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1 Introduction

The storage and transmission media of today's computers are heavily populated with digital images and

video streams. Apart from entertainment and scienti�c applications, digital images are now an integral part

of most documents, databases, and World Wide Web pages. The price associated with this multimedia

revolution is that of the tremendous storage and bandwidth requirements. A single full-color image typically

occupies more than one megabyte. Digital video, where every second of \action" uses about 15-25 still

images, require even higher storage space and transmission bandwidth. This has necessitated the use of

e�cient compression strategies for digital images and video. Lossless compression, where the decompressed

image will be the same as the original image, typically o�ers compression ratios under 2:1, which is insu�cient

for most applications. Lossy compression, where the decompressed image may be slightly di�erent from the

original, o�ers a reasonable solution to the storage and bandwidth problem for most applications. A nice

overview of digital images and their compression can be found in [Jai89].

Lossy compression can compress an image to any extent|the greater the compression, the greater the

degradation of the decompressed image as compared to the original. The tradeo� between compression

and quality depends upon by the particular compression scheme used and the characteristics of the image

being compressed. Figure 1 shows the typical nature of the quality-compression curve. The dark line shows

the best quality achievable for a given compressed size. The shaded region is sub-optimal in terms of the

quality-compression tradeo�. With most compression schemes, it is possible to tune some parameters so as

to achieve a quality-compression point anywhere on or under the curve.

Our work is concerned with e�ciently exploiting quality-compression tradeo�s in various image compres-

sion techniques, developing new compression techniques which o�er exibility in choosing image quality in

application-speci�c ways, and studying the e�ect of image quality on various applications.

2 Quality of lossy-compressed images

The notion of quality of an image as compared to an original, is intuitively apparent, but hard to quan-

tify. Many di�erent quality measures exist, most of them being based on distortion (mean-squared error
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Figure 1: Quality-Compression tradeo� in lossy compression.

between pixel values in the original image and the copy of it that has undergone lossy compression). Each

measure has its limitations, especially when comparing the quality of an image compressed using di�erent

techniques. Peak-Signal-to-Noise-Ratio (PSNR), and perceptually weighted PSNR are the most commonly

used distortion-based measures. Distortion is easy to compute and is usually an adequate quality measure

when comparing the results of compression on a particular image using a particular technique at di�erent

compression ratios.

For the purpose of this report, we will refer to an image with widthW , heightH , and 8-bit pixel intensities

in the range [0 : : : 255] as aW �H image. In an image I , the pixel intensity in row i and column j is referred

to as I [i; j]. All the results and discussion are equally applicable to images with greater resolution, images

with several color planes, and sequences of images.

Let I be a W �H image, c(I) be a lossy-compressed copy of I and I

0

be the decompressed form of c(I).

Let jc(I)j be the size of c(I) in bits. Then, the compression ratio is

W�H�8

jc(I)j

. It is common to measure the

extent of compression in terms of rate, de�ned as

jc(I)j

W �H

bits per pixel (bpp).

The distortion D(I; I

0

) caused by compression is,

D(I; I

0

) =

1

W �H

X

i = 1 : : :H

j = 1 : : :W

(I [i; j]� I

0

[i; j])

2

:

Peak-Signal-to-Noise-Ratio is de�ned as,

PSNR = 10 log

10

255

2

D(I; I

0

)

dB:

The distortion D(I; I

0

) may be calculated in a spatial frequency domain, with di�erent weights attached to

di�erent frequencies, giving a weighted PSNR. The weights give more importance to distortion in the lower

frequencies, which are perceptually more signi�cant.
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3 The need for quality control

It is clear that any compression technique should try to provide the best possible quality at any rate.

However, most existing implementations of common compression techniques do not give the best possible

quality, as the previous methods to do so were prohibitively expensive in terms of computation time. The

gains in quality possible over what is delivered can be substantial, as was shown by us in [RL94].

Another desirable feature would be to allow the user to specify any desired rate, and compress an image

to that rate, perhaps interactively, after examining the rate-quality tradeo� curve. Users should also be able

to specify quality using a quality measure most useful for their needs, and get the least possible rate.

Consider a production-mode compression environment, where users can submit arbitrary images for

compression, along with desired rate/quality speci�cations as above. It is crucial that the compression

parameters be set automatically to best exploit the characteristics of the particular images being compressed.

