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Abstract

Speech enhancement is the process of removing noise to im-
prove speech quality and intelligibility for applications includ-
ing hearing aids. Many deep neural networks for speech en-
hancement have shown great ability in eliminating noise, re-
gardless of its type. In hearing aids, this process may result in
removing important noise used in emergency situations, such as
fire alarms and car horns. In order to prevent this, a smart speech
enhancement architecture is presented in this paper, where a
convolution based noise classifier is used to detect emergency
noise and activates the speech enhancement model to run in an
audio enhancement mode, in which both the emergency noise
and the speech are the target system output. The developed
speech enhancement model is a deep convolutional recurrent
network with several dilated layers to improve feature extrac-
tion without increasing network complexity. The results show
that the speech enhancement model outperforms state of the art
architectures by a 0.22 increase in the PESQ score. Moreover,
the smart speech enhancement architecture improves speech
and emergency noise quality when evaluated using objective
metrics for both normal and hearing-impaired listeners.

Index Terms: Convolutional recurrent network, deep learning,
hearing aids, noise classification, speech enhancement

1. Introduction

Speech Enhancement (SE) is the main signal processing tech-
nique utilised in Hearing Aids (HAs), which are devices that
amplify sounds to improve speech intelligibility and quality for
people with hearing disabilities [1]. Deep Neural Networks
(DNNs) have shown a promising SE performance, where the
DNNs managed to effectively mitigate background noise and
generalize to real noise environments [2]. These DNNs include
the: Multi-Layer Perceptron (MLP) [3], Convolutional Neu-
ral Network (CNN) [4], Recurrent Neural Network (RNN) [5],
Convolutional Recurrent Network (CRN) [6], Convolutional
Denoising Autoencoder (CDAE) [7], and the Generative Ad-
versarial Network (GAN) [8].

As SE processing mitigates background noise regardless of
its type, the hearing-impaired person has to rely on an exter-
nal alert system to ensure their safety in emergency conditions.
These systems detect the emergency sound, such as fire alarms,
and use flashing lights or vibrating elements to notify the user
[9]. With the advancement in signal processing using DNNSs, a
smart hearing aid device can be developed which can detect and
amplify emergency noise [10].
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In this work, we present a smart SE DNN architecture for
HAs, which is an integrated SE and alert system. The sys-
tem is shown in Figure 1, and consists of a CNN classifier
and a Deep Convolutional Recurrent Network (DCRN). The
DCRN was trained twice: first, it applies SE (DC RNsEg) to
output speech only, while secondly, it performs Audio Enhance-
ment (AE) (DC' RN 4g) to enhance both speech and emergency
noises, and removes other noise types. The classifier acts as
a switch to change the mode of the DCRN network, either to
work on speech or audio enhancement mode, to construct the
full Smart SE (SSE) architecture (DC RNssg). The architec-
ture aims to improve the performance of HAs, using this emer-
gency component, while maintaining the performance of the SE
module.

Inspired by the promising performance of deep learning for
hearing aids [11, 12], the developed architecture (DC RNssE)
is a 1 Dimensional (1D) convolution based DCRN network,
in which strided and dilated convolution are applied to allow
for better feature extraction [13]. The network operates in the
time domain, which recently shows promising performance for
speech enhancement [14, 7]. The classifier is a CNN based net-
work, which was shown to be efficient in noise classification
[15, 16]. It uses Time-Frequency (T-F) features for the input
audio to perform the classification, because they lead to better
classification accuracy [16].

The contributions of this paper are as follows:

* The development of a new DCRN for SE that uses sev-
eral 1D dilated convolution layers with increased ker-
nel size to achieve larger receptive fields with decreased
complexity.

* Proposes an integrated hearing aid and alert system ar-
chitecture to improve the functionality of currently avail-
able HAs.
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Figure 1: Smart Speech Enhancement Architecture: An inte-
grated speech enhancement and alert system for hearing aids.

The organization of this paper is as follows. Section 2 il-
lustrates the problem this paper is trying to solve. Section 3
describes the developed architecture. Section 4 provides the
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used datasets and the experimental setup. Section 5 presents the
obtained results. Finally, the conclusion is given in Section 6.

2. Problem Formulation

In SE, the input noisy speech signal can be represented as fol-
lows:

y(k) = s(k) + n(k), (1

where y, s, and n are the noisy speech, clean speech and noise,
respectively, {y, s, n} € R¥ *! where K is the total number of
samples, and k is the sample index.

In the developed network, audio framing is the only pre-
processing performed on the input, and the audio frames are
then fed to the DCRN, shown in Figure 2(b). The DCRN will
try to enhance the input noisy speech by removing background
noise using a Mean Squared Error (MSE) loss function, Lsg,
to finally generate an estimate to the clean speech signal 5(z).
This can be described as follows:

Lse = 7 3 [5(0) = s @

where, 7 is the time frame index, and 7 is the total number of
frames.

