
Optimizing DCT Quantization Tables: an E�cient Approach

Viresh Ratnakar

University of Wisconsin-Madison

Computer Science Department

Madison, WI

Miron Livny

University of Wisconsin-Madison

Computer Science Department

Madison, WI

Abstract

In this paper we describe an algorithm for constructing quantization tables with optimal quality-

compression tradeo�s. The Discrete Cosine Transform (DCT) is widely used in image and video com-

pression schemes such as JPEG and MPEG. The quality and compression ratio of DCT-based schemes

depend on the table(s) used to quantize the 64 DCT coe�cients. We present an algorithm to design

quantization tables that optimize the quality-compression tradeo� for a certain class of quality and

compression measures. Signal-to-Noise ratios (SNR and PSNR) fall within the class of allowed quality

measures. Sum of entropies of quantized coe�cients falls within the class of allowed compression measures

and is a very close approximation of the actual bit-rate resulting from two-pass hu�man coding. The

algorithm can be used to achieve either a target quality or a target compression ratio, optimizing the

other quantity.

1 Introduction

We are developing an environment for production-mode compression of still-image and video data, where the

user can specify constraints on the desired quality and compression ratio, and the compressor produces the

best results under those constraints without any human assistance. The Discrete Cosine Transform [ANR74]

lies at the heart of most commonly used image and video compression schemes [PM93, MP91]. The extent of

compression achieved depends upon the coarseness of quantization of the transform coe�cients. The coarser

the quantization, the lesser the entropy of the quantized coe�cients. But coarse quantization also leads to

poor quality of the reconstructed image. Thus, the quantization table used directly determines the quality-

compression tradeo�. It is crucial that the quantization tables used in production-mode compression utilize

the particular characteristics of particular images and video sequences so as to o�er optimal compression-

quality tradeo�s to users.

Several approaches have been tried in order to design quantization tables for particular quality or com-

pression speci�cations. The most common of these is to use a default table and scale it up or down by a

scalar multiplier to achieve varying quality or compression. We have shown in [RL94] that this might not give

the best tradeo� possible. Other approaches include psycho-visual model based quantization [AP92, Wat93],

rate-distortion model based quantization [Jai89], and stochastic optimization techniques [MS93].

In this paper we present an algorithm for optimum quantization table design that does not rely on

visual or rate-distortion models and is not very expensive in terms of computation time. The algorithm

admits a wide range of quality measures (including PSNR, weighted PSNR) and produces quantization

tables optimizing the tradeo� between quality and compressed size. A key feature of the algorithm is that

it produces an array that can be used to read o� optimal quantization tables for a wide range of quality and

compression speci�cations.

2 DCT-based compression

Let I be a R �W image with pixel values in the range [1 : : :M ]. The image is divided into 8 � 8 blocks.

To each image block f , the Discrete Cosine Transform is applied to get an 8 � 8 block

^

f of coe�cients. An

1



8 � 8 matrix Q, called the quantization table, is then used to quantize the coe�cients in

^

f in a manner to

be described shortly. Let

^

f

Q

represent the resulting 8� 8 block of quantized coe�cients. Then,

^

f

Q

(u; v) =

^

f (u; v)==Q(u; v); 0 � u; v � 7:

Here == represents division followed by rounding to the nearest integer. That is, for any b > 0,

a==b =

�

b

a

b

+ 0:5c if a � 0

�b

�a

b

+ 0:5c if a < 0.

The errors in reconstruction are essentially due to this quantization step. The block

^

f

Q

is then entropy-coded

to give the compressed block E(

^

f

Q

). The decoder applies the Inverse Discrete Cosine Transform (IDCT) to

the block

^

f

0

constructed by dequantization:

^

f

0

(u; v) =

^

f

Q

(u; v) �Q(u; v) 0 � u; v � 7:

The block of pixels f

0

thus obtained is the �nal reconstructed block. The encoding and decoding process

can be summarized as:

f

DCT

�!

^

f

Quantization

�!