The images submitted may vary dramatically across users: what works well for one image may perform poorly

on another, hence a production-mode compressor must be able to e�ciently control quality for any image,

rather than rely on defaults.

As another example, consider an image archive server from which remote clients can retrieve various

images. The server will have a limited amount of diskspace, and the connecting network will provide a

limited amount of bandwidth. It would be crucial to utilize these resources in the best possible manner,

that is, to store the images in compressed form, and to do the compression in a way that would give the

best possible quality at the available rate. Further, it would be important to provide browse capability to

the clients, enabling them to quickly preview low-quality versions of the images, select some of the images

of interest, and specify a desired quality or rate for retrieval of these images.

Scienti�c applications typically run classi�cation software and other analytical tools on images acquired

using remote sensing, microscopy, and various other methods. With the vast amount of image data being

gathered, lossy compression provides an invaluable tool for storing it compactly. However, these applications

need strict quality control. For example, it might be necessary to have distortion below a certain level, for

the analyses to be useful. It would be very important to get the best possible compression, while keeping

the distortion within the tolerance. For some applications, such as those running analyses on images, it is

crucial that the distortion be bounded everywhere in the image, and not just in a mean, global sense. The

e�ect of distortion on these applications merits further study in order to determine their tolerance to loss in

image quality.

4 A brief overview of some compression techniques

In this section, we look at some of the current image compression techniques that we have worked with, or

plan to work with. For each one of these, we will also list some of the parameters that can be set to vary

rate and quality. We refer to these parameters as Rate-Quality Knobs.

4.1 Discrete Cosine Transform based techniques

The Discrete Cosine Transform (DCT) [ANR74] is perhaps the most popular tool in image compression today.

The JPEG standard for still-image compression [Wal91, PM93], the MPEG-I and MPEG-II standards for

video compression [MP91, Le 91], H.261 standard for video telephony [Lio91], etc., all employ the DCT to

transform an image into components with di�erent spatial frequencies. Since pixel intensities typically vary

slowly among neighboring pixels, most of the image structure is captured in the low-frequency components.
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This allows the information in the image to be selectively discarded or stored with varying degrees of

accuracy: the higher frequencies are less important visually, and contain the bulk of the noise introduced by

the image-capturing process [RY90]. Further, DCT has the nice property of being close to the Karhunen-

Loeve-Hotelling transform (KLH), in that the di�erent frequency components are nearly uncorrelated, which

allows them to be compressed independently [RY90].

The most commonly used variant of DCT is the 2-dimensional DCT on 8�8 image blocks, which we shall

refer to as DCT, hereafter. Our work on DCT-based compression is easily extendible to other block sizes as

well. Let f be an 8� 8 image block. We refer to individual pixel intensities in f as f [i; j], for i; j = 0 : : : 7.

Applying the DCT to f results in an 8� 8 block

^

f of 64 coe�cients that represent f as a linear combination

of the 64 orthonormal DCT basis blocks. The lowest spatial frequency coe�cient is

^

f [0; 0], while higher

frequencies in horizontal and vertical directions are captured by the coe�cients

^

f [u; v] with greater values of

v and u, respectively. The Inverse Discrete Cosine Transform (IDCT), converts

^

f back to f . The equations

governing DCT and IDCT are:

DCT:

^

f [u; v] =

1

4

C(u)C(v)

X

i=0:::7

X

j=0:::7

f [i; j] cos[

(2i+ 1)u�

16

] cos[

(2j + 1)v�

16

] (1)

IDCT: f [i; j] =

1

4

X

u=0:::7

X

v=0:::7

C(u)C(v)

^

f [u; v] cos[

(2i+ 1)u�

16

] cos[

(2j + 1)v�

16

] (2)

Where,

C(x) =

(

1=

p

2 for x = 0

1 otherwise.

The DCT-based image compression process typically consists of the following steps [RY90].

1. A given image I is divided into 8 � 8 blocks. To each image block f , the DCT is applied to get an

8� 8 block

^

f of DCT coe�cients.

2. An 8� 8 block of integers Q, called the quantization table, is used to quantize the coe�cients in

^

f to

form the block

^

f

Q

of quantized coe�cients. Quantization is de�ned as:

^

f

Q

[i; j] =

^

f [i; j]==Q[i; j]; 0 � i; j � 7;

where == represents division followed by rounding to the nearest integer.

