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Not only is the number of described species a very small proportion of the estimated extant number of
taxa, but it also appears that all concepts of the extent and boundaries of ‘species’ fail in many cases. Using
conserved molecular sequences it is possible to define and diagnose molecular operational taxonomic units
(MOTU) that have a similar extent to traditional ‘species’. Use of a MOTU system not only allows the
rapid and effective identification of most taxa, including those not encountered before, but also allows
investigation of the evolution of patterns of diversity. A MOTU approach is not without problems, parti-
cularly in the area of deciding what level of molecular difference defines a biologically relevant taxon, but
has many benefits. Molecular data are extremely well suited to re-analysis and meta-analysis, and data
from multiple independent studies can be readily collated and investigated by using new parameters and
assumptions. Previous molecular taxonomic efforts have focused narrowly. Advances in high-throughput
sequencing methodologies, however, place the idea of a universal, multi-locus molecular barcoding system
in the realm of the possible.
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... endless forms most beautiful and most wonderful
have been, and are being, evolved.

(Darwin 1859)

1. ENDLESS FORMS: THE TAXONOMY DEFICIT

It is widely recognized that not only is the biotic diversity
on planet Earth currently undergoing a mass extinction,
but that the true extent of the extinction is unknown (May
1988). Although prominent marker taxa such as endang-
ered vertebrates are well studied, most taxa remain to be
discovered (Blaxter 2003). It is estimated that there are
ca. 1.5 million described taxa (at the species level; de
Meeus & Renaud 2002). However, in most major groups
(phyla or divisions) the number of described taxa is a small
proportion of the estimated diversity. Thus the true
species-level diversity of nematodes, with ca. 26 000
described species, is estimated to be in the low millions
(Lambshead (1993); but see also an alternative view
expressed in Lambshead & Boucher (2003)), whereas only
ca. 25% of arthropods have been described, despite a
‘known’ species count of over one million.

By examining the current rates of description of new
taxa, the gaps in our knowledge can be split into two types.
At the species and genus level, we are ignorant of most
diversity in most taxa. Above the generic level, discovery
of new families, orders and phyla is increasingly rare.
Novel insect orders are a matter for wide discussion (Klass
et al. 2002), and novel animal phyla have been identified
only in the past 100 years by the inestimable R. M. Kris-
tensen, who has described two (Kristensen 1983; Funch &
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Kristensen 1995). New higher taxa are usually small and
rare, or at least unculturable. Thus, many new prokaryotic
divisions (the systematic bacteriology analogue of phyla)
have been described in recent years in culture-inde-
pendent studies (Pace 1997). For some taxa, a relatively
robust estimate of the depth of our ignorance can be
made: the vertebrates are unlikely to have more than 10%
undescribed taxa. For others, however, we do not even
know the extent of our ignorance, and estimates of ‘true’
species-level diversity are mere guesses with wide confi-
dence limits. Thus, for nematodes estimates range from
40 000 to 100 million (Blaxter et al. 1998).

A confounding problem in counting the diversity of taxa
is that the basic grouping, the species, does not have a
single definition. There are many different philosophical
concepts of ‘the species’ that often conflict, and all fail in
some cases (Adams 1998, 2001). Thus, biologically based
(interbreeding) concepts fail for all asexual lineages, or for
specimens pickled in a jar, and morphological ones fail for
reproductively isolated but recently separated sibling taxa.
The issue has been concisely summarized by Byron
Adams as ‘the species delimitation uncertainty principle’
(Adams 2001): the more closely and precisely a species
concept is defined, the less possible it becomes to diagnose
whether a particular individual or specimen is a member
of that species. Expanding ideas of ‘true diversity’ have
historically been matched by a reducing pool of system-
atists able to diagnose that diversity, and by the realization
that the taxonomic effort to classify the hyper-abundant
small taxa is far in excess of any currently available work-
force (Lawton et al. 1998). This has led to recurring cries
of crises in taxonomy, and of the need for a rejuvenation
of the field (Godfray 2002a,b). Below, I explore the
possibilities and promise of the introduction of a genetic
marker system, a DNA barcode, into taxonomic
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initiatives. An impassioned and well-argued ‘plea for DNA
taxonomy’, which should be consulted for alternative
views on this topic, has been made by Tautz et al.
(2002, 2003).

2. THE PROMISE OF DNA BARCODES

The product barcode has become a universal feature of
modern life. A barcode is a machine-readable digital tag,
usually a series of stripes, which encodes information
about the item to which it is attached. There are several
alternative barcode systems that all have the same features:
they identify items to a useful level of uniqueness. In a
hospital this is to an individual human, whereas in a super-
market it is to one instance of a multimillion-member
class. The barcode can also include some systematic or
‘taxonomic’ information, yielding data not only on type
but also on attributes such as origin, major classification
and date. Thus an apple may, in addition to a tag indicat-
ing what sort of apple it is, have a major classification
‘fresh produce’, a ‘best by’ date and a supplier code. A
similar universal system is used in publishing, where the
ISBN not only uniquely identifies the book, but also the
publisher and the edition.

