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Abstract Kernel density estimation is a well known method involving a smooth-
ing parameter (the bandwidth) that needs to be tuned by the user. Although this
method has been widely used, the bandwidth selection remains a challenging issue
in terms of balancing algorithmic performance and statistical relevance. The pur-
pose of this paper is to study a recently developed bandwidth selection method,
called Penalized Comparison to Overfitting (PCO). We first provide new theo-
retical guarantees by proving that PCO performed with non-diagonal bandwidth
matrices is optimal in the oracle and minimax approaches. PCO is then compared
to other usual bandwidth selection methods (at least those which are implemented
in the R-package) for univariate and also multivariate kernel density estimation on
the basis of intensive simulation studies. In particular, cross-validation and plug-
in criteria are numerically investigated and compared to PCO. The take home
message is that PCO can outperform the classical methods without algorithmic
additional cost.

Keywords Multivariate density estimation · Kernel-based density estimation ·
Bandwidth selection

1 Introduction

Density estimation is widely used in a variety of fields in order to study the data
and extract informations on variables whose distribution is unknown. Due to its
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simplicity of use and interpretation, kernel density estimation is one of the most
commonly used density estimation procedure. Of course we do not pretend that
it is ”the” method to be used in any case but that being said, if one wants to
use it in a proper way, one has to take into account that its performance is con-
ditioned by the choice of an adapted bandwidth. From a theoretical perspective,
once some loss function is given, an ideal bandwidth should minimize the loss (or
the expectation of the loss) between the kernel density estimator and the unknown
density function. Since these ”oracle” choices do not make sense in practice, sta-
tistical bandwidth selection methods consist of mimicking the oracle through the
minimization of some criteria that depend only on the data. Because it is easy to
compute and to analyze, the L2 loss has been extensively studied in the litera-
ture although it would also make sense to consider the Kulback-Leibler loss, the
Hellinger loss or the L1 loss (which are somehow more intrinsic losses with respect
to the distribution and do not depend on the dominating measure). For the same
reasons as those mentioned above, we shall deal with the L2 loss in this paper and
all the comparisons that we shall make between the method that we propose and
other methods will be performed relatively to this loss. Focusing on the L2 loss,
two classes of bandwidth selection have been well studied and are commonly used:
cross validation and plug-in. They correspond to different ways of estimating the
ISE (integrated squared error) which is just the square of the L2 loss between the
estimator and the true density or the MISE (mean integrated squared error), which
is just the expectation of the preceding quantity. The least-square cross-validation
(LSCV) (Rudemo (1982), Bowman (1984)) tends to minimize the ISE by replacing
the occurence of the underlying density by the leave-one-out estimator. However
LSCV suffers from the dispersion of the ISE even for large samples and tends to
overfit the underlying density as the sample size increases. The plug-in approaches
are based on the asymptotic expansion of the MISE. Since the asymptotic expan-
sion of the MISE involves a bias term that depends on the underlying density itself
one can estimate this term by plugging a pilot kernel estimator of the true density.
Thus this plug-in approach depends on the choice of a pilot kernel and also on the
choice of the pilot bandwidth. The so-called ”rule of thumb” method Silverman
(1986) is a popular ready to be used variant of the plug-in approach in which the
unknown term in the MISE is estimated as if the underlying density were Gaus-
sian. Note that variations of previous methods can be found in the literature. See
for instance Jones (1998) and Heidenreich et al. (2013) for nice theoretical and
practical reviews.

These methods have been first proposed and studied for univariate data and
then extended to the multivariate case. The LSCV estimator for instance has been
adapted in Stone (1984) to the multivariate case. A multivariate version of the
smooth cross-validation is presented in Chacón and Duong (2011) and Duong and
Hazelton (2005). The rule of thumb is studied in Wand (1992) and the multivariate
extension of the plug-in is developed in Wand and Jones (1994b) and Chacón and
Duong (2010). Generally speaking, these methods have some well-known draw-
backs: leave-one-out cross-validation tends to overfit the density for large sample
while plug-in approaches depend on prior informations on the underlying density
that are requested to estimate asymptotically the bias part of the MISE and which
can turn to be inaccurate especially when the sample size is small.

