieving a particular rate. Note that we use

distortion to mean MSE. Other metrics can also be used, but the MSE is best suited

for analysis of quantizers and hence is most commonly used.

The kind of scalar quantization used depends upon the symbol encoding technique

used. If �xed-length codes are used, then for a given number N of reconstruction

levels, the rate is �xed, and d

i

; r

i

need to be designed so as to minimize the distortion.

39

This is done using the Lloyd-Max technique [Llo82, Max60]. If variable-length codes

are used, then the rate will be close to the entropy of the quantizer output. In this

case, it is useful to minimize both entropy and distortion, using \entropy-constrained"

quantization.

Lloyd-Max Quantizer

When �xed-length symbol encoding is used, the tuning parameter for the quantizer is

simply N; the number of reconstruction levels to be used. In this case, the quantizer

can be designed using the Lloyd-Max algorithm [Llo82, Max60] to minimize the distor-

tion. The optimal quantizer, Q, is one where d

0

; : : : ; d

N

and r

0

; : : : ; r

N�1

minimize the

distortion D; where,

D =

Z

1

�1

(Q(x)� x)

2

p(x)dx:

It can be shown that the optimal d

i

; and r

i

satisfy the constraint that r

i

is the mean

of the signal conditional on the fact that x lies in the interval (d

i

; d

i+1

]. That is,

r

i

=

R

d

i+1

d

i

xp(x)dx

R

d

i+1

d

i

p(x)dx

:

Further, for 1 � i � N � 1;

d

i

=

r

i�1

+ r

i

2

:

The Lloyd-Max technique starts with an arbitrary initial partitioning, d

i

, computes

the conditional means r

i

, then recomputes the decision levels as the averages of neigh-

boring reconstruction levels. This process is repeated until the distortion drop falls

below some threshold. In most cases, convergence is rapid [JR94].

40

Entropy-Constrained Quantization

When variable-length coding is used, the rate of the quantized output is not �xed

simply by a choice of N; the number of quantizer levels. Instead, the rate is closely ap-

proximated by the entropy of the quantized output. Unlike the Lloyd-Max quantizers,

entropy-constrained quantizers try to minimize the entropy as well as the distortion. For

a particular quantization strategy determined by parameters �; the entropy-constrained

quantization (ECQ) optimization problem can be formulated as follows.

Given a target rate R

�

; �nd � such that the resulting rate R(�) is no more

than the target R

�

; and the distortion D(�) is minimized.

In its most general form, the parameter � can be any tuple (N; fd

i

g; fr

i

g) with N any

positive integer or in�nity, d

i

and r

i

arbitrary real numbers such that d

i

� r

i

� d

i+1

:

In practice, a particular quantization strategy is used, which imposes restrictions on

the possible values of �: For example, the commonly used uniform scalar quantization

strategy imposes the constraint that the interval width d

i+1

� d

i

is constant.

We present a brief overview of ECQ theory here, and then present our analysis

of the Laplacian density case, which is very important from an image compression

perspective. All the signal sources in the analyses presented in this chapter are assumed

to be sequences of independent, identically distributed random variables.

The rate R(�) corresponding to a choice of the parameters � = (N; fd

i

g; fr

i

g) is

calculated as the entropy,

R(�) = �

X

i

p

i

log

2

p

i

;

where p

i

is the probability that the signal value x is in (d

i

; d

i+1

]: That is,

p

i

=

Z

d

i+1

d

i

p(x)dx: (2.1)

41

The distortion is similarly calculated as,

D(�) =

X

i

Z

d

i+1

d

i

(x� r

i

)

2

p(x)dx:

The ECQ optimization problem can be solved by minimizing the LagrangianR(�)+

�D(�): It can be shown that for any � � 0; a solution �

L

to the Lagrangian mini-

For λ > m, point A is picked

For λ < m, point C is picked

B

C

A

R

D

B
R

Slope = -m

Figure 12: Lagrangian minimization only picks points on the convex hull.

mization problem is also a solution to the ECQ optimization problem, for R

�

= R(�

L

):

Not all optimal solutions to the ECQ optimization problem are necessarily solutions

to the Lagrangian minimization problem. The Lagrangian will only be minimized at

points on the convex hull of the R-D curve. In Figure 12, point B will never be picked

by Lagrangian minimization, even though it is a solution to the ECQ optimization

problem for R

�

= R

B

: In practice, the points that minimize the Lagrangian are dense

enough to achieve any target R

�

very closely. Also, if the optimal rate versus distor-

tion curve (optimal with respect to the choice of � out of a possibly restricted set)

42

is continuous with slope increasing towards zero, then every solution to the ECQ op-

timization problem can be obtained via Lagrangian minimization. This can be easily

Lines with slope −λ

R

D

Figure 13: The point that minimizes R + �D:

seen from the geometrical interpretation of Lagrangian minimization (Figure 13). If we

draw lines with slope �� at increasing distance from the origin, the �rst point where

the rate-distortion curve is touched will minimize the Lagrangian.

Consider the general case with no restrictions on possible choices for �: For a

particular choice of d

i

and d

i+1

; the probability p

i

does not depend on the reconstruction

level r

i

. Hence, the choice of r

i

does not a�ect the rate, and should be made so as to

minimize the distortion. Then,

r

i

=

R

d

i+1

d

i

xp(x)dx

R

d

i+1

d

i

p(x)dx

: (2.2)

Taking partial derivatives of the LagrangianR+�D with respect to each d

i

and equating

with zero results in a set of non-linear simultaneous equations:

log

2

(

p

i

p

i�1

) = �[(r

i

� r

i�1

)(r

i

+ r

i�1

� 2d

i

)] (2.3)

43

Equations 2.2 and 2.3, �rst presented by Berger [Ber72], provide necessary conditions

for a quantizer to be optimal. If d

i�1

; d

i

and � are known, then equations 2.1, 2.2, and

2.3 can be solved numerically to compute d

i+1

: Given some boundary conditions (such

as the �rst and last decision level), and �, this o�ers an iterative algorithm to solve

for the optimal quantizer [Ber72, FM84]. Unfortunately, there can be two solutions for

each d

i+1

, for �xed values of d

i�1

; d

i

; and �: If each possible solution is examined, the

complexity of the iterative algorithm grows exponentially. In practice, the lower of the

two solutions is used, based on empirical evidence that it usually is the right choice

[Ber72, Ber82, FM84].

2.6 ECQ for Laplacian Density

The Laplacian pdf is of special interest in image compression, as most image com-

pression techniques use decompositions that produce data closely approximated by a

Laplacian density [RG83, MHY82, Tes79].

The Laplacian density is characterized by the pdf,

p(x) =

�

2

e

��jxj

; �1 < x <1:

The variance �

2

of the distribution is 2=�

2

:

We characterize the performance of several quantization strategies on the Laplacian

pdf. We assume that N; the number of quantizer levels, is not bounded. Placing a

su�ciently large bound on N does not change rate or distortion appreciably, as the

contributions made by the \tails" become negligible for large N . Moreover, the results

can be easily extended to the case when N is small.

Berger has shown in [Ber72] that a uniform quantizer with 0 as one of the decision

44

levels (a mid-riser

3

uniform quantizer) satis�es the necessary conditions for optimality

given by equations 2.2 and 2.3. For a quantizer step size of q; the decision levels for

with α = 0.1
α e

- α|x|

2

0.05

0.03

0.01

0-10 10 3020 40-20-40 -30

Figure 14: Mid-riser uniform quantizer for a Laplacian source with � = 0:1: Decision

levels are shown for q = 10:

this quantizer are d

i

= iq; for i = 0;�1;�2; : : : Figure 14 shows the Laplacian density

for � = 0:1; and shows the decision levels for q = 10: Let � denote e

��q

: Then the

reconstruction levels are given by r

i

= iq + �

�1

� q�(1� �)

�1

; for i � 0: For i < 0; r

i

are symmetrically obtained. In terms of the parameter �; the rate and distortion are

[Ber72]:

R(�) = (1� �)

�1

[�� log

2

� � (1� �) log

2

(1� �)] + 1; (2.4)

D(�) =

2

�

2

"

1� �(1� �)

�2

log

2

e

�

2

#

: (2.5)

Note that the distortion expression has been written so that the \normalized distor-

tion," D=�

2

; is apparent. We will refer to this quantizer as the MR-U-C quantizer

3

The name derives from the fact that the quantizer output versus input \staircase" plot rises at

zero.

45

(Mid-Riser, Uniform, reconstruction at Conditional mean). As the parameter � = e

��q

runs from 0 to 1; R(�) runs from 1 to1 and D(�) from 1=�

2

to 0: Since 0 is one of the

decision levels, even in the limit as � ! 0 (that is, q !1), there are two reconstruc-

tion levels, one to the right of the origin and one to the left. The rate, for symmetric

quantizers with zero as a decision level and working on symmetric pdf's, is always � 1;

(a proof can be found in [FM84]). Intuitively, in the limit there will be two symbols to

be coded with probability 0:5 for each, which has entropy 1:

Unfortunately, the MR-U-C quantizer is not always optimal for the Laplacian pdf,

even for R > 1: Figure 15 shows the rate-distortion performance of the MR-U-C quan-

tizer on a Laplacian source. All the other quantizers shown (which will be described

shortly) perform better, except at very low distortions, where all the curves coincide.

The R

L

(D) curve shown is the generalized Shannon lower bound to the theoretical

rate-distortion function, which is obtained as the R(D) curve of a Gaussian density

with equal di�erential entropy [Ber71].

When zero is one of the reconstruction levels, the quantizer is classi�ed as a \mid-

tread quantizer." For image compression applications, mid-tread quantizers are pre-

ferred over mid-riser ones, as a mid-riser quantizer quantizes even a zero input to a

non-zero output. The signal being quantized is usually the coe�cient corresponding

to some spatial frequency, and approximating a zero with a non-zero corresponds to

introducing a frequency when there isn't any, which results in visible artifacts.

The simplest mid-tread quantizer is again the uniform quantizer, with each decision

interval having a constant width, q: Figure 16 shows a uniform mid-tread quantizer with

q = 10: It is more convenient to adopt the following notation for the decision levels:

\bin n" refers to the decision interval centered at nq; for n = 0;�1;�2; : : : Endpoints

46

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1

2D/Normalized Distortion,

L
(D)R

σ

0.0

R
a
te

,
b
it
s
 p

e
r

s
a
m

p
le

3.0

2.5

2.0

1.5

1.0

0.5

MR-U-C

MT-T-M

MT-U-C

MT-U-M

0.10.01 1.0

Figure 15: Performance of di�erent quantization strategies on a Laplacian pdf.

47

are assigned to decision intervals as follows. The decision interval for bin 0 is taken to

be (�q=2; q=2): For n > 0; the decision interval is taken to be [nq� q=2; nq+ q=2); and

for n < 0; the decision interval is (nq � q=2; nq + q=2]: The quantized value of an input

x is the value n such that bin n contains x: Note that n can be calculated very simply

by rounding x=q to the nearest integer. The symbol p

n

now denotes the probability

that an input x is in bin n. Given a step size q; the reconstruction level for bin n that

-10 10 3020 40-20-40 -30

p(x)

0

MT-U-C reconstruction levelsMT-U-M reconstruction levels

(conditional means)(mid-points)

Figure 16: Mid-tread uniform quantizer for a Laplacian source. Decision levels are

shown for q = 10:

minimizes the distortion is the conditional mean given by

c

n

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0; n = 0;

nq � q=2 + �; n > 0;

nq + q=2� �; n < 0:

(2.6)

Here � = �

�1

� q�

2

(1� �

2

)

�1

; with � denoting e

��q=2

(using e

��q=2

as the parameter

simpli�es subsequent notation). We refer to this quantizer as the MT-U-C quantizer

48

(Mid-Tread, Uniform, reconstruction at Conditional mean). The MT-U-C quantizer

does not satisfy the necessary conditions for optimality. Its performance is nevertheless

better than the MR-U-C quantizer, as can be seen from its rate-distortion curve shown

in Figure 15. We have calculated the rate and distortion for the MT-U-C quantizer, in

terms of the parameter � = e

��q=2

; as:

R(�) = �

"

1� log

2

(1 + �)� log

2

�

1 + �

2

1� �

2

!#

� log

2

(1� �); (2.7)

D(�) =

2

�

2

2

4

1�

�

2

+ � log

e

(�)�

�

2

log

2

e

�

1 + �

2

1� �

2

!

2

3

5

: (2.8)

The reconstruction levels, c

n

; depend upon the parameter � of the Laplacian pdf.

A very commonly used simpli�cation is to use the mid-points of bins as reconstruction

levels, instead of the conditional means. Thus, the reconstruction level m

n

for bin n

becomes

m

n

= nq: (2.9)

In this case, the decoder does not need to know the value of �: Further, the decoder

simply needs to multiply a quantized value n by q to get the reconstruction value

m

n

= nq: We refer to this quantizer as the MT-U-M quantizer (Mid-Tread, Uniform,

reconstruction at Mid-point). Figure 16 also shows the reconstruction levels for the MT-

U-M quantizer. The MT-U-M quantizer is probably the most commonly used quantizer

in image compression, because of its simplicity. The JPEG image compression standard,

for example, uses MT-U-M quantizers. In terms of the parameter � = e

��q=2

; we have

calculated the rate and distortion for this quantizer as:

R(�) = �

"

1� log

2

(1 + �)� log

2

�

1 + �

2

1� �

2

!#

� log

2

(1� �); (2.10)

D(�) =

2

�

2

"

1

2

+

� log

e

�

(1� �

2

)

#

: (2.11)

49

The rate-distortion curve for the MT-U-M quantizer is also shown in Figure 15. At rates

greater than about 2.5 bits per sample, the performance is very close to that of the MT-

U-C quantizer. At moderate to low rates, however, the MT-U-C quantizer performs

considerably better. Note that the X-axis is normalized distortion (D=�

2

= D�

2

=2),

on a logarithmic scale. At a typical rate of 0.5 bits per sample, the MT-U-M distortion

is about twenty percent greater than the MT-U-C distortion.

In conjunction with our work on JPEG optimization (Chapter 4), we found that a

simple modi�cation to the MT-U-M quantizer improves its performance considerably.

The intuition is as follows. For a Laplacian density quantized using an MT-U-M quan-

tizer, the most probable symbol is zero, and its expected information (�p

0

log

2

p

0

) is the

dominant component of the total rate. Thus, keeping bin 0 constant, if we reduce the

widths of all other bins, the rate will not increase much, whereas the distortion might

decrease considerably. Expressed another way, the Lagrangian R+�D may be lowered

for some � if all bins n are kept constant for n 6= 0; and bin 0 is expanded (that is,

the zeroing threshold is increased from q=2). We refer to this as an MT-T-M quantizer

(Mid-Tread, Thresholding, reconstruction at Mid-point). Figure 17 illustrates the MT-

T-M quantizer. The additional parameter (apart from q; the step size) that determines

this quantizer is a positive real zeroing threshold T; with T � q=2: For an input x; if x

is in the interval (�T; T); then its quantized value is zero. For x � T; it is quantized as

in the MT-U-M case. That is, its quantized value (bin) is x=q rounded to the nearest

integer. A very useful fact is that the decoder is exactly the same as in the MT-U-M

case: a quantized value is simply multiplied by q to get the reconstruction level. Thus,

any compression technique that uses the MT-U-M quantization strategy can easily be

extended to use MT-T-M, without changing the decoder.

50

-10 10 3020 40-20-40 -30

p(x)

0

Zeroing threshold, T = 7.5

Figure 17: Mid-tread thresholding quantizer (MT-T-M) for a Laplacian source. Deci-

sion levels are shown for q = 10; T = 7:5: Reconstruction levels are at 10n; for each bin

n.

To characterize and optimize the performance of the MT-T-M quantization strategy,

we investigate the rate and distortion for a given value of q and T � q=2: Let k be the

largest positive integer such that kq� q=2 � T: The bins k and �k are the closest bins

to zero which aren't completely merged into bin zero. Let t denote T � (kq � q=2):

Then, rate and distortion can be expressed in terms of the parameters � = e

��q=2

; k;

and = e

��t

; as follows.

R(�; k;) = �(1� �

2k�1

) log

2

(1� �

2k�1

)

�(�

2k�1

� �

2k+1

)

h

(2k � 1) log

2

� + log

2

(� �

2

)� 1

i

��

2k+1

"

log

2

�

2k +

1 + �

2

1� �

2

!

+ log

2

(1� �

2

)� 1

#

; (2.12)

D(�; k;) =

2

�

2

"

1 + 2�

2k�1

log

e

�

k(1� log

e

(�

k�1

)) +

�

2

1� �

2

!#

: (2.13)

The ranges for the parameters are: 0 < � < 1; k is an integer � 1; and �

2

< � 1:

51

Unlike the quantization strategies discussed earlier, several di�erent choices of �; k;

and might result in the same rate or the same distortion. We have developed an

algorithm to choose optimal �; k, and , in the entropy-constrained optimization sense.

We present the results obtained, and defer a complete description of the optimization

algorithm to the next subsection.

Figure 15 shows the performance of the MT-T-M quantizer optimized using our

algorithm. The curve coincides almost exactly with that of the MT-U-C quantizer. At

high rates and low distortions, the curves for all the quantizers coincide, as uniform

quantizers are optimal in the limit as D ! 0 [GP68]. At moderate rates, there is a

nearly imperceptible gap between the MT-T-M and MT-U-C curves. The interesting

result is that the curves coincide exactly at low rates. Thus, the large gap between

the MT-U-M and MT-U-C curves can be avoided by using the MT-T-M quantizer,

which can use the same decoder as the MT-U-M quantizer. The gains achieved by

using conditional means seem to equal the gains achieved by using thresholding. This

suggests the possibility of further improvement, by using thresholding on the MT-U-C

quantizer. We used an optimization algorithm similar to the one described below to do

this, but the improvements were extremely minimal.

2.6.1 Optimizing the MT-T-M Quantizer for Laplacian Den-

sity

To optimize the rate-distortion performance, we investigate the Lagrangian minimiza-

tion problem for the MT-T-M quantizer.

