
Experiments with Image Signatures

Viresh Ratnakar

August 29, 1996

1 Signatures used

In every case, the image was either grayscale, or converted to grayscale from RGB (which is, approximately,

0:3R + 0:6G + 0:1B): Conversion to grayscale simpli�es the problem, and we haven't really lost much in-

formation as our goal is only to come up with a rather general image-similarity measure. I tried several

DCT-based and color-indexing based variants. Wavelets need some thought/discussion, as there are some

problems there, but we de�nitely need to try them too, later.

1.1 DCT-based signatures

All of these are based on distributions of DCT coe�cients over all the 8 � 8 non-overlapping blocks in

the image. Further, the coe�cients within each block are ordered in the standard zig-zag order (that

approximates \importance") used in JPEG/MPEG. Let C(b; n) denote the value of coe�cient number n

(0 � n � 63) in block number b (that's about the only notation you'll really need to remember, to understand

the signature methods). Each kind of DCT-based signature has 64 numbers, one each for each coe�cient,

only the �rst few are actually used to compute distance between signatures.

Ratio

This is the �rst idea I had proposed. For each coe�cient, I capture the distribution with the fraction of

blocks in which the coe�cient value is above a threshold. Speci�cally, the n

th

component of the signature

is given by:

Ratio(n) =

of blocks in which jC(b; n)j > H(n)

of blocks in which jC(b; n)j > L(n)

Here L(n) is a \signi�cance" threshold|the idea is to ignore coe�cients with very low values. I chose L(n)

as the number below which most JPEG compressors change the n

th

coe�cient to zero. H(n) was set to

2:5�L(n): Like I pointed out during our discussions, the distribution of DCT coe�cients is nearly Laplacian,

and in that case Ratio(n) fully describes the distribution.

StdDev

Uri had wondered about the round-about way the \Ratio" signature captures the distributions, and said

that if indeed we are trying to capture the essence of Laplacian distributions (

�

2

e

��jxj

); why not use the

Laplacian parameter � itself! This, the \StdDev" signature, uses the standard deviation of each coe�cient

distribution, and is the usual method for estimating �: Note that for the Laplacian distribution, standard

deviation is

p

2=�:

StdDev(n) =

s

P

b

C(b; n)

2

Total # of blocks

1

CutStdDev

To ignore coe�cients with very low values, even when using the \StdDev" signature, I modi�ed it a bit as

follows: For the n

th

coe�cient, only the blocks where its value is > L(n) are considered, where L(n) is the

same threshold that's used in the \Ratio" signature. Call a block b with jC(b; n)j > L(n) as signi�cant for

coe�cient n: Then,

CutStdDev(n) =

s

P

b signi�cant

C(b; n)

2

Total # of signi�cant blocks

My original idea was to ignore the DC coe�cient (n = 0) in the signatures, in order to ignore the overall

brightness level (DC coe�cient is just the mean of all pixels in a block). In any case, I tried both leaving

it in and leaving it out. Thus, the signatures used in the experiments (listed completely in Figure 1), use

coe�cients l through h; where l is always either 0 or 1. Distances between DCT-based signatures are just

the Euclidean distances.

1.2 Color Indexing (CI)

I read the paper on Color Indexing by Swain and Ballard, from International Journal of Computer Vision,

1991. Their idea is to measure histograms of occurrences of colors, grouped into bins. \Closeness" of two

image histograms is measured as the sum of the smaller count in each bin. To compare with the DCT

signatures, I wanted to somehow come up with only a few (� 64) numbers. Further, I wanted the signature

to be such that I could try using only a part of it (say, the �rst 10 numbers). Note that I anyway have only

256 colors, since I have converted RGB images to grayscale.

I created 64 bins (so a pixel with value x goes to bin number x=4), and measured the histogram (nor-

malizing counts to lie in [0::1] by dividing with total number of pixels). I sorted these fractional counts in

descending order. Let b(n) denote the bin number that occurs at rank n in this order. The signature consists

of these sorted counts, along with their bin numbers:

CI(n) = (b(n); count in bin number b(n))

Distance between signatures cannot be the simple Euclidean one, as the bin numbers may be di�erent

(for example, if we use only CI(0) through CI(10)). Here is the distance function, when the signature consists

of the top k counts, CI(0) through CI(k � 1): Find the list of all the bins involved in the two signatures.