In SSE, we categorize the input noise as emergency (7.)
or unimportant noise (n,,), so in this case Equation 1 can be
represented as:

y(k) 5(k) 4 ne(k) 4+ nu(k)
(k) + nu(k),

3
“

where x(k) is the clean speech in addition to the emergency
noise. The DCRN here will try to enhance both speech and
emergency noise while suppressing other unimportant back-
ground noise. As a result, the MSE loss function here, LssE,
will be:

Lssp = 2. 3 [#() — 2(0)

t=0

(&)

The fact that the network in the case of SSE is trying to
enhance emergency noise will decrease its ability to eliminate
unimportant noise as well. The role of the CNN classifier is
important here, as the classifier will act as a switch to run the
network in one of two modes: SE mode; in which the network
enhances the speech signal only and discards any other noise
environment, or AE mode; in which the model performs SSE
and outputs speech with emergency noise while suppressing any
other kind of noise.

The classifier accepts five features as input that are use-
ful for audio classification: Mel-Spectrogram (Yase:), MFCC
(Yamrrcec), Spectral Contrast (Ysc), Chromagram (Ychroma)s
and Tonnetz (Yr) [17]. Mel-Spectrogram and MFCC are
mainly used to model human hearing perception, while Chro-
magram and Tonnetz model the harmonic structure of speech
and noise and shows harmonic relationships. Spectral Contrast
is defined as the decibel difference between peaks and valleys
in the spectrum. It measures energy variations of frequency at
each timestamp and represents the relative spectral characteris-
tics. These features were extracted, averaged and concatenated
to form the input vector to the classifier C;. This is shown be-
low:

Ci=Ymrcc ®Y mea ®Ysc ®Ychroma @Y1,  (6)
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The decision of the classifier will be based on the detected noise
environments, as it is trained to differentiate between emer-
gency and non-emergency noise through a Binary Cross En-
tropy (BCE) loss function, detailed below:

M
Lec = % ; [Zi log Z; + (1 — Zi) log (1 — Z)] D

where M is the total number of input samples, i is the sam-
ple index, Z is the target binary value (1 if emergency noise is
detected and O otherwise), and Z is the predicted probability
generated by the model.

3. Model Architecture
3.1. The Convolutional Classifier

The classifier, shown in Figure 2(a), consists of three 1D CNN
layers with Parametric Rectified Linear Unit (PReLU) activa-
tions. A stride of size 2 is applied for each CNN layer to com-
press the input feature vector. We used 64, 128, and 256 filter
sizes for the first, second and third layers, respectively, and a
kernel of size 10 for all layers. The output from the CNN lay-
ers is further processed by two dense layers. The first layer has
512 units and Rectified Linear Unit (ReLU) activation, while
the second layer is an output layer with sigmoid activation. The
classifier will output 1 if it detects emergency noise and O other-
wise. Afterwards, it will feed this output to the DCRN network
to run in one of the two modes.

3.2. The Deep Convolutional Recurrent Network (DCRN)

The developed network, shown in Figure 2(b), accepts a time
frame of 1,024 size, and it is divided into three parts: the en-
coder, two Long Short-Term Memory (LSTM) layers, and the
decoder. A block of dilated convolutions was added across the
encoder and decoder networks. These dilated convolution lay-
ers help the network to better extract useful features by increas-
ing the receptive field of the convolution operation. This can
be illustrated in Figure 3, in which the receptive field and ker-
nel size increase across hidden layers. This setup avoids in-
formation loss that might occur by network processing in deep
hidden layers, and decreases network complexity by using dif-
ferent kernel sizes instead of large kernels. Strided convolution
was applied in the encoder to decrease the size from 1,024 to
8, while upsampling is applied in the decoder to reconstruct the
audio back to its original size. PReLU is the activation func-
tion used in both the encoder and the decoder, and a dropout of
0.2% is used after every three dilated convolution blocks. The
two LSTM layers were added in the middle before feeding the
signal to the decoder network, each has 320 units with Tanh ac-
tivation. The role of these layers is to process the compressed
bottleneck features to consider temporal dynamics of speech.
Further details for other hyperparameters used for each layer
are provided in Figure 2.

