Plankalkiil: The First High-Level Programming
Language and its Implementation

Rail Rojas, Ciineyt Goktekin, Gerald Friedland, Mike Kriiger
{rojas, goekteki, fland, krueger} @inf.fu-berlin.de

Freie Universitit Berlin
Institut fiir Informatik

Olaf Langmack, Denis Kunif3
{langmack, kuniss } @feinarbeit.de

Feinarbeit®, Berlin

Technical Report B-3/2000
February 2000

Freie Universitit Berlin
Department of Mathematics and Computer Science
Takustr. 9, 14195 Berlin, Germany

Plankalkiil: The First High-Level Programming Language
and its Implementation

Radl Rojas, Ciineyt Goktekin, Olaf Langmack, Denis Kunif3
Gerald Friedland, Mike Kriiger
{langmack kuniss } @feinarbeit.de
{rojas, goekteki, fland, krueger}
@inf.fu-berlin.de Feinarbeit®, Berlin

Freie Universitiat Berlin
Institut fiir Informatik

February 2000

Abstract

This paper presents the first implementation of Plankalkiil, the programming notation
invented by the German engineer Konrad Zuse in 1945. Plankalkiil is a high-level
imperative programming language. In Plankalkiil, programs are functions which can
be called non-recursively in other programs. There are no preliminary variable
declarations: the type of a variable is specified when it is used. The main constructs
are: variable assignment, arithmetical and logical operations, guarded commands and
While loops. Some special list and set processing functions are part of the language
definition. Plankalkiil uses a two-dimensional layout that defies traditional parsers.
This, and some inconsistencies in the original definition, have been the main
obstacles for its implementation over the years.

We suppressed some inconsistencies in the language and identified a mighty subset
of Plankalkiil for which we wrote a syntax directed editor, a parser, and a run-time
system. The code was written in Java and runs in every workstation connected to the
Internet. The editor generates only syntactically valid programs in Zuse’s original
two-dimensional layout, even when the programmer is first learning the language.
Fifty five years after its conception, the first Plankalkiil programs ran in February
2000.

1. Introduction

Konrad Zuse designed the high-level programming language Plankalkiil (Calculus of
Programs) in 1945, after moving out of Berlin at the end of World War II. Anyone
who has had the opportunity to study the original definition of Plankalkiil is struck by

3

its modern flavor and powerful constructs — it seems as if it had been created much
later than 1945. Most amazing, however, is the fact that at the time that Konrad Zuse
was writing his Plankalkiil document, the only two working computers in the world
were the ENIAC and the Harvard Mark 1. None of them used a compiler or a formula
translator — the ENIAC had even to be rewired for every different problem.

From 1936 to 1945, Zuse built three programmable computers that embodied the
same general computational principles. In the lapse of those nine years, Zuse single-
mindedly pursued a clear cut architectural concept. The Z1 (1938), the Z3 (1941) and
the Z4 (1945) were all binary “algebraic” floating-point machines, with a memory
separated from the processor, and a program stored in punched tape. They were
programmed in machine language, like all first American or British computers. By
his own account, Zuse very soon realized that his ,,combinatorics of conditionals* (as
he called it) was identical to predicate calculus and he conceived a much more
powerful machine, the ,,Jogic machine®, which would be more general and supersede
the algebraic machines he had already built.

Although Zuse applied for a patent for the logic machine, he never really finished its
design. The logic computer was truly minimal and similar to a Turing Machine: it
consisted of a memory with one-bit words, and a processor capable of executing only
the logical operations AND, OR, and NOT on one-bit operands. The machine would
be capable of solving any numerical or logical problem and, although this is not
widely known, its programming language would be the Plankalkiil.

In 1942/43, Zuse started writing a long document which he intended to submit as a
Ph.D. dissertation. The draft describes the predicate logic in order ,to make it
accessible for engineers®, and goes into great detail into its implementation with
mechanical and electrical relays. Konrad Zuse’s planned thesis, never submitted, is in
fact one of the first treatises on the systematic construction of computer circuits. He
describes how to map logical formulas to relay circuits and vice versa. He considers
the problem of minimizing circuits and how to overlap them in order to use less
components. He explains clocked circuits and everything else that is be needed to
build a computer.