Given a � � 0; we must choose �; k; and so as to minimize the Lagrangian

R(�; k;)+�D(�; k;): First we describe the optimization of for �xed � and k: This

52

can then be used to easily optimize all three parameters.

For a �xed value of � and k; the rate R

�;k

(); distortion D

�;k

(); and Lagrangian

L

�;k

() = R

�;k

()+�D

�;k

() are functions of determined by equations 2.12 and 2.13.

For simplifying the analysis notation, we temporarily drop the subscript �; k: To �nd

the minimum value achieved by L() = R() + �D() over (�

2

; 1]; we consider its

derivative. For dR()=d; we note that only the contributions to R() from bins �k;,

0; and k depend on :

dR()

d

=

d

d

[�p

0

log

2

p

0

� p

k

log

2

p

k

� p

�k

log

2

p

�k

]

=

d

d

[�p

0

log

2

p

0

� 2p

k

log

2

p

k

]

= �

1

log

e

2

"

(1 + log

e

p

0

)

dp

0

d

+ 2(1 + log

e

p

k

)

dp

k

d

#

:

Here p

n

is the probability of the input x falling in bin n. Thus,

dp

0

d

=

d

d

"

2

Z

T

0

�

2

e

��x

dx

#

=

d

d

h

1� e

��T

i

=

d

d

h

1� �

2k�1

i

(as T = (2k � 1)q=2 + t)

= ��

2k�1

:

Similarly,

dp

k

d

=

d

d

"

Z

(2k+1)q=2

T

�

2

e

��x

dx

#

53

=

d

d

h

(e

��T

� e

��(2k+1)q=2

)=2

i

=

d

d

h

(�

2k�1

� �

2k+1

)=2

i

= �

2k�1

=2:

Hence,

dR()

d

= �

1

log

e

2

h

(1 + log

e

p

0

)(��

2k�1

) + 2(1 + log

e

p

k

)(�

2k�1

=2)

i

= �

2k�1

log

2

p

0

p

k

:

Substituting p

0

= 1� �

2k�1

and p

k

= (�

2k�1

� �

2k+1

)=2 yields,

dR

�;k

()

d

= �

2k�1

log

2

2(1� �

2k�1

)

�

2k�1

(� �

2

)

; for �

2

< � 1: (2.14)

To �nd dD()=d; we work directly from equation 2.13.

dD()

d

=

2

�

2

d

d

"

1 + 2�

2k�1

log

e

�

k(1� log

e

(�

k�1

)) +

�

2

1� �

2

!#

=

4k�

2k�1

log

e

�

�

2

d

d

h

(1� log

e

(�

k�1

))

i

=

4k�

2k�1

log

e

�

�

2

h

1� (1 + log

e

)� log

e

�

k�1

i

:

Hence,

dD

�;k

()

d

= �

4k�

2k�1

log

e

�

�

2

log

e

(�

k�1

); for �

2

< � 1: (2.15)

Hence, the slope of the Lagrangian with respect to is:

dL()

d

=

dR()

d

+ �

dD()

d

54

= �

2k�1

"

log

2

2(1� �

2k�1

)

�

2k�1

(� �

2

)

+�

4k� log

e

�

�

2

log

e

(�

k�1

)

#

= �

2k�1

"

log

2

2(1� �

2k�1

)

�

2k�1

(� �

2

)

+ s log

2

(�

k�1

)

#

:

Here s denotes the constant �

4k� log

e

� log

e

2

�

2

: Note that s � 0: Thus, we have,

dL

�;k

()

d

= �

2k�1

log

2

2

s

�

s(k�1)

(1� �

2k�1

)

�

2k�1

(� �

2

)

; for �

2

< � 1: (2.16)

Over the interval of interest, (�

2

; 1], ��

2

> 0: Hence,

dL()

d

is negative, zero, or positive

whenever

h

2

s

�

s(k�1)

(1� �

2k�1

)

i

�

h

�

2k�1

(� �

2

)

i

is negative, zero, or positive. This

expression can be simpli�ed as:

h

2

s

�

s(k�1)

(1� �

2k�1

)

i

�

h

�

2k�1

(� �

2

)

i

= �2

s+1

�

(s+1)(k�1)+k

+ 2

s

�

s(k�1)

� �

2k�1

+ �

2k+1

= �

2k�1

h

�2

s+1

�

s(k�1)

+ 2

s

�

s(k�1)�(2k�1)

� + �

2

i

:

Let F () denote the function in brackets above. That is,

F () = �2

s+1

�

s(k�1)

+ 2

s

�

s(k�1)�(2k�1)

� + �

2

: (2.17)

Then the derivative

dL()

d

has the same sign as F () over (�

2

; 1]. We can solve the

equation F () = 0 to minimize the Lagrangian, but we �rst investigate the second

derivative, which leads to useful simpli�cations.

Since we are only interested in the sign of the second derivative of L(); we use the

notation \=

�

" to mean \has the same sign as." Thus,

dL()

d

=

�

F () means that

dL()

d

is negative, zero, or positive, whenever F () is negative, zero, or positive. Now,

d

2

L()

d

2

= �

2k�1

d

d

log

2

2

s

�

s(k�1)

(1� �

2k�1

)

�

2k�1

(� �

2

)

55

=

�

2k�1

log

e

2

d

d

h

s log

e

 + log

e

(1� �

2k�1

)� log

e

(� �

2

)

i

=

�

s

�

�

2k�1

1� �

2k�1

�

1

 � �

2

=

�

s(1� �

2k�1

)(� �

2

)� (� �

2

)�

2k�1

� (1� �

2k�1

) (as > �

2

)

= [�s�

2k�1

� �

2k�1

+ �

2k�1

]

2

+ [s+ s�

2k+1

+ �

2k+1

� 1] + [�s�

2

]

= �s�

2k�1

2

+ [s(1 + �

2k+1

)� (1� �

2k+1

)] � s�

2

:

Thus,

d

2

L()

d

2

has the same sign as the function G() over the interval (�

2

; 1]; where,

G() = �s�

2k�1

2

+ [s(1 + �

2k+1

)� (1� �

2k+1

)] � s�

2

: (2.18)

The function G() is quadratic in ; and hence the equation G() = 0 can be easily

solved. If there are no real roots, then G() never changes its sign for �1 < < 1,

and hence is always negative (as G(0) = �s�

2

is negative). If there are real roots

1

and

2

, with

1

�

2

; then G() = �s�

2k�1

(�

1

)(�

2

): Hence G() is zero at

1

and

2

; less than zero over (�1;

1

) and (

2

;1), and greater than zero over (

1

;

2

).

We know that

d

2

L()

d

2

=

�

G(); for �

2

< � 1: If G() has no real roots, or if

the intervals (�

2

; 1] and [

1

;

2

] are disjoint, then

d

2

L()

d

2

is always negative over (�

2

; 1],

and the solutions to

dL()

d

= 0 are local maxima. Thus, in this case, the Lagrangian

will either be minimized at = 1, or in the limit as ! �

2

: The case = �

2

, which

corresponds to t = q, need not be considered if higher values of k are later going to be

considered, as it coincides with = 1 when k is changed to k+1: In any case, the limiting

Lagrangian as ! �

2

is the actual value of the Lagrangian at T = (2k � 1)q=2 + q;

which can be easily computed from equations 2.12 and 2.12.

When G() has real roots and the intervals (�

2

; 1] and [

1

;

2

] are not disjoint, then

dL()

d

= 0 can have at most one root in the interval of intersection, and that root can

be the only local minima for L() over (�

2

; 1]. If the interval of intersection is [

0

1

;

0

2

];

56

then there is a root if and only if F (

0

1

) � 0 and F (

0

2

) � 0. In this case, the bisection

method can be used to solve the equation F () = 0: Note that in the case when

0

1

= �

2

;

the interval of intersection is (�

2

;

0

2

]. But the bisection method can still be used, as

the sign of lim

!�

2

dL()

d

(from the right) is the same as the sign of F (�

2

):

Thus, the following algorithm can be used to minimize the Lagrangian, for given

values of � and k:

Algorithm RangeMinLagrangian

Inputs: �; �; �; k

Outputs: ; L

begin

 1

L R

�;k

(1) + �D

�;k

(1)

L

0

 R

�;k

(�

2

) + �D

�;k

(�

2

)

if L

0

< L then

L L

0

 �

2

if (G() = 0 has no real solutions) then

return

1

 smaller root of G() = 0

2

 larger root of G() = 0

if �

2

>

1

then

1

 �

2

if 1 <

2

then

2

 1

57

if

2

<

1

then

return

if F (

1

) � 0 and F (

2

) � 0 then

r

 solution to F () = 0 over [

1

;

2

], using bisection method

L

r

 R

�;k

(

r

) + �D

�;k

(

r

)

if L

r

< L then

L L

r

r

end

Now, given � and �, the Lagrangian can be minimized successively for k = 1; 2; : : : ;

and the best value can be chosen. In practice, the Lagrangian stops decreasing after

a point, and the iteration can be terminated. Given just a value of �; the Lagrangian

can be minimized over a su�ciently large set of � values. Finally, given a target rate

or a target distortion, the bisection method can be used to �nd � such that the target

is achieved.

Having discussed symbol encoding and scalar quantization, we present overviews of

some common image compression techniques, which include the kind of decomposition

they use, along with the speci�c symbol encoding and quantization strategies. We will

conclude the chapter with a comparative evaluation of the techniques.

2.7 The JPEG Standard

The JPEG (Joint Photography Experts Group) standard [JPG] is the most commonly

used image compression technique today. JPEG uses the discrete cosine transform

58

(DCT) [ANR74] to decompose the image. Recall that image decomposition serves two

purposes: removing redundancy and exposing a relevance order. The pixels in an im-

age are usually highly correlated. For a random vector with a known auto-correlation

matrix, the Karhunen-Loeve transform (KLT) [Kar47, Loe60] is a transform that pro-

duces random vectors with uncorrelated components. Moreover, the KLT packs most

of the signal energy in a small number of components, and orders the components in

decreasing order of variance. Thus, the KLT is ideally suited for removing redundancy

as well as for relevance ordering. Unfortunately, the KLT is hard to compute, and

also requires a computation of the auto-correlation matrix. A practical transform for

the purpose of image compression should preferably be image-independent and have a

fast implementation, while maintaining the decorrelating property. The DCT performs

nearly as well as the KLT (asymptotic equivalence can be shown for certain Markov

processes [RY90]), in theory and in practice, and is independent of the image. The

DCT is computationally complex enough that its computation for the entire image is

prohibitively expensive. In practice, the DCT is applied to smaller units, or blocks, of

image data, and in that case it can be done very e�ciently, even in hardware. JPEG

uses 8� 8 blocks, and we present the DCT using that block size.

2.7.1 The Discrete Cosine Transform

The two-dimensional DCT decomposes an image block (in a single color plane) using

a �xed set of basis blocks. The basis blocks consist of cosines with di�erent spatial

frequencies. The transformed block consists of coe�cients for each basis block. For

the 8 � 8 block size, there are 64 basis blocks, indexed by (u; v), for 0 � u; v � 7:

Let an image block be denoted by f; with individual pixels identi�ed as f(i; j); for

59

0 � i; j � 7: Then the DCT coe�cients F (u; v), for the speci�c kind of DCT used in

JPEG, are computed by taking the dot product of f with the basis block for (u; v)

[PM93]:

DCT(f)(u; v) = F (u; v) =

C(u)C(v)

4

7

X

i=0

7

X

j=0

f(i; j) cos

(2i+ 1)u�

16

cos

(2j + 1)v�

16

:

(2.19)

The normalizing constants C(w) are:

C(w) =

8

>

>

<

>

>

:

1=

p

2 for w = 0

1 for w 6= 0:

The inverse DCT (IDCT) transforms a block of coe�cients back into a block of image

pixels:

IDCT(F)(i; j) = f(i; j) =

1

4

7

X

u=0

7

X

v=0

C(u)C(v)F (u; v) cos

(2i+ 1)u�

16

cos

(2j + 1)v�

16

:

(2.20)

The two-dimensional DCT is separable; it can be computed by �rst applying a one-

dimensional DCT on the rows, and then on the columns. There are many fast algo-

rithms and implementations for computing the DCT. An excellent survey can be found

in [RY90].

The coe�cient F (u; v) corresponds to the amount of the corresponding spatial fre-

quency present in the image. The coe�cient F (0; 0) is simply eight times the mean

pixel value in the block, and is referred to as the DC coe�cient. The remaining coef-

�cients are called the AC coe�cients. As u and v increase from 0 to 7; the coe�cient

F (u; v) corresponds to higher spatial frequency (that is, �ner detail). A higher value

of u corresponds to greater uctuation in the vertical direction, while a higher value of

v corresponds to greater uctuation in the horizontal direction. For example, consider

60

the image block f (taken from an actual image) whose pixel values are:

f =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

30 35 36 43 59 95 115 134

38 38 45 63 80 110 126 139

45 50 56 75 97 121 139 149

47 57 74 95 114 132 142 153

54 70 83 105 126 141 146 153

70 76 94 118 135 143 147 150

73 87 105 126 145 147 150 149

84 100 115 133 147 151 148 150

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Figure 18 shows this image block, magni�ed. The DCT coe�cients, DCT(f) are

Figure 18: The 8 � 8 image block used to illustrate the DCT. Each small square

corresponds to a single pixel in the block.

61

obtained as:

DCT(f) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

819:1 �263:2 �8:5 1:7 0:6 �4:5 0:7 �4:8

�155:8 �38:3 54:9 0:8 �4:1 2:5 3:6 �4:5

�22:1 19:2 11:4 �1:2 �3:3 �0:2 1:1 �1:0

�17:7 0:6 2:6 �0:4 �0:4 0:3 1:1 �0:3

�2:4 2:0 1:1 �5:0 �3:9 �4:1 1:6 �2:0

�4:1 �1:8 0:7 �2:6 �0:5 �0:1 �0:5 2:2

�0:7 2:9 6:1 0:7 0:2 0:2 �0:1 �0:2

�1:3 �2:4 2:8 0:8 �3:2 �3:1 �2:8 0:3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Observe that the DC coe�cient has the largest absolute magnitude, and the higher

frequency coe�cients are all nearly zero. The DCT preserves the total energy. That is,

X

i;j

f(i; j)

2

=

X

u;v

F (u; v)

2

:

Most images are fairly smooth, and hence most of the energy of the image block is

captured by the low-frequency coe�cients in the transformed block. Thus, the relevance

ordering implicitly imposed by the DCT is that the lower frequency coe�cients are

typically greater in absolute magnitude than the high frequency coe�cients. Moreover,

the human visual system is less sensitive to higher frequencies than lower frequencies

[VB67]. These two facts can be used to achieve high compression, by retaining only a

coarse approximation of the coe�cients, i.e., by quantization.

2.7.2 JPEG Quantization and Encoding

The JPEG standard does not specify any �xed color space. Usually, color images are

converted to the (Y,Cb,Cr) space, and the chrominance planes are subsampled by a

62

factor of two horizontally as well as vertically. Conceptually, further encoding of each

plane is done independently (the encoded blocks are interleaved in practice). Thus, we

can describe the JPEG compression steps in terms of a single color plane I; of width

W and height H:

The image I is �rst divided into 8� 8 non-overlapping blocks. To each block f; the

DCT is applied to get the 8 � 8 block F of DCT coe�cients. MT-U-M quantization

of each coe�cient is done. Recall that MT-U-M quantization uses a uniform step size

q; and each input is quantized by dividing it by q and rounding to the nearest integer.

Reconstruction is done in the decompression process by multiplying each quantized

value by q:

Since di�erent DCT frequencies have di�erent perceptual signi�cance, and since

lower frequencies are likely to have greater absolute magnitudes, JPEG uses di�erent

step sizes for quantizing di�erent coe�cients. An 8 � 8 table of integers, called the

quantization table Q; speci�es the quantizer step size for each coe�cient. JPEG allows

Q to have entries in the range 1 to 255:

The block of quantized DCT coe�cients, F

Q

; is given by,

F

Q

(u; v) = F (u; v)==Q(u; v);

where == represents division followed by rounding to the nearest integer. The quanti-

zation table Q is the tuning parameter for JPEG compression, and is included in the

compressed image so that the decoder can use it for dequantization. Greater values of

Q(u; v) result in poorer quality and lower rate. For the example block f given previ-

ously, the DCT coe�cients block F , when quantized by a quantization table Q with

63

all entries Q(u; v) equal to 10, results in the quantized block given by:

F

Q

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

82 �26 �1 0 0 0 0 0

�16 �4 5 0 0 0 0 0

�2 2 1 0 0 0 0 0

�2 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Observe that most of the quantized coe�cients are zero. The DCT did a good job

of exposing the relevance order by packing most of the signal energy in low-frequency

coe�cients, which are the only ones with non-zero quantized values. It is apparent that

the transformed and quantized blocks can be compressed tremendously.

There are two modes of symbol encoding allowed in JPEG: the arithmetic coding

mode and the Hu�man coding mode. The arithmetic coding mode uses the QM-coder

to code the sequence of quantized coe�cient blocks, by using a dynamic probability

model for each F

Q

(u; v) [PM93]. In practice, the arithmetic coding mode is not used

very widely, because arithmetic coding is a patented technique, and the legal issues

involved have led implementors to choose the other mode, the Hu�man coding mode,

which gives marginally higher rates.

The DCT coe�cients are largely uncorrelated, as the DCT performs similarly as the

KLT, on certain Markov processes which are fair approximations of image pixel blocks

[RY90]. As mentioned before, Hu�man coding may perform badly when symbol proba-

bilities are not negative powers of two. JPEG solves this problem by grouping together

64

runs of zeros into composite symbols, prior to Hu�man coding. This is done by listing

the quantized coe�cients in each block in a �xed \zig-zag" order, and then rewriting

this zig-zag sequence as a sequence of composite symbols of the form (run-length, next-

value). Here run-length is the number of consecutive zeros encountered before the next

non-zero value, next-value. The zig-zag ordering lists low-frequency coe�cients before

high-frequency coe�cients, thus making long runs of zero more likely. The composite

symbols are then coded using Hu�man coding. This is a slightly simpli�ed description

of JPEG symbol encoding, the exact details can be found in [PM93].