The genomes of living organisms are analogous to bar-
codes. Despite functional constraints, there is ample infor-
mation space in a genome for complex records of
individual identity and group membership. In the human
population, it is estimated that each unrelated pair of
individuals will differ at ca. 0.1% of their DNA bases
(across the 3 gigabase genome this amounts to 3 × 106

differences). However, these within-taxon differences are
not randomly distributed: they cluster in the less
important parts of the genome—in the third, wobble bases
of codons, and in intronic and intergenic DNA. There are
therefore significant stretches of the genome that are
maintained by selection to be (near-)identical between
members of a taxon, but which can vary between taxa. It
is these segments that are most useful for identification
and taxonomy. As sequences evolve, they maintain rec-
ords of their deep pasts as well as markers of their more
recent history. A DNA barcode, derived from the
sequence of a part of the genome of the organism, could
in theory carry both specific and systematic data. This
evolutionary aspect qualitatively differentiates DNA bar-
codes from product barcodes: the data they encode about
relationships are retained through evolution in a stochastic
fashion, rather than being hard-coded for utility by a
rational agent.

There exists an alphabet soup of methods for generating
a molecular fingerprint from an organism (restriction frag-
ment length polymorphisms, amplified fragment length
polymorphisms, denaturing gradient gel electrophoresis).
These are generally based on assessment of length differ-
ences between fragments tagged by the presence of a short
sequence (such as a restriction enzyme site or the presence
of a repetitive sequence element). Although these finger-
prints do yield barcode-like data, they are less than opti-
mal for a molecular taxonomy because of problems with
high within-taxon variability and lack of confident assign-
ment of orthology between markers. DNA sequences can
overcome these hurdles. A candidate DNA barcode
sequence target must be known to be orthologous between
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specimens, as paralogues will define gene not organismal
relatedness, and must encompass sufficient variability to
allow discrimination between taxa useful to the research
programme. The Darwinian relatedness of organisms
means that there are many candidate genomic sections
available. Many genes perform core functions in life pro-
cesses yet vary between individuals. Some regions of the
genome are sufficiently conserved to allow the use of ‘uni-
versal’ oligonucleotide primer sets for PCR amplification
but also contain informative sequence difference. These
target genes are extremely unlikely to be functionally
involved in the process of speciation, and thus genetic
variation between individual organisms is not directly
attributable to taxon status. However, as lineages diverge
in phylogenetic time, random fixation of mutations (both
those present in the shared ancestor of the populations
and those arising in the time since separation) will result
in the accumulation of fixed differences. Thus a universal
DNA barcode marker will not, in most cases, be able to
distinguish very recently separated taxa (Verheyen et al.
2003).

To be clear that what is being estimated for a specimen
is not necessarily its membership of a ‘species’, however
defined, we call the taxa yielded by grouping of specimens
through a set of markers OTU. We have coined the term
MOTU (Floyd et al. 2002); MOTU have also been called
‘phylotypes’ and ‘genospecies’. MOTU can be simply
defined by sequence identity: if two specimens yield
sequences that are identical within some defined cut-off,
they are assigned to the same MOTU. However, it is
important to note that MOTU membership of a specimen
need not correspond to its membership of any other OTU,
measured by other models (biological or morphological).
This problem is not unique to MOTU, as all methods
must use some diagnostic heuristic, which may result in
incongruence in OTU circumscription. However, for
MOTU this problem is neatly definable in terms of the
level of sequence identity used in their definition: if a
researcher thinks that the rules used were too lax or too
strict, they can simply acquire and reanalyse the data.
Given that it is clear from many gene sequences that dif-
ferent higher taxonomic groups can differ markedly in
their background and adaptive substitution rates, and that
different sized populations might be expected to harbour
different levels of within-taxon variation (also dependent
on the populations’ evolutionary history), it may be neces-
sary to define different heuristics for MOTU designation
depending on the higher taxon studied.