3. The quantized blocks are entropy-coded to exploit similarities across blocks. Quantization typically

sets most of the high frequency coe�cients to zero, which allows the quantized blocks to be compactly

stored. For example, in JPEG, the block

^

f

Q

can be coded using Hu�man Coding [Huf52] of non-zero

values and run-lengths of zeros [PM93]. The sequence of these compressed blocks forms the compressed

image.

The decompression process reverses these steps as follows:

1. Each entropy-coded block is decoded to get the corresponding block of quantized coe�cients.

2. Dequantization is done on each block

^

f

Q

of quantized coe�cients to construct the block

^

f

0

, as follows:

^

f

0

[i; j] =

^

f

Q

[i; j] �Q[i; j]; 0 � i; j � 7:

3. The IDCT is applied to

^

f

0

to get the decompressed image block f

0

. These decompressed blocks form

the decompressed image I

0

.
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The lossiness of the compression is essentially because of the quantization step (

^

f !

^

f

Q

), as in general,

^

f

0

[i; j] =

^

f

Q

[i; j] �Q[i; j] = (

^

f [i; j]==Q[i; j]) �Q[i; j] 6=

^

f [i; j]:

This causes di�erences in pixel values between the original image block f and its approximation, the decom-

pressed image block f

0

.

Rate-Quality Knobs: The quantization table Q determines the quality and rate of compression. The

greater the entries in Q, the less accurate the reproduction of the DCT coe�cients, and hence, the poorer

the quality. However, greater entries in Q quantize more coe�cients to zero, enabling greater compression

(smaller rate). There are 64 entries in Q, each one can (usually) be set to any integer between 1 and 255.

4.2 Fractal-based image compression

Fractal compression tries to exploit self-similarity in images [Bar93]. The idea is to �nd a contractive

transformation

1

w that maps a W �H image I to itself (w(I) = I). This is usually done by dividing the

image I into square blocks, and for each block, �nding an approximately similar block on a shrunk version

s(I) of the same image. Speci�cally, for each block f , a block g on s(I) is found, together with scalars s, o,

and orientation

2

� such that the di�erence between f and s � �(g) + o is minimized [Jac92]. The collection

of these block-transformations forms a transformation w for the entire image I , such that w(I) � I .

The remarkable property of such transformations w is stated as the Collage Theorem [Bar93] which says

that starting with any arbitrary W �H image I

0

, repeated applications of w converge to a �xed image I

0

regardless of I

0

, and that I

0

is an approximation of I . Thus, to compress an image, one simply needs to �nd

the triple (s; o; �) for each block f , and store it compactly, along with the location of the matching block g.

The decompression process starts with any arbitrary image I

0

, and repeatedly applies the transformation w

by shrinking the image, and reconstructing every block f as s � �(g) + o. After a few iterations, this process

converges to the decompressed approximation I

0

.

Details on fractal compression, along with variations such as quadtree blocking, can be found in [Fis92]

and [JFB92].

Rate-Quality Knobs: Rate is varied by storing s, o, and � for each block with varying accuracy. For

example, s might be constrained to to a �xed value, o to an integer between �128 and +127, and � might

be constrained to be the identity (i.e., no reorientation). Not all locations for the matching block g may be

tried (say, by restricting g to be in a �xed region around f), in which case fewer bits would be needed to

store the location of g. All these knobs can vary rate and quality, but the quality cannot be made higher

than that determined by the extent of self-similarity in the image (there might not be any good matches for

some image blocks!).

4.3 Vector Quantization

Vector Quantization (VQ), is perhaps the most general image compression technique. The idea is to split

the image I into blocks or vectors of a certain kind (for example, 8 � 8 blocks, or rectangular tiles, or tiles

of other shapes, etc.) and to represent these vectors by closest approximations from a small set of vectors,

called the codebook. For example, if a codebook C =

�

c

i

�

�

i = 1 : : :M

	

of size M is used, then each vector

1

A transformation is said to be contractive if the distance between any two transformed images is less than the distance

between the images themselves, where distance is a metric on the space of images.

2

There are eight di�erent orientations that map a square onto a square: four possible rotations and a ip followed by four

possible rotations.
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v in the image would be stored in compressed form as the index i of the codebook vector c

i

closest to v.

Thus each vector can be stored using log

2

M bits (which can be reduced further by entropy coding). A

comprehensive reference for VQ is [GG92].