The compression steps for JPEG are summarized in Figure 19. For decompression,

{F
Q

}

Quantization Entropy codingDCT

Q

{F}

Compressed image

Image blocks {f}

Figure 19: JPEG compression steps.

these steps are simply reversed. The entropy-coded stream is decoded to exactly recover

the sequence of quantized coe�cient blocks. Each quantized block F

Q

is dequantized

to get the decompressed approximation F

0

of the original coe�cient block as:

F

0

(u; v) = F

Q

(u; v) �Q(u; v):

Finally, IDCT is applied to each F

0

to get the decompressed image blocks f

0

=

IDCT(F

0

):

65

The rate-quality tradeo� in JPEG compression is determined by the quantization

table Q: Smaller entries lead to higher quality but poorer compression. The RD-OPT

algorithm developed by us addresses the previously open problem of quality-control in

JPEG (that is, choosing the tuning parameter Q to optimize rate-quality tradeo� while

achieving any rate/quality target). RD-OPT will be described in detail in Chapter 4.

2.8 Image Compression with Wavelets

Image compression using wavelet transforms has received considerable attention, and

is likely to become standardized in the near future (the \JPEG-2000" standard is

expected to be primarily wavelet based). A wavelet (\little wave") is, roughly speaking,

an oscillating function modulated by a decaying envelope. A discrete wavelet transform

(DWT) uses scalings and translations of a \mother" wavelet as its set of basis functions.

Fine details are captured by coe�cients of smaller-scale basis functions, while global

trends are captured by coe�cients of the larger-scale ones. Several mother wavelets,

and corresponding DWT's are discussed in [ABMD92].

From an image compression perspective, it is convenient to view the DWT coe�-

cients as a hierarchical subband representation of the image. The underlying mother

wavelet de�nes two �lters, l(�) (a low-pass �lter) and h(�) (a high-pass �lter). The

DWT can be implemented on an image plane as follows. To begin the decomposition,

l(�) and h(�) are applied to each row, and the results are downsampled by 2. (The

�lters must satisfy certain conditions to ensure that this step is lossless; the reader is

referred to [ABMD92] for details.) Next, the same process is applied to the columns.

This decomposes the image into four subbands, as shown in Figure 20. The subbands

LH

1

, HL

1

, and HH

1

represent the DWT coe�cients at the �nest scale. The subband

66

LL
1

HL
1

HH
1

LH
1

(a) First stage

HH
1

HL
1

LH
1

LL
2

HL
2

LH
2

HH
2

(b) Second stage

Figure 20: First two stages of a discrete wavelet transform.

LL

1

is the original image itself, at a lower resolution (since it is obtained by applying

a low-pass �lter along both directions). The coe�cients in the subbands LH

1

, HL

1

,

and HH

1

are largely uncorrelated, and are not processed further. Each coe�cient cor-

responds to a roughly 2� 2 area of the original image, at this �nest scale. The DWT

coe�cients at the next coarser scale are obtained by applying the l(�) and h(�) �lters

to the LL

1

subband, dividing it into four more subbands. Each coe�cient at this scale

corresponds to a roughly 2�2 area of the LL

1

image, that is, a roughly 4�4 area of the

original image. This step is also illustrated in Figure 20. This process is an example

of multiresolution analysis, as, at each resolution, the subbands other than LL capture

the details at that resolution, while the LL subband represents the image at the next

coarser resolution.

For a square image whose width is 2

k

, this process can be repeated until, at the

coarsest scale, there are just four coe�cients, one each in LL

k

, LH

k

, HL

k

, and HH

k

.

In practice, image dimensions are increased by padding with rows and columns, until

both height and width are multiples of 2

k

and the multiresolution analysis is applied

67

for k stages, with k typically chosen as 5 or 6.

Note that the DWT can be easily implemented, as �lters l(�) and h(�) with fairly

small \tap" sizes (i.e., the number of inputs used to compute an output) perform very

well on images. The variations of DWT commonly used in image compression can be ex-

pressed as transformation matrices that are unitary or \almost unitary" [Sha93, SP96a].

Thus, the DWT can be assumed to preserve L

2

norms (mean-square intensities), for

all practical purposes.

The high-pass �lter in the DWT achieves the decorrelating property desired in

image-compression. In early wavelet-based techniques, the relevance ordering used for

quantization was simply, \each coarser subband has more energy and is more important

visually, for common images" (in [ABMD92], for example). DeVore et al observed that

if quantization is done by simply discarding a subset of the coe�cients, then the MSE

will be lowest by retaining the coe�cients with the largest absolute magnitude [DJL92].

Moreover, they showed that when uniform scalar quantization is used on each level of

coe�cients, the quantizer step size should be increased by a factor of two as one goes

from a level to the next �ner level, when MSE is used as the error criterion.

Shapiro observed and utilized an important structure inherent in the wavelet coef-

�cients [Sha93]. Shapiro's results constituted an important breakthrough, and led to

the development of compression techniques whose performance greatly surpassed all

other previous techniques. Shapiro's idea is based on an empirical observation, that if

a coe�cient at some coarse scale is small in absolute magnitude, then it is likely to be

small in absolute magnitude at the next �ner scale too. We can organize the coe�cients

in a tree structure, with groups of four coe�cients corresponding to a particular spatial

location and subband being the children of the coe�cient for the same spatial location

68

and subband at the next coarser scale. At the coarsest level, each LL coe�cient is the

parent of three coe�cients (one each in the LH, HL, and HH subbands)

4

. The tree

structure is illustrated for an 8� 8 image, in Figure 21. In terms of the tree structure,

Figure 21: The tree structure of wavelet coe�cients.

Shapiro's observation is that if a coe�cient c is absolutely less than some threshold T ,

then all its descendants are also likely to be absolutely less than T . If quantization is

done simply by comparing with a threshold, then the encoder can utilize this zerotree

structure by using a special symbol to indicate that a particular coe�cient is zero along

with all its descendants. The descendants do not have to be encoded separately, in

such cases. An image is compressed by using a succession of thresholds, and encoding

the zerotrees resulting from the thresholds using Hu�man or arithmetic coding. The

performance of the resulting coding technique (called the EZW technique) was com-

parable or superior to other image compression techniques, and had the nice property

that the compressed image at a particular rate was simply a pre�x of the compressed

image at any higher rate. Codes with this property are called embedded codes, and are

very useful for progressive transmission of images.

4

Thus, the structure is really a forest, except for square images whose width is a power of two.

69

Said and Pearlman extended Shapiro's technique by simplifying the zeroing thresh-

olds (they used powers of two, which correspond to a bit-planes ordering), but using

a more sophisticated technique for encoding the zerotree structure, called SPIHT (Set

Partitioning In Hierarchical Trees) [SP96a]. The SPIHT encoder has the best or nearly

the best rate-PSNR performance among all current image compression techniques.

2.8.1 Quantization and Tuning Parameters in SPIHT

SPIHT is also an embedded coding technique: the compressed image at any rate is

simply a pre�x of the compressed image at any higher rate. The quantization is implicit:

the level of reconstruction of a coe�cient depends upon the bit-planes encoded up to a

given rate. The tuning parameter is, trivially, just a rate or quality target. In case of a

rate target, the encoder simply continues its encoding process until the desired rate has

been met. For distortion-based quality metrics too, the encoder knows when to stop,

by keeping track of the current distortion and adjusting it incrementally. SPIHT was

designed to minimize distortion, or MSE. Even with fairly complicated quality metrics,

the SPIHT encoder can meet a target by periodically stopping to evaluate the quality.

The reason that SPIHT and EZW perform so well, even with such simple quanti-

zation strategies, is that the wavelet transform, together with the zerotree structure,

does an excellent job of redundancy removal and relevance ordering. In fact, the per-

formance of the SPIHT algorithm is only marginally lowered even if no entropy coding

is used [SP96a].

70

2.9 Vector Quantization

In vector quantization (VQ), vectors of signal values are quantized together. When

applied directly to image pixel intensities, image blocks are the vectors to be quantized.

Let the block size (= block-width � block-height) be denoted by n (for color images,

VQ can be applied to each plane, or composite vectors can be formed using some or all

color planes). If the pixel values are integers in the range 0 toM , then the total number

of possible vectors is (M + 1)

n

: The idea in VQ is to use a small set of representative

vectors, and code each input vector as its closest approximation in this small set. The

set of representative vectors is called a codebook. The optimal codebook, for a given

image, N , and n, is one which minimizes the distortion resulting from approximating

each image block by its closest codebook entry.

An important result from rate-distortion theory is that as n ! 1, the quantizer

output entropy approaches log

2

N , and the distortion (using optimal codebooks) ap-

proaches the theoretical rate-distortion bound for that entropy [GG92]. Thus, in theory,

with su�ciently large block size, VQ becomes so e�cient that entropy-coding is obvi-

ated. In practice, implementation complexity becomes prohibitively high very soon as

the block size is increased.

If image-speci�c codebooks are used, then the codebook needs to be transmitted

along with the compressed image. The codebook size is roughly Nn log

2

M bits, and for

large n, this overhead is substantial. A common strategy is to use a shared codebook

for large classes of similar images.

Designing good codebooks is an important issue in VQ. The most commonly used

approach is the Linde-Buzo-Gray (LBG) algorithm [LBG80], which is similar to the

Lloyd-Max algorithm for scalar quantizer design. The LBG algorithm uses a training

71

set of images to optimize the codebook. Initially, some starting codebook is used, and

the training set vectors are clustered according to their closest codebook entries. The

next, better codebook is constructed by replacing each codebook entry by the centroid of

its cluster. This process is repeated until the distortion drop falls below some threshold.

The LBG algorithm can get trapped in local optima, and it is important to use a good

starting codebook with spread-out entries.

In practice, for block sizes that are amenable to e�cient implementation, the rate-

quality performance of VQ is considerably lower than that of JPEG or wavelet-based

techniques. The primary advantage of practical VQ techniques is that decoding is

extremely fast, as it just involves table look-ups.

Encoding an image using a given codebook is also expensive, as all the entries need

to be examined in order to �nd the best match for each image block. By imposing

more structure on the codebook, the encoding time can be improved. For example,

tree-structured VQ (TSVQ) techniques use a codebook where the search for the best

match can be done by following a decision path along a tree with N leaves. Hierarchical

VQ techniques make the encoding even faster by reducing it too to a sequence of table

look-ups [CVC95]. Imposing structure on the codebook improves encoding time, but

the restrictions imply poorer rate-quality tradeo�s.

2.10 Fractal-Based Image Compression

There is a very large degree of self-similarity in nature, and hence in natural images.

A fractal image is an image in which every \piece" of the image can be obtained by

transforming some other \piece." Thus, a fractal image can be obtained by applying a

72

suitable transformation to itself. When this transformation is contractive

5

, the image is

the �xed point of the transformation, that is, the image can be obtained by repeatedly

applying the transformation to any arbitrary image [Bar93]. Figure 22 shows an ex-

ample of �xed-point convergence, using a crude fractal approximation of the 256� 256

grayscale image, Lena.

Since a tractable encoding algorithm cannot a�ord to search over arbitrary transfor-

mations on arbitrary domains and ranges within a given image, constraints have to be

placed on the kind of transformations, domains, and ranges that are allowed [Jac92].

These constraints have taken away a lot from the theoretical power of fractal com-

pression. We have shown that even for highly self-similar images, fractal compression

may perform poorly [RFT94]. Thus, even though they are computationally expensive,

typical fractal compression techniques do not perform as well as other standard image

compression schemes [JFB92]. The idea of fractal compression came from Barnsley,

and his company, Iterated Systems, makes compression software with better perfor-

mance than the published techniques, but the Iterated Systems techniques have not

been published.

The contractivity requirement is merely a technicality for enabling decompression

via convergence to the �xed point. We have investigated ways to exploit self-similarity

in images without requiring the transformations to be contractive [FPR95]. The tech-

niques developed performed well at very low bit-rates, when compared to block-based

coding schemes such as JPEG, but their computation complexity is very high, and they

are primarily of theoretical interest.

5

A function f is said to be contractive if for some distance metric d, 8x

1

; x

2

d(f(x

1

); f(x

2

)) <

d(x

1

; x

2

).

73

Starting image First iteration

Second iteration Third iteration

Fourth iteration Tenth iteration

Figure 22: Fractal decompression via convergence to �xed-point.

74

2.11 Progressive Compression

The wavelet-based compression techniques, SPIHT and EZW, are embedded coded

techniques, and are very useful for progressive transmission. Recently, embedded

compression techniques using reversible wavelet transforms have also been developed

[SP96b, ZASB95]. Reversible transforms can be implemented exactly using �xed-point

arithmetic. The compression techniques S+P-SPIHT [SP96b] and CREW [ZASB95]

are lossless if the whole compressed image is used. Even when only a pre�x of the

whole compressed image is used, the decompressed image is of comparable quality to

the best lossy compressed image at that rate. Thus, a single compressed image can be

pruned to achieve any target rate or quality. This property is very useful for realizing

the QCLIC framework.

JPEG also supports progressive compression, but the coding is not embedded. In

the progressive mode of JPEG, the DCT coe�cients can be grouped into \scans".

Scans can also progressively select bit-planes of coe�cients. A pre�x of a coded image

may only contain the �rst few coe�cients of each block and/or the most signi�cant

bit-planes of the coe�cients. The rate-quality tradeo� achieved by using a pruned

progressive JPEG image is not as good as that obtained by JPEG optimized for its

rate. Still, for the QCLIC framework, the progressive mode of JPEG is very useful, as

it allows quality-control to be implemented by storing only a few (even one) compressed

images, and pruning to achieve intermediate rates and qualities.

75

2.12 A Comparison of Various Image Compression

Techniques

We conclude this chapter by listing and comparing the main features of the compression

techniques discussed. Fractal compression scores high only on mathematical elegance,

and is omitted from this comparison.

Rate-quality tradeo�. State-of-the-art wavelet-based techniques perform the best,

for nearly all quality metrics. At moderate to high bit rates, there isn't much

di�erence subjectively between JPEG and wavelet-based techniques, but at low

rates, the subjective quality is better with wavelets. Quality with VQ is substan-

tially lower than both JPEG and wavelets.

Complexity. Fast software as well as hardware implementations are available or pos-

sible for DCT and DWT, forward and inverse. In case of the DWT, sophisticated

implementations that do not require image-sized memory bu�ers are also pos-

sible [ZASB95]. Entropy coding can be simpli�ed for implementation with a

slight degradation in rate. The decoding complexity is lowest for VQ. Encoding

complexity is lowest for hierarchical VQ.

Error tolerance. If the compressed image is to be transmitted over a noisy channel,

susceptibility to channel errors is an important issue. In block based compression

techniques such as JPEG and VQ, the e�ect of a single bit error will typically be

restricted to a single block. For wavelet-based techniques, a single bit error can

manifest itself over the entire image.

76

Random access. To access a small area of the image from compressed JPEG data,

the compressed data must be parsed to locate the corresponding blocks. Still, the

JPEG syntax localizes blocks corresponding to a small area to some extent. When

random-access is very important, indices can be built to quickly locate blocks. In

case of SPIHT, EZW, and CREW, even the various bits of the coe�cients corre-

sponding to a small area are scattered all over the compressed data. For achieving

random access with wavelet-based techniques, the sophisticated restructuring as-

sociated with bit-plane ordering and zerotrees needs to be sacri�ced. With VQ,

random access (up to block granularity) is trivial. In general, random access can

be more easily implemented when �xed-length codewords are used for entropy

coding.

Decoding at multiple resolutions. The wavelet transform naturally decomposes an

image into various resolutions. As with random access, the problem is that be-

cause of the sophisticated organization techniques, extracting the coe�cients only

up to a target resolution is complicated. However, the situation is not too bad,

as the zerotree structure gives information about �ner resolutions in the coarser-

resolution part of the compressed data. This means that when extracting the im-

age up to a particular resolution, some \unnecessary" information about higher

resolutions will also be extracted. The only complication is that arising from sep-

aration of bit-planes (or threshold signi�cance, for EZW), which can be alleviated

by building a small index. In case of JPEG, the DC coe�cients of the blocks give

a low-resolution image (downsampling by 8 in both directions). For extracting

just this low-resolution image, the compressed data needs to be parsed, but the

inverse DCT need not be applied, as the DC coe�cient is the mean of the 8� 8

77

block (scaled by a constant). With progressive JPEG, the DC coe�cients are

always constrained to be in a single scan all by themselves, and their extraction

is cheaper. If other resolutions are also needed, then they must be separately

created and compressed, for JPEG. The JPEG syntax does allow this multires-

olution representation, in the so-called hierarchical mode. With VQ, multiple

resolutions need multiple codebooks, which can be incremental.

Progressive transmission. Wavelet-based techniques support progressive transmis-

sion naturally. With JPEG, it can be done in the progressive mode, but the

rate-quality performance of intermediate points (i.e., pre�xes) is not the best

that can be achieved at their rates. With VQ, a sequence of codebooks with a

tree structure can be used. Such a tree can be e�ciently designed by starting with

a codebook of size 2, and repeatedly \splitting" each codebook entry [LBG80].

Compatibility. Currently, JPEG is the only image compression standard. A JPEG-

based �le format, called FlashPix, is evolving as an internet standard (information

about FlashPix can be found at the Kodak web-site, www.kodak.com). A wavelet-

based JPEG standard is expected around the year 2000. Applications that choose

non-standard compression methods are likely to have limited compatibility across

platforms and users.

Sensitivity to image type. The DCT and DWT work fairly well across all kinds of

images. For VQ, if the image is signi�cantly di�erent from those in the training

set used for codebook generation, quality may be poor.