3. THE SPECIAL PROPERTIES OF DNA BARCODES

With a sequence-based molecular taxonomy, a single
technique is applicable to all taxa: extract DNA, PCR and
sequence. A standard protocol for DNA barcode determi-
nation is simple to devise and promulgate, and can be
applied on a high-throughput scale (see figure 1 for a sum-
mary of a DNA barcoding system). It is not necessary to
have a specific training in the nuances of the taxonomy of
the group of interest. Complete data can be obtained from
single specimens irrespective of sexual morph or life stage,
often without compromising parallel or subsequent morpho-
logical identification. Morphologically indistinguishable taxa
can be diagnosed without the need for live material,
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Figure 1. An overview of the process of DNA barcoding for taxon identification. This cartoon illustrates an overall strategy
that could be followed in a molecular barcoding and taxonomy programme. By using PCR gene fragments, the DNA barcode
targets can be isolated either from single specimens with digital images or preserved parts as vouchers, or from DNA extracted
from a community of organisms (‘environmental DNA’). The sequences generated constitute the barcodes for that specimen,
or for the unidentified organism. The barcode sequences can be compared with each other to define membership of MOTU,
and thus circumscribe taxa. The sequences can also be compared with orthologous barcode sequences obtained from
specimens previously identified to taxon by other means, and thus some correspondence between MOTU and other
taxonomic systems achieved. In the case of barcodes derived from ‘environmental DNA’, the discovery of novel sequence
types can lead to a directed prospecting for the originating organism (see also Oren 2004).
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particular morphs or population measures (see also Gas-
ton & O’Neill 2004). Finally, previously unencountered
taxa are as easy to analyse as dominant taxa, and the perils
of accidental synonymy or elision are much reduced.

Most importantly, the raw data of the taxonomic diag-
nosis process, the sequences, can be used to place MOTU
in the context of the rest of biology. We stand on the
shoulders of giants, workers who have diligently described
and summarized the biology and ecology of thousands of
species. These data are crucial to deriving biology from
sequence. Barcode sequences can be generated from type
specimens (holotype, paratype or neotype) under strict
conditions of traceability and verification. These stepping-
stone sequences provide a route between the MOTU and
traditional systems. A specimen barcode can be compared
with sequences derived from other molecular taxonomy
initiatives. If a close match is found to a named taxon,
recourse can be made to traditional monographs and keys
to understand the biological properties of the identified
MOTU and their close relatives (Floyd et al. 2002) and
molecular phylogenetic analyses can be used to generate
testable hypotheses of MOTU interrelatedness.

The sequences used thus far for molecular barcoding
are the nuclear small subunit ribosomal RNA gene (SSU,
also known as 16S in prokaryotes, and 18S in most
eukaryotes), the nuclear large-subunit ribosomal RNA
gene (LSU, also known as 23S and 28S; the highly vari-
able expansion loops that are flanked by conserved stem
sequences are particularly useful), the highly variable
internal-transcribed spacer section of the ribosomal RNA
cistron (ITS, separated by the 5S ribosomal RNA gene
into ITS1 and ITS2 regions), the mitochondrial cyto-
chrome c oxidase 1 (CO1 or COX1) gene and the chloro-
plast ribulose bisphosphate carboxylase large subunit
(rbcL) gene.

The relative utility of these can be rated by: (i) their ease
of isolation from a sample; (ii) the likelihood of within-
individual variation; (iii) the ease of alignment and analy-
sis; (iv) the number of sequences already known from
identified specimens; and (v) the potential universality of
a barcode based thereon. For all these targets, PCR facili-
tates amplification from even single cells, and their multi-
copy nature is also advantageous. Sequencing is essentially
equally easy for all DNA fragments barring extreme base
composition biases, polynucleotide runs and stable sec-
ondary structures. However, the ITS region often varies
by insertions or deletions within an individual, making
sequencing very difficult (as two independent sequence
types are being analysed simultaneously) (Elbadri et al.
2002); ITS sequences are also very difficult to align as
they tend to evolve by insertion and deletion rather than
substitution, making the secondary steps of phylogenetic
reconstruction problematic. SSU, LSU, COX1 and rbcL
are each relatively simple to align and analyse, though
exceptions do occur. For example, the SSU of the rhabdi-
tid nematode Pelodera strongyloides has regions that allow
facile alignment with related taxa such as Caenorhabditis
elegans interspersed with segments of apparently ran-
domized bases (Fitch et al. 1995). The protein-coding
genes COX1 and rbcL have the pleasing property of being
reliably partitioned into codons with first, second and
third base positions. Within these, fourfold redundant
sites in third base positions will be essentially neutrally
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evolving, and thus will have a higher rate than twofold
redundant sites, first bases or second bases: these par-
titions allow analysis at many different levels of diver-
gence.