^

f

Q

Entropy-coding

�! E(

^

f

Q

);

E(

^

f

Q

)

Decoding

�!

^

f

Q

Dequantization

�!

^

f

0

IDCT

�! f

0

:

Let I;

^

I;

^

I

Q

; E(

^

I

Q

);

^

I

0

; I

0

represent respectively the original image, the collection of DCT coe�cient blocks,

the collection of quantized coe�cient blocks, the compressed image, the collection of dequantized coe�cient

blocks, and the reconstructed image. Given a target size S for the compressed image the problem is to choose

Q such that the di�erence between I and I

0

is minimized and size of E(

^

I

Q

) is no more than S. Alternately,

given a maximum tolerable error �, the problem is to choose Q such that the di�erence between I and I

0

is

no more that � and the size of E(

^

I

Q

) is minimized.

3 A general formulation of the problem

In this section we present a general formulation of the problem. The next section will present an algorithm

for solving the general problem. Subsequently, we will show how to use the algorithm for PSNR-entropy,

SNR-entropy, and weighted PSNR-entropy tradeo�s. We will also show how each of these can be modi�ed

to optimize tables to be used with a per-macroblock adaptive quantization scheme as in MPEG [MP91].

Let the 64 DCT coe�cients be numbered 0 : : :63, with the (u; v)

th

coe�cient being numbered 8u + v,

0 � u; v � 7. The main assumption is that quality and compressed size for an image compressed using a

quantization table Q[0 : : :63] are sums of coe�cient-wise qualities and sizes. Let MAXQ be the maximum

allowed value for any Q[n], 0 � n � 63. Let Size[0 : : :63][1 : : :MAXQ] and Quality[0 : : :63][1 : : :MAXQ]

be arrays with the following interpretations: The number Size[n][q] is the contribution of the n

th

DCT

coe�cient towards total compressed size, when Q[n] = q. Further, each Size[n][q] is a positive integer.

Similarly, Quality[n][q] is the contribution of the n

th

DCT coe�cient towards total quality. The arrays

Quality and Size are image-dependent and are the inputs to the optimization algorithm.

For an image compressed using quantization table Q, the total quality and compressed size, as functions

of Q, are:

Quality(Q) =

63

X

n=0

Quality[n][Q[n]] (1)

Size(Q) =

63

X

n=0

Size[n][Q[n]]: (2)

For any Q with entries in the range 1 : : :MAXQ, Size(Q) is an integer in the range 0 : : :MAXSIZE.

Given the arrays Quality[0 : : :63][1 : : :MAXQ] and Size[0 : : :63][1 : : :MAXQ] as inputs, the problem can

be stated in two ways:

2



1. Given a target quality P , �nd Q such that Quality(Q) � P and Size(Q) is minimized.

2. Given a target size S, �nd Q such that Size(Q) � S and Quality(Q) is maximized.

4 The algorithm

We use a dynamic-programming approach to solve the problem. Let BestQuality[0 : : :63][0 : : :MAXSIZE]

be a table whose entries have the following meaning: BestQuality[n][s] is the best (highest) total quality

for coe�cients numbered 0 through n such that the total size (for these coe�cients) is exactly s. That is,

BestQuality[n][s] is the maximum value of

P

n

k=0

Quality[k][Q[k]] subject to the constraint

n

X

k=0

Size[k][Q[k]] = s:

The algorithm starts with each entry in BestQuality set to UNDEFINED and then �lls the rows one by one.

The key idea is described in Theorem 1.

Theorem 1 For each n, 1 � n � 63, and each s, 0 � s � MAXSIZE, let X(n; s) be the set

X(n; s) =

8

>

>

<

>

>

:

Quality[n][q] + BestQuality[n� 1][s

0

]

�

�

�

�

�

�

�

�

1 � q � MAXQ;

s

0

= s� Size[n][q];

s

0

� 0;

BestQuality[n� 1][s

0

] 6= UNDEFINED

9

>

>

=

>

>

;

:

Then,

BestQuality[n][s] =

�

maxX(n; s) if X(n; s) is non-empty

UNDEFINED otherwise.