78

Chapter 3

The QCLIC Framework

This chapter describes the QCLIC framework for image compression in detail. We

�rst describe the general structure of information associated with an image in the

QCLIC framework. This is followed by a discussion of the enabling technologies needed

for speci�c compression techniques, to generate the structure needed for the QCLIC

framework. The QCLICS algorithm for achieving the QCLICS functionality for sets

of QCLIC-Images is described. Finally a few test-bed implementations, a production-

mode image compressor, an image browser, and an image server, are described.

3.1 The Structure of a QCLIC-Image

We �rst present the QCLIC framework from a conceptual point of view, to de�ne

its elements formally. A compression method C is a speci�c compression algorithm,

along with an implied decompression algorithm D

C

. A QCLIC-Image, I, consists of

the following pieces of derived information. For each compression method, C, and each

quality metric, Q, QC-Crv(C;Q) is the optimal rate-quality curve for I; using C and

Q: The curve QC-Crv(C;Q) is made up of a discrete number of points. The curve has

a minimum rate point and a maximum rate point. The separation between successive

points is 1=WH bpp on the rate axis, where W and H are the width and height of the

image (if a particular rate is not achievable exactly, we can pad the previous lower-rate

79

compressed image with zeros). Each point on this curve, denoted by QC-Pt(C;Q; R;Q),

has an associated value � of the tuning parameter, such that C(I; �) has rate R (possibly

after padding) and quality Q. Each point is optimal, that is, there is no �

0

with the

rate of C(I; �

0

) no more than R but the quality of C(I; �

0

) greater than Q.

If we look at just a pre�x of the compressed image, with S (� RWH) bits, then

that corresponds to a rate R

0

= S=WH (� R) bpp. Assume for a moment that

this pre�x can also be decompressed, with quality Q

0

. Then, associated with each

point QC-Pt(C;Q; R;Q); there is another \internal" rate-quality curve, denoted by

QC-Pt-Crv(C;Q; R;Q), made up of rate-quality points QC-Pt-Pt(C;Q; R;Q;R

0

; Q

0

),

with 0 � R

0

� R (in steps of 1=WH bpp). Figure 23 shows these elements which

constitute a QCLIC-Image object.

When the decompression algorithm D

C

supports progressive decoding, QC-Pt-Crv

and QC-Pt-Pt are well-de�ned. Even if that is not the case, in practice, we can always

stop the decompression algorithm before it has processed the entire compressed data

stream, even if that implies that no information at all has been received about some

pixels. To be rigorous, we de�ne the quality of a pre�x � of C(I; �) as follows. Let l

�

be

the least number of bits such that there is a binary string � of length l

�

such that ��

can be decoded by the decompression algorithm D

C

as a W �H image with the same

number of color planes and same pixel-value range as I. Clearly, at least one such �

exists, as � can always be extended to form C(I; �). Call such a string � a minimal

valid su�x of �. Then the quality of � is de�ned as the quality of ��

�

, where �

�

is

the lexicographically smallest minimal valid su�x. Observe that if the decompression

algorithm does support progressive decoding, then the de�nition is consistent, as the

empty string is a minimal valid su�x.

80

QCLIC-Image (I)

C (I, θ)Prefix of with rate R’

C (I, θ)θ, ,

Compression method:

Quality metric: Q

C

CQ, R, Q),QC-Pt-Crv(

C Q,)QC-Crv(

C,QC-Pt(Q, R, Q)

Q, R, Q, R’, Q’)C,QC-Pt-Pt(

Q

R

Original Image

Q’

R’

Figure 23: Structured elements of a QCLIC-Image.

81

A realization of the QCLIC framework, for an image I, compression method C, and

quality metric Q, is a way to approximate the elements of the QCLIC-Image structure

for I, C, and Q, using suitable enabling technology. We can now de�ne the semantics

of the methods QCLIC-GetCurve and QCLIC-Compress, introduced in Chapter 1.

3.1.1 The QCLIC-Image Methods

For a QCLIC-Image I; the result of QCLIC-GetCurve(Q; C; curve-constraints) is de-

rived from the realization of the curve QC-Crv(Q; C) using the constraints speci�ed in

curve-constraints. The parameter curve-constraints can specify any or all of:

1. Minimum and maximum rate, R

l

; R

h

. The returned curve should be for the rate

range [R

l

; R

h

]. Defaults are the minimum and maximum rates achieved by C on

I.

2. Minimum and maximum quality, Q

l

; Q

h

. The returned curve should be for

the quality range [Q

l

; Q

h

]. Defaults are the minimum and maximum qualities

achieved by C on I. When both rate and quality extrema are speci�ed, the re-

quested range is that common to both. Also, the range thus speci�ed will be

clipped if it extends beyond that actually achievable.

3. Number of curve points, N

P

. Default is the maximum possible number of points

(which depends on how the QCLIC framework is realized).

4. Rate tolerances, �

�

R

; �

+

R

. These specify acceptable errors in the reported rates.

If a rate is reported as R, but actually achieved as R

A

, then these constraints

enforce the condition, R

A

� �

�

R

� R � R

A

+ �

+

R

. This is useful, as realizations

of the QCLIC framework may often store estimates of rate and quality for a

82

large number of points. Defaults are 1, which simply allow the method to use

the available estimates without bothering to verify their accuracy (which might

require actual compression).

5. Quality tolerances, �

�

Q

; �

+

Q

. These are tolerances for quality, similar to the rate

tolerances describe above. Defaults are 1.

We will use the convention of denoting complex objects such as curve-constraints by

listing the values of �elds inside square brackets (for example, [R

l

= 0; R

h

= 1:0; N

P

=

10]).

The minimum and maximum rates and qualities restrict the curve to a range of

rates, [R

1

; R

2

], which is divided nearly equally (the rate at each point has to be a

multiple of 1=WH) into the number of points speci�ed, N

P

. QCLIC-GetCurve returns

a sequence of rate-quality pairs, one for each point. For simplifying the implementation

of QCLIC-Compress, QCLIC-GetCurve also returns a \point-identi�er," id

i

, for each

rate-quality point returned. The point-identi�er is unique for each rate-quality point

possible in the QCLIC realization for I; C, and Q. (id

i

can be used as a \handle" for

subsequent compression using QCLIC-Compress.) Thus, QCLIC-GetCurve returns a

sequence of the form f(R

i

; Q

i

; id

i

) j i = 0; : : : ; N

P

� 1g.

The method QCLIC-Compress(Q; C; target; compression-constraints) returns I com-

pressed using method C, according to the restrictions imposed by the parameters target

and compression-constraints. The parameter target can be one of the following:

Rate target, R

T

, or, Quality target, Q

T

, or, Point-identi�er, id

T

.

In case of a rate target, R

T

, the rate of the compressed image should be no more

than R

T

(within a tolerance possibly speci�ed in compression-constraints). In case of a

83

quality target, Q

T

, the quality of the compressed image should be at least Q

T

(within

a possible tolerance). A point-identi�er target, id

T

, is simply a handle previously

returned by QCLIC-GetCurve or QCLIC-Compress.

The constraints speci�ed in the parameter compression-constraints can be any or

all of:

1. Starting bit o�set, B

s

, specifying an \internal piece". This speci�es that the

whole compressed image need not be returned; only the piece beginning at bit

o�set B

s

should be returned. This, along with the next parameter, is useful for

incremental retrieval. Default is 0. Note that a bit o�set is simply another way

of expressing rate, but it is free of oating-point imprecision.

2. Ending internal piece rate, R

0

e

, or bit o�set, B

e

, or quality, Q

0

e

. This speci�es

where the returned piece of the compressed image should be terminated. Defaults

are the values corresponding to the whole compressed image. When an ending

quality, Q

0

e

is speci�ed, tolerances �

�

Q

0

e

and �

+

Q

0

e

can also be speci�ed (default 1).

Note that the rates and qualities used for these piece-specifying parameters are

simply the rates and qualities on the internal curve, QC-Pt-Crv.

3. Rate tolerances, �

�

R

; �

+

R

. These de�ne an acceptable level of error in meeting a

rate target. Defaults are 1.

4. Quality tolerances, �

�

Q

; �

+

Q

. These de�ne an acceptable level of error in meeting a

quality target. Defaults are 1.

Along with the compressed image (C(I)), QCLIC-Compress also returns its exact

rate (R), quality (Q), point-identi�er (id), and the starting and ending bit-o�sets

84

(B

s

; B

e

). Thus, the returned value from QCLIC-Compress can be represented as

(C(I); R;Q; id; B

s

; B

e

).

3.1.2 An Illustrative Example

Consider a simple, two-step image browser that uses some progressive compression

method C. Suppose that a quality value Q (in some metric Q) corresponds to visually

lossless quality, but the browser only retrieves a piece with a low quality Q

B

�rst, and

retrieves the whole compressed image only if the low quality pre�x looks interesting to

the user. Using QCLIC methods, the browser can be expressed as:

(�

1

; R;Q; id; B

s1

; B

e1

) I:QCLIC-Compress (C;Q; [Q

T

= Q]; [Q

0

e

= Q

B

])

Decompress and show the image I

1

= D

C

(�

1

)

if (I

1

looks interesting to user) then

(�

2

; R;Q; id; B

s2

; B

e2

) I:QCLIC-Compress (C;Q; [id

T

= id]; [B

s

= B

e1

+ 1])

Decompress and show the image I

2

= D

C

(�

1

�

2

)

Note that the point-identi�er (id) returned by the �rst call is given as the target to the

second call. Also, the bit after the ending bit o�set returned by the �rst call (B

e1

) is

used as the starting bit o�set for the second call.

3.2 Compression Methods and Enabling Technolo-

gies

To realize the QCLIC framework for a given compression method C and quality metric

Q, we need fairly e�cient tuning parameter selection. There are several issues that an

enabling technology must address for this, and the complexity of the techniques used

85

is constrained by the schedule of realization. When the QCLIC framework is realized

\o�-line," complex techniques can be adopted, but if the realization has to be \on-the-

y," then the simplest approaches may have to be used. For example, if images are to

be archived and made available to remote users, the QCLIC framework can be realized

nearly optimally by pre-computing and storing all the necessary information. On the

other hand, a digital camera must use its limited storage space and time to do the best

it can, every time a new picture is shot. There are three broad concerns for an enabling

technology: mapping between quality and tuning parameters, mapping between rate

and tuning parameters, and optimization of rate-quality tradeo�.

For complex quality metrics (such as PQS), the mapping between tuning parameters

and quality can be obtained only by going through the compression-decompression

process and evaluating the quality. For distortion-based quality metrics, the exact

mapping, or a close approximation, can often be predicted more easily.

The mapping between rate and tuning parameters is easily obtained when �xed-

length codes are used, or (trivially) when rate itself is a tuning parameter (such as in

embedded codes). Otherwise a rate-model may be used as an approximation.

Optimization of the rate-quality tradeo� also varies in complexity. If both rate and

quality (for the metric being used) can be easily computed directly from the tuning

parameters, in the absence of other techniques, a \best-gradient" search strategy may

be reasonable. For complex quality metrics, instead of optimizing the metric directly,

it might be more e�cient to optimize a simpler metric and simply re-calibrate the

resulting quality values. For better performance, the simpler quality metric can be

designed to have good correlation with the complex metric. For example, for using

PQS with any orthonormal transform-based coding method, distortion can be weighted

86

in the transform domain, with the weights calculated to maximize the correlation with

PQS.

Optimization is trivial when the compression method itself is such that all possible

tuning parameters are completely ordered in terms of quality. For example, in SPIHT

compression, there is no parameter choice to be made other than a \stopping rate," and

for any (reasonable!) quality metric, quality will always increase as the stopping rate

is pushed higher. Even for the JPEG compression technique, we can use compression

methods that produce JPEG images using only a restricted number of ordered possi-

bilities for the quantization tables. Thus, even when the optimization problem is hard

for a method, it can be made easier by restricting the parameter set. Of course, the

resulting solutions will be suboptimal in terms of the original, unrestricted method.

3.2.1 JPEG Image Compression

The RD-OPT algorithm (to be described in Chapter 4) developed by us is an e�cient

enabling technology for JPEG and other DCT-based compression methods for a number

of quality metrics. RD-OPT produces an image-speci�c rate-quality curve that is nearly

optimal, and maps it to the tuning parameters needed. Further, RD-OPT also produces

an internal rate-quality curve for each point. The rates given by RD-OPT are fairly

good estimates that are computed using a rate model. The qualities given by RD-

OPT are very accurate. The time taken to run RD-OPT is about two seconds, for

typical images and settings. Moreover, the complexity of RD-OPT can be �ne-tuned

to meet application constraints, while scaling down rate-quality performance fairly.

We now describe some possibilities for using RD-OPT as an enabling technology to

realize the QCLIC framework, di�erentiating using the time when RD-OPT is applied.

87

\O�-line" and \on-the-y" refer to the time when RD-OPT is used in relation to the

times when the QCLIC methods, QCLIC-GetCurve and QCLIC-Compress are used.

The distinction is not very strict, as the �rst call to a QCLIC method might invoke

RD-OPT on-the-y, with the QCLIC structure created being used again for later calls.

O�-line RD-OPT

For applications such as image archives, RD-OPT can be run o�-line to generate a

sequence of nearly optimal tuning parameters spanning the entire rate range possible.

For each point, the JPEG compressed image and the exact rate and quality values can

be precomputed and stored, along with the exact internal curves. If the original image

can be retained, and fast compression is available (in hardware, for example), just the

tuning parameters and the exact values of rates and qualities may be retained. When

storage space is scarce, RD-OPT can be used to generate a single nearly optimal, high-

quality compressed image, and its internal rate-quality curve can be used to prune it

to meet any smaller rate/quality target. If progressive JPEG is used, pruning is trivial.

Otherwise, pruning involves parsing, removing some coe�cient bits, and re-packing

(which is substantially cheaper than re-compressing). This can result in rather poor

qualities at low rates. If more than one compressed image can be stored, the quality

at low rates can be improved: a target can be met by pruning the closest compressed

image with better rate/quality.

RD-OPT On-the-y

If the application does not require rate targets to be met extremely accurately, RD-

OPT can be run whenever a QCLIC-Compress call is made. If the tuning parameter

88

returned by RD-OPT does not meet the target within the speci�ed tolerances, then

the bisection method can be used to meet the target accurately, by repeatedly asking

RD-OPT to give tuning parameters for corrected targets and re-compressing. Note

that RD-OPT is run only once, and after it is done with its computations, it can be

repeatedly requested to give tuning parameters for arbitrary targets.

3.2.2 Wavelet-Based Image Compression

Most state-of-the-art wavelet methods have excellent performance, even with the re-

stricted, implied quantization used for embedded coding. To realize the QCLIC frame-

work, it is only necessary to compress an image once, up to the maximum possible

rate, while recording the rates and qualities at intermediate points. This curve, along

with either or both of the compressed image and the original image, can be stored to

e�ciently implement both QCLIC-GetCurve and QCLIC-Compress. With reversible

methods such as CREW [ZASB95] and S+P-SPIHT [SP96b], the compressed image at

maximum rate itself is lossless. Note that the internal curve for any point is the same

as the \external" rate-quality curve up to that point.

If wavelet-based compression methods are to be used when features such as random-

access and error tolerance are important, the sophisticated structures used by the em-

bedded methods must be abandoned. In such cases, rate-quality performance can be

improved by using a conventional, JPEG-like quantization strategy. RD-OPT can al-

ways be modi�ed to do e�cient quality control whenever a decorrelating orthonormal

transform is followed by quantization.

89

3.2.3 Vector Quantization

The tuning parameter, in case of VQ, is the codebook. The most commonly used

techniques use only a �xed, quality-ordered set of codebooks (such as a set of codebooks

of increasing size with identical vector dimension), with structural restrictions on the

codebooks for fast encoding (such as TSVQ), and �xed-length codes. In this case, the

optimization problem is trivial. With �xed-length codes, each codebook has a �xed

rate. The quality for each codebook can be evaluated o�-line to generate and store the

rate-quality curve. A rate-target in QCLIC-Compress can always be met on-the-y.

When a quality-target needs to be met on-the-y, the bisection method can be used

to �nd the appropriate codebook. Instead of evaluating the quality by actually �nding

the closest codebook entry for each block (which is the same as encoding, in terms of

complexity), estimates of quality can be used for each codebook. One way to do that

is to calibrate each codebook in terms of the average quality it produces on images

grouped into various classes. Then, the quality of an image using a codebook can be

estimated as the quality of the class the image is in.

In practice, VQ methods are not very widely used, as the other, transform-based

techniques (such as with DCT or DWT), perform much better. When VQ is used,

it is usually with a restricted set of codebooks (as mentioned above), designed using

a training set of images similar to the ones actually used in the application. In this

case, the average quality achieved by a codebook on the training set is a good quality

estimate. For the general case, when there is a number of possible codebooks for each

rate, more research is needed. For example, techniques to e�ciently classify images

with respect to a set of codebooks can be developed, to restrict the search range as well

as to evaluate quality more e�ciently.

90

3.3 QCLICS: Sets of QCLIC-Images

In this section, we address the problem of quality-controlled compression of sets of

QCLIC-Images. Images may be grouped together into sets for many possible reasons.

For example, a set of arbitrary images to be put on a single CD-ROM, the results of

a query in an image database, the contents of a web document, etc. In addition to

optimizing compression-quality tradeo�s for individual images in a set, it is important

to allocate rate-quality quotas optimally to the individual images out of a �xed total

chunk. An example application that illustrates this is multimedia CD-ROM production,

where the goal would be to �nd, for instance, the best way to pack a set of 1000 images

in the available disk space of 20 Megabytes. Several constraints, such as limits on

worst acceptable individual image quality or size, may also be placed. For example, a

multimedia archive delivering images across a network may be asked to provide Quality-

of-Service guarantees, such as transmitting a certain number of images per second across

a certain bandwidth. This would translate to limits on maximum rate for individual

images.