The Penalized Comparison to Overfitting (PCO) is a selection method that
has been recently developed in Lacour et al. (2017). This approach is based on
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the penalization of the L2 loss between an estimator and the overfitting one. It
does not belong to the family of cross-validation methods nor to the class of
plug-in methods, but lies somewhere between these two classes. Indeed the main
idea is still to mimic the oracle choice of the bandwidth but the required bias
versus variance trade-off is achieved by estimating the variance with the help of
a penalty term (as in a plug-in method) while the bias is estimated implicitly
from the penalization procedure itself as in a cross-validation method. In Lacour
et al. (2017), a theoretical study of the tuning of parameters of PCO is led. Easy
to implement values are obtained, for which PCO is optimal in the oracle and
minimax approaches.

What’s new in this paper? As mentioned above the PCO method for
quadratic risk and kernel density estimation was introduced and mathematically
studied in Lacour et al. (2017). In this paper we further investigate this method in
two distinct directions. On the one hand, we propose a modification of the method
introduced and studied in Lacour et al. (2017) to deal with the case of anisotropic
multivariate density estimation. In particular, to deal with distributions whose
behavior can be very different from one direction to another, we consider sym-
metric definite positive bandwidth matrices parametrization. This consideration
is important for applications since it allows adaptation to an unknown correlation
structure for the data. In this context we prove a new oracle inequality which
proves the optimality of our method on Nikol’skii regularity classes. We also pro-
pose a comparative numerical study to verify that the optimal choice of bandwidth
which we have proved to be theoretically optimal behaves well on simulated data
and this even for moderate sample sizes. For this study, we compared our method
to those which, to our knowledge, are the most commonly used, knowing that
many variants exist and that we cannot claim to be exhaustive.

As a conclusion of this numerical study we see that our method behaves well
when compared to its competitors and offers several advantages which should be
welcome for practitioners:

1. It can be used for moderately high dimensional data
2. To a large extent, it is free-tuning
3. Its computational cost is quite reasonable

Moreover while the theoretical properties of the most popular methods such as the
Rule of thumb, the Least-Square Cross-Validation, the Biased Cross-Validation,
the Smoothed Cross-Validation and the Sheather and Jones Plug-in approach have
been well studied in dimension 1, this is not the case in dimension larger than 2.
Of course R-packages do exist for these methods in the multivariate case but to
our knowledge similar theoretical garantees as those that we prove here for our
method do not exist yet.

Concretely, the performance of each method that we analyze in our numeri-
cal study is measured in terms of the MISE of the corresponding selected kernel
estimator (more precisely we use the Monte-Carlo evaluation of the MISE rather
than the MISE per se). We present the results obtained for several ”test” laws. We
borrowed most of these laws from Marron and Wand (1992) for univariate data
and Chacón (2009) for bivariate data (and we use some natural extensions of them
for multivariate data, up to dimension 4).

To avoid a too long study, we have only focused on comparisons between ker-
nel estimates and simulations are performed on quite smooth density functions for
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which kernel rules are well suited. Of course other methodologies could be consid-
ered, as for instance density estimates based on histograms (see Rudemo (1982)),
wavelets (see Donoho et al. (1996)) or dyadic piecewise polynomial (see Akakpo
(2012)). Observe that histogram estimators are best ones to recover step functions
while very oscillating ones should be estimated by using wavelets.

Section 2 is devoted to the presentation of all the methods used for the numer-
ical comparison. In particular, PCO is described in Section 2.1.1 for the univariate
case and in Section 2.2.1 for the multivariate case. Its implementation is discussed
in Section 3.1 and the numerical study of the tuning of PCO-paremeters is led in
Section 3.2. The numerical results for univariate data are detailed in Section 3.3
and in Section 3.4 for multivariate data. The extension of the oracle inequality of
PCO for non-diagonal bandwidth is given in Theorem 1 and Corollary 1 of Sec-
tion 2.2.1 and the associated proofs are in Appendix A. The code used for the simu-
lations presented in this paper can be found at https://github.com/SuVaret/PCO.