The continuation of this unfinished thesis is the Plankalkiil document drafted in
1945. Hindered of working on the Z4, which he moved out of Berlin and to
Hinterstein, a small town in the Bavarian Alps, Zuse sat down to summarize how he
thought logic machines of the future should be programmed. In modern terminology,
the Plankalkiil has the following main features:

— it is a high-level imperative programming language
— programs are reusable functions

— functions are not recursive

— only call by value is used in function invocation

— variables are local to functions (programs)

— it is a typed language

the fundamental data types are arrays and tuples of arrays

the type of the variables does not need to be declared in a special header
conditionals are processed using guarded commands

thereisa WHILE construct for iteration

thereisno GOTO construct

The main non-modern feature of Plankalkiil is its mixed one-dimensional and two-
dimensional layout, which has puzzled many readers of the original document.
Variables are written using four lines instead of using parenthesis to enclose indices.
It could well be that this special layout has been one of the main obstacles for the
construction of a compiler or interpreter for the language in the last five decades.

2. The Syntax of the Plankalkiil

The original document describing Plankalkiil [Zuse 1972] is not free of
contradictions and there are also several ambiguities that must be solved before
attempting to write a compiler for the language. Therefore, in what follows we have
identified a powerful subset of the language, which is computationally complete and
free of ambiguities. In defining this subset we were guided by the following
principles:

Historical accuracy. We wrote a syntax-oriented editor that preserves the original
two-dimensional structure of the language.

Simplicity. Zuse left alternative syntactical options open at several points in the
definition of the language. We preserved only one option in each case, in order to
make the syntax unambiguous, especially regarding data types.

Induction from examples. When Zuse did not clearly outline the syntax or
operational semantics of language constructs, we inferred them from the
numerous examples contained in the founding Plankalkiil document.

Regularity. When the syntactical options were ambiguous, we selected one that
made the language more regular and “orthogonal”.

Easy implementation. For the first subset of Plankalkiil that we defined, we
selected only those constructs that are easy to implement in a conventional
computer. We left set and predicate logic constructs out of the selected language
subset. They can be implemented later using macrodefinitions and a standard
Plankalkiil library.

We call the subset of Plankalkiil obtained applying these principles ,,Plankalkiil
2000°.

2.1 Plankalkiil 2000 - Variables and data types

Variables are essential to any imperative programming language. In Plankalkiil there
are three main classes of variables:

V variables, numbered VO, V1, etc., which are read-only.
Z variables, numbered Z0, Z1, etc., which can be read and written.
R variables, numbered RO, R1, etc., which are write-only.

The V variables are used to pass parameters to programs, the Z variables hold
intermediate results, and the R variables are used to pass the final result of the
program.

Aditionally, there are “loop variables”, which are used in While loops. They are
denoted 10,11, i2, etc., according to the depth of loop nesting, and are of generic
numeric type. We will have more to say about these variables later.

All variables have a ,,structure* or type. The following data types are possible:

One bit, denoted as “0”

N bits, where nis an integer, denoted “n.0”

Tuples of other types. For example (3.0,4.0) denotes a pair of variables, one of 3
bits, the second of 4 bits. Tuples can have two or more elements.

m times any other type, for example 4.5.0, which denotes an array of five
elements, each one of five bits.

Some examples of possible data types are:

8.0 a byte

16.8.0 a vector of 16 bytes

(0, 8.0, 16.0) a triple formed of one bit, 8 bits, and 16 bits
32.(0, 8.0, 16.0) an array of 32 triads with the structure above

It is easy to see that data structures in Plankalkiil can be implemented as trees. The
last example given above represents a tree with 32 children nodes at the root level.
Each child has three children and so forth. It is important to notice that tuples are just
another syntactical way to refer to arrays. We need tuples when the data type of each
element in the array is different. We use vectors when the data type of each element
is the same. In Plankalkiil 2000 all variables are vectors or tuples, or combinations of
both.