3.3.1 Illustration of Rate-Quality Tradeo� Across Images

Consider two images, I

1

and I

2

, with three rate-quality points for each image, denoted

by f(R

0

; Q

0

i

); (R;Q

i

); (R

00

; Q

00

i

) j i = 1; 2g, as shown in Figure 24. Let the rates R

0

,

R, and R

00

be such that R = (R

0

+ R

00

)=2. If we are to compress these two images

such that the average rate is equal to R, the straightforward way would be to use

the points (R;Q

1

) and (R;Q

2

). This would give an average quality of (Q

1

+Q

2

)=2. If

both images have identical rate-quality curves, this average quality cannot be improved

while keeping the rate equal to R, as the slope of the rate-quality curve typically

91

Q’
1

Q
1

Q’’
2

Q’’
1

Q
2

Q’
2

R’ R R’’

Rate

Q
u

a
lit

y

Figure 24: Rate-quality tradeo� across two images.

decreases as rate increases. However, if the slope for one image beyond R is greater

than the slope of the other before R, then the average quality can be improved. In the

example shown, compressing I

2

at rate R

0

reduces its quality to Q

0

2

, but this reduction

is more than o�set by compressing I

1

at (R

00

; Q

00

1

); thereby giving an average quality

(Q

00

1

+ Q

0

2

)=2 > (Q

1

+ Q

2

)=2. Note that this is a desirable exchange of quality, as the

image with greater slope is probably harder to compress (it is farther away from its

leveling-o� stage in the rate-quality curve). In general, the improvements obtained by

optimizing rate-quality tradeo�s across images are greater for image sets containing

widely di�erent images.

3.3.2 Measuring Rate and Quality For Image Sets

In this section, we �x some notation and address the issue of measuring compression

and quality for image sets. We assume that the quality metric Q

S

for the image set is

92

built as an aggregate using an underlying quality metric Q for the individual images.

Further, the individual images themselves are QCLIC-Image objects. Without loss

of generality, we assume that a single compression method is to be used for all the

images in the set. If di�erent compression methods are to be used, the QCLIC-Image

methods QCLIC-GetCurve and QCLIC-Compress will use the appropriate method for

each image, and our simpli�cation is only notational.

Let I = fI

1

; I

2

; : : : ; I

N

g be a set of N QCLIC-Images, with P

i

being the total

number of pixels in the i

th

image. Let S

i

(R

i

) denote the size (rate) and Q

i

the quality

of the compressed images.

We can measure compression for the set I in two ways, averaging either the rates

or the sizes. These two will be di�erent if the number of pixels in di�erent images

is di�erent. Averaging rate assigns equal importance to each pixel in each image,

while averaging size assigns equal importance to each image, irrespective of its number

of pixels. Assuming that the set I is not a collection of images grouped together

arbitrarily, it should be possible to determine which average to use. Usually, averaging

size is appropriate, as all images are equally important. In certain special situations,

such as when the set I shows the same scene at many di�erent resolutions, average

rate should be used. In general, the rate R of the compressed set I is given by

R =

N

X

i=1

r

i

;

where r

i

= R

i

w

r

i

; w

r

i

is a non-negative weight assigned to the i

th

image. We will use

average size for our examples, for which,

w

r

i

= P

i

=P;

where P =

P

N

j=1

P

j

: In this case, the total size of the compressed set I is RP bits. We

allow constraints in the form of bounds on r

i

, along with a target value for R =

P

r

i

.

93

Another possibility for measuring compression is to take the maximum of all R

i

(or

S

i

). Keeping this maximum under a target while maximizing quality, however, reduces

simply to choosing equal rates (or sizes) for all images.

Quality of a compressed set of images can also be measured by averaging the indi-

vidual qualities. Again, di�erent weights may be assigned to di�erent images.

Q =

N

X

i=1

q

i

;

where q

i

= Q

i

w

q

i

; w

q

i

being a non-negative weight assigned to the i

th

image. For

our examples, we use the simple average, in which case, w

q

i

= 1=N: In fact, for the

dynamic programming solution to the rate-quality optimization problem for sets, which

we present in this section, aggregate quality can be any general \composing function"

of the form

g

N

(Q

N

; g

N�1

(Q

N�1

; : : : ; g

2

(Q

2

; g

1

(Q

1

)) : : :)):

We allow constraints to be placed on the qualities of individual images too.

Here too, the minimum quality can be used as the measure of quality of the set,

but keeping this minimum above a given target while maximizing compression reduces

to choosing equal qualities for all images.

3.3.3 Rate-Quality Optimization for Sets of Images

Given a set I of N QCLIC-Images, non-negative weights w

r

i

and w

q

i

, quality constraints

q

L

i

; q

H

i

; and rate constraints r

L

i

; r

H

i

; the optimization problem can be phrased in two

ways.

1. Given a target rate R

�

, compress the image set I such that R � R

�

and Q is

maximized.

94

2. Given a target quality Q

�

, compress the image set I such that Q � Q

�

and R is

minimized.

In both cases, the individual compression rates (r

i

= R

i

w

r

i

) and qualities (q

i

= Q

i

w

q

i

)

must satisfy the constraints:

1. r

L

i

� r

i

� r

H

i

; and

2. q

L

i

� q

i

� q

H

i

; for each i = 1; : : : ; N:

Using e�cient methods to solve this problem, the methods QCLICS-GetCurve and

QCLICS-Compress (introduced in Chapter 1), can be easily implemented, using strate-

gies similar to those described for single images in the previous section. The parameters

curve-constraints and compression-constraints are similar to those for single QCLIC-

Images, with added constraints r

L

i

; r

H

i

; q

L

i

; q

H

i

. The parameter compression-constraints

can also specify interleaving constraints for the resulting compressed images. Similar

to the single image case, point-identi�ers can be provided by QCLICS-GetCurve (or

QCLICS-Compress, when the compressed image set is incrementally retrieved), and

used as a \handle" by QCLICS-Compress. We simply present the QCLICS algorithm,

which solves the rate-quality optimization problem for sets as formulated here; the

rigorous de�nitions of QCLICS-GetCurve and QCLICS-Compress are omitted.

3.3.4 The QCLICS Algorithm

The QCLICS algorithm has three steps:

1. QCLIC-GetCurve for each image.

2. Dynamic programming to combine the curves.

95

3. Compression using QCLIC-Compress.

We use QCLIC-GetCurve to get a set of constraint-satisfying rate-quality points for each

image, and then use a dynamic programming approach to combine these. This results

in the selection of compression parameters for each image, such that the rate/quality

objective is met, and the rate-quality tradeo� is nearly optimal. Finally, the images

are compressed according to their selected parameters. We now present each of these

steps in detail.

The QCLIC-GetCurve Step

The task of this step is to get a piece of the optimal (or nearly optimal) rate-quality

curve for each image, such that each point on the curve satis�es the constraints for that

image. Let n be a user-supplied positive integer, denoting the granularity which each

curve is to be examined. Then the QCLIC-Image method,

I

i

:QCLIC-GetCurve(C;Q;

[N

P

= n;R

l

= r

L

i

=w

r

i

; R

h

= r

H

i

=w

r

i

; Q

l

= q

L

i

=w

q

i

; Q

h

= q

H

i

=w

q

i

]);

returns n rate-quality points (which we scale using the QCLICS weights) and point-

identi�ers, f(r

j

i

; q

j

i

; id

j

i

) j j = 1; : : : ; ng, such that the constraints

r

L

i

� r

j

i

� r

H

i

; and, q

L

i

� q

j

i

� q

H

i

are satis�ed at each point, and the rates r

j

i

are spread uniformly over the range enforced

by the constraints. Higher values of n result in �ner granularity of the search space,

but increase the time complexity of the dynamic programming step.

96

The dynamic programming step

Discretize each r

j

i

as �

j

i

= RoundO�(r

j

i

� B); where B is a large integer. Let �

M

be the

discretized maximum total rate for I: If a target rate R

�

for I has been speci�ed then

�

M

= RoundO�(R

�

� B); while if a target quality has been speci�ed then �

M

=

P

N

i=1

�

n

i

:

Let BestQ be a table with N rows and �

M

columns. The entries in BestQ have

the following interpretation: BestQ(i; �) is the highest sum of qualities for images I

1

through I

i

such that the sum of their discretized rates is exactly �: Initialize BestQ to

be �1 everywhere.

The table BestQ is easily �lled, starting from row 1, and marching down the rows,

using the information about the i

th

image and the values in the (i� 1)

th

row to �ll

the i

th

row:

BestQ(i; �) = max

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

q

j

i

+ BestQ(i� 1; �

0

)

�

�

�

�

�

�

�

�

�

�

�

�

1 � j � n

�

0

� 0

�

0

+ �

j

i

= �

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

:

The choice of j made for each BestQ(i; �) is recorded in the N � �

M

array Choice:

1. Initialize each BestQ(i; �) to �1:

2. Initialize row 1:

for j := 1 to n

if q

j

1

> BestQ(1; �

j

1

) then

BestQ(1; �

j

1

) := q

j

1

Choice(1; �

j

1

) := j

3. Fill remaining rows:

for i := 2 to N

for j := 1 to n

97

for �

0

:= 1 to �

M

� �

j

i

if q

j

i

+ BestQ(i� 1; �

0

) > BestQ(i; �

j

i

+ �

0

) then

BestQ(i; �

j

i

+ �

0

) := q

j

i

+ BestQ(i� 1; �

0

)

Choice(i; �

j

i

+ �

0

) := j

Now, if a target rate R

�

has been speci�ed, �nd the highest value of � such that

� � RoundO�(R

�

� B) and BestQ(N; �) > �1: If a target quality Q

�

has been speci-

�ed, then �nd the least � such that BestQ(N; �) � Q

�

: From this starting point in the

N

th

row, the choice j

�

i

for each image i can be recovered as follows:

for i := N down to 1

j

�

i

:= Choice(i; �)

� := �� �

j

�

i

i

Note that after the dynamic programming step, any target rate/quality is readily ob-

tained for the given constraints. Thus, the QCLICS-GetCurve method can also be

realized using the QCLICS algorithm.

The compression step

Compress each image at the selected rate-quality point. This is done by simply using

the method:

I

i

:QCLIC-Compress(C;Q; [id

T

= id

j

�

i

i

]; []):

If the compression-constraints parameter passed to the QCLICS method speci�ed inter-

leaving and/or incremental retrieval, use appropriate constraints for individual images

in the calls to QCLIC-Compress and interleave the results as desired.

98

3.3.5 Performance

We present performance results for four sets of images, compressed using JPEG to

optimize average PSNR. These sets are:

1. Brain: 11 grayscale images of cat's brains.

2. Cell: 31 grayscale images of a cell.

3. Crystal: 14 grayscale images of various crystals.

4. Venus: 17 grayscale images of Venus.

A sample image from each set is shown in Figure 25. For each set, we ran QCLICS

with several constraints and objectives. Average sizes were used for rate (that is, each

w

r

i

= P

i

=P), and simple averaging was done for quality (that is, each w

q

i

= 1=N).

When a target rate R

�

was speci�ed, each R

i

was constrained to be in the range

(R

�

� �

r

; R

�

+ �

r

); and when a target quality Q

�

was speci�ed, each Q

i

was constrained

to be in the range (Q

�

� �

q

; Q

�

+ �

q

); for various values of �

r

and �

q

: The number of

rate-quality points used per image (n) was 50, and the discretization constant B was

5000. RD-OPT was used on-the-y for each image to realize the QCLIC-GetCurve

and QCLIC-Compress calls, and the rates predicted by RD-OPT were corrected by

compressing the image once at a median rate and observing the error.

Table 1 shows the performance of QCLICS when R

�

was speci�ed, and Table 2

shows the performance of QCLICS when Q

�

was speci�ed.

Table 3 shows the average running time per image for each step of QCLICS for

each image set, on a 200 MHz Pentium running Solaris 2.5. The time spent in the

dynamic programming step of QCLICS is linear in n and B and N . As the number

99

(a) Brain (b) Cell

(c) Crystal (d) Venus

Figure 25: Sample images used for testing QCLICS.

100

Name R

�

�

r

Predicted R Actual R Predicted Q Actual Q

(bpp) (bpp) (bpp) (bpp) (dB) (dB)

Brain 1.20 0.30 1.20 1.21 29.6 29.6

Cell 0.75 0.25 0.75 0.75 49.8 49.2

Crystal 1.50 0.50 1.50 1.42 35.7 35.8

Venus 0.75 0.25 0.75 0.74 58.0 59.3

Table 1: QCLICS performance with target R

�

.

Name Q

�

�

q

Predicted R Actual R Predicted Q Actual Q

(dB) (dB) (bpp) (bpp) (dB) (dB)

Brain 37.0 04.0 1.79 1.86 33.0 33.0

Cell 50.0 04.0 0.83 0.79 50.0 49.4

Crystal 35.0 10.0 1.08 1.02 35.0 35.0

Venus 55.0 05.0 0.33 0.38 55.0 55.5

Table 2: QCLICS performance with target Q

�

.

Name QCLIC-GetCurve Dynamic programming QCLIC-Compress Total

Brain 2.1 0.2 1.7 4.0

Cell 0.6 0.2 0.7 1.5

Crystal 1.7 0.2 1.8 3.7

Venus 0.7 0.1 0.6 1.4

Table 3: QCLICS average running time per image in seconds.

101

of images N in the set grows, B must be increased too, otherwise the rates will be

discretized too coarsely. Thus the QCLICS algorithm as presented here does not scale

very well. However, instead of using dynamic programming, we can use Lagrangian

minimization. With Lagrangian minimization, the time taken to \process" each image

will be independent of the number of images (unlike the dynamic programming case

where it depends upon B which must be increased with N). The disadvantage with the

Lagrangian technique is that if the rate-quality curves are produced by interpolating

the quality over a very limited number of points (as would be done by typical QCLIC

realizations), the intermediate points will never be considered.

3.4 Implementation and Evaluation

We have implemented the QCLIC framework for several test-bed applications. In most

cases, we have used JPEG compression, with RD-OPT as the enabling technology.

The design choices to be made depend upon response time and media constraints,

compression method, and quality metrics.

3.4.1 Rate-Quality Curve Based Interactive Compression

This is a simple GUI to enable users to do JPEG compression at any quality or rate,

interactively. The user selects an image, and is presented with the rate-quality curve

(any of the distortion-based metrics can be used in the current implementation) gen-

erated using RD-OPT. Users can click on any part of the curve to compress the image

at that rate/quality and see the results or save them in a �le. The knee-normalization

described in Chapter 2 (PSNR/N) can also be done. This is in contrast to standard

interfaces (such as that provided by the Independent JPEG Group's widely used JPEG

102

software library) for JPEG compression which require the user to input the tuning

parameters directly, rather than choose a rate/quality target.

This compression tool can also be used in production mode, non-interactively. If

a large number of images are to be routinely compressed in a pipeline, then this tool

(using RD-OPT for JPEG) can be used to ensure that good choices of tuning parameters

are made, and that rate/quality targets are closely met. When compression is done

without human interaction, it is important to use a quality target using a metric that

is uniform across images. We have found it useful to use PSNR/N in such cases, for

example, obliviously compressing each new image to a PSNR/N of 1.2. This is very

useful in production mode compression using any other technique (such as SPIHT),

even when tuning parameters can be easily selected, to automatically select a good

level of quality.

3.4.2 QclicBrowse: An Image Browser With Quality Control

QclicBrowse is an image browser that uses the QCLIC framework to retrieve images

e�ciently over networks. For each image, the QCLIC structure is generated o�-line, and

stored at the server. Browsing can be done at any minimum quality (using a number

of quality metrics), or minimum rate. The images can be incrementally retrieved while

browsing, with the user interactively clicking on a rate-quality curve. Figure 26 shows a

snapshot of QclicBrowse at work, browsing a large set of images of cells. The GUI was

written in Tcl/Tk, while the underlying server code, and the incremental image-display

code, is in C running on various UNIX platforms. The user can also retrieve sets of

images with quality-control, and animate sequences of images with quality-control. A

stack of \interesting" images can be set aside, for detailed viewing. For each image, the

103

original, lossless image is also available for retrieval. At the server end, all the QCLIC

information is stored in a simple format that we have developed, which is also used by

other systems that we have built. This format has also been successfully stored and

used for providing quality-controlled image data in the ZOO experiment management

system [ILGP96] being developed in the UW-Madison Computer Sciences Department.

3.4.3 TASVIR: an Image Server

TASVIR (Transform, Arrange, Scale and View Incremental Rasters) is an image server

whose main task is to allow applications to display images e�ciently, without worrying

about format conversions and display intricacies. The implementation is in C, and

the image display is done using the X library on UNIX platforms. Clients request

TASVIR to display an arbitrary image in an arbitrary rectangle of any X window.

The image source could be a �le, or a process, or a remote web site (speci�ed as a

URL). TASVIR retrieves the image and displays it, doing sophisticated color mapping

to optimally use the available color palette. TASVIR understands the QCLIC format,

and can do quality control for QCLIC images. Even when the QCLIC information is

not available, TASVIR can build approximations on-the-y to do quality-control. The

current implementation supports JPEG, progressive JPEG, and SPIHT (for grayscale

images only) compression formats, as well as a number of uncompressed image formats

(PNM, TIFF, GIF, etc.). TASVIR can also save images in various formats (including

PostScript), and perform simple image processing operations such as brightness and

contrast control. TASVIR is used as a component in the DEVise (Data Exploration and

Visualization) [LRB

+

97] tool being developed in the UW-Madison Computer Sciences

104

Figure 26: QclicBrowse snapshot.

105

Department. DEVise allows users to e�ciently visualize data, and when some data

�elds are images, DEVise uses TASVIR for displaying them. Several sophisticated

\visual queries" are supported by DEVise, the results of which could require large

sets of images to be dynamically displayed. TASVIR can use the QCLIC framework

to apportion rate/quality among the images to quickly display the entire set, and

then add details to the images later. For every single image displayed by DEVise, a

TASVIR \control panel" can be invoked, which can be used to perform quality-control,

image manipulation, and format interchange. Figure 27 shows a snapshot of DEVise

visualization of Mars imagery data using TASVIR, with the control panel for one of

the images.

106

Figure 27: DEVise snapshot showing Tasvir controls.