In terms of existing databases for these sequences, the
ITS and SSU are best represented with over 30 000
sequences each; for COX1 and rbcL there are ca. 17 000
sequences each. SSU and LSU are truly universal genes,
found in every organism, and there are excellent and well-
tested primer sets that work on most taxa. The ITS region
is peculiar to Metazoa, but can be amplified by using pri-
mers derived from flanking SSU and LSU genes, and is
thus universally amplifiable. As COX1 is derived from the
proteobacterial symbiont that gave rise to the mitochond-
rion, it also has universal presence, but primer sets for
amplifying COX1 fragments tend to be less universally
applicable. rbcL, as a chloroplast gene, is only useful for
Viridiplantae and related taxa. For these organellar genes
there are problems associated with horizontal acquisition
of organelles through hybridization events (Bergthorsson
et al. 2003). From the above, I would suggest that any
barcoding system should aim to acquire data for at least
a nuclear and an organellar gene from single specimens.
For specimen-independent, ‘environmental DNA’-based
surveys, any target may do, but the universality of SSU
and LSU primer sets recommends them.

The sequence data from a barcoding experiment is not
the only important output: the base string is derived from
a sequencing experiment performed on a DNA extract
from a specimen that may have remaining morphology or
have associated digital vouchers (De Ley & Bert 2001).
Thus, it is important, when considering the storage of bar-
code data, to also consider long-term storage of the speci-
mens and images, and the DNA extracts (for example
desiccated and frozen on paper discs). These may allow
later addition of more data from additional genes. The
sequence experiment data, usually a fluorescent sequencer
chromatogram, can also be archived electronically. The
chromatogram (or base quality scores derived from it;
Ewing & Green 1998; Ewing et al. 1998) can indicate the
level of support each base called has, and thus assist in
discriminating between error and biology. In my opinion
it is important to archive all sequences, and not just one
representative or consensus from each MOTU found in a
survey. This will allow later meta-analyses across datasets
using standardized parameters. The Internet is the perfect
medium for this (Bisby et al. 2002; Godfray 2002a; Lee
2002; Oren & Stackebrandt 2002), particularly perhaps
through a carefully designed and implemented taxonomic
annexe to the central sequence databases of the European
Bioinformatics Institute, National Center for Biotechnol-
ogy Information and DNA Database of Japan (though
there are problems with this approach; Tautz et al. 2003).
Examples of how such a universal database might function
are available in the form of the European and US riboso-
mal RNA database projects (Wuyts et al. 2001, 2002; Cole
et al. 2003), which each aim to collect, align and make
available SSU and LSU sequences from all taxa.
Importantly, the US ‘RDP-II’ (Cole et al. 2003) has a
focus on the analysis of environmentally sampled, culture-
independent datasets (see http://rdp.cme.msu.edu/html/).
A project to promote DNA taxonomy has also been
initiated in Munich (see http://www.zsm.mwn.de/
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DNATAX/) and a DNA barcoding Web site focusing on
the COX1 gene is under development (see http://www.
barcodinglife.com/) (Hebert et al. 2003a,b).

4. PROBLEMS WITH BARCODES: WHEN DOES A
SEQUENCE MEAN A TAXON?

From these remarks it will be seen that I look at the term
species, as one arbitrarily given for the sake of con-
venience to a set of individuals closely resembling each
other, and that it does not essentially differ from the term
variety, which is given to less distinct and more fluctuat-
ing forms. The term variety, again, in comparison with
mere individual differences, is also applied arbitrarily,
and for mere convenience sake.

(Darwin 1859)

Differences in sequences between specimens can arise
in several ways. They could be due to methodological
errors, be part of the natural, within-OTU variation or be
related to a distinction between taxa. It is thus necessary
(as with other methods, biological or morphological) to
use heuristics for MOTU distinction based on known
error rates in measurement, and perceived levels of differ-
ence that distinguish ‘useful’ OTU. For MOTU, these
measures can be made explicit. For example, from known,
accepted taxa within a particular group, the level of natu-
ral variation present within a taxon (say a breeding popu-
lation of organisms) can be measured and compared with
the difference observed between populations, or between
taxa.

Both nuclear and organellar genomes can be ‘hetero-
zygous’, and the multiple copies of target genes in the gen-
ome can differ in sequence. For example Plasmodium
falciparum, the malaria parasite, has multiple different
ribosomal RNA cistrons that are differentially expressed
in the complex life cycle (Mercereau-Puijalon et al. 2002).
Organellar genomes can be heteroplasmic. A useful bar-
code marker will have very low within-population and
between-population diversity, and measurable between-
taxon diversity.

Multiple resequencing of a single specimen can be car-
ried out to assess both the PCR-generated and sequencing
technology-generated error rate. It is likely that these
methodological errors will not always be sequence-inde-
pendent, as the biochemistry of thermostable polymerases
is sequence environment sensitive. A comparison between
the between-taxon difference rate and the within-taxon
variation and error rates will define the accuracy and
specificity of MOTU definition. Sequencing directly from
PCR products rather than from clones of PCR amplicons
eliminates most PCR-introduced error, and in particular
eliminates the problem of chimaeric clones resulting from
between-amplicon priming. Current sequencing method-
ologies yield sequences that are usually highly accurate
over ca. 500 bases (less than 1 error in 10 000), and thus
the experimental error rate is usually much less than natu-
ral variation.