Notations.The bold font denotes vectors. For any matrix A, we denote AT the
transpose of A. Tr(A) denotes the trace of the matrix A.

2 Bandwidth selection

Due to their simplicity and their smoothing properties, kernel rules are among the
most extensively used methodologies to estimate an unknown density, denoted f
along this paper, where f : Rd 7→ R+. For this purpose, we consider an n sample
X = (X1, . . . ,Xn) with Xi = (Xi1, . . . , Xid) ∈ Rd. The kernel density estimator,
f̂H , is given, for all x = (x1, . . . , xd) ∈ Rd, by

f̂H(x) =
1

ndet(H)

n∑
i=1

K
(
H−1(x−Xi)

)
=

1

n

n∑
i=1

KH(x−Xi)

where K is the kernel function, the matrix H is the kernel bandwidth belonging
to a fixed grid H and KH(x) = 1

det(H)K
(
H−1x

)
. Of course, the choice of the

bandwidth is essential from both theoretical and practical points of view. In the
sequel, we assume that K verifies following conditions, satisfied by usual kernels:∫

K(x)dx = 1, ‖K‖2 <∞,
∫
‖x‖2|K(x)|dx <∞,

where ‖ · ‖ denotes the L2-norm on Rd. Most of selection rules described subse-
quently are based on a criterion to be minimized. We restrict our attention to
L2-criteria even if other approaches could be investigated. For this purpose, we
introduce the Integrated Square Error (ISE) of the estimator f̂H defined by

ISE(H) := ‖f̂H − f‖2 (1)

and the mean of ISE(H):

MISE(H) := IE[ISE(H)] = IE‖f̂H − f‖2.
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2.1 Univariate case

We first deal with the case d = 1 and we denote X = (X1, . . . , Xn) the n-sample of
density f . The general case is investigated in Section 2.2. The bandwidth param-
eter lies in R∗+ and is denoted h, instead of H. In our L2-perspective, it is natural
to use a bandwidth which minimizes h 7→ MISE(h) or h 7→ ISE(h). However,
such functions strongly depend on f . We can relax this dependence by using an
asymptotic expansion of the MISE:

AMISE(h) =
‖K‖2

nh
+

1

4
h4µ2

2(K)‖f ′′‖2,

when f ′′ exists and is square-integrable, with µ2(K) =
∫
x2K(x)dx. We refer the

reader to Wand and Jones (1994a) who specified mild conditions under which
AMISE(h) is close to MISE(h) when n → +∞. The main advantage of the
AMISE criterion lies in the closed form of the bandwidth that minimizes it:

ĥAMISE =

(
‖K‖2

µ2
2(K)‖f ′′‖2

)1/5

n−1/5. (2)

Note however, that ĥAMISE still depends on f through ‖f ′′‖2. The Rule of Thumb
developed in Parzen (1962) and popularized by Silverman (1986) (and presented
subsequently) circumvents this problem. Cross-validation approaches based on a
direct estimation of ISE(h) constitute an alternative to bandwidth selection de-
rived from the AMISE criterion. Both approaches can of course be combined.
Before describing them precisely, we first present the PCO methodology for the
univariate case.

2.1.1 Penalized Comparison to Overfitting (PCO)

Penalized Comparison to Overfitting (PCO) has been proposed by Lacour et al.
(2017). We recall main heuristic arguments of this method for the sake of com-
pleteness. We start from the classical bias-variance decomposition

IE‖f − f̂h‖2 = ‖f − fh‖2 + IE‖fh − f̂h‖2 =: bh + vh,

where for any h, fh := Kh ? f = IE[f̂h], with ? the convolution product. It is
natural to consider a criterion to be minimized (on a grid) of the form

Crit(h) = b̂h + v̂h,

where b̂h is an estimator of the bias bh and v̂h an estimator of the variance vh.
Minimizing such a criterion is hopefully equivalent to minimizing the MISE. Using
that vh is (tightly) bounded by ‖K‖2/(nh), we naturally set v̂h = λ‖K‖2/(nh),
with λ some tuning parameter. The difficulty lies in estimating the bias. Here we
assume that hmin, the minimum of the bandwidths grid, is very small. In this
case, fhmin = Khmin ? f is a good approximation of f , so that ‖fhmin − fh‖