107

Chapter 4

RD-OPT: QCLIC for JPEG

As seen in Chapter 2, the tuning parameter in JPEG and other DCT-based image

compression techniques is the quantization table. The extent of compression achieved

depends upon the coarseness of quantization of the transform coe�cients. The mapping

between a quantization table and the resulting rate-quality point is image-speci�c and

fairly complex, and there were no techniques to e�ciently solve the problem of choosing

an optimal quantization table to closely meet a speci�ed rate or quality target. RD-

OPT addresses this problem, and is the key enabling technology for using the QCLIC

framework with JPEG-compressed images.

4.1 Previous Work

Several approaches have been tried in order to select and optimize quantization tables

for particular rate/quality speci�cations. Each quantization table entry can be any

integer between 1 and 255. Thus, the size of the search-space is 255

64

; and exhaustive

searching is clearly out of the question.

The simplest and most commonly used approach is to use a default table and scale

it up or down by a scalar multiplier. The multiplier is varied, and at each point, the

image is compressed to evaluate the rate and then decompressed to evaluate the quality.

108

This process is repeated until the desired target is met. This is very ine�cient. More-

over, we have shown in [RL94] that this might give rather poor rate-quality tradeo�s.

Other approaches include psycho-visual model based quantization [AP92, Wat93], and

stochastic optimization techniques [MS93]. In each of these, a particular quantization

table is evaluated by going through the entire compression-decompression cycle. The

search space is navigated using some heuristic. The best results (with PSNR as quality

metric) achieved using such searching algorithms have been reported by Wu and Gersho

[WG93], by using a search strategy that is equivalent to moving in the direction that

minimizes the Lagrangian, R + �D:

Ramachandran and Crouse extended the work in [WG93] to search for an optimal

zeroing strategy, along with a quantization table [CR95]. Zeroing strategy refers to

adaptively setting some nonzero-quantized coe�cients to zero, in order to improve the

rate-distortion tradeo�. The results obtained in [CR95] are the best known JPEG

compression results, with PSNR as quality metric.

The major drawback of the search strategy in [WG93] and [CR95] is its computa-

tional complexity. For each quantization table (and zeroing strategy) tried, the entire

compression-decompression cycle is used as a \black box" (except for the forward DCT,

which need not be repeated every time). Moreover, the whole search process results

in a single quantization table, corresponding to the value of � in the Lagrangian. If a

single target is to be achieved, the bisection method needs to be used to search for a �

that will meet the target. For getting the rate-quality curve over a wide span of rates,

� must be swept through a wide range of values.

The RD-OPT algorithm [RL95, RL96] proposed by us overcomes these shortcom-

ings, while achieving equally good rate-quality tradeo�s. If only the quantization table

109

is searched for, the performance coincides with that of the algorithm in [WG93] for

all the test images used in that work. RD-OPT can also optimize a restricted zeroing

strategy, and the performance is only very slightly lower than that reported in [CR95].

4.2 Overview

RD-OPT is an algorithm to e�ciently optimize rate-quality tradeo�s and achieve

rate/quality targets for JPEG, in an image-speci�c way. That is, RD-OPT can be

used for e�cient quality-control for JPEG, in the QCLIC framework. RD-OPT can

work with any of the distortion-based quality metrics described in Section 2.2, and with

several other quality metrics. For example, RD-OPT can also be used with the quality

evaluations used by Watson in [Wat93], which were based on extensive psycho-visual

experiments done to evaluate the visibility of the 64 DCT basis functions. We will

present RD-OPT in terms of distortion, and then describe extensions for other quality

metrics.

The main idea in RD-OPT is to evaluate quantization tables more e�ciently, rather

than using the entire JPEG compression-decompression cycle. The DCT is a linear

orthonormal transform [RY90]. Hence the distortion can be measured in the DCT

coe�cients themselves, as follows. For an image block f; let the DCT coe�cients block

be F = DCT(f): If F

0

is an approximation of F; such as that produced by quantizing

and dequantizing, and f

0

= IDCT(F

0

) is the corresponding approximation of f; then

DCT(F

0

) = f

0

: From the linearity of DCT, it follows that,

DCT(f � f

0

) = DCT(f)� DCT(f

0

)

= F � F

0

:

110

Since DCT is an orthonormal transform,

7

X

i=0

7

X

j=0

(f � f

0

)(i; j)

2

=

7

X

u=0

7

X

v=0

(F � F

0

)(u; v)

2

; that is,

7

X

i=0

7

X

j=0

(f(i; j)� f

0

(i; j))

2

=

7

X

u=0

7

X

v=0

(F (u; v)� F

0

(u; v))

2

:

Thus, the distortion can be calculated by adding distortions in the 64 DCT coef-

�cients. We use a simple rate model to decompose the total rate into a sum over the

64 coe�cients. Recall that the DCT has a strong decorrelating property for typical

images. We approximate the rate by adding together the measured entropies of the

64 quantized DCT coe�cients. If the coe�cients were statistically independent, this

sum would be the entropy of the quantized coe�cient blocks, and would be a lower

bound to the rate achievable with either of Hu�man coding or arithmetic coding. In

practice, the coe�cients are not entirely independent, and the entropy of the blocks is

lower than that calculated as a coe�cient-wise sum. However, the actual rate resulting

from any real implementation of arithmetic coding or Hu�man coding is slightly greater

than the entropy lower bound (more so in the case of Hu�man coding). This di�erence

compensates for the fact that our entropy calculation results in an over-estimate. We

conducted extensive experiments with several images and the results indicated that the

coe�cient-wise sum of measured entropies of the quantized coe�cients is a very good

estimate of the rate for JPEG [RFVK94]. Moreover, the performance of RD-OPT,

which has been used by us and by a very large number of other users and researchers,

has con�rmed the accuracy of the rate model. Of course, there are instances when the

rate model deviates from the actual rate by more than the allowed tolerance. We will

describe corrective measures used for the QCLIC framework, for such cases.

By using coe�cient-wise sums of entropies and distortions, we can avoid doing the

111

symbol encoding at each step to evaluate the performance of a quantization table. RD-

OPT uses a novel technique to calculate rate and entropy, using histograms of DCT

coe�cient statistics, thereby avoiding quantization/dequantization at each step too.

The statistics are measured once, and then used to build rate and distortion tables

that can be used to e�ciently calculate the performance of any quantization table.

Further, the decomposition of rate and distortion into coe�cient-wise sums allows the

individual components (for each of the 64 coe�cients) to be optimized separately, thus

avoiding the search through a space of exponentially large size.

4.3 Thresholding

The distribution of each AC DCT coe�cient of an image is approximately Laplacian

[RG83]. We showed in Section 2.6 that the MT-U-M quantization strategy used in

JPEG can be enhanced considerably by adaptively optimizing the zeroing threshold

(the MT-T-M strategy) for each coe�cient. This does not change the decoder at all|a

quantized coe�cient is still dequantized by multiplying by the corresponding quanti-

zation table entry. The RD-OPT algorithm can optimize thresholding along with the

quantization tables. We refer to this as global thresholding, as the zeroing threshold for

a particular DCT coe�cient is the same irrespective of the block it belongs to. The

zeroing strategy used in [CR95] decides on a per-coe�cient basis whether it is advanta-

geous to set it to zero, and we refer to it as local thresholding. Our results indicate that

the gains obtained by local thresholding are only marginally better than those obtained

by global thresholding, while the computational complexity of optimizing global thresh-

olding with RD-OPT is substantially lower than that of optimizing local thresholding,

especially for large images.

112

The gain in rate-distortion performance resulting from thresholding can be of two

kinds. For each coe�cient, there is the gain obtained because the entropy is lowered

considerably while the distortion is only marginally increased. This is the type of gain

we discussed and analyzed in Section 2.6. We refer to this as Type-I gain.

When Hu�man coding is used on runs of zeros, as in the JPEG Hu�man coding

mode, thresholding can also improve rate-distortion performance in another way. If a

sequence of quantized coe�cients (in the zig-zag scan order) contains only one or two

isolated non-zeros, it might be useful to zero o� those coe�cients to achieve a larger

run of zeros, as it might reduce the Hu�man coding rate more than enough to o�set

the increase in distortion. In most cases, the reduction in actual rate would be modeled

well by the reduction in measured entropy for the coe�cient(s) that are set to zero, and

the gain would be included in Type-I. However, in some blocks, because of the residual

correlation among coe�cients, the gain might be signi�cantly greater, and we classify

this type of gain as Type-II. The object of this nomenclature is to understand the slight

improvement in rate-distortion performance resulting from optimal local thresholding

over optimal global thresholding. Local thresholding can examine neighboring coe�-

cients for each coe�cient in the image, and hence can take into account Type-II gains

too, which global thresholding cannot.

When global thresholding is used, the compression process needs two tuning pa-

rameters: the quantization table and the threshold table. A threshold table T is an

8� 8 table of positive real numbers. Let == denote division followed by rounding to the

nearest integer. De�ne,

x===(q; t) =

8

>

>

<

>

>

:

0 if jxj < t

x==q otherwise:

113

Then, coe�cient quantization with a quantization table Q and a threshold table T is

given by:

F

Q;T

(u; v) = F (u; v)=== (Q(u; v); T (u; v)) :

The table T need not be included with the compressed image, as the decompressor does

not need to know the thresholds.

4.4 RD-OPT Details

We consider a single image plane I �rst. For a quantization table Q and threshold ta-

ble T , let D(Q; T) and R(Q; T) represent the distortion and modeled rate (the sum of

measured entropies of quantized coe�cients), respectively, resulting from JPEG com-

pression of I using Q and T . For simplifying notation, we refer to individual DCT

coe�cients in a block by numbering them in raster order. F (u; v) is referred to as F [n];

where n = 8u+v: Thus, F [0] is the DC coe�cient, and F [63] is the last AC coe�cient.

Let D

n

(q; t); the contribution to total distortion from coe�cient number n, be de�ned

as:

D

n

(q; t) =

1

64

Mean

n

(F [n]� (F [n]===(q; t)) � q)

2

o

; (4.1)

where the mean is taken over all the DCT blocks. Similarly, de�ne R

n

(q; t), the rate

contribution as,

R

n

(q; t) =

1

64

Entropyf(F [n]===(q; t))g; (4.2)

where the entropy is measured over all the DCT blocks

1

. Thus,

D(Q; T) =

63

X

n=0

D

n

(Q[n]; T [n]) ; (4.3)

1

If (F [n]===(q; t)) takes the value v in a fraction p

v

> 0 of all blocks, then this entropy is

�

P

v

p

v

log

2

p

v

:

114

R(Q; T) =

63

X

n=0

R

n

(Q[n]; T [n]) : (4.4)

Given the image I; the rate-distortion optimization problem (under our rate model)

is to �nd Q and T such that the rate R(Q; T) � R

�

, and D(Q; T) is minimized, for a

given rate budget R

�

.

RD-OPT uses histograms of DCT coe�cient distributions to simplify the calcula-

tions of the coe�cient-wise components D

n

(q; t) and R

n

(q; t). It then �nds Q and T

by minimizing the sum

P

n

D

n

(�; �) against the sum

P

n

R

n

(�; �) using either dynamic

programming or Lagrangian minimization.

4.4.1 Gathering Histograms

Equations 4.1 and 4.2 can be used to calculate D

n

(q; t) and R

n

(q; t) for any q and t, by

actually quantizing/dequantizing each block's n

th

coe�cient, F [n]; and calculating the

distortion and the counts of various quantized values. However, we can do this much

more e�ciently (albeit with a slight loss in accuracy ofD

n

(q; t) values), using histograms

of DCT coe�cient distributions. We split the range of values of coe�cients into buckets

of width 0:5; and measure occurrence counts for each bucket. For i = 1; 2; : : : ; let c

n

(i)

be the number of blocks f for which F [n] 2 [0:5(i � 1); 0:5i): For i = �1;�2; : : : ; let

c

n

(i) be the number of blocks f for which F [n] 2 (0:5i; 0:5(i + 1)]; except that for

i = �1, the bucket is (�0:5; 0) rather than (�0:5; 0]; to avoid counting zero twice. If

�

i

is the midpoint of bucket i, and l

i

is the endpoint closer to zero for bucket i, then

for any F [n] in the i

th

bucket,

jF [n]� �

i

j � 0:25;

F [n]==q = l

i

==q:

115

Thus, each coe�cient value in a bucket can be approximated within �0:25, and is

quantized identically by any q. Since we are interested in optimizing thresholds T [n]

too, we note that

F [n]===(q; t) = l

i

==(q; t); (4.5)

as long as t is a multiple of 0:5:

4.4.2 Building Rate and Distortion Tables

Let Q

m

and Q

M

be quantization tables that respectively represent the minimum and

maximum values possible for each quantization table entry. That is, Q

m

[n] � Q[n] �

Q

M

[n]: Further, we constrain the threshold table entries to vary in steps of 0:5; from

Q[n]=2 to (Q[n] + T

M

[n])=2: Here Q

m

; Q

M

; and T

M

are user-supplied tables of integers

that determine the operating range of RD-OPT. Note that Q

M

[n] need only be at most

b2v + 1c ; where v is the maximum absolute value of the n

th

coe�cient in the image.

Using the histograms calculated earlier, RD-OPT builds tables of D

n

(q; t) and

R

n

(q; t); for each (q; t) in the above range. Given q and t; (with t being a multiple

of 0.5), the distortion D

n

(q; t) is calculated as follows:

D

n

(q; t) := 0

for each bucket i with c

n

(i) > 0

D

n

(q; t) := D

n

(q; t) + c

n

(i)(�

i

� q � (l

i

===(q; t)))

2

divide D

n

(q; t) by the total number of pixels

Similarly, the rate R

n

(q; t) is calculated by using the non-zero bucket counts to

calculate the frequency of occurrence of each quantized value, and then calculating

the entropy and dividing it by 64. Note that only a few incremental calculations are

needed to calculate the table entries for (q; t + 0:5) from those for (q; t); as increasing

116

the threshold from t to t + 0:5 a�ects the quantization of only 2 buckets. The details

are omitted here for simplicity.

4.4.3 Optimizing R(Q; T) against D(Q; T)

We have used both dynamic programming and Lagrangian minimization to minimize

R(Q; T) and D(Q; T): With dynamic programming, there is a loss in accuracy result-

ing from discretization of rates to form table indices. Also, dynamic programming

is much slower in practice than Lagrangian minimization, unless a very coarse dis-

cretization is used. It would be more advantageous to use dynamic programming if the

(R

n

(�; �); D

n

(�; �)) points were sparse, as Lagrangian minimization can only pick points

on the convex hull of the set of these points. In practice, these points are dense enough,

and the Lagrangian minimization approach is more e�cient. We only describe the La-

grangian minimization approach here. Details on the dynamic programming approach

for RD-OPT can be found in [RL95, RL96].

Lagrangian Minimization

The rate-distortion optimization problem is equivalent to that of minimizing the La-

grangian R(Q; T) + �D(Q; T); in the sense that solutions to the latter for any non-

negative � are solutions to the former for some rate budget R

�

.

Using equations 4.3 and 4.4, the Lagrangian minimization problem reduces to min-

imizing

63

X

n=0

R

n

(Q[n]; T [n]) + �D

n

(Q[n]; T [n]) ;

for Q

m

[n] � Q[n] � Q

M

[n] (in steps of 1) and Q[n]=2 � T [n] � (Q[n] + T

M

[n])=2

(in steps of 0.5). For each coe�cient, We obtain a subset of the operating points by

117

sorting, such that R

n

(�; �) is strictly decreasing, and D

n

(�; �) is strictly increasing. This

removes some of the points (q; t) from consideration. We then use the Graham scan

algorithm [Gra72] to get the (lower half of) convex hull of the (R

n

(�; �); D

n

(�; �)) points.

This is done by ensuring that as we move down the R-D curve, we only make left turns.

We also remove the points where no turn is made, that is, whose slope is the same with

respect to both neighbors. Figure 28 illustrates the resulting set of operating points.

Let the values (q; t) that give these h

n

remaining points on the hull be represented by

v

v

f

f

f

f

f

f

f

f

f f

f

v

v

v

v

f

f

E

E

E

E

E

E

B

B

B

B

B

B

e

e

e

H

H

H

H

H

H

H

H

h

h

h

h

h

h

h

h

h

h

h

D

n

(q; t)

R

n

(q; t)

�

n

(1)

�

n

(2)

�

n

(3)

�

n

(h

n

� 1)

Figure 28: The convex hull of R-D points that is retained by RD-OPT for Lagrangian

minimization.

(q

n

(1); t

n

(1)) through (q

n

(h

n

); t

n

(h

n

)) : De�ne the slopes of the R-D curve for the n

th

coe�cient at these h

n

points as:

�

n

(k) =

R

n

(q

n

(k); t

n

(k))�R

n

(q

n

(k + 1); t

n

(k + 1))

D

n

(q

n

(k + 1); t

n

(k + 1))�D

n

(q

n

(k); t

n

(k))

;

118

for k = 1; 2; : : : ; h

n

� 1; and set �

n

(h

n

) = 0: It follows that

�

n

(k) > �

n

(k + 1); for k = 1; 2; : : : ; h

n

� 1:

Further, for any given � � 0; the Lagrangian,

R

n

(q; t) + �D

n

(q; t)

is minimized with (q; t) = (q

n

(k); t

n

(k)) ; where k is the least index for which � � �

n

(k):

Thus, for any given � � 0; we can use 64 binary searches to e�ciently �nd Q

and T in the operating range such that R(Q; T) + �D(Q; T) =

P

63

0

R

n

(Q[n]; T [n]) +

�D

n

(Q[n]; T [n]) is minimized. This solves the rate-distortion minimization problem

for R

�

= R(Q; T): If we are given a target rate R

�

(or distortion D

�

) we can use the

bisection method to e�ciently search for a � that would match the target up to any

desired tolerance.

For color images, combined histograms are gathered for each set of planes that are to

use the same quantization and threshold table. For example, the Y, Cb, and Cr planes

can use 3 di�erent (Q; T), or the Cb and Cr planes can be quantized identically, using

a single (Q; T): In any case, for each plane or set of planes to be quantized together,

a (Q; T) is found by RD-OPT by using the same �; to optimize the sum of rates over

the planes against the sum of distortions over the planes.