There are no variable declarations at the beginning of a program, instead each
variable carries its own type. Variables are generally written using four lines:

Z
\Y 1
K
S 5.0

This example refers to the variable Z1 of type 5.0 (five bits). The subindex of the
variable is written in the “V” line, the component of the variable in the ,,K* line, and
the type in the ,,S* line. The annotations to the left of the vertical line are just a
mnemonic device and are not part of the syntax. Variable Z1 is a vector of five bits.
If we want to refer to the first bit in the vector we write:

Z

v 1

K 0

S 0
Notice that the components of arrays are numbered starting from zero. Notice also,
that the type of the component selected in the example is a single bit. The VKS

annotation can be omitted, as we do in the examples that follow.

Component indices can be variable. We can refer to the component of the variable Z1
whose number is stored in variable Z2 as follows:

The connecting line means that the content of variable Z2 (a byte) is used as index
for variable Z1. The indexed component is of type “0” (a bit).

2.2. Arithmetical and logical statements

The symbol = is used to denote value assignment. Variable assignments are read
from left to right, like in the following example of a Plankalkiil statement:

= Z
2

.0 8.0

Here, the component 0 of VO and the component 2 of the same array are added and
the result is stored into variable Z2, which is an array of eight bits. The component
line of Z2 is left empty, since we want to refer to the whole array of eight bits. Only
V and Z variables (and loop variables) can appear in expressions to the left of the
assignment symbol. Only Z and R variablesto its right.

The four basic arithmetical operations are defined in Plankalkiil. We use the symbols
+, -, X and / to denote addition, subtraction, multiplication and division. Since each
variable ,carries its type, the programmer has to be careful of writing only valid
arithmetical operations, otherwise a run-time error will result. We adopt the
convention that arithmetical and logical operations are only valid for arguments of
the same type (generically, n.0). The result has also the same type as the arguments.
We use two’s complement arithmetic to perform the operations.

There are logical operators for conjunction, disjunction and negation, denoted with
the symbols A, v, and —. The conjunction of two bits, for example, can be written as:

Z A Z =
0 1

S~ NN

0 0

Here, we compute the conjunction of two variables Z0 and Z1 (single bits) and store
the result in variable Z2, component 1. Variable Z2 is therefore an array of bits and
we are selecting only one of its components.

Negation is expressed in Plankalkiil by writing a dash above the name of a variable
or an expression. For implementation convenience we will use instead the unary
operator — to denote negation. Two other logical operators are defined in Plankalkiil:

the identity operator ~ and the XOR operator /~.

Constants are written in Plankalkiil in the first line of the tabular notation, like in:
Z + 2 = Z
0 2
8.0 8.0

We will always assume that the type of a constant is the type of the other variable
argument or of the result (when two constants are combined).

There are no arithmetical operations for tuples, but tuples can be assigned to tuples
with the same number of elements.

2.3 Guarded commands

There is a construct in the Plankalkiil which could be interpreted in other high-level
programming languages as an IF-THEN statement. It corresponds to guarded
commands in some modern languages.

The symbol — is used to denote conditional execution, it separates a logical
expression and a statement. The statement to the right of the arrow is executed only if

the logical value to the left of the arrow is true (that is, a 1).

For example, the statement:

V4 A V4 - A\ + A\ = V4

0 1 0 0 3
0 2

0 0 8.0 8.0 8.0

means that if the conjunction of the two bits stored in Z0 and Z1 is true, the addition
will be performed, and the result will be stored in Z3. Notice that the arrow symbol
binds more strongly than the assignment symbol, and the logical and arithmetical
operation symbols, more strongly than the arrow. Brackets can be used to
disambiguate expressions, like in the example below:

(V2N Z) - V. + V) = Z

0 1 0 0 3
0 2

0 0 8.0 8.0 8.0

Notice that brackets open and close in the upper line.

Statements are written using a line. A block of statements is marked as a unit by
enclosing it in square brackets, which are as large as needed, for example:

Z + 2 = Z
0 2

8.0 8.0

Z X Z = Z
2 1 3

8.0 8.0 8.0

Thisisablock of two instructions, an addition and a multiplication.