Proof: Suppose X(n; s) is empty. Then clearly, the size s cannot be achieved from coe�cients 0 through n.

Now suppose X(n; s) is non-empty and that p is the maximum value in X(n; s), achieved by setting Q[n] to

q. Assume BestQuality[n][s] = p

0

> p. Then the quality p

0

must be achieved with some value, say q

0

for Q[n].

Let p

00

= p

0

�Quality[n][q

0

]. Then the quality p

00

must be achievable from coe�cients 0 through n� 1, with

size exactly equal to s� Size[n][q

0

]. But then, p

00

= BestQuality[n� 1][s� Size[n][q

0

]], as otherwise p

0

can be

improved, contradicting p

0

= BestQuality[n][s]. Hence p

0

= Quality[n][q

0

] + BestQuality[n� 1][s� Size[n][q

0

]

implying p

0

2 X(n; s). Thus, p � p

0

, which contradicts p

0

> p.

To recover the quantization table for any desired quality or size, we maintain another data structure

QChoice[0 : : :63][0 : : :MAXSIZE]. QChoice[n][s] stores the value q that gave the entry in BestQuality[n][s].

We now present the algorithm in pseudocode. For ease of presentation, we assume that the constant

UNDEFINED behaves as minus in�nity (�1) in comparison tests.

Algorithm FillBestQuality

Input: Arrays Quality[0..63][1..MAXQ], Size[0..63][1..MAXQ]

Output: Arrays BestQuality[0..63][0..MAXSIZE], QChoice[0..63][0..MAXSIZE]

/* Initializations */

1. For n := 0 to 63

2. For s := 0 to MAXSIZE

3. BestQuality[n][s] := UNDEFINED

/* Fill row number zero */

4. For q := 1 to MAXQ

5. If (Quality[0][q] > BestQuality[0][Size[0][q]]) then

6. BestQuality[0][Size[0][q]] := Quality[0][q]

7. QChoice[0][Size[0][q]] := q

3



/* Main loop */

8. For n := 1 to 63

9. For q := 1 to MAXQ

10. For s' := 0 to MAXQUAL

11. If (Quality[n][q] + BestQuality[n-1][s'] > BestQuality[n][s' + Size[n][q]]) Then

12. s := s' + Size[n][q]

13. BestQuality[n][s] := Quality[n][q] + BestQuality[n-1][s']

14. QChoice[n][s] := q

Now, if a total quality requirement P is to be met, it's straightforward to �nd the least s such that

BestQuality[63][s] � P . Similarly, if a size requirement S is to be met, it's easy to �nd s such that s � S

and BestQuality[63][s] is the maximumover all such s. Thus, in both cases one can �nd a starting point s in

the 63

rd

row. To recover the desired quantization table Q from that point, the following procedure is used:

Procedure RecoverQ

Input: Arrays BestQuality[0..63][0..MAXSIZE], QChoice[0..63][0..MAXSIZE]; Target size s

Output: Quantization table Q[0..63]

1. For n := 63 downto 0

2. Q[n] := QChoice[n][s]

3. s := s - Size[n][Q[n]]

4.1 Complexity

Algorithm FillBestQuality clearly runs in time less than a constant times 64�MAXQ� MAXSIZE. In any

practical implementation, this can be substantially reduced. The loop range in line 9 can be made 1 to

MAXQ(n) where MAXQ(n) is the minimum of MAXQ and the least value of Q[n] that will make the n

th

coe�cient zero everywhere in the image. The loop range in line 10 for s

0

can be made 1 to the last entry

in the (n� 1)

th

row which is not marked UNDEFINED. Further, if only one given target quality or target

size is to be met, then the loops can be pruned to exclude cases which will clearly be outside the given

speci�cations. Also, note that only two rows of the table BestQuality need to be maintained at any point:

the current row and the previous row.