4.5 Performance

For compression of 8-bit images using baseline JPEG, the pixel values are in the range

[0::255] and the quantization table entries are in the range [1::255]: We present the

performance of RD-OPT using compression results for three images. These are the

119

well-known grayscale images Lena, Baboon, and Peppers. We show the PSNR-rate

curves for JPEG compression of these images using RD-OPT generated quantization

and threshold tables in Figures 29, 30, and 31. Also shown are the PSNR-rate plots for

these images compressed using the \default" table used by most JPEG compressors (the

example table in the standard [PM93]) scaled by di�erent values. In addition, the plots

also show the performance of RD-OPT without thresholding, i.e., just quantization

table optimization. The rates shown in these plots are the actual rates resulting from

JPEG compression with Hu�man coding, and not entropy estimates. For each image,

20

22

24

26

28

30

32

34

36

38

40

42

0 0.25 0.5 0.75 1 1.25 1.5

P
S

N
R

 (
d
B

)

Rate (bpp)

(Q,T)-optimization
Q-optimization

Default

Figure 29: Performance of RD-OPT with and without thresholding, for Lena.

RD-OPT with thresholding results in PSNR gains of up to 2 dB, compared to the

scaled default table. The PSNR values achieved by RD-OPT are nearly as good as

those obtained by the best wavelet encoders. Algazi and Estes have evaluated the

improvements achieved by RD-OPT using the PQS metric [AE97]. At moderately-low

to moderately-high bit rates, RD-OPT improves the PQS right up to the level achieved

120

16

18

20

22

24

26

28

30

0 0.25 0.5 0.75 1 1.25 1.5

P
S

N
R

 (
d
B

)

Rate (bpp)

(Q,T)-optimization
Q-optimization

Default

Figure 30: Performance of RD-OPT with and without thresholding, for Baboon.

by the best wavelet encoders. At high bit rates, RD-OPT manages to improve the

PQS by about half the gap between the wavelet encoder and JPEG with scaled default

tables.

Figure 32 shows the quantization and thresholding tables obtained by RD-OPT for

Lena at about 1.0 bit per pixel (bpp). Note that with thresholding, the quantization

table entries are more uniform across coe�cients. Since all coe�cients are equally

important for distortion (in the sense that the i

th

bit of the �rst coe�cient has as

much weight as the i

th

bit of the 50

th

), every coe�cient should be reconstructed with

nearly the same accuracy (from purely a distortion perspective). However, it is more

advantageous to quantize higher frequencies coarsely as it would reduce the rate much

more than coarse quantization of lower frequencies would. This is reected in the

quantization table obtained by RD-OPT without thresholding. With thresholding, the

rate reduction is obtained via thresholding, and hence the quantization table entries

121

22

24

26

28

30

32

34

36

38

40

0 0.25 0.5 0.75 1 1.25 1.5

P
S

N
R

 (
d
B

)

Rate (bpp)

(Q,T)-optimization
Q-optimization

Default

Figure 31: Performance of RD-OPT with and without thresholding, for Peppers.

for higher frequencies are comparable to those for lower frequencies.

4.5.1 Thresholding Gains

The performance curves show that substantial improvements in rate-distortion per-

formance can be achieved with the use of global thresholding as used by RD-OPT,

compared to only quantization table optimization. From the rate-distortion curves for

MT-U-M and MT-T-M quantization strategies on Laplacian density (shown in Fig-

ure 15), one can see that the di�erence between the logarithms of distortion is about

0.1 in the range 0.25{1.25 bits per sample. If all the quantized coe�cients were encoded

in this rate range, the PSNR improvement achieved by thresholding should be about

1 dB (over the no-thresholding case). Because of the energy compaction done by the

DCT, the rates for di�erent coe�cients vary, and only a few of the coe�cients are in the

0.25{1.25 range where thresholding gains are maximum. For example, when the overall

122

Optimized Q (38.8 dB)

9 9 9 9 13 13 13 13

9 9 13 9 13 13 13 13

9 13 13 13 13 13 13 13

13 13 13 13 13 13 17 17

13 13 13 13 13 13 17 21

13 13 13 13 17 21 21 21

17 21 17 17 17 30 26 25

25 29 25 31 29 31 25 21

Optimized Q=T (39.3 dB)

9/5.0 9/5.0 9/5.5 10/6.0 10/6.5 10/6.5 9/6.5 10/7.0

9/5.0 9/5.5 10/7.0 9/6.0 10/7.0 10/6.5 11/7.5 10/7.5

10/6.0 10/6.5 10/6.5 10/6.5 10/7.5 9/7.0 11/7.5 10/8.0

10/6.5 10/6.5 10/6.5 11/7.0 10/7.0 10/7.0 11/8.0 10/7.5

10/7.0 10/7.0 11/7.0 10/7.0 10/7.0 12/8.0 11/8.0 10/8.0

10/7.0 10/7.5 12/8.0 11/7.5 11/8.5 11/8.5 10/8.0 6/9.0

11/8.0 10/8.5 11/8.0 10/8.0 10/8.5 11/8.5 11/9.0 11/9.5

10/8.5 11/9.0 11/9.0 11/9.0 11/9.0 11/9.5 5/9.5 1/10.5

Figure 32: Optimized quantization table and quantization/threshold table for Lena at

1.0 bpp.

rate is 1.0 bpp for Lena, the DC coe�cient is coded at about 6 bits per coe�cient,

whereas the highest frequency coe�cient is coded at about 0.003 bits per coe�cient.

In fact, for images with a high level of detail (such as Baboon), the variances (and

hence rates) are more uniform over the 64 coe�cients, and hence thresholding gains

are greater.

To compare the performance improvement resulting from global thresholding with

that from local thresholding, we present a comparison between RD-OPT results and the

published results in [CR95], for the Lena image, in Table 4. We also show the results

with scaled \default" quantization tables, and with just quantization table optimiza-

tion, so that the improvements from local and global thresholding can be compared.

123

The numbers show that the additional gains a�orded by local thresholding are small,

Rate \Default" No Thresh Global Thresh Local Thresh

(bpp) (RD-OPT) (RD-OPT) (Ramachandran+Crouse)

0.25 31.5 31.83 32.15 32.3

0.50 34.8 35.41 35.77 35.9

0.75 36.6 37.46 37.87 38.1

1.00 37.8 38.86 39.35 39.6

Table 4: Comparison of PSNR's for local and global thresholding at various rates for

Lena.

compared to the gains resulting from global thresholding. In fact they could be even

smaller than the numbers shown here|we used the actual compressed Lena image (at

1.0 bpp) obtained from the authors of [CR95], and calculated the PSNR. It turned out

to be 39.47 dB, instead of 39.6 dB, and the di�erence is probably due to variations

in the original image itself (many incarnations of Lena exist) and minor di�erences

resulting from oating point calculation discrepancies. This con�rms that most of the

gains of thresholding are of Type-I. Further, RD-OPT o�ers the additional advantage

over the local thresholding algorithm of [CR95] in that it jointly optimizes over the

entire range of operating points. That is, after one execution, RD-OPT is ready to pro-

duce quantization and thresholding tables for all rate and distortion values, whereas

search methods like those in [CR95] and [WG93] have to be re-run for each new value

of rate/distortion.

4.5.2 Complexity

The running time of RD-OPT can be split into three main activities: computing the

DCT and building histograms, �lling the prediction tables, and, computing the slopes

�

n

(k). The time taken to do the DCT and gather coe�cient histograms is the only

124

component that depends upon the dimensions of the image. Building the prediction

tables and doing the Lagrangian optimization require time roughly linear in the size of

the operating range. The complexity of generating the 64 convex hulls is O(K logK);

whereK is the number of operating points. In practice, the overall time is dominated by

the time taken to compute the rate and distortion prediction tables from the histograms,

which is linear in K.

Thus, the running time grows nearly linearly with the size of the operating range

determined by Q

m

; Q

M

; and T

M

: We achieve further reduction in running time by

searching coarsely. That is, instead of examining each possible quantizer value between

Q

m

[n] and Q

M

[n], we can skip over some values. Our implementation of RD-OPT uses

a parameter called \coarseness" which determines how coarsely the span of quantizer

values is examined. It is useful to examine smaller values more �nely than larger values,

and we have built that into the coarseness parameter. Table 5 shows the quantizer

ranges for each value of coarseness in our implementation (the numbers in brackets

indicate the step size for a particular subrange). Figure 33 shows the running time

Coarseness # Values

0 255 1-255 (1)

1 128 1-16 (1), 18-238 (2), 255

2 100 1-16 (1), 18-112 (2), 116-252 (4), 255

3 53 2-32 (2), 36-96 (4), 104-248 (8), 255

4 37 2-16 (2), 20-48 (4), 56-176 (8), 192-240 (16), 255

5 28 2-16 (2), 20-40 (4), 48-88 (8), 104-152 (16), 184-248 (32), 255

6 19 2-16 (2), 20-40 (4), 64, 96, 128, 176, 255

7 14 2-10 (2), 14, 18, 22, 30, 38, 46, 96, 128, 255

8 8 2, 6, 10, 14, 18, 32, 128, 255

Table 5: Number and values of quantizers at each coarseness.

for our implementation of RD-OPT running on a 200 MHz Pentium running Solaris

125

2.5, as a function of the coarseness, for the Lena image. The threshold range t in the

plots is the number of zeroing thresholds examined for each quantization table entry

(t = 0 corresponds to no thresholding). For the coarsest search (coarseness = 8) and

0

2

4

6

8

10

12

14

16

18

8 37 53 100 128 255

T
im

e
 (

s
e
c
o
n
d
s
)

Number of quantizers tried

t=0
t=5

t=10
t=20
t=40
t=60

t=100

Figure 33: RD-OPT running time as a function of coarseness of search, at various levels

of threshold range t.

no thresholding, the running time is 0.6 seconds. The running time increases very

slowly as the number t of thresholds tried increases. This is because of the incremental

computation of rate and distortion tables from one threshold to the next. Thus, even

with t = 20, the running time is within about one second of the time for t = 0;

at each value of coarseness. We evaluate the improvements in rate-PSNR curves as

coarseness is reduced using a �xed threshold range, t = 20: Figure 34 shows the rate-

PSNR curves for Lena, obtained using t = 20 at various coarseness settings. The curve

points out the utility of using thresholding. With thresholding, RD-OPT can a�ord to

search for quantization table entries at a very coarse level, without losing anything in

126

24

26

28

30

32

34

36

38

40

42

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
S

N
R

 (
d
B

)

Rate (bpp)

Coarseness 0
Coarseness 1
Coarseness 2
Coarseness 3
Coarseness 4
Coarseness 5
Coarseness 6
Coarseness 7
Coarseness 8

Figure 34: Rate-PSNR plots at various levels of coarseness, with t = 20:

the rate-PSNR tradeo�, but with a much smaller running time. The only curve that is

perceptibly separate from the rest is that for coarseness 8, the highest coarseness, where

only 8 di�erent quantizers are tried for each coe�cient. At the next lower coarseness

of 7, only 14 di�erent quantizers are tried, and yet the performance is the same as for

coarseness 0, where all 255 quantizers are tried. Of course, if the no thresholding is

done, (t = 0), there is much more variation in rate-PSNR performance with coarseness.

In practice one doesn't need to use a very high value of t; as all the thresholding

advantages are achieved at very small values of t: This is shown in Figure 35, which

shows the improvement in PSNR at 1.0 bpp for Lena, as a function of t; with coarseness

set to zero. The curve shows that t � 10 is good enough to achieve all thresholding

gains, at 1.0 bpp. Our experiments indicate that in practice, a coarseness setting of 6

with a threshold range t = 20, works well at all rates, while being very fast.

Finally, we show the dependence of running time on the size of the image. Only

127

38.7

38.8

38.9

39

39.1

39.2

39.3

39.4

0 2 4 6 8 10 12 14

P
S

N
R

 (
d
B

)

t

Figure 35: PSNR increases as the number of thresholds tried increases, but achieves

its maximum very soon (Lena at 1.0 bpp).

the statistics-gathering step (which just applies DCT to each image block and builds

histograms of coe�cient values) depends upon the size of the image. Figure 36 shows

the running time as a function of the number of pixels in the image, at coarseness 8

and threshold range t = 0. Thus, running time increases by about 0.3 seconds for

every 4096 8� 8 blocks. Note that this holds irrespective of coarseness and threshold

range. Our implementation of DCT is reasonably optimized, but uses oating point

computations with double precision. The running time can be improved by using a

faster DCT algorithm.

Memory Requirement

When gathering image statistics, RD-OPT needs memory to store the histograms. For

building the prediction tables, RD-OPT needs the histograms as well as memory for

128

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

T
im

e
 (

s
e
c
o
n
d
s
)

Number of pixels in image/1000000

Figure 36: RD-OPT running time as a function of image size.

the tables themselves. After the prediction tables have been built, the histograms are

no longer needed and can be freed.

The size of the prediction table is linear in the size of the operating range, and

is small for reasonable settings such as a coarseness setting of 6 with threshold range

t = 20. The size of the histograms depends upon the maximum and minimum values

achieved by the coe�cients. For 8-bit images, the value span is 4096 for AC coe�cients,

and since we use buckets of width 0.5, we need at most 8192 buckets per coe�cient.

For typical images, the high frequency coe�cients have a much smaller value span, and

require about 50-100 buckets each. If memory is scarce, RD-OPT can be made to run

compactly (at the cost of moving away from optimality) by reducing the operating range

and by increasing the bucket width from 0.5. The latter can be done without a�ecting

the accuracy of the rates calculated, by restricting the quantizers and thresholds. For

example, a bucket width of 4 can be used by restricting the quantizers to be multiples

129

of 8, and using thresholds in steps of 4. Essentially, we need to ensure that equation 4.5

is satis�ed, for the buckets, quantizers, and thresholds used. The distortion estimates

deteriorate, however, as the bucket width is increased.

4.5.3 Accuracy

The PSNR values predicted by RD-OPT are very accurate, as each coe�cient value

is accurate to within �0:25 using the histograms. If D is the distortion predicted by

RD-OPT, and

~

D is the actual distortion, then it follows from the triangle inequality

that

p

D � 0:25 �

q

~

D �

p

D + 0:25:

Figure 37 shows the actual PSNR versus the PSNR predicted by RD-OPT, for the

three test images.

15

20

25

30

35

40

15 20 25 30 35 40

A
ct

u
al

 P
S

N
R

Predicted PSNR

Lena
Baboon
Peppers

Figure 37: Actual vs. predicted PSNR for the three test images.

130

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ct

u
al

 R
at

e

Predicted Rate

Lena
Baboon
Peppers

Figure 38: Actual vs. predicted rate for the three test images.

The rate estimates, however, may vary more from their actual values. Still, they

are usually within about 0.02 of the actual rates, and hence are reasonably accurate

estimates. This can be seen from Figure 38, which shows the actual rates against the

predicted rates for the three test images.

4.5.4 Progressive JPEG

The progressive mode of JPEG allows the zig-zag scan of coe�cients to be broken up

into segments known as scans. The DC coe�cient must occur in a scan by itself. For

example, one way of breaking up a JPEG image into 4 progressive scans is to have

the DC scan, followed by coe�cients 1 through 5, followed by 6 through 32, and �-

nally 32 through 63. This enables e�cient browsing of images across networks|the

131

browser need not fetch all the scans of \uninteresting" images. Since RD-OPT pro-

vides estimates of total rate and distortion in terms of sums of coe�cient-wise contri-

butions, it is straight-forward to determine scan boundaries subject to any speci�cation

of rate/distortion distribution over scans. For example, we can use RD-OPT to set the

scan boundaries such that all the scans (except the DC) are nearly equi-sized. Figure 39

shows the progressive PSNR-rate plots for the three test images, when RD-OPT was

asked to produce quantization tables for 1.0 bpp, and to split the AC coe�cients into

four equi-sized scans. The plot shows that the AC scans are, indeed, nearly equi-sized.

In fact, the coe�cient-wise break-up of the rate and distortion (for each pair of quan-

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

P
S

N
R

 (
d
B

)

Rate (bpp)

Lena
Baboon
Peppers

Figure 39: Progressive JPEG compression of the test images at around 1.0 bpp, with

four AC scans of comparable sizes.

tization and thresholding tables) is a very good estimate of the internal rate-quality

curve, QC-Pt-Crv, in the QCLIC framework.

132

4.5.5 Other Quality Metrics

RD-OPT can be easily extended to use any di�erent avor of distortion-based quality

metrics. For example, di�erent weights can be assigned to di�erent DCT coe�cients,

based on their perceptual signi�cance. Moreover, di�erent weights can be assigned to

di�erent color planes. Such weights are especially useful if the image is to be compressed

at a low rate. In such cases, it is useful to give large weights to just the lowest few DCT

coe�cients, and to the luminance plane over the chrominance planes for color images.

RD-OPT can work for any quality metric for which a prediction table similar to

D

n

(q; t) can be built and used. For example, Watson's DCT quality metric, which was

built by evaluating the visibility of DCT basis functions using extensive testing of the

human vision [Wat93], can be easily used in RD-OPT, as the quality metric is de�ned

by composing together contributions from the 64 coe�cients.

4.5.6 Achieving Rate Targets Exactly

Usually, the rate predicted by RD-OPT is within a few percent of the actual rate result-

ing from JPEG compression. If a greater degree of accuracy is needed, two approaches

are possible.

The �rst approach is to simply compress repeatedly until the target rate is met

within the desired tolerance. If the predicted rate is R but the actual rate is R

0

, in the

neighborhood of R; RD-OPT is underestimating rate by about R

0

� R. In the next

iteration, RD-OPT is asked to produce quantization (and threshold) tables for a target

rate of R� (R

0

�R). Note that RD-OPT is run only once: after it is done with all its

steps, it is ready to quickly produce quantization/threshold tables for any number of

targets.