Some of these will be common to both, while some won't. For the common bins, add the squared di�erence

between the counts. For bins that occur in only one signature, add the square of the count for the signature

in which that bin appears (e�ectively assuming the count for the other signature to be zero, as it is low

enough not to have �gured in the top k counts). Divide by the total number of bins in the list, and take

square root. Hope I haven't made it sound more complicated than it really is!

Figure 1 shows the list of signature variants I actually used. The �rst column gives each method a unique

number, in the order in which I tried them. This number needs to be used to view the results (sigh) as

described later. The second column identi�es the kind of signature (Ratio, StdDev, CutStdDev, or CI). The

third and fourth columns, respectively, identify the start and end indices of the coe�cients (or counts, in

case of CI) used.

2 Test images

I started with a set of about 60 images, all grayscale or converted to grayscale. I expanded this set to 110

images, by applying some operations on some of the images. In each case, only one operation was used, i.e.,

I never used combinations of operations. The operations are:

1. Bright

2. Crop - cut a border o�

3. Dim

2

Number Kind Start End

0 Ratio 0 9

1 Ratio 1 10

2 StdDev 0 9

3 StdDev 1 10

4 CutStdDev 0 9

5 CutStdDev 1 10

6 CI 0 9

7 Ratio 1 15

8 Ratio 1 20

9 StdDev 1 15

10 StdDev 1 20

11 CutStdDev 1 15

12 CutStdDev 1 20

13 CI 0 14

14 CI 0 19

15 Ratio 1 5

16 Ratio 1 8

17 Ratio 1 9

Figure 1: Summary of signature methods used

4. Jpg - compress to JPEG

5. Rot - rotate

6. HistEq

7. Rvid - like taking a negative

8. Enlarge

9. Reduce

10. Sharp

11. Frame - overlay a black border

Almost all of these operations are provided by xv. All the images are in the directory

/p/qclic/Code/Signature/Tests/Images. The images created by the above operations are named as

<original-name>+<operation>.

For evaluating the various signature methods, I clustered the images together as follows: Each root

cluster consists of an original image along with all its variants created by the above operations. Each group

cluster consists of all root clusters of original images that are similar subjectively. Basically the groups only

consist of images from the same source (typically, the same video sequence), except for the largest group,

into which I threw in all the facial images.

3 Viewing the results

For each method in Figure 1, you can view the best N matches for any image as follows. Go to the directory

/p/qclic/Code/Signature/Tests. Use the command ShowImageMatches m id N, where,

� m is the method number (0-17) from Figure 1,

3

� id is either the image number (0-109) or the name of an image (ls Images/* will list all possible

image names), and,

� N is the number of matches you want to see.

A window will pop up, showing the best N matches. For example, ShowImageMatches 1 lena.pgm 20 will

show the best 20 matches for lena.pgm, using method number 1 (Ratio, coe�cients 1 through 10).

In addition, you can view the results after birch clustering. In this case you are not restricted to just the

18 methods listed in Figure 1. But color indexing results cannot be seen this way, as I don't know how to

use birch with non-Euclidean distance measures. The command is ShowClusters m f l n, where,

� m is the method name: either Ratio or StdDev or CutStdDev (just the �rst letter in upper or lower

case will do),

� f is the starting coe�cient number: use 0 or 1 (1 if you want to ignore the DC coe�cient),

� l is the ending coe�cient number (less than 64), and,

� n is the number of clusters you want birch to create.

If birch has been run with these parameters before, ShowClusters will simply read the cluster �le, otherwise

it will �rst run birch to create the cluster �le (it's very fast|only 110 points). After reading the cluster �le,

it will, for each cluster, list the names of images in that cluster, and then prompt you to ask whether you

want to see the cluster (in which case a window will pop up showing all the images in the cluster).