2 is

close to bh. This is tempting to estimate this term by ‖f̂hmin − f̂h‖
2 but doing so,

we introduce a bias. Indeed, since

f̂hmin − f̂h = (f̂hmin − fhmin − f̂h + fh) + (fhmin − fh)
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we have the decomposition

IE‖f̂hmin − f̂h‖
2 = ‖fhmin − fh‖

2 + IE‖f̂hmin − f̂h − fhmin + fh‖2. (3)

But the centered variable f̂hmin − f̂h − fhmin + fh can be written

f̂hmin − f̂h− fhmin + fh =
1

n

n∑
i=1

(Khmin −Kh)(.−Xi)− IE((Khmin −Kh)(.−Xi)).

So, the second term in the right hand side of (3) is of order n−1
∫

(Khmin(x) −
Kh(x))2dx. Hence,

IE‖f̂hmin − f̂h‖
2 ≈ ‖fhmin − fh‖

2 +
‖Khmin −Kh‖

2

n

and then

bh ≈ ‖fhmin − fh‖
2 ≈ ‖f̂hmin − f̂h‖

2 − ‖Khmin −Kh‖
2

n
.

These heuristic arguments lead to the following criterion to be minimized:

lPCO(h) = ‖f̂hmin − f̂h‖
2 − ‖Khmin −Kh‖

2

n
+ λ
‖Kh‖2

n
. (4)

Thus, our method consists in comparing every estimator of our collection to the
overfitting one, namely f̂hmin , before adding the penalty term

penλ(h) =
λ‖Kh‖2 − ‖Khmin −Kh‖

2

n
. (5)

The selected bandwidth is then

ĥPCO = arg min
h∈H

lPCO(h).

In Lacour et al. (2017), it is proved that this bandwidth choice allows to achieve
the optimal minimax integrated risk, for hmin = ‖K‖∞‖K‖1/n and λ well chosen.
More precisely, in Lacour et al. (2017), it is shown that the risk blows up when
λ < 0. So, the optimal value for λ lies in R+. Theorem 2 of Lacour et al. (2017)
(generalized in Theorem 1 of Section 2.2.1) suggests that the optimal tuning pa-
rameter is λ = 1. It is in line with previous heuristic arguments (see the upper
bound of vh). In Section 3.3, we first conduct some numerical experiments and
establish that PCO is indeed optimal for λ = 1. We then fix λ = 1 for all com-
parisons. We also study the choice of hmin and show that this parameter is not
sensitive if chosen in a suitable range, so PCO becomes a free-tuning methodology.

Connections between PCO and the approach proposed by Goldenshluger and
Lepski are quite strong. Introduced in Goldenshluger and Lepski (2008), the Gold-
enshluger Lepski’s methodology is a variation of the Lepski’s procedure still based
on pair-by-pair comparisons between estimators. More precisely, Goldenshluger
and Lepski suggest to use the selection rule

ĥ = arg min
h∈H

{A(h) + V2(h)} ,



Numerical performance of PCO 7

with

A(h) = sup
h′∈H

{
‖f̂h′ − f̂h∨h′‖2 − V1(h′)

}
+
,

where x+ denotes the positive part max(x, 0), h ∨ h′ = max(h, h′) and V1(·) and
V2(·) are penalties to be suitably chosen (Goldenshluger and Lepski essentially con-
sider V2 = V1 or V2 = 2V1 in Goldenshluger and Lepski (2008, 2009, 2011, 2013)).
The authors establish the minimax optimality of their method when V1 and V2
are large enough. However, observe that if V1 = 0, then, under mild assumptions,

A(h) = sup
h′∈H

‖f̂h′ − f̂h∨h′‖2 ≈ ‖f̂hmin − f̂h‖
2

so that our method turns out to be exactly some degenerate case of the Golden-
shluger Lespki’s method. Two difficulties arise for the use of the Goldenshluger
Lespki’s method: Functions V1 and V2 depend on some parameters which are very
hard to tune. Based on 2 optimization steps, its computational cost is very large.
Furthermore, the larger the dimension, the more accurate these problems are. Note
that the classical Lepski’s method shares same issues. We lead a brief compara-
tive numerical study in Section 3.3 that confirms that PCO gives similar results
to Goldenshluger Lespki’s method, but with a considerably reduced computation
cost (and without need of calibration).

Other kernel rules using two bandwidths deserve to be mentioned: see Jones
(1998), Jones et al. (1991) and references therein. But their philosophy, in terms
of bias estimation, penalization and choice of second bandwidth, is very different.

2.1.2 Silverman’s Rule of thumb (RoT and RoT0)

The Rule of Thumb has been developed in Parzen (1962) and popularized by
Silverman (1986). We assume that f ′′ exists and is such that ‖f ′′‖ < ∞. The
simplest way to choose h is to use a standard family of distributions to minimize
h 7→ AMISE(h).

For a Gaussian kernel and f the probability density function of the normal dis-
tribution, an approximation of ‖f ′′‖2 can be plugged in (2) leading to a bandwidth
of the form ĥ = 1.06σ̂n−1/5 where σ̂ is an estimation of the standard deviation of
the data. However this bandwidth leads to an oversmoothed estimator of the den-
sity for multimodal distributions. Thus it is better to use the following estimator,
which works well with unimodal densities and not too badly for moderate bimodal
ones:

ĥRoT = 1.06×min

(
σ̂,
q̂75 − q̂25

1.34

)
× n−1/5 (6)

where q̂75 − q̂25 is an estimation of the interquartile range of the data. Another
variant of this approximation (Silverman (1986) p.45-47) is:

ĥRoT0 = 0.9×min

(
σ̂,
q̂75 − q̂25

1.34

)
× n−1/5.

These two variants of the Rule of Thumb methodology are respectively denoted
RoT and RoT0.
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2.1.3 Least-Square Cross-Validation (UCV)

Least-square cross-validation has been developed independently in Rudemo (1982)
and Bowman (1984). In the univariate case, Equation (1) can be expressed as

ISE(h) =

∫
f̂2
h − 2

∫
f̂hf +

∫
f2. (7)

Since the last term of (7) does not depend on h, minimizing (7) is equivalent to
minimizing

Q(h) =

∫
f̂2
h − 2

∫
f̂hf.

The least-square cross-validation constructs an estimator of Q(h) from the leave-
one out estimator f̂−i:

lucv0(h) =

∫
f̂2
h −

2

n

n∑
i=1

f̂−i(Xi) (8)

where the leave-one out estimator is given by

f̂−i(x) =
1

n− 1

∑
j 6=i

Kh (x−Xj) .

Then, IE[Q(h)] is unbiasedly estimated by lucv0(h), which justifies the use of lucv0
for the bandwidth selection and this is the reason why this estimator is also called
unbiased cross-validation (UCV) estimator. Using the expression of f̂−i in (8) and
replacing the factor 1

n−1 with 1
n for computation ease, the following estimator

lucv(h) is used in practice:

lucv(h) =
1

hn2

n∑
i=1

n∑
j=1

K∗
(
Xi −Xj

h

)
+

2

nh
K(0)

where K∗(u) = (K ? K̃)(u) − 2K(u)and K̃(u) = K(−u). Finally, the bandwidth
selected by the least-square cross-validation is given by:

ĥucv = arg min
h∈H

lucv(h).

2.1.4 Biased Cross-Validation (BCV)

The biased cross-validation was developed in Scott and Terrell (1987). It consists
in minimizing the AMISE. So, we assume that f ′′ exists and ‖f ′′‖ < ∞. Since
the AMISE depends on the unknown density f through ‖f ′′‖, the biased cross-
validation estimates ‖f ′′‖2 by

‖̂f ′′‖2 =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

(K̃′′h ? K
′′
h )(Xi −Xj),

using a twice differentiable kernel. Straightforward computations show that

IE
[
‖̂f ′′‖2

]
= ‖Kh ? f ′′‖2,
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which is close to ‖f ′′‖2 when h is small under mild conditions on K. This justifies
the use of the objective function of BCV defined by:

lbcv(h) =
‖K‖2

nh
+

1

4
h4µ2

2(K)‖̂f ′′‖2.

Finally, the bandwidth selected by the BCV is given by:

ĥbcv = arg min
h

lbcv(h)

=

(
‖K‖2

µ2
2(K)‖̂f ′′‖2

)1/5

n−1/5.

2.1.5 Sheather and Jones Plug-in (SJ)

This estimator is, as BCV, based on the minimization of the AMISE. The difference
with the BCV approach is in the estimation of ‖f ′′‖2. In this plug-in approach,
‖f ′′‖2 is estimated by the empirical mean of the fourth derivative of f , where f
is replaced by a pilot kernel density estimate of f . Indeed, using two integrations
by parts, under mild assumptions on f , we have IE[f (4)(X)] = ‖f ′′‖2. The pilot
kernel density estimate is defined by:

f̂pilot,b(x) =
1

n

n∑
j=1

Lb(x−Xj)

where L is the pilot kernel function and b the pilot bandwidth. Then, ‖f ′′‖2 is
estimated by Ŝ(b) with

Ŝ(α) =
1

n(n− 1)α5

n∑
i=1

n∑
j=1

L(4)

(
Xi −Xj

α

)
. (9)

The pilot bandwidth b is chosen in order to compensate the bias introduced by the
diagonal term i = j in (9) as explained in Section 3 of Sheather and Jones (1991).
Thus, for choosing b, Sheather and Jones propose two algorithms based on the
remark that, in this context, the pilot bandwidth b can be written as a quantity
proportional to h5/7 or proportional to n−1/7. The first algorithm, called ’solve
the equation’ (’ste’), consists in taking the expression b = b(h) ∝ h5/7, pluging
Ŝ(b(h)) in (2) and solving the equation. The second algorithm, ’direct plug-in’,
consists in taking b ∝ n−1/7, and pluging Ŝ(b) in (2). Thus the SJ estimators of h
are given by:

ĥSJste =

(
‖K‖2

µ2
2(K)Ŝ(c1ĥ

5/7
SJste)

)1/5

n−1/5

for the ’ste’ algorithm and

ĥSJdpi =

(
‖K‖2

µ2
2(K)Ŝ(c2n−1/7)

)1/5

n−1/5
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for the ’dpi’ algorithm. The constant c1 is c1 =
(

2L(4)(0)µ2
2(K)

µ2(L)‖K‖2

)1/7 ( ‖f ′′‖2
‖f ′′′‖2

)1/7
where ‖f ′′‖2 and ‖f ′′′‖2 are estimated by ‖f̂ ′′a ‖2 and ‖f̂ ′′′b ‖

2 with a and b the
Silverman’s rule of thumb bandwidths respectively. The constant c2 is equal to(

2L(4)(0)
µ2(L)

)1/7 (
1

‖f ′′′‖2

)1/7
(see Equation (9) of Sheather and Jones (1991)), where

‖f ′′′‖2 is estimated by ‖f̂ ′′′a ‖2 with a the Silverman’s rule of thumb bandwidth.

2.2 Multivariate case

The difficulty of the multivariate case lies in the selection of a matrix rather than
a scalar bandwidth. Different classes of matrices can be used. The simplest class
corresponds to matrices of the form hId for h ∈ R∗+. In this case, selecting the
bandwidth matrix is equivalent to deriving a single smoothing parameter. However,
the unknown distribution may have different behaviors according to the coordinate
direction. The latter parametrization does not allow us to take this specificity into
account. An extension of this class corresponds to diagonal matrices of the form
diag(h1, . . . , hd). But this parametrization is not convenient when the directions
of the density are not those of the coordinates. The most general case corresponds
to the class of all symmetric definite positive matrices, which allows smoothing
in arbitrary directions. A comparison of these parametrizations can be found in
Wand and Jones (1993). In this paper, we focus on diagonal and on symmetric
definite positive matrices parametrization.

We now assume that the kernel K : Rd 7→ R satisfies∫
xxTK(x)dx = µ2(K)Id

where µ2(K) is a finite positive constant. In the general setting of symmetric
definite positive matrices, and using the asymptotic expansion of the bias and the
variance terms, the MISE is usually approximated by the AMISE function defined
by

AMISE(H) =
1

4
µ2
2(K)

∫
[Tr(H2D2f(x))]2dx+

‖K‖2

ndet(H)

with D2f(x) the Hessian matrix of f . See Wand (1992) for instance. Note that
AMISE(H) can also be expressed as

AMISE(H) =
1

4
µ2
2(K)(vech(H2))TΨf (vech(H2)) +

‖K‖2

ndet(H)
, (10)

where vech is the vector half operator which transforms the lower triangular half
of a matrix into a vector scanning column-wise and the matrix Ψf is defined by

Ψf =

∫
vech(2D2f(x)− diag(D2f(x)))(vech(2D2f(x)− diag(D2f(x))))T (11)

with diag(A) the diagonal matrix formed with the diagonal elements of A.
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2.2.1 Penalized Comparison to Overfitting (PCO)

The PCO methodology developed in Lacour et al. (2017) only deals with diago-
nal bandwidths H. We now generalize it to the more general case of symmetric
positive-definite d× d matrices to compare its numerical performances to all pop-
ular methods dealing with multivariate densities. We then establish theoretical
properties of PCO in oracle and minimax approaches. To the best of our knowl-
edge, similar results have not been established for competitors of PCO.

In the sequel, we consider H, a finite set of symmetric positive-definite d × d
matrices. Let h̄ ∈ R∗+. Then, set Hmin = h̄Id. We still consider

ĤPCO = arg min
H∈H

lPCO(H)

with

lPCO(H) = ‖f̂Hmin − f̂H‖
2 − ‖KHmin −KH‖

2

n
+ λ
‖KH‖2

n

and λ > 0. Define

fH = IE[f̂H ] = KH ? f,

which goes to f when H goes to 0d, under mild assumptions. The estimator f̂ĤPCO
verifies the following oracle inequality.

Theorem 1 Assume that ‖f‖∞ <∞ and K is symmetric. Assume that det(Hmin) ≥
‖K‖∞‖K‖1/n. Let x ≥ 1 and ε ∈ (0, 1). If λ > 0, then, with probability larger
than 1− C1|H|e−x,

‖f̂ĤPCO − f‖
2 ≤ C0(ε, λ) min

H∈H
‖f̂H − f‖2

+C2(ε, λ)‖fHmin − f‖
2 + C3(ε,K, λ)

(
‖f‖∞x2

n
+

x3

n2 det(Hmin)

)
,

where C1 is an absolute constant and C0(ε, λ) = λ+ε if λ ≥ 1, C0(ε, λ) = 1/λ+ε
if 0 < λ < 1. The constant C2(ε, λ) only depends on ε and λ and C3(ε,K, λ) only
depends on ε, K and λ.

The proof of Theorem 1 is given in Appendix A. Up to the constant C0(ε, λ), the
first term of the oracle inequality corresponds to the ISE of the best estimate f̂H
when H describes H. The main assumption of the theorem means that h̄ cannot
be smaller than n−1/d up to a constant. When h̄ is taken proportional to n−1/d,
then the third term is of order x3/n and is negligible with x proportional to logn.
The second term is also negligible when f is smooth enough and h̄ small (see
Corollary 1 below).

Remark 1 Note that arg min λ∈R∗+ C0(ε, λ) = 1 and C0(ε, 1) = 1 + ε. So, taking

λ = 1 ensures that the leading constant of the main term of the right hand side
is close to 1 when ε is small. Neglecting the other terms, this oracle inequality
shows that the risk of PCO tuned with λ = 1 is not worse than the risk of the
best estimate f̂H up to the constant 1 + ε, for any ε > 0.
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From Theorem 1, we deduce that if H is not too big and contains a quasi-optimal
bandwidth, we can control the MISE of PCO on the Nikol’skii class of functions
by assuming that K has enough vanishing moments. The anisotropic Nikol’skii
class is a specific smoothness space defined as follows. Let (e1, . . . , ed) denote the
canonical basis of Rd. For any function g : Rd 7→ R and any u ∈ R, we define the
first order difference operator with step size u in the j-th direction by

∆u,jg(x) = g(x+ uej)− g(x), j = 1, . . . , d.