A major issue still to be resolved is how to derive
MOTU from barcode sequences. As not all variation
between sequences will be biologically relevant (i.e. some
will be experimental error, and some will be within-taxon
variation), simply classifying every unique sequence type
as a biological OTU is not biologically realistic. Similarly,
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using a simple percentage difference from a series of refer-
ence sequences, as is the norm in prokaryote studies (see
below) is also not optimal. In our analyses of nematode
DNA barcodes (see below) we (Floyd et al. 2002; Blaxter
et al. 2003) have developed a series of informatic tech-
niques that address issues of sequence quality, sequence
length and between-sequence difference to generate
MOTU (clusters of sequences) at any level of base pair
difference desired. We have noted that whatever level of
difference is selected as the discriminant, re-running a
clustering process will not necessarily yield the same set of
MOTU. The same problem also arises in many sequence-
clustering issues in genomic biology (Parkinson et al.
2002). Thus, with a taxon delimitation threshold of two
base differences, a pair of sequences that each differ by
two bases from a third sequence, but by four bases from
each other, could be grouped into one or two taxa
depending on the order in which they are analysed. In
recognition of this we would propose that any clustering
into MOTU is based on repeated cycles of random
addition of sequences, and that the resulting MOTU are
recognized as instances of a stochastic process. Thus, the
importance of archiving the raw sequence data as well as
the derived OTU arises; with the raw data, a re-analysis
is possible. Other methods of analysis, such as using multi-
dimensional scaling to cluster sequences (Hebert et al.
2003b), are also viable.

The resolution of these issues will only come from
extensive testing of DNA barcode MOTU versus other
sorts of biological taxonomic unit identification, using
real, wild populations as substrates. Are MOTU dis-
covering taxa that traditional biology would recognize? Are
traditional taxa recovered as MOTU? Where there are dis-
crepancies, which method better reflects the underlying
biology?

5. DNA BARCODING IN PRACTICE

The primary aims of taxonomy are to name, circum-
scribe, describe and classify species. The first goal is con-
vention but the remainder are science.

(Seberg et al. 2003, p. 63)

From the above, I suggest that a DNA barcode system
is likely to be able to achieve the three scientific goals of
taxonomy defined by Seberg et al. (2003) and thus sup-
port a broad spectrum of taxonomic and systematic stud-
ies. But do DNA barcodes work in practice? The answer is
a resounding yes, but some work remains before a barcode
system is likely to become truly universal.

Ten years ago, the first surveys of bacterial diversity
using culture-independent methods shocked the world of
prokaryotic systematics. By amplifying and sequencing
16S SSU genes amplified from ‘environmental DNA’
extracted from sieved-out microbes (Giovannoni et al.
1990; Fuhrman et al. 1992), a new view of the diversity
of the microbial world emerged (Woese 1996; Pace 1997;
Hugenholtz et al. 1998). In all environments, the numbers
of identifiably different SSU sequences was 20–100-fold
greater than those measured in culture-based studies.
These new sequences were sometimes sufficiently close to
known cultured taxa, but in many cases they suggested
deeply divergent lineages with no known cultured
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representatives. Many of these lineages have subsequently
been shown to be widespread, in that members have been
sequenced from many different environments, and some-
times dominant, either numerically or ecologically. The
rate of discovery of new ‘domains’ has slowed, but even
apparently impoverished habitats still yield new
sequences. Terrestrial soils from temperate (Furlong et al.
2002) or tundra (Zhou et al. 1997), lakes (Casamayor et
al. 2002), and even the flora of the pig gut (Leser et al.
2002) yield a similar story: unexpected, deep diversity.
However, it is noteworthy that some globally distributed
ecosystems have an overall low bacterial diversity
(Hentschel et al. 2002).