The key idea is entirely symmetric, in the sense that we can maintain an array BestSize instead of

BestQuality and use an algorithm FillBestSize analogous to FillBestQuality. In this case, quality will need

to be integral. The choice of the algorithm to be used depends on various factors such as the range of values

spanned by quality and size, and the errors incurred by quantizing them to integers.

The algorithm has another interesting feature: the �nal results are independent of the order in which

the coe�cients are considered. This implies that it can be readily parallelized. The 64 rows can be pairwise

combined, then the 32 \composite" rows can be pairwise combined, and so on.

5 PSNR-entropy formulation

In this section, we present the details on using the algorithm for optimizing the PSNR-entropy tradeo�s for

a particular image (or video sequence).

For an image I compressed using quantization table Q, we use PSNR as the quality measure for the

reconstruction I

0

. Recall that pixel values are in the range 0 : : :M .

PSNR(Q) = 10 log

10

(

M

2

MSE

Q

);

4



where MSE

Q

is the mean squared error between the pixel values in I and I

0

. For any Q, MSE

Q

is readily

obtained using some fundamental properties of DCT (see [RY90], for example), as follows. Recall the notation

in Section 2. For any image block f , we have,

DCT(f) =

^

f

DCT(f

0

) =

^

f

0

:

Using linearity of DCT,

DCT(f � f

0

) =

^

f �

^

f

0

:

Further, since DCT preserves L

2

norms,

X

0�i;j�7

(f(i; j) � f

0

(i; j))

2

=

X

0�u;v�7

(

^

f (u; v)�

^

f

0

(u; v))

2

=

X

0�u;v�7

(

^

f (u; v)� (Q(u; v) � (

^

f (u; v)==Q(u; v))))

2

Hence, MSE

Q

can be expressed as a coe�cient-wise sum of quantization errors.

To estimate the size of the compressed image, we use the coe�cient-wise sum of entropies. This provides

a very good estimate for bits-per-pixel used (BPP), as reported in [RFVK94].

BPP(Q) = (1=64)

63

X

n=0

H

Q

(n);

Where H

Q

(n) is the measured entropy of the values the n

th

coe�cient takes after quantization by Q[n]. If

p

n

(q; v) is the fraction of blocks where the n

th

coe�cient has the value v after quantization by q, then

H

Q

(n) = �

X

all v

p

n

(Q[n]; v) log

2

(p

n

(Q[n]; v)):

In terms of the general formulation of the previous section, we let Quality(Q) be the negative of the mean

sqaured error incurred using quantization table Q. That is,

Quality(Q) = �MSE

Q

:

For Size(Q), we quantize BPP(Q) to integer values by multiplying with a large constant BPPSCALE and

rounding to the nearest integer.

Size(Q) = Round(BPPSCALE � BPP(Q)):

We will see shortly how to choose BPPSCALE to meet any desired level of accuracy.

To construct the arrays Quality[0 : : :63][1 : : :MAXQ] and Size[0 : : :63][1 : : :MAXQ] such that Quality(Q)

and Size(Q) can be expressed as coe�cient-wise sums as in equations 1 and 2, we use a preliminary pass

through the image to gather the DCT statistics, as follows. The procedure GatherStats �lls an array

OccursCount[0 : : :63][�2VMAX : : :2VMAX]. The constant VMAX is the maximum absolute value any DCT

coe�cient can take (for 1-byte samples, M = 255 and VMAX = 2048). The value OccursCount[n][v] at

the end is the number of blocks where the n

th

DCT coe�cient c

n

is such that b2c

n

c = v (for c

n

� 0) or

�b�2c

n

c = v (for c

n

< 0). Thus, OccursCount is the histogram of DCT coe�cients in steps of 0:5. It can

be shown that for any real c and integer q � 1, ((c==1)==q) = (x==2q) where

x =

�

b2cc if c � 0

�b�2cc if c < 0:

The function TruncateTowardsZero used in Procedure GatherStats is de�ned as

TruncateTowardsZero(x) =

�

bxc if x � 0

�b�xc if x < 0:

5



Procedure GatherStats

Input: Image I

Output: Array OccursCount[0..63][-2VMAX..2VMAX]

1. Initialize OccursCount to 0 everywhere

2. For each 8x8 block f in I

3. g := DCT(f)

4. For n := 0 to 63

5. v := TruncateTowardsZero(2*g[n])

6. OccursCount[n][v]++

The array OccursCount can then be used to �nd, for any coe�cient n, any quantization table entry q, and any

integer value v, the number of times the n

th

coe�cient quantized by q takes the value v. This information

is used to �ll the arrays Quality and Size using the procedures FillQuality and FillSize, as follows.

Procedure FillQuality

Input: Array OccursCount[0..63][-2VMAX..2VMAX]

Output: Array Quality[0..63][1..MAXQ]

1. N := Number of pixels in the image

2. For n := 0 to 63

3. For q := 1 to MAXQ

4. Quality[n][q] := 0

5. For v := -2VMAX to 2VMAX

6. OriginalVal = v/2.0 + ((v < 0) ? -0.25 : 0.25)

7. QuantizedVal = v // (2q)

8. error := OccursCount[n][v] * Square(OriginalVal - QuantizedVal)

9. Quality[n][q] := Quality[n][q] - error

10. Quality[n][q] := Quality[n][q]/N

Procedure FillSize

Input: Array OccursCount[0..63][-2VMAX..2VMAX]

Output: Array Size[0..63][1..MAXQ]

1. N := Number of 8x8 blocks in the image

2. For n := 0 to 63

3. For q := 1 to MAXQ

4. entropy = 0

5. For QuantizedVal := (-VMAX) // q to VMAX // q

6. /* QuantizedVal is the quantized value */

7. count := 0 /* count is the # of times the value QuantizedVal occurs */

8. For each v such that v // (2q) == QuantizedVal

9. count := count + OccursCount[n][v]

10. prob := count/N

11. If (prob > 0) then

12. entropy := entropy - (prob * Log2(prob))

13. Size[n][q] := (BPPSCALE * entropy / 64) // 1

6



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

M
a
x
im

u
m

 a
b
s
o
lu

te
 e

rr
o
r 

(d
B

)

Reported PSNR (dB)

x = 0.25

x = 0.15

x = 0.05

Figure 1: Accuracy of reported PSNR

The loop ranges in these procedures can also be reduced, depending upon image characteristics.

5.1 Error analysis

Since OccursCount is the histogram of discretized DCT coe�cients, Quality(Q) will not be exactly equal to

�MSE

Q

. This is because the quantity

(c � (c==q) � q)

2

is being approximated by

((c+ �)� (c==q) � q)

2

;

where �0:25 � � � +0:25: Let I

�

be the image for which the DCT coe�cients are the same as those for I,

except that they are discretized to steps of 0:5 as in Procedure GatherStats. Hence the PSNR obtained will

be the PSNR with respect to I

�

, rather than than the original image I. Let

^

I

�

represent the DCT coe�cients

for I

�

. Let P

�

be the PSNR reported by the algorithm. Let the mean squared error between

^

I

0

and

^

I

�

be

denoted by �

�

. Let the actual mean squared error (between

^

I

0

and

^

I) be denoted by �. The error between

any coe�cient in

^

I

�

and the corresponding coe�cient in

^

I is at most 0:25. Hence the triangle inequality

implies,

p

�

�

� 0:25 �

p

� �

p

�

�

+ 0:25

) 1�

0:25

p

�

�

�

q

�

�

�

� 1 +

0:25

p

�

�

:

Since

P

�

= 10 log

10

255

2

�

�

;

the actual PSNR, P , is bounded as follows:

P

�

� 20 log

10

(1 + �(P

�

)) � P � P

�

� 20 log

10

(1� �(P

�

)); (3)

where �(P

�

) =

10

P

�

=20

1020

. If lower errors are desired, OccursCount must be stored with �ner accuracy. If the

error in estimating any coe�cient value is at most x, then the error bounds on P

�

can be obtained using 3

with �(P

�

) =

x10

P

�

=20

255

: Figure 5.1 shows the error bound versus P

�

for various values of x. For x = 0:25, the

error is at most 0:9 dB at P

�

= 40dB, and at most 0:3 dB at P

�

= 30dB.