For e�cient use of VQ, it is very important that codebooks be reusable. Codebook design is usually done

by a process called training which takes a number of images and a target size, and produces a codebook of

that size that works well on all the images in the training set. The codebook needs only to be sent once to

the decompressor, enabling it to decompress all the images compressed using that codebook.

Rate-Quality Knobs: The choice of a codebook size, and the codebook itself determine rate and quality

of compression for an image.

Part I

Completed Work

We now present an overview of the work that has been completed. This can be classi�ed into three broad

areas:

1. DCT-based compression

2. Scienti�c applications

3. Fractal compression

5 Results in DCT-based compression

As described in section 4.1, the main Rate-Quality Knob is the quantization table. Most existing compressors

use a default quantization table, and scale it up or down by a small factor to vary rate and quality. We did

an extensive study on compressing a large number of images acquired from a wide variety of sources (satellite

images, microscopy images from Molecular Biology, standard images used in compression literature). We

used default tables for each image, and compared the results with those using customized tables obtained by

searching over a large portion of the search space of all possible 8�8 tables. The results clearly demonstrated

the need for using customized quantization tables, as for most images they o�ered substantial improvements

in quality over scaled default tables. This work [RL94] can be found in Appendix A.

Our next step was to look for an e�cient algorithm to design image-speci�c quantization tables to meet

arbitrary rate/quality demands in the best possible ways. The previous work done in this area mostly used

heuristic searches over all possible tables, using the entire JPEG compressor as a black-box to evaluate search

points and decide search directions [MS93, WG93]. This is very expensive, and does not guarantee optimality.

Other quantization table design strategies have relied on psycho-visual models [AP92, Wat93]. Our most

important work is the development of the RD-OPT algorithm, which e�ciently optimizes quantization tables

for arbitrary images, to meet an arbitrary range of rate/quality speci�cations. A wide variety of distortion-

based quality measures, including PSNR and weighted PSNR, can be used with RD-OPT. RD-OPT works by

gathering DCT coe�cient statistics for a given image, and uses these statistics in a novel way to build tables

that predict the rate and quality resulting from any quantization table in terms of sums of coe�cient-wise

rates and qualities. It then runs a dynamic program to optimize rate against quality. This work [RL95] can
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be found in Appendix C. We have implemented RD-OPT in C, and the implementation is being widely used

for designing quantization tables.

In connection with the development of RD-OPT, we did a study of runlength coding of quantized DCT

coe�cients, that led to the idea of coe�cient-wise decomposition of rate as used in RD-OPT. The study

showed that the rate resulting from runlength coding is very close to the coe�cient-wise sum of entropies of

the various quantized coe�cients. The results, along with analytical characterizations of rate, are presented

in [RFVK94], included here as Appendix B.

6 Work done on scienti�c applications

We currently cater to the image compression needs of a wide variety of scienti�c users at the University of

Wisconsin. These include Molecular Biologists with microscopy images, Soil Scientists with remote-sensed

images of canopies, Geologists with images of crystals, and Space Scientists with satellite images.

The Soil Scientists are interested in running classi�cation software on images, for instance, to classify

canopy image pixels into those belonging to shaded/sunlit leaves, branches, sky, etc. We did a study to

evaluate the possibility of using lossy-compressed images for these analyses. We compared the results of

classi�cation on the original images to those on the lossy-compressed images at various qualities, and found

that the errors in classi�cation can be tolerably low (and, more importantly, random) with compression ratios

as high as 10:1. This represents a substantial saving of storage for these scientists. This work [RLNK95] is

included here as Appendix D.

The Geologists are interested in using crystal images for studying the crystal structure, as well as iden-

tifying defects. For the former application, they were using expensive Fourier analysis software for image

enhancement. We have developed a new enhancement/compression technique speci�cally designed for im-

ages of crystals. Since crystal images are periodic, the same pattern repeats over and over in the image. We

use a simple algorithm to detect this periodicity in a crystal image, and to automatically divide the image

into units that are copies of each other. These images typically contain a lot of noise (hence the need for

enhancement). We assume this noise to be random, and create an enhanced unit by averaging the pixel

intensities over all the units gleaned from the image, which eliminates the noise. The enhanced image can

be stored in its compressed form by just storing the enhanced unit. We have carried tests on several images,

and the results compare very well with those obtained using expensive Fourier analysis. This stresses the

usefulness of designing application-speci�c compression strategies. This work has not yet been published.