4. Experimental Setup

In training, speech and noise data were taken from the Microsoft
Deep Noise Suppression (DNS) challenge dataset [18]. The
dataset consists of more than 500 hours of speech and 181 hours
of noise data. For emergency noise, a total of 1,478 audio sam-
ples were collected for 5 noise types: 118 alarm audio samples,
including fire alarms, door bells, and alarm clocks; 440 car horn
audio samples; 440 car siren audio samples; 440 baby crying
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Figure 2: The proposed Smart Speech Enhancement Architecture for Hearing Aids, a) the CNN classifier; C; is the input feature vector
and 7 is the predicted class, b)the Deep Convolutional Recurrent Network (DCRN); k, d, f, and L represent kernel size, dilation rate,
number of convolution channels, and layer number respectively; s represents stride size in the encoder, and upsampling size in the
decoder. T is the time samples. The red lines represent skip connections.
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Figure 3: lllustration of Dilated Causal Convolution with In-
creased Kernel Size

audio samples; and 40 footstep audio samples. A total of 240
emergency noise audio samples were taken from the ESC-50
dataset [19], 800 from UrbanSound8K database [20], 400 from
Donate-a-Cry corpus [21], and 38 from Mixkit website [22].
The speech and noise data was divided, 90% for training and
10% for validation. For SSE training, we mixed the speech and
emergency noise at 0 dB SNR; to help the network dealing with
them similarly during training, and then corrupted this mixture
with undesired noise from the DNS challenge dataset at differ-
ent SNR levels, from 0 dB to 20 dB with a step of 1, to form
a total of 65,000 noisy utterances. For SE training, the speech
utterances were only mixed with the undesired noise from the
DNS challenge dataset at the same SNR levels (0-20 dB).

In testing, 100 speech utterances for 5 male and 5 female
speakers were randomly selected from the Librispeech corpus
[23]. On the other hand, we collected five emergency noise
types, unseen during training, from the Mixkit website. For
the undesired noise, we used 10 unseen noise environments
from the 100 Nonspeech Environmental Sounds dataset [24]:
9 crowd noises, including babble noise, and Additive White
Gaussian Noise (AWGN). For SSE model testing, we created
the AE test set by mixing the speech with the emergency noises
at 0 dB, and then added to the mixture the undesired noises at
-5dB, 0dB, and 5 dB, where -5 dB is unseen SNR during train-
ing. For SE testing, we created the SE fest set by corrupting the
speech audio samples with the undesired noise only at -5 dB,
0 dB, and 5 dB SNRs. Both the classifier and the DCRN are
trained and tested using the same dataset.

We sampled the input audio to 16 kHz sampling frequency,
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and it was normalized to zero mean and unit variance. For the
classifier, we extracted frequency features and used BCE loss
function. The network was then trained for 200 epochs. While
for the DCRN, audio framing was performed with 1,024 frame
size and 50% overlap. We used MSE loss function and Adam
optimizer, learning rate = 0.0001, 8, = 0.1, 5> = 0.999. The
used batch size is 4, and the number of epochs is 20, which was
found to be sufficient for the network to converge. The final
weights were finally taken based on the validation data.

5. Results and Discussion

We used the Perceptual Evaluation of Speech Quality (PESQ)
[25] (from -0.5 to 4.5) and the Short Time Objective Intelligibil-
ity (STOI) [26] (from O to 100) to evaluate speech quality and
intelligibility, respectively, for normal hearing listeners. The
composite speech quality measures are also used: Csig (from
1 to 5), speech signal quality measure; Cbak (from 1 to 5),
noise intrusiveness measure; and Covl (from 1 to 5), overall
quality of the enhanced speech [27]. For hearing loss, we used
the Hearing-Aid Speech Quality Index (HASQI) [28] (from O
to 1) and the Hearing-Aid Speech Perception Index (HASPI)
[29] (from O to 1) to measure speech quality and intelligibility,
respectively. The Hearing-Aid Audio Quality Index (HAAQI)
[30] (from O to 1) is also used to measure the quality of the
output speech with emergency noise audio.

5.1. Smart Speech Enhancement Architecture Perfor-
mance for Normal and Hearing-Impaired Listeners

5.1.1. Speech Enhancement Evaluation

In this experiment, we evaluated the architecture performance
for improving the noisy speech when undesired noise only ac-
companies the speech signal. We used the SE test set, described
in Section 4, and the presented results are the average of the
three SNRs: -5 dB, 0 dB, and 5 dB. The evaluation is shown
in Table 1 for the quality and intelligibility of the output speech
using PESQ and STOI scores for normal hearing listeners, and
the HASQI and HASPI scores for hearing impaired. For the
HASQI and HASPI, two hearing loss degrees were used:

e HL1: Mild hearing loss, in which the person has diffi-
culty hearing soft sounds in noisy environments.



e HL2: Moderate hearing loss, in which the person has dif-
ficulty hearing conversational speech, especially in noisy
environments.

The values of the hearing loss degree were taken from the real
Occupational Hearing Loss (OHL) Worker Surveillance Data
[31], which is a dataset used to estimate the prevalence of hear-
ing loss among U.S. industries. We took the hearing degree
values for 100 workers, 50 males and 50 females, for mild and
moderate hearing loss cases, 50 values for each.