Conditions can be tested with the operators =, >, <, which are used to check if the
first argument is equal, larger, or smaller that the second. Any two structures can be
tested for equality, but only structures which can interpreted as numbers (n bits) can
be tested using the other two operators. We can store the larger of two numbers Z1
and Z2 in Z3 using the following instructions:

y4 = V4
1 3

8.0 8.0

8.0 8.0 8.0 8.0

2.4 |terations

There is a kind of “While” statement which is useful for performing iterations. The
syntax of the construct is

W [Block]

where [Block] denotes a block of statements. In general, an iterative construct has the
form:

W Cl - S1
C2->S52

Cn— Sn

The block is executed repeatedly until all conditions C1, C2, etc., tested inside the
block, fail in a single run. The statements S1, S2, etc. are executed according to the
truth value of their respective conditionals.

The construct WO(num) preceding a block of instructions can be interpreted as a
“FOR” operation: the block of instructions is executed “num” times. If we want to
have access to a loop variable containing the current iteration number, the construct
W1(num) is used. A loop variable i runs from O to num-1. The loop variable is a

10

specia variable with an unspecified default numeric type and can be accessed only
inside the block following the W1 declaration. If nested loops are used, they are
numbered using the index row and their loop variables use also these numbers.

Wl e 1L WL LT
0 we 0.1 v 1

In the example above the first loop has index O, the second index 1. The loop
variables are i0 and i1. They can only be used within the scope of the respective
While loops.

Zuse defined a built-in function which is very helpful when processing arrays. The
function N applied to a variable yields the number of components of the variable as
result. See below for an example of its application.

2.5 Linearized form of the Plankalkiil

In order to simplify the rest of the paper, we adopt a linearized form of the Plankalkiil
in which variables are written as in the following examples:

VO[1:5.0] Variable VO, component 1, of type 5.0
Z1[5.3:9.0] Variable Z0, component 3 of component 5, of type 9.0

Some special symbols are written using ASCII characters or combinations thereof.
Conjunction, disjunction and negation are expressed using the characters "&", "I" and
"I". Assignment is expressed using "=>" and the conditional arrow is written "->".
The conditional expression written as the last example in section 2.3 can be
simplified by writing:

70:0 & Z1:0 -> VO[O0 :8.0] + V1[2 :8.0] => Z3[:8.0]
This is much more convenient than the four line syntax of the Plankalkiil draft.

We will use square brackets to enclose blocks of instructions, and the semicolon as
separator between statements to write more than one statement in each line.

An illuminating example is to compute the sum of the bytes stored in an array VO of
type 16.8.0. The following instructions would accomplish this task:

0=>7Z1[:8.0]
WI1(16) [Z1[:8.0] + VO[i :8.0] => Z1[:8.0]]

11

Notice that we don’t write the type of the constant 16 and the type of the loop
variable. They are generic numeric variables.

2.6 Functions and function calls

Programs in Plankalkiil are functions which can be called from other programs.
Every program is assigned a unique number. The declaration of input and output
variables is done in the “Randauszug” (“boundary summary”, i.e. the program
interface), which, for example, has the following form:

P3 R(V,V) = (R, R)
0 1 0 1
8.0 8.0 4.0 4.0

In this example program P3 is defined with two input variables VO and V1, each of 8
bits, and two output variables R0 and R1, each of four bits.

The number of input and output variables in the Randauszug is variable. Zuse always
numbered the input variables from O to n-1 and the output variables from 0 to m-1,
where N and m are the number of input and output variables respectively. The
identifier for the program in the example above is just an “R”. When this program is
called as function, we write “R3” with the two variable arguments enclosed in
parenthesis. Notice that in the Randauszug, the input and output variables are written
without the component row, that is, they can only be used as complete variables.

Functions can also have a symbolic identifier. For example, if we want to define a
function to select the maximum of two bytes, we could write the following
Randauszug

PS5 Max (V, V) = R
0 1 0
8.0 8.0 8.0

followed by the appropriate block of instructions. We will write the Randauszug in
the following linearized form:

P5 Max (V0:8.0,V1:8.0) = R0:8.0

When a function is called with a subindex we select the component of the output we

are interested in:
R3 (Z, 7)

0O 1 3

4.0 8.0 8.0

12

Thisis acall to program P3 above which computes two result variables, RO and R1.
In the call we select variable RO of type 4.0 from the result tuple. In linearized form
we write for this call: R3(Z1:8.0, Z23:8.0)[0]:4.0 = Z4:4.0.

Finally, athough Zuse did not signal the end of a program with any specia keyword,
we will write END at the end of every program.

2.7 Input and Output

Zuse did not define any primitive instructions for input and output. He seems to have
considered this type of instructions machine specific and they do not belong to the
main language constructs. In our implementation of the language we did not define
any input/output instructions. The user can inspect and modify the state of the
variables stored in memory by opening a memory window, which is specific for
every program, since Plankalkiil variables are local.

The example below shows a program which computes the maximum of three
variables by calling the function max.

P1 max3 (VO[:8.0],V1[:8.0],V2[:8.0]) => R0[:8.0]

max(VO0[:8.0],V1[:8.0]) => Z1[:8.0]
max(Z1[:8.0],V2[:8.0]) => R0O[:8.0]
END

P2 max (VO[:8.0],V1[:8.0]) => R0[:8.0]

VO[:8.0] => Z1[:8.0]
(Z11:8.0] < V1[:8.0]) -> V1[:8.0] => Z1[:8.0]
Z1[:8.0] =>RO[:8.0]

END

2.8 Implementation problems

There are several syntactical aspects of Plankalkiil which must be dealt with in any
implementation. The programmer writes the type of its variables every time they are
used and this can lead to inconsistencies. We decided that any variable in a program
has a unique type, which cannot be “casted” into another type. This leaves open the
possibility of writing the type of a variable only once and use type inference at any
other point in the program where it is used. However, type inference is made a little
more difficult because we can refer to a component of a variable before we refer to
the variable proper. For example, a reference to VO[1.1]:8.0 can appear in a statement
before a reference to V0:16.8.8.0. Therefore, the type inference routine has to look at
the whole program before deciding on the type of a variable. We did not implement

13

type inference in the first implementation of Plankalkiil 2000, so that the programmer
has to write the type of any variable or component that is used.

We decided to refer to components of variable calls by using square brackets in the
linearized form of the Plankalkiil. We decided also, that the type of the result must be
always written. Zuse did not usually write the type of the result of a variable call,
since it can be inferred from the definition of the language. In the first
implementation of Plankalkiil 2000 we always write the type of variables or variable
calls.

3. Theeditor

The two-dimensional syntax of Plankalkiil is very difficult to deal with using a
conventional editor. Therefore, we developed a syntax directed editor which allows
the user to write a program by selecting options from menus. Fig.1 shows the start
window of the editor. By clicking on the "Plan" keyword it is possible to obtain a
layout for a new program, which includes the program number, the Randauszug and
the instructions. Fig. 2 shows the state of the window after several selection steps.
The user has selected program number 1 from a menu and 4 and 3 variables for the
input and output in the Randauszug. The user can now select an instruction from the
options below ("Befehl"), a new block of instructions ("Block") or end the sequence
of instructions ("FIN").

Fig.1: Start window of the syntax directed editor

Basically, the options offered by the menus are the only ones valid under the defined
grammar. One can think of this syntax-directed editor as one which only allows the
user to develop the Backus-Naur form for the programming language we are
considering. In this respect, this editor is similar to those written by Teitelbaum and
Reps [1981], by Arefi et al. [1990], and others. The user is restricted to stay within
the boundaries of the Plankalkiil grammar and cannot write invalid programs. Any
program written with this editor is grammatically correct, although, of course, it can
be semantically incorrect.

The syntax directed editor produces a linearized version of the Plankalkiil program.
In this way, the programmer can directly write his program in linear form using any
kind of editor, or he can use this two-dimensional editor to produce the linear code.
Although both possibilities are open to the programmer, the syntax directed editor
should convey to the user the "look and feel" of writing Plankalkiil programs in the
original syntax.

14

Figure 2: State of the editor after some selections

The editor is written in Java and will be installed as an Applet at our Web site in the
future.

4. The parser

The syntax of Plankalkiil 2000 is summarized in Appendix A. We wrote a parser for
this syntax using the public domain version of the Cocktail compiler generator
system [Grosch, Emmelman, 1990]. The figure below shows the structure of the
whole Plankalkiil system: the syntax directed editor transforms the two-dimensional
code into the linearized version of Plankalkiil described in this document. The parser
then transforms this code to a simpler textual representation of the program which we
call the "intermediate code". This intermediate code is then interpreted by the run-
time system. This allows the user to set the values of variables through an interactive
user interface.

Syntax
directed
editor
linearized
code
v intermediate Run-time
code system
TeX output |¢ Parser N
User

interface

Figure 3: Strutcture of the Plankalkiil System

15

The parser produces not only the intermediate code for the run-time system, but also
TeX code that can be interpreted and sent to a PostScript printer.

5. Therun-time system

The run-time system was written in Java. When the system starts, a window shows
the contents of the memory variables. This can be changed interactively by the user.
Figure 4 is an example of the state of the memory after a run of a sorting program.
Thefirst row in the window shows an array of five numbers, each of 8 bits. The ones
are shown as full circles (the lowest order bits are written to the left). The decimal
equivalent is written below each element of the array. The last row shows the result
of the sorting routine. The rowsin the middle are intermediate (Z) variables.

Figure 4. Te result (last row) of sorting the V variables fi r row)

Before the program starts, the user can modify the values of the V variables by
clicking on the individual bits. After the program runs, the user can inspect the result
variables. The original definition of Plankalkiil does not include any input-output
instructions. Zuse left this part of the language undefined. Curiously, this is also the
case with modern programming languages in which input and output routines are
defined in a special system library.

6. Example programs
In this section we provide some examples of Plankalkiil 2000 programs written as

linear code. All these programs have been parsed and executed by our system.

Program P1 assigns the conjunction of two input variables to the result variable.

P1 R(VO[:0],V1[:0]) => RO[:0]
VO[:0] & V1[:0] => RO[:0]
END

16

Program P2 computes the expression at+b*c.

P2 R(VO[:16.0],Vi[:16.0]) => RO[: 16.0]
VO[:16.0] + V1[:16.0] * V1[:16.0] => RO[:16.0]
END

A variation of the program above (to test syntactic alternatives).

P3 R(VO[:16.0],Vi[:16.0]) => RO[: 16.0]
(VO[:16.0] + VI[:16.0]) * Vi[:16.0] => RO[: 16.0]
END

Another variation.

P4 R(VO[:16.0],V1[:16.0]) => RO[: 16. 0]
(VO[:16.0] * 6)+(VL[:16.0]*V1i[:16.0]) => RO[: 16. 0]
END

Program P5 computes the factorial of 5 (the generic typeis 32.0):

P5 R(VO[:32.0]) => RO[:32.0]
1 => 70[:32.0]

W (5
%) i[* 70[:32.0] => Z0[:32.0]

Z0[:32.0] => RO[:32.0]

END

17

Program P6 sorts 16 numbers using insertion sort.

P6 sort (VO[:6.8.0]) => RO[:6.8.0]

W[o] (4] _
VO[i0:8.0] => ZO[i0:8.0]
1 => 74[:32.0]

W[1] (i 0)

(VO[i0:8.0] < ZO[i1:8.0]) & (Z4[:32.0]=1) ->
[

i0-i1 => Zz1[:32.0]
W[2] (Z1[: 32.0])
[

i0- i2- 1 =>23:32.0]

i0- 2 => 72[: 32.0]
Z0[Z3[: 32.0]:8.0] => Z0[Z2[:32.0]: 8. 0]
]

VO[i 0:8.0] => ZO[i1:8.0]

0 => z4[:32.0]

]

]

]
END

7. Conclusions

We have described in this paper the architecture of a compiler for a subset of the
Plankalkiil. The subset of Plankalkiil that we have selected for this implementation is
computationally universal. The user can write programs using a conventional editor
and the linearized version of the language, or he/she can use the syntax-directed
editor written in Java. This editor produces only syntactically valid programs.

Our future work will be concentrated in linking the individual system modules in a
transparent way, so that the system appears as a monolithic piece of software. We
will write also a front-end for the rest of the programming constructs of Plankalkiil.
Set and predicate logic instructions will be compiled into Plankalkiil 2000
instructions. We will then be able to run the chess playing programs written by
Konrad Zuse in 1945.

18

Appendix A

Syntax of the Plankalkiil
In the following we adopt the following conventions: a vertical bar (“I”) separates
optional syntactical elements, {expr}* means that expr can be concatenated zero or
more times, all identifiers with a defined rule can be expanded, any other characters
are included literally in the expanded expressions.

--------- Symbols

digit:=011121...19

digits ::=digit {digit}*

letter :=albl..lAIBI...1Z

type-letter ::=albl..hljl..IAIBIl...1Z \\i.e. without the “1”
identifier ::= letter {letter | digit}*

pos-constant ::= digits

neg-constant ::= - digits

constant ::= pos-constant | neg-constant

dot ::= %"

comma ::=

__________ Data types

simple-type ::=0

tuple-type ::= (type, type {comma type}*)

type ::= simple-type | tuple-type | digits dot type
var-type ::= type-letter dot type

all-type ::= type | var-type

__________ Variables

v-variable ::= V digits [component: type] | V digits[: all-type]
z-variable ::= Z digits [component: type] | Z digits[: all-type]
r-variable ::= R digits [component: type] | R digits[: all-type]
loop-var ::=“1" | “1” digits
loop-expr ::=loop-var | loop-var + pos-constant | loop-var — pos-constant }

type-var ::= type-letter
type-expr ::= type-var | type-var + pos-constant | type-var — pos-constant | type-expr
+ type-expr | type-expr — type-expr

component ::= digits | v-variable | z-variable | loop-expr | type-expr | component dot
component

19

---------- Function call
zv-cal-arg ::= v-variable | z-variable | call | constant | loop-var | type-var

cal-al ::= R digits[:type] (zv-cal-arg {,zv-call-arg}*)|
identifier [:type] (zv-call-arg {,zv-cal-arg}*)
cal-one::= R digits [component : type] (zv-cal-arg {,zv-cal-arg}*) |
identifier [component : type] (zv-call-arg {,zv-call-arg} *)
cal ::=call-al | call-one

---------- Arithmetical operations

arith-argument-left ::= v-variable | z-variable | constant | loop-var | type-var | call |
arith-operation | (arith-operation)

arith-argument-right ::= v-variable | z-variable | pos-constant | (neg-constant) | loop-
var | type-var | call | arith-operation | (arith-operation)

arith-argument ::= arith-argument-left | arith-argument-right

arith-operation ::= arith-argument-left {+ | - | x |/ } arith-argument-right

---------- Logical operations

log-constant ::= + | -
condition ::= arith-argument = arith-argument |

arith-argument > arith-argument |

arith-argument < arith-argument |

zv-tuple = zv-tuple
pos-literal ::= v-variable | z-variable | log-constant | call | condition | (condition)
neg-literal ::=lv-variable | !z-variable | Icall |! (condition)
logic-argument ::= pos-literal | neg-literal | logic-operation | (logic-operation)
logic-binary ::=logic-argument { "[" | & | ~ | /~} logic-argument
logic-operation ::= pos-literal | neg-litera | logic-binary | ! (logic-binary)

.......... Assignment

assignmentO ::= arith-argument => { z-variable | r-variabl e}
assignmentl ::= logic-argument => { z-variable | r-variabl e}
assignment?2 ::= zv-tuple => zr-tuple

assignment3 ::= zv-tuple => { z-variable | r-variabl e}

zv-tuple ::= (zv-arg, zv-arg { comma zv-arg} *)

zv-arg ::= v-variable | z-variable | constant | call | loop-var | type-var | zv-tuple
zr-tuple ::= (zr-arg, zr-arg { comma zr-arg} *)

zr-arg ::= r-variable | z-variable | zr-tuple

assignment ::= assignmentO | assignment1 | assignment?2 | assignment 3

20
---------- IF-THEN

if-then ::= logic-argument -> statement

block ::=[statement{; statement} *]

while ::=w block |w [digits] block | w1l (arith-arg) block | wi[digits] (arith-arg)
block

---------- Statements

built-ins ::= FIN | FIN digits
statement ::= assignment | if-then | while | block | built-ins

program ::= Pdigits randauszug {statement}* END

randauszug ::= identifier v-tuple =>r-tuple

v-tuple ::= v-variable | (v-variable {, v-variable} *)
r-tuple ::= r-variable | (r-variable {, r-variable}*)

/I The variables are numbered sequentially, starting with O

/I constant, indices, N(), have generic type

21

Appendix B

Plankalkiil 2000: Intermediate Code

The run-time system receives an array of strings with the following meaning:

Line Meaning Contents

0 Program number integer >0

1 Program identifier string

2 number of V variables integer >0
TypID’s see below
number of Z variables integer >0
TypID’s see below
number of R variables integer >0
TypID’s see below
number of loop variables integer >0
<Plan> see below
END »END« marks the end of a program

Type identifiers are sorted in the order of the variables, a new type in every line. The
leaves of the type tree must be explicitly marked using a "1", for example as in 8.1,
4.2.1or 3.2(23.1,45.1)

Typl D

nuni

type-letter

<Pl an>
<pl anl i ne>
<st at enent >

<assi gnnent >
<i f-then>
<whi | e>
<\wd>

<wl>

<WX >
<built-ins>
<cal | >
<call-r>
<cal |l -i>
<ternp

<factor>
<var >

<const >
<i ndex>

D= <numd >[. <numl >] *|

L 1 1 1 1 A L O I VO |

' <nume’ _<ternp{’ _,

[<nun1>][.<nhn1>]*('_'<nunP'_'<nun1>[.<nun1>]*{,<TypID>})

1= <nunmp | <type-letter>

albl...hjl...|z

[<pl anli ne>] *

<statenment>\n’

<assi gnnent> | <if-then>
<wl> | <wx> | <wd> |

= ’'<termp’ ’'<factor>

? '<ternmp{’ ' <statenment>}' '$

W _’'{<statenent> '}M

WD' ' <nun®’ ' {<statement> _'}DW

W' <termr’ ' {<statenent> '}1W

WK ' <nun®’ _'<ternp’ ' {<statenent> '} XW

FIN _' <nume

<whi | e> |
<built-ins>

<call-r> | <call-i>
C 'R _'<nuny’ _'{<ternms’ '}’ '<typ> _'-|<nunD>
C_'I"_"<string> _'{<ternms’ '}’ ’'<typ> _’-|<nunD>

<factor>| <op> _’'<factor>['_'<factor>]| <call >|
T '<ternp}’)

<var >| <i ndex>| <t ypevar >| <const >| <t er n»

V| Z| R _’ <nun0>’ _’ <conponent >

K _'[-]<nunD>

"’ <numD>

22

<t ypevar > =T '<letter>

<conponent > = <factor>[’ _'<factor>]*’ .
<op> = H*[-] ==[<|>|']&"]|"[x]nx
<string> = {<l etter>| <nunD>}

<letter> =alb|...|z|AB...|Z

<nune = natural nunber

<nunD> = natural nunber or O
References

Arefi, F., Ch. Hughes, and D. Workman, “Automatically Generating Visual Syntax-
Directed Editors”, Communications of the ACM, Vol. 33, N. 3, March 1990, 349-
360.

Grosch, 1., Generators for High-Speed Front-Ends, LNCS,
371, Springer-Verlag, 1988, pp. 81-92.

Grosch, J. and H. Emmelmann, "A Tool Box for Compiler Construction",
LNCS, 477, Springer-Verlag, 1990, pp. 106-116

Rojas, R. (Hrsg.), Die Rechenmaschinen von Konrad Zuse, Springer-Verlag, 1998.

Teitelbaum, T., and T. Reps, “The Cornell Program Synthesizer: A Syntax Directed
Programming Environment”, Communications of the ACM, Vol. 24, N. 9, Sept.
1981, pp.563-573.

Zuse, Konrad, “Ansitze einer Theorie des allgemeinen Rechnens unter besonderer
Beriicksichtigung des Aussagenkalkiils und dessen = Anwendung auf
Relaisschaltungen” , unpublished manuscript, Zuse Papers 045/018, 1943.

Zuse, Konrad, Der Plankalkiil, Berichte der Gesellschaft fiir Mathematik und
Datenverarbeitung, Nr. 63, Sankt Augustin, 1972.