The explosion of sequence data in bacterial typing has
led to the establishment in microbial systematics of a series
of conventions for analysis and naming originating from
initial efforts to compare bacterial genomes by hybridiz-
ation (Wayne et al. 1987; Stackebrandt & Goebel 1994).
This initial convention has been translated into a series of
heuristics for defining ‘genospecies’ on the basis of pro-
portional sequence identity (Cohan 2002). The underly-
ing concept is that, because bacteria have a clonal
population structure that allows rapid fixation of sequence
change, it is possible for lineages to differ in derived sub-
stitutions and yet be part of the same genospecies. How-
ever, the heuristics used by different workers are not the
same: some use a ‘strict’ 99% identity (over ca. 500 bases),
whereas others use a more relaxed 97% or even 95%. This
difference in taxon discrimination makes comparison of
different studies difficult at best. Bacteria also embody one
of the more cogent arguments against a taxonomy based
on ‘an infinitesimally tiny fraction of an organism’s
genome’ (Lipscomb et al. 2003): horizontal gene transfer
(Smith et al. 1992; Doolittle 1999; Nesbo et al. 2001).
The transfer of genes between two distinct taxa has two
effects. The horizontally transferred genes will have a dif-
ferent phylogenetic history from the remainder of the gen-
ome, and thus any taxonomy or systematics based on
them will be incongruent. However, even in the presence
of rampant horizontal acquisition, a core genome of
coevolving genes can be recognized (Daubin et al. 2003),
and for a universal system a member of this core genome
is recommended. Secondly, transferred genes are often
physiologically and ecologically dominant (Van Tienderen
et al. 2002). Variation in the resident ribosomal RNA
genes will have little direct effect on the functional abilities
of bacterial taxa, whereas acquired nitrogen fixation, pho-
tosynthetic or xenobiotic metabolism genes will. It may
therefore be more cogent to a particular research pro-
gramme to determine the molecular diversity of ecologi-
cally important genes rather than the organisms that carry
them (Karp et al. 1997; Van Tienderen et al. 2002).

The success of the SSU-based bacterial diversity dis-
covery programme has inspired workers focused on eukar-
yotic groups to test similar methods. From the first fruits
of these studies it is evident that eukaryotic microbial
diversity has likewise been underestimated (Moreira &
Lopez-Garcia 2002). These studies have in the main used
the 18S SSU. SSU gene libraries derived from planktonic
organisms of deep sea (Diez et al. 2001; Lopez-Garcia et
al. 2001; Massana et al. 2002), open ocean (Moon-van der
Staay et al. 2001), deep-sea vent communities (Edgcomb et
al. 2002) and an acidified iron-rich spring-fed river (Amaral

Phil. Trans. R. Soc. Lond. B (2004)

Zettler et al. 2002) have been sampled by sequencing. In
each case novel sequence-defined taxa have been dis-
covered, including those that suggest new major clades.
Some of these new eukaryotes are so small that they have
previously been included with the prokaryotes (Diez et al.
2001; Massana et al. 2002). From these and other more
directed studies, the Eukaryota can now be divided into
eight domains, only two of which are familiar (fungi plus
animals, green photosynthesizers including plants).

Fungi, particularly the fungi of soils and the rhizo-
sphere, are problematic from a morphological taxonomic
standpoint, as taxon diagnosis is often made by
examination of the spores whereas the bulk of fungal
material is hyphal. SSU-based analyses of rhizosphere
fungi suggest both a greater overall diversity of taxa
involved than is evident from spore analysis, and a
dynamic association between plant roots and their sym-
bionts (Vandenkoornhuyse et al. 2002); it is likely that sur-
veys focused on fungi will reveal a similar diversity in other
habitats. In the Viridiplantae, molecular taxon markers
have been used for some time, based mainly on the
chloroplast-encoded rbcL gene. In addition to identifying
taxa (see, for example, McDaniel & Shaw 2003) rbcL
sequences can also used to untangle species’ hybridization
history (Nishimoto et al. 2003) and to probe the deep phy-
logeny of the plants (Savolainen et al. 2000).

Application of molecular barcoding concepts to animals
has been slowest off the ground, perhaps because of the
obsession of most zoologists with larger taxa, and the
abundance of morphology in the hyper-speciose arthro-
pods. However, even in big animals, molecular tags are
being used to define new taxa from within the confines of
old, most spectacularly in the case of the ‘new’ species
Loxodonta cyclotis, the African forest elephant (Grubb et
al. 2000; Roca et al. 2001; Eggert et al. 2002). For meio-
faunal organisms, the nematodes appeared to us to be a
good test case and the nuclear SSU gene an ideal target
(Blaxter et al. 1998). Nematodes are hyper-abundant (14
billion per hectare of a poor Scottish upland soil) and low
on the list of animals with an exciting morphology. Within
the community of nematode morphologists there is wide-
spread recognition that many characters are homoplasious
between taxa (De Ley 1999), and that a taxonomist may
diagnose sexual species by only the merest asymmetry in
cell position (Felix et al. 1996). Preliminary surveys of
SSU sequence suggested that divergence between congen-
eric species pairs was likely to be sufficient to diagnose
taxa at an appropriate species or genus level (Blaxter et al.
1998). A small grassland field in southern Scotland, the
focus of the Natural Environment Research Council Soil
Biodiversity and Ecosystem Function programme, was
chosen, and nematodes sampled individually by direct
sequencing of PCR products. Taxa were defined by more
than 99.6% identity in sequence by using a custom
sequence-clustering algorithm adapted from a genomics
application (Parkinson et al. 2002). Culturable diversity
(seven MOTU in 170 cultures derived from 1200 individ-
ual females tested; Floyd et al. 2002), was far below
culture-independent diversity (between 135 and 150
MOTU from 2000 specimens of both sexes and all stages;
Floyd et al. 2004). Given that there are approximately 200
known soil nematode species in the UK, this 1 ha hillside
field appears to be hyper-diverse, but it is more likely that
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the MOTU method is identifying taxa cryptic to morpho-
logical analysis. Importantly, we were able to test, for cul-
tured isolates, the match between MOTU, morphological
taxa and taxa as defined by reproductive compatibility:
MOTU and reproductive taxa were fully congruent,
whereas morphology was at best indiscriminate and at
worst in conflict even between specimens from the same
isofemale line (Eyualem & Blaxter 2003). For another
example of a nematode barcoding project, see figure 2.