7 Results in fractal compression

Since fractal compression is computationally expensive (because of expensive searches for matching blocks),

and yet does not perform as well as other techniques like JPEG [JFB92], we tried to develop a hybrid

scheme: We used a simple variant of fractal compression to compress images down to very low rates. The

decompressed images were used as predictors in the hybrid scheme, and DCT was used to compress the error

image (original minus predicted) at any desired rate. However, even the hybrid scheme could not beat JPEG

in terms of PSNR. We also showed that for fractal compression to work well, the self-similarity in an image

must be of a very speci�c kind. This was demonstrated by showing a totally self-similar image that could

not be compressed well by fractal compression. This work [RFT94] can be found in Appendix E.

The compression in fractal techniques results from self-similarity in an image. The requirement that

the self-similarity be expressible as a contractive transformation comes only to enable decompression using
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convergent iterations as described in the Collage Theorem (see Section 4.2). We have developed an image

compression technique called spatial prediction that exploits self-similarity but does not require contractivity.

The compressor processes image blocks in raster order. For each block, a good match is found in the already

encoded portion of the image. If no match is found that meets the desired quality requirement, then the

block is encoded using DCT. Otherwise, the block is encoded by storing the location of the matching block

and the triple (s; o; �) that describes the matching transformation (as in fractal compression, see Section 4.2).

The decompressor also processed blocks in raster order, and can decompress both predicted blocks (applying

the appropriate transformation to the matching block which is in the part of the image that has already

been decompressed) and DCT-coded blocks. Spatial prediction works better than JPEG at extremely low bit

rates, as the decompressed images show far fewer compression artifacts. At higher rates, JPEG outperforms

spatial prediction. This work [FPR95] is included here as Appendix F.

Part II

Future Work

In this part of the report, we discuss some of the issues we plan to deal with in the rest of our thesis.

DCT-based compression: There are some improvements to be made in RD-OPT. Another Rate-

Quality Knob in DCT-based compression is the ability to arbitrarily set some coe�cients in some blocks to

zero. This allows smaller quantization table entries, as most of the compression results from the presence of

zeros in quantized coe�cient blocks. We would like to incorporate this zeroing capability in RD-OPT. We

are also working on implementing a graphical user interface to RD-OPT, whereby users will be presented

with the rate-quality curve for their images, allowing them to interactively choose any point on the curve.

For some applications, such as image classi�cation, it would be useful to guarantee bounds on distortion

everywhere in the image, and not just in the mean sense. We plan to develop quantization strategies to

meet such uniform quality demands. The idea would be to cluster similar image blocks together and use one

quantization table for each cluster, such that every block has bounded distortion.

Vector quantization: This will be the primary area to explore for our future work. There are several

problems associated with VQ codebooks. While there has been considerable work done on developing training

algorithms [LBG80, GG92], VQ has not gained popularity as an e�cient compression technique. We feel

that for VQ to be e�ciently used, there need to be techniques to e�ciently maintain and use a collection

of codebooks. The compressor and decompressor would share a certain number of codebooks, created using

a training algorithm. For a given new image to be compressed to meet certain rate/quality speci�cations,

the �rst consideration would be whether one of the existing codebooks would meet those speci�cations (the

problem of codebook selection). If not, perhaps it might be useful to expand one of the existing codebooks (the

problem of codebook evolution). Otherwise, a new codebook must be created. These individual problems,

along with the decisions listed above, are issues that we plan to address.

E�ects of lossy compression on scienti�c applications: We plan to conduct tests similar to those

described in Appendix D on various other applications. Classi�cation, feature detection, etc. are some of

the common analytical applications used in the scienti�c community. To explore the promising possibility

of using lossy-compressed images in these applications, one needs to study the e�ect of lossy compression on

the results given by these various applications.
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8 Conclusions

We have shown the need for e�cient quality control in lossy compression of digital images. For DCT-based

compression techniques, we have developed the RD-OPT algorithm to e�ciently solve the quality control

problem. Similar techniques need to be developed for other compression techniques such as VQ. Further, a

complete VQ compression environment needs to be developed which e�ciently solves not only the codebook

training problem, but also the codebook selection and evolution problems. The feasibility of using lossy

compression with accurate quality control in scienti�c applications needs to be demonstrated, as scientists

are usually wary of \losing" any part of their data.
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