The total error in Size(Q) is at most

64 � 0:5=BPPSCALE:

For example, if we set BPPSCALE to 10000, then the error is at most 0:0032 bits per pixel. This gives a

row size of 10000 in FillBestQuality.

7



5.2 Modi�cations

Instead of PSNR, the �nal table BestQuality can be used to pick a table for any desired SNR.

SNR = 10 log

10

(

Mean squared pixel value

Mean squared error

):

Similarly, it is straightforward to use weighted mean squared error instead of mean squared error, by assigning

di�erent weights to errors in di�erent frequencies.

For better visual quality, it is sometimes useful to to do adaptive quantization which gives more bits for

encoding regions in the image that are perceptually more signi�cant. This is done in MPEG by scaling the

quantization table up or down on a per-macroblock basis [MP91]. Thus, for any block f , the quantization

table used is Q�qscale

f

, where Q is a nominal quantization table and qscale

f

is a factor that depends upon the

macroblock containing f . The value of qscale

f

is typically chosen based upon characteristics such as texture,

total energy, presence of edges, etc. However, qscale

f

does not depend upon Q. Hence, while gathering

statistics (procedure GatherStats) qscale

f

can be determined for each block. The entry OccursCount[n][v]

can be �lled by setting v to be the actual value of the n

th

coe�cient divided by qscale

f

for the block under

consideration. Then, procedure FillBestQuality will optimize Q to give the best quality-compression tradeo�

for the adaptive quantization scheme.

6 Performance results

We have implemented the algorithm in C on various platforms. The total running time for Algorithm

FillBestQuality (including procedures FillSize and FillQuality) on an IBM POWERstation 370 is about 47

seconds. The time for gathering statistics is that required to do DCT on the entire image or video sequence.

FILL �gures, tables

7 Conclusion

FILL

References

[ANR74] Ahmed, N., Natarajan, T., and Rao, K. R. Discrete Cosine Transform. IEEE Trans. Computers,

C-2390-3, Jan. 1974.

[AP92] Ahumada Jr., A. J. and Peterson, H. A. Luminance-Model-Based DCT Quantization for Color

Image Compression. Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed.

(Proceedings of the SPIE), 1992.

[Jai89] Jain, A. K. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cli�s, NJ, 1989.

[MP91] MPEG I draft: Coding of Moving Pictures and associated audio for digital storage, 1991. Document

ISO/IEC-CD-11172.

[MS93] Monro, D. M. and Sherlock, B. G. OptimumDCT Quantization. Proceedings of Data Compression

Conference, pages 188{194, 1993.

[PM93] Pennebaker, W. B. and Mitchell, J. L. JPEG Still Image Data Compression Standard. Van Nostrand

Reinhold, New York, 1993.

[RFVK94] Ratnakar, V., Feig, E., Viscito, E., and Kalluri, S. Runlength encoding of quantized DCT

coe�cients. IBM RC 19693 (87318) 8/5/94 (To appear in SPIE '95), 1994.

8



[RL94] Ratnakar, V. and Livny, M. Performance of Customized DCT Quantization Tables on Scienti�c

Data. Science Information Management and Data Compression Workshop Proceedings, NASA

Conference Publication 3277, pages 1{8, Sept 1994.

[RY90] Rao, K. R. and Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications. Aca-

demic Press, Inc, San Diego, California, 1990.

[Wat93] Watson, A. B. DCT quantization matrices visually optimized for individual images. Human Vision,

Visual Processing, and Digital Display IV, B. E. Rogowitz, ed. (Proceedings of the SPIE), 1993.

9