133

Usually, a lower-than-actual prediction of rate is unacceptable. When progressive

JPEG is used or allowed, it is easy to simply \trim" the compressed data till the target

rate is met within the tolerance. The trimming is not done by simply chopping away

some bytes o� the compressed data stream. Progressive JPEG allows the coe�cients

to be divided up into scans. Further, bit-planes of the coe�cients can also form scans.

Using the di�erence between predicted and actual rate, and the rate predictions for

individual coe�cients, RD-OPT can fairly accurately guess the level (coe�cient and

bit-plane) where the trimming should be done. This is a very useful technique in the

QCLIC framework, when only a few curve points are stored.

134

Chapter 5

Conclusion

E�cient and optimal quality-controlled lossy image compression is very important for

e�cient management of large amounts of image data. The QCLIC framework, pre-

sented in this thesis, is a way to use rate-quality tradeo� as a fundamental attribute of

digital images. In spite of the lack of any universal quality metric, simple metrics can

be employed to provide useful calibrations of images to best satisfy application needs

while meeting media and other constraints. We discussed several useful quality met-

rics, and presented a survey of the tools and techniques used in image compression. We

compared the major compression techniques available at present using several criteria

that are important for applications.

We de�ned the QCLIC-Image object along with its methods, QCLIC-Compress

and QCLIC-GetCurve, in terms of fundamental properties of images, QC-Crv, QC-Pt,

QC-Pt-Crv, QC-Pt-Pt. To realize the QCLIC framework in practice for speci�c image

compression techniques and quality metrics, we presented the notion of an enabling

technology. An enabling technology is a way to e�ciently and closely approximate the

elements of the QCLIC-Image structure, within applicable constraints. We discussed

common strategies that can be used to design enabling technologies.

We used the QCLIC framework to address the problem of quality-control for sets

of images, noting that there are rate-quality tradeo�s across images too, when they

are compressed together. We presented the QCLICS algorithm to optimize aggregate

135

measures of rate and quality for sets of images.

For JPEG compression (and other DCT-based techniques), we addressed the previ-

ously open problem of optimizing quantization tables and meeting rate-quality targets

e�ciently. The RD-OPT algorithm described in this thesis can be used for e�cient,

nearly optimal selection of DCT quantization tables. We described ways to use the

RD-OPT algorithm as an enabling technology, for e�cient realization of the QCLIC

framework for JPEG.

We described several useful applications that we have built to meet practical imagery

needs, implementing the QCLIC framework. The QCLIC framework has been used to

design components of an elaborate data visualization tool (DEVise) to allow e�cient use

of images transparently, and as easily as traditional data types. These implementations

con�rm the utility of QCLIC as a fundamental way of looking at images.

5.1 Contributions

The work presented in this thesis has made the following contributions:

1. QCLIC as a fundamental framework for using digital images.

2. QCLICS: a generic algorithm for quality-controlled compression of sets of images.

3. Knee-normalized PSNR as a uniform and tractable quality metric.

4. Analysis and optimization of uniform scalar quantization with thresholding for

Laplacian source distribution.

5. RD-OPT algorithm: QCLIC enabling technology for JPEG (and any orthonormal

block transform coding method).

136

6. Blueprints for designing QCLIC enabling technology for several compression tech-

niques and quality metrics.

7. Design and implementation of applications using the QCLIC framework, used in

systems such as DEVise and ZOO.

5.2 Future Work

The main area of future work is in applying the QCLIC framework to design real systems

to meet speci�c application needs. For example, a hardware implementation of limited

QCLICS functionality to dynamically pack images in the memory of a digital camera,

should be an interesting and rewarding project. Building image servers for shipping

images to portable devices, using QCLICS to apportion rate/quality among the various

contents of a multimedia web document, are other interesting and useful applications.

Currently used image quality metrics can be improved with more research. The Pic-

ture Quality Scale being developed by Algazi et al [MKA96] can be used as a benchmark

to design simpler metrics. For example, the perceptual weights assigned to errors in the

DCT domain can be designed to maximize the correlation with PQS. This should be

straightforward, once the PQS metric development stabilizes (it is currently applicable

only in a limited quality range, and for 256� 256 images).

For scienti�c applications, designing analysis-speci�c quality metrics or bounding

analysis errors in terms of existing metrics is important. We have done some prelim-

inary investigations in this regard, by analyzing the performance of as unsupervised

classi�cation algorithm on imagery obtained from soil scientists, in terms of the accu-

racy of analysis as a function of distortion [RLNK95]. The results indicate that the

137

classi�cation errors (assuming the classi�cation on the uncompressed image to be the

ground truth) are small and random, for moderate distortion. For image-database ap-

plications as well, similar analyses need to be done to evaluate the viability of doing

content-based search on compressed images, and to bound the errors in these search

algorithms in terms of a quality metric.

For vector quantization using large sets of possible codebooks, there is no e�cient

enabling technology to provide quality control. For applications where extremely fast

decoding is critical, vector quantization may be the compression technique of choice, in

spite of its poorer rate-quality performance when compared with other techniques. For

such applications, rate-quality performance can be improved by using larger codebook

sets, and hence the design of QCLIC enabling technologies is important. Techniques to

e�ciently compute some image statistics and use those to classify and calibrate images

with respect to a set of codebooks could be useful in this regard.

In terms of the optimal entropy-constrained uniform quantization problem for Lapla-

cian density, we have shown that the uniform quantizer with optimal thresholding (MT-

T-M) works very well, in spite of mid-point reconstruction. But this quantizer, and the

MT-U-C quantizer (which has comparable or better performance), do not satisfy the

necessary conditions for global optimality. While it appears that their performance is

close to optimal, obtaining a theoretically optimal quantizer remains an open problem.

138

Bibliography

[ABMD92] Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I. Image Cod-

ing Using Wavelet Transform. IEEE Transactions on Image Processing,

1(2):205{220, April 1992.

[AE97] Algazi, V. R. and Estes Jr., R. R. Comparative Performance of Wavelet and

JPEG Coders at High Quality. Very High Resolution and Quality Imaging,

Proc. of the SPIE, 3025, 1997.

[ANR74] Ahmed, N., Natarajan, T., and Rao, K. R. Discrete Cosine Transform.

IEEE Trans. Computers, C-2390-3, Jan. 1974.

[AP92] Ahumada Jr., A. J. and Peterson, H. A. Luminance-Model-Based DCT

Quantization for Color Image Compression. Human Vision, Visual Pro-

cessing, and Digital Display III, B. E. Rogowitz, ed. (Proceedings of the

SPIE), 1992.

[Bar93] Barnsley, M. F. Fractals Everywhere. Academic Press Professional, Cam-

bridge, MA, second edition, 1993.

[Ber71] Berger, T. Rate Distortion Theory: A Mathematical Basis for Data Com-

pression. Prentice-Hall, Englewood Cli�s, NJ, 1971.

[Ber72] Berger, T. Optimum Quantizers and Permutation Codes. IEEE Trans.

Inform. Theory, IT-18(6):759{765, November 1972.

139

[Ber82] Berger, T. Minimum Entropy Quantizers and Permutation Codes. IEEE

Trans. Inform. Theory, IT-28(2):149{157, March 1982.

[BK95] Bhaskaran, V. and Konstantinides, K. Image and Video Compression Stan-

dards. Kluwer Academic Publishers, Boston, MA, 1995.

[CGO94] Cosman, P., Gray, R., and Olshen, R. Evaluating quality of compressed

medical images: SNR, subjective rating, and diagnostic accuracy. Proceed-

ings of the IEEE, 82:919{932, June 1994.

[CR95] Crouse, M. and Ramchandran, K. JPEG optimization using an entropy-

constrained quantization framework. Proceedings of Data Compression

Conference, pages 342{351, 1995.

[CVC95] Chaddha, N., Vishwanath, M., and Chou, P. A. Hierarchical Vector Quan-

tization of Perceptually Weighted Block Transforms. Proceedings of Data

Compression Conference, pages 3{12, 1995.

[Dav72] Davisson, L. D. Rate-distortion theory and applications. Proc. IEEE,

60(7):800{808, 1972.

[DJL92] DeVore, R. A., Jawerth, B., and Lucier, B. J. Image Compression Through

Wavelet Transform Coding. IEEE Trans. Inform. Theory, 38(2):719{746,

March 1992.

[Eli63] Elias, P. Information Theory and Coding, ed. by Abramson, N. McGraw-

Hill, New York, 1963.

140

[FM84] Farvardin, N. and Modestino, J. W. Optimum quantizer performance for

a class of non-Gaussian memoryless sources. IEEE Trans. Inform. Theory,

IT-30(3):485{497, 1984.

[FPR95] Feig, E., Peterson, H., and Ratnakar, V. Image Compression Using Spatial

Prediction. Proc. Inter. Conf. Acoustics, Speech and Signal Processing,

May 1995.

[GG92] Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression.

Kluwer Academic Publishers, Boston, 1992.

[GP68] Gish, H. and Pierce, J. N. Asymptotically e�cient quantizing. IEEE Trans.

Inform. Theory, IT-14(5):676{683, 1968.

[Gra72] Graham, R. L. An E�cient Algorithm for Determining the Convex Hull of

a Finite Planar Set. Information Processing Letters, 1(4):132{133, 1972.

[Huf52] Hu�man, D. A. A Method for the Construction of Minimum Redundancy

Codes. Proc. IRE., 40(9):1098{101, Sept. 1952.

[ILGP96] Ioannidis, Y., Livny, M., Gupta, S., and Ponnekanti, N. ZOO: A Desktop

Experiment Management Environment. Proc. 22nd International VLDB

Conference, Bombay, India, pages 274{285, September 1996.

[Jac92] Jacquin, A. Image Coding Based on a Fractal Theory of Iterated Con-

tractive Image Transformations. IEEE Transactions on Image Processing,

1:18{30, 1992.

[Jai89] Jain, A. K. Fundamentals of Digital Image Processing. Prentice Hall,

Englewood Cli�s, NJ, 1989.

141

[JFB92] Jacobs, E. W., Fisher, Y., and Boss, R. D. Image compression: A study of

the iterated transform method. Signal Processing, 29(3):251{263, December

1992.

[JN84] Jayant, N. S. and Noll, P. Digital Coding of Waveforms. Prentice Hall,

Englewood Cli�s, NJ, 1984.

[JPG] ISO 10918-1 JPEG Draft International Standard and CCITT Recommen-

dation T.81.

[JR94] Jones, P. W. and Rabbani, M. Digital Image Compression. Digital Image

Processing Methods, edited by Dougherty, E. R., pages 261{325, 1994.

[Kar47] Karhunen, K. Ueber lineare methoden in der Wahrscheinlichkeitsrechnung.

Ann. Acad. Sci Fenn. Ser A.I. Math. Phys., 37, 1947.

[Kel89] Kelly, D. H. Spatial and temporal interactions in color vision. J. Imag.

Technol., 15(2):82{89, 1989.

[Knu85] Knuth, D. E. Dynamic Hu�man coding. J. Algorithms, 6:163{180, 1985.

[Lan84] Langdon, G. G. An introduction to arithmetic coding. IBM J. Res. De-

velop., 28(2):135{149, 1984.

[LBG80] Linde, Y., Buzo, A., and Gray, R. M. An algorithm for vector quantizer

design. IEEE Trans. Commun., COM-28:84{95, January 1980.

[Llo82] Lloyd, S. P. Least squares quantization in PCM. IEEE Trans. Inform.

Theory, IT-28:129{137, 1982.

142

[Loe60] Loeve, M. Probability Theory. Van Nostrand, Princeton, NJ, Second edi-

tion, 1960.

[LRB

+

97] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G., Donjerkovic, D.,

Lawande, S., Myllymaki, J., and Wenger, K. DEVise: Integrated Querying

and Visual Exploration of Large Datasets. Proceedings of ACM SIGMOD,

May 1997.

[LRF

+

92] Lee, H., Rowberg, A. H., Frank, M. S., Choi, H. S., and Kim, Y. Subjec-

tive evaluation of compressed image quality. SPIE Proceedings of Medical

Imaging VI: Image Capture, Formatting, and Display, 1653:241{251, Feb.

1992.

[Max60] Max, J. Quantizing for minimum distortion. IRE Trans. Inform. Theory,

IT-6(1):7{12, 1960.

[MDS

+

91] MacMohan, H., Doi, K., Sanada S., Montner, S., Giger, M., Metz, C.,

Nakamori, N., Yiu, F., Xu, X., Yonekawa, H., and Takeuchi, H. Data

compression: e�ect on diagnostic accuracy in digital chest radiographs.

Radiology, 178:175{179, 1991.

[MHY82] Murakami, H., Hatori, Y., and Yamamoto, H. Comparison between DPCM

and Hadamard transform coding in the composite coding of the NTSC color

TV signal. IEEE Trans. Commun., COM-30:469{479, March 1982.

[MKA96] Miyahara, M., Kotani, K., and Algazi, V. R. Objective Picture Quality

Scale (PQS) For Image Coding. Technical report, Center for Image Pro-

cessing and Integrated Computing, University of California, Davis, 1996.

143

[MS93] Monro, D. M. and Sherlock, B. G. Optimum DCT Quantization. Proceed-

ings of Data Compression Conference, pages 188{194, 1993.

[Mul85] Mullen, K. T. The Contrast Sensitivity of Human Color Vision to Red-

Green and Blue-Yellow Chromatic Gratings. J. Physiol., 359381-400, 1985.

[NH95] Netravali, A. N. and Haskell, B. G. Digital Pictures. Plenum Press, New

York, 1995.

[PM93] Pennebaker, W. B. and Mitchell, J. L. JPEG Still Image Data Compression

Standard. Van Nostrand Reinhold, New York, 1993.

[PMLA88] Pennebaker, W. B., Mitchell, J. L., Langdon Jr., G. G., and Arps, R. B. An

overview of the basic principles of the Q-coder adaptive binary arithmetic

coder. IBM J. Res. Develop., 32(6):717{726, 1988.

[Pra91] Pratt, W. K. Digital Image Processing. John Wiley & Sons, New York,

1991.

[RFT94] Ratnakar, V., Feig, E., and Tiwari, P. Fractal Based Hybrid Compression

Schemes. Proceedings of SPIE's VCIP, 1994.

[RFVK94] Ratnakar, V., Feig, E., Viscito, E., and Kalluri, S. Runlength encoding

of quantized DCT coe�cients. IBM RC 19693 (87318) 8/5/94 (Also in

Proceedings of SPIE '95), 1994.

[RG83] Reininger, R. C. and Gibson, J. D. Distributions of the Two-Dimensional

DCT Coe�cients for Images. IEEE Trans. Communications, COM-

31(6):835{839, June 1983.

144

[RL94] Ratnakar, V. and Livny, M. Performance of Customized DCT Quantiza-

tion Tables on Scienti�c Data. Science Information Management and Data

Compression Workshop Proceedings, NASA Conference Publication 3277,

pages 1{8, Sept 1994.

[RL95] Ratnakar, V. and Livny, M. RD-OPT: An E�cient Algorithm For Opti-

mizing DCT Qunatization Tables. Proceedings of Data Compression Con-

ference (Also, Technical Report 1257, Dept of Computer Sciences, UW-

Madison), pages 332{341, 1995.

[RL96] Ratnakar, V. and Livny, M. Extending RD-OPT with Global Threshold-

ing for JPEG Optimization. Proceedings of Data Compression Conference,

pages 379{386, 1996.

[RLNK95] Ratnakar, V., Livny, M., Norman, J. M., and Kucharik, K. Classi�cation

on compressed images with bounded loss. International Geoscience and

Remote Sensing Symposium Proceedings, July 1995.

[RY90] Rao, K. R. and Yip, P. Discrete Cosine Transform: Algorithms, Advan-

tages, Applications. Academic Press, Inc, San Diego, California, 1990.

[Sch85] Schafer, R. High-de�nition television production standard: an opportu-

nity for optimal color processing. SMPTE (Society of Motion Picture and

Television Engineers) J., pages 749{758, July 1985.

[Sha48] Shannon, C. E. The Mathematical Theory of Communications. Bell Syst.

Tech. J., 27:379{423,635{656, 1948.

145

[Sha59] Shannon, C. E. Coding theorems for a discrete source with a �delity crite-

rion. IRE National Convention Record, Part 4, pages 142{163, 1959.

[Sha93] Shapiro, J. M. Embedded Image Coding Using Zerotrees of Wavelet Coe�-

cients. IEEE Trans. Signal Processing, 41(12):3445{3462, December 1993.

[SP96a] Said, A. and Pearlman, W. A. A New, Fast, and E�cient Image Codec

Based on Set Partitioning in Hierarchical Trees. IEEE Trans. Circuits Syst.

Video Technol., 6(3):243{250, June 1996.

[SP96b] Said, A. and Pearlman, W. A. An Image Multiresolution Representation for

Lossless and Lossy Compression. IEEE Transactions on Image Processing,

5(9):1303{1310, September 1996.

[Tes79] Tescher, A. G. Transform image coding. Advances in Electronics and

Electron Physics, Suppl. 12:113{115, 1979.

[VB67] Van Ness, F. I. and Bouman, M. A. Spatial Modulation Transfer in the

Human Eye. Journal of the Optical Society of America, 57(3):401{406,

March 1967.

[Vit87] Vitter, J. S. Design and analysis of dynamic Hu�man codes. J. Assoc.

Comput. Mach., 34(4):825{845, 1987.

[Wat93] Watson, A. B. DCT quantization matrices visually optimized for individual

images. Human Vision, Visual Processing, and Digital Display IV, B. E.

Rogowitz, ed. (Proceedings of the SPIE), 1993.

146

[WG93] Wu, S. and Gersho, A. Rate-constrained picture-adaptive quantization for

JPEG baseline coders. Proc. Inter. Conf. Acoustics, Speech and Signal

Processing, 5:389{392, April 1993.

[WNC87] Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding for data

compression. Commun. ACM, 30(6):520{540, 1987.

[ZASB95] Zandi, A., Allen, J. D., Schwartz, E. L., and Boliek, M. CREW: Compres-

sion with Reversible Embedded Wavelets. Proceedings of Data Compression

Conference, pages 212{221, March 1995.