We evaluated the performance of the SE network only,
DCRNgsg, and the full SSE architecture with the classifier,
DCRNsse. The classifier accuracy for the used test set
is 90%. The results show that both networks improve the
quality and intelligibility of the speech for both normal and
hearing-impaired listeners. The full architecture, DCRNssE,
gives slightly worse performance than the SE only model,
DCRNgsg. The reason for this is the failure of the classifier
to classify some challenging undesired crowd noise; and as a
result, the noisy speech will be processed with the AE network
in this case, which is trained to output emergency noise and in
turn, this negatively affects the SE capability of the network.

The spectrograms in Figure 4(a) show the performance of
the SE model when tested using speech corrupted with unde-
sired babble noise at 0 dB SNR. It is clear that the model man-
aged to remove most of the challenging babble noise.

5.1.2. Speech and Emergency Noise Enhancement Evaluation

In this evaluation, we used the HAAQI to assess the quality of
the enhanced speech and emergency noise audio samples gener-
ated by the network, by testing the network using the AE test set,
described in Section 4. The results of this evaluation are shown
in Table 2, which are the average scores at three SNRs: -5 dB,
0 dB, and 5 dB. The results show that the architecture is able
to improve the quality of the audio in comparison to the unpro-
cessed audio for both mild and moderate hearing loss degrees,
which proves the applicability of the presented architecture.

The spectrograms in Figure 4(b) show the performance of
the AE model when tested using speech with fire alarm emer-
gency noise corrupted with undesired challenging babble noise
at 0 dB SNR. It is clear that the model is trying to generate both
speech and fire alarm noise and mitigate babble noise.

5.2. Speech Enhancement Model Comparison to Baselines

In this experiment, we trained the DCRN for SE only using the
Valentini Voice Bank dataset benchmark [32], to compare its
performance with other networks in the literature. The results
for the evaluation on the Valentini test set are shown in Table 3,
in which our network outperforms with respect to the PESQ and
Covl scores. Additionally, the architecture shows good perfor-
mance for the other evaluation metrics in comparison to other
state of the art DNNs. It should be noted that STOI results were
not reported by the authors of Wave U-Net [33], Metric-GAN
[34], SEGAN-D [8], Koizumi et al. [6], and T-GSA [35].

6. Conclusions

In this paper, we present an integrated speech enhancement and
alert system architecture, designed especially for hearing aid
applications. The architecture performs smart speech enhance-
ment, which is to enhance both speech and emergency noise
to ensure the safety of people with hearing disabilities in the
case of emergency. This is achieved by operating the architec-
ture in speech or audio enhancement mode based on the deci-
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Figure 4: The Performance of the Proposed Architecture, a)
speech enhancement mode, b) audio enhancement mode

Table 1: Speech Enhancement Performance of the Architecture
for Normal and Hearing-Impaired Listeners

Normal Hearing Hearing Loss
Metric HASQI HASPI
PESQ| STOI HL1 | HL2 | HL1 | HL2
Unprocessed | 1.57 70 0.37 {024 | 70 65
DCRNsg | 2.12 77 057 1038 | 76 | 70
DCRNssg | 2.00 76 0.56 | 0.36 | 75 68

Table 2: Performance of the Architecture for Speech and Emer-
gency Noise Enhancement

. HAAQI
Metric HLT HI2
Unprocessed 0.21 0.16
DCRNssE 0.44 0.34

Table 3: Performance Comparison with State-of-the-Art Speech
Enhancement Models using the Valentini Voice Bank dataset
benchmark [32].

Metric PESQ | STOI | Csig | Cbak | Covl
Noisy 1.97 | 91.5 |3.35] 2.44 | 2.63
Wiener [36] 222 | 92 [3.23] 2.68 | 2.67
SEGAN [37] 2.16 | 93 |3.48| 294 |2.80
Wave U-Net [33] 2.40 - 1352324 1296
MMSE-GAN [38] 253 | 93 [3.80] 3.12 | 3.14
Deep Xi-ResLSTM [39] | 2.65 | 91 [4.01| 3.25 |3.34
Metric-GAN [34] 2.86 - 1399 3.18 | 342
SEGAN-D [8] 2.39 - [3.46] 3.11 | 3.50
DEMUCS [7] 3.07 | 95 [4.14] 321 |3.54
Koizumi et al. [6] 2.99 - |4.15]| 342 | 357
T-GSA [35] 3.06 - 418 3.59 | 3.62
Deep MMSE [40] 295 | 94 [4.28 ]| 3.46 | 3.64
DCRNsEg 3.29 | 93.5 |4.18| 2.96 | 3.76

sion of a classifier network, which detects emergency noise. We
tested the architecture using several evaluation metrics for nor-
mal hearing and different types of hearing loss, and the results
show that the idea is applicable and can be used to develop hear-
ing aid devices in the future. Further work is needed to improve
the classification accuracy and network performance.
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