More recently, Paul Hebert and colleagues (Hebert et
al. 2003a,b) have proposed the use of the COX1 gene as
a metazoan barcode target. They have shown that COX1
sequences can correctly diagnose moth specimens to mor-
phologically defined species, and in general, assign an
unknown specimen by sequence to higher taxonomic
ranks (Hebert et al. 2003b). Comparison of COX1
sequences between congeneric species pairs shows that in
all but a few cases (notably the Cnidaria) the sequence
divergence is greater than 2% (Hebert et al. 2003a). This
bodes well for the use of COX1 as a barcode, but there
may be limitations in its use for environmental DNA sur-
veys as the ‘universal’ primer binding sites are missing
from several major taxa (such as orders of tardigrades
and nematodes).

6. BEYOND BARCODES: SYSTEMATICS FROM
DNA

Barcode DNA sequences are chosen for both conser-
vation, permitting facile alignment between instances, and
variability, allowing us to diagnose taxa. These features
also make them suited to model-driven phylogenetic
analysis. Although it is essential to keep in mind that what
are being constructed are gene trees, these trees, we hope,
bear a significant relationship to the phylogeny of the taxa
under consideration. There are many reasons, both bio-
logical and methodological, why molecular phylogenetic
analyses will robustly find a tree that is ‘wrong’ by other
criteria, and DNA barcode target sequences are no less
prone to these artefacts than any other. However, all the
barcode targets have a long and fruitful history of use in
molecular phylogeny, and many tools and algorithms are
available to assess deviance from normal behaviour, and
in many cases correct for it (Felsenstein 1978; Swofford
et al. 1996; Huelsenbeck 1997).

Barcode sequences are, in general, short (ca. 500 bases,
the length of a single sequencing run) and this fundamen-
tally limits their utility in resolving deep branches
(between orders or phyla) in phylogenies. However, they
are perfect for ordering the terminal and sub-terminal
nodes on trees. Despite fears to the contrary (Seberg et al.
2003), the conservation of the target sequences means that
in most cases, alignment is unproblematic. Difficulties can
arise when a sequence from a completely novel group is
discovered, but this is but a spur to closer analysis rather
than a fatal flaw.

Adding DNA barcodes to newly described taxa is a rela-
tively simple task. Excitingly, it may be possible in some
circumstances to extend the reach of molecular taxonomy
into the past. DNA is a relatively stable molecule, and
can be isolated from museum specimens stored dry or in
alcohol. Isolation of ‘vintage’ DNA from formalin-fixed
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Figure 2. (Overleaf.) DNA barcoding in practice: a survey of
littoral nematodes. As an example of a molecular barcoding
project, a set of unpublished data is presented from R.
Roche and M. Blaxter, surveying the nematode communities
of three Scottish beaches (a sheltered muddy beach at Loch
Fyne, an exposed sandy beach in the Orkneys and an
estuarine sandy beach at Gullane, shown in (c)). Between 30
and 35 single nematodes were isolated from each sample
using standard methods. Loch Fyne was sampled twice.
Nematodes were identified to order (and genus where
possible) before processing for sequencing of the 5�-end of
the SSU gene. The 134 resulting sequences were clustered
into MOTU by using the procedure of Floyd et al. (2002).
Fifty-one MOTU were defined containing 1–13 individuals.
An illustrative phylogram is shown in (a), generated by using
the neighbour joining algorithm using absolute differences:
sequences belonging to the same MOTU are boxed. The
MOTU could be ascribed to known taxa in only a few cases,
owing to the paucity of sequences available from marine
nematodes, but, for example, the sequences in MOTUF047
are identical to one determined from Ascolaimus elongatus
whereas two of the specimens whose sequences were
clustered in MOTUF001 were identified as Monoposthia
costata, suggesting that all those specimens were M. costata
or a very closely related taxon. The distribution of MOTU
between sites is shown in a Venn diagram in (b). Each
sample of ca. 35 nematodes yielded 12–15 MOTU. Within
Loch Fyne, the two independent samples shared only four
MOTU, and only two MOTU were common to Orkney and
Loch Fyne, and Gullane and Loch Fyne. This low overlap
suggests high within- and between-site diversity.