By induction, the k-th order difference operator with step size u in the j-th direc-
tion is defined as

∆ku,jg(x) = ∆u,j∆
k−1
u,j g(x) =

k∑
`=1

(−1)`+k
(
k

`

)
∆u`,jg(x).

We then set

Definition 1 For any given vectors r = (r1, . . . , rd), rj ∈ [1,+∞], β = (β1, . . . , βd),
βj > 0, and L = (L1, . . . , Ld), Lj > 0, j = 1, . . . , d, we say that the function
g : Rd 7→ R belongs to the anisotropic Nikol’skii class Nr,d(β,L) if

(i) ‖g‖rj ≤ Lj for all j = 1, . . . , d
(ii) for every j = 1, . . . , d, there exists a natural number kj > βj such that

‖∆kju,jg‖rj ≤ Lj |uj |
βj , ∀u ∈ Rd, ∀j = 1, . . . , d.

Note that the anisotropic Nikol’skii class is a specific class of the anisotropic Besov
class (see page 488 of Goldenshluger and Lepski (2014)):

Nr,d(β, .) = Bβr,∞(·).

From Theorem 1, classical adaptive minimax anisotropic rates of convergence can
be obtained. To deduce a rate of convergence, we focus on a parametrization of
the form H = P−1diag(h1, . . . , hd)P with P some given matrix. The practical
choice of P is discussed in Section 3.4. The following result is a generalization of
Corollary 7 of Lacour et al. (2017). We set N∗ the set of positive integers. We
say that a kernel K is of order ` if for any non-constant polynomial Q of degree
smaller than `, ∫

K(u)Q(u)du = 0.

Corollary 1 Let P be an orthogonal matrix. Assume that f ◦ P−1 belongs to
the anisotropic Nikol’skii class N2,d(β,L). Assume that the kernel K is order
` > maxj=1,...,d βj. Consider Hmin = h̄Id with h̄d = ‖K‖∞‖K‖1/n and choose
for H the following set of bandwidths:

H =

H = P−1diag(h1, . . . , hd)P :
d∏
j=1

hj ≥ h̄d and h−1
j ∈ N∗ ∀ j = 1, . . . , d

 .

Then, if f is bounded by a constant B > 0,

IE
[
‖f̂ĤPCO − f‖

2
]
≤M

 d∏
j=1

L
1
βj

j


2β̄

2β̄+1

n
− 2β̄

2β̄+1 ,

where M is a constant only depending on β, K, B, d and λ and β̄ = (
∑d
j=1 1/βj)

−1.
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Corollary 1 is proved in Appendix A. Note that if we take for P the identity
matrix we obtain the results of Lacour et al. (2017). In this case, Theorem 3 of
Goldenshluger and Lepski (2014) states that up to the constant M , we cannot
improve the rate achieved by our procedure. So, the latter achieves the adaptive
minimax rate over the class N2,d(β,L).

Moreover there may be P such that f ◦ P−1 is smoother than f . Then it
is worth estimating f ◦ P−1 than f . This is equivalent to considering the data
PXi (which is a common preprocessing), and to estimate it with kernel K ◦ P−1

and bandwidth PHP−1, hence our bandwidth parametrization of the form H =
P−1diag(h1, . . . , hd)P . The numerical interest of such full matrices is shown in
Section 3.4.2. Corollary 1 highlights the theoretical interest of finding P such that
f ◦ P−1 is as smooth as possible. Investigating the best choice for the matrix P
is beyond the scope of this paper but in practice we suggest to use the covariance
matrix, see Section 3.4.2.

Finally, note that the oracle inequality of Theorem 1 allows us to obtain a result
for other function spaces as soon as the bias term can be bounded conveniently.
For instance, we achieve the optimal rate for interesting classes of functions with
dominating mixed-smoothness, introduced by Cleanthous et al. (2019).

2.2.2 Rule of thumb (RoT)

For a general parametrization, in Wand (1992), the authors derive the formula
for the AMISE expansion of the MISE and also look at the particular case of the
multivariate normal density with a Gaussian kernel. More