4 Evaluating the methods

I gave each method a score as follows: for each image, I scan the ordered list of matches until all the images

with the same root have been seen. Count the number of images not in the same root but appearing before

the last of the root -images have been seen. Further, count images with same group separately from images

in a di�erent group . Add 1 to the score for each group image appearing before some root image, and

2 for each non-group image appearing before some root image. A low score implies all the images with

the same root are very close, while a high score says that lots of other images are closer to the image than

images with the same root . Add the scores for all images to calculate the method score.

For example, let A, B, C, D, A+jpg, A+crop, C+jpg, and D+crop be the images, with root clusters

being

� A, A+jpg, A+crop,

� B,

� C, C+jpg, and,

� D, D+crop,

and group clusters being

� A, A+jpg, A+crop, B,

� C, C+jpg, and,

� D, D+crop,

If the ordered matches for image A+crop are,

1. A+crop

2. C (add 1 to non-group count)

3. B (add 1 to group count)

4

Rank Number Kind Start End group Non-group Score Eq-Wt Eq-Wt

Count Count Score Rank

1 1 Ratio 1 10 197 1312 2821 1509 1

2 0 Ratio 0 9 211 1339 2889 1550 2

3 4 CutStdDev 0 9 170 1396 2962 1566 3

4 17 Ratio 1 9 211 1377 2965 1588 4

5 16 Ratio 1 8 205 1424 3053 1629 5

6 2 StdDev 0 9 174 1466 3106 1640 7

7 7 Ratio 1 15 182 1464 3110 1646 8

8 14 CI 0 19 152 1482 3116 1634 6

9 8 Ratio 1 20 200 1498 3196 1698 10

10 13 CI 0 14 152 1527 3206 1679 9

11 6 CI 0 9 155 1553 3261 1708 11

12 10 StdDev 1 20 223 1527 3277 1750 12

13 12 CutStdDev 1 20 165 1602 3369 1767 13

14 15 Ratio 1 5 222 1598 3418 1820 14

15 9 StdDev 1 15 219 1609 3437 1828 15

16 11 CutStdDev 1 15 167 1697 3561 1864 16

17 3 StdDev 1 10 217 1724 3665 1941 18

18 5 CutStdDev 1 10 175 1755 3685 1930 17

Figure 2: Evaluation of signature methods

4. D+crop (add 1 to non-group count)

5. A

6. C+jpg (add 1 to non-group count)

7. A+jpg (last image with same root as A+crop)

8. D

So the total score for this image is (group count) + 2*(non-group count) = 1 + 2*2 = 5. The overall score

for a method is the sum of its score for all images.

Figure 2 shows the scores for all 18 methods in Figure 1. The �rst column gives the rank, second column

is the method number. Third, fourth, �fth columns are method name, start index, end index respectively

(repeated from Figure 1 for convenience). Sixth column gives the total group count for all images, while

seventh column gives the total non-group count. The total score is listed in the eighth column. Since the

clustering into groups was fairly arbitrary, column nine gives the total score giving equal weight to group

count and non-group count. The last column gives the rank of the method with this scoring (the ranking

doesn't really change much).

Method number 1, which is DCT Ratio for coe�cients 1 through 10, seems to be the winner with this scor-

ing. I also evaluated the methods from the point of view of each operation separately. That will add too many

tables here, so I'll just report the winner(s) for each operation in Figure 3. Detailed scores for each method for

each operation can be found in the �les /p/qclic/Code/Signature/Tests/Scores/sortedopscores.<op>.

The color indexing methods (6,13,14) do very well, as expected, with operations that do not change the

histogram much (like rotate). Overall, especially for similarity between two images that are not necessarily

transformed versions of the same image, method number 1 (Ratio 1-10) seems to give the best performance

subjectively. It also has the best overall score.

Of course, we need to discuss these results in greater detail. Just in case we don't meet until October,

this is food for thought.

5

Operation Winning method number(s)

Bright 0 1 3 5 9 10 11 12 15 16 17

Crop 14

Dim 12

Jpg 2 3 9 10

Rot 6 13 14

HistEq 14

Rvid 1 2 3 5 7 8 9 10 11 12 15 16 17

Enlarge 6 13 14

Reduce 6 13

Sharp 14

Frame 9

Figure 3: Evaluation of signature methods for operations

6