specimens is more difficult, and more destructive of the
specimen (Herniou et al. 1998). For larger specimens,
such as mammals and birds, collections made in the past
few hundred years can be surveyed by sampling a few
hairs, feather bases or a few milligrams of tissue. These
small subsamples can yield a canonical sequence for a
taxon holotype or paratype, and help address the status of
extinct taxa or populations and their relationships to mod-
ern ones. For smaller, alcohol-preserved specimens, for
example flatworms (Herniou et al. 1998), sampling may
be more destructive but still retain specimen morphology.
This is particularly true of arthropod taxa, where it is the
sclerotized or calcified exoskeletal elements that yield
morphological data and the softer tissues within that yield
DNA sequences (Dabert et al. 2001).

A major unanswered issue with old, vintage and ancient
DNA is that of age-induced changes that result in base
substitution, either biased substitution (where one base is
preferentially ‘mutated’ to another) or accelerated substi-
tution (where the process is unbiased, but results in overall
increased observed substitution rates; Herniou et al. 1998;
Hofreiter et al. 2001a,b). These effects would tend to pro-
duce overestimates of taxon number in a molecular taxo-
nomic framework but should be minimized by repeated
re-PCR and re-sequencing to identify error positions.

7. THE FUTURE

Therefore, in conclusion, the idea of molecular barcod-
ing for taxonomic purposes is already a reality (Blaxter
2003; Blaxter & Floyd 2003). Descriptions of new ‘spec-
ies’ are being published with a DNA sequence attached
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Figure 2. (Caption overleaf.)
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to the primary nomenclatorial act (Sommer et al. 1996)
and this should be actively encouraged. Taxonomists
preparing new taxa for publication should be welcomed by
DNA-savvy biodiversity laboratories that should be able
to provide expertise at minimal cost. Methods for rapid
sequence acquisition for minimal cost are already in exist-
ence at genome sequencing centres, and are easily adapted
for taxonomic sampling. There needs to be a core plurality
in the programme, with more than one sequence per
specimen being perhaps a minimal aim, and a concerted
attempt to link MOTU defined with one barcode target
with those from other targets (for example directed
sequencing of COX1 from specimens representative of
SSU-based MOTU). Museum collection curators will
need to assess the benefits and non-benefits of allowing
precious specimens to be sampled for DNA, and put in
place measures to prevent cross-contamination (Nadler
1999) and investigate changing storage conditions to
improve DNA preservation. The databasing issue may be
contentious, as attempts to coordinate taxonomic effort
on this scale have previously foundered on issues of devol-
ution versus centralization of authority, and funding
(Seberg et al. 2003). With a sequence-based system,
addition of an annexe to EMBL/GenBank that stores bar-
code data (and perhaps metadata as well: trace files, digital
vouchers, collection data) is simple to conceive, possibly
difficult but not impossible to implement, and pressing in
its urgency. Freestanding efforts may also be viable
(Hebert et al. 2003a,b). A parallel effort will have to take
place to make the more traditional taxonomic literature
accessible to all (Bisby et al. 2002; Godfray 2002a; Lee
2002; Oren & Stackebrandt 2002) and there will have to
be coordinated effort in the molecular taxonomic com-
munity to fully investigate the within-taxon variation of
barcode targets, define the between-taxon discrimination
ability of targets and develop new tools for analysis of bur-
geoning datasets. The major contribution of a molecular
taxonomy will be in throughput: the ability of a few dedi-
cated centres to produce hundreds of thousands, and indi-
vidual researchers, of molecular tags per year that can be
used to diagnose species. If the biotic component of this
planet is to be taxonomized, and the ‘endless forms’ at
least listed if not understood, this is the only coherent
way forward.

This paper benefited from many discussions with Robin Floyd
and Eyualem Abebe, who performed the nematode barcode
survey, and other members of the nematode laboratory in
Edinburgh. Particular thanks go to several undergraduate pro-
ject students who were guinea-pigs testing the technology of
small subunit ribosomal RNA barcoding of meiofauna: Phillipa
Pickles, Ronan Roche, Ingrid Iredale and Ben Elsworth. Work
from the author’s laboratory was funded by the Natural
Environment Research Council and by the Linnaean Society
of London.
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GLOSSARY

MOTU: molecular operational taxonomic unit(s)
OTU: operational taxonomic unit(s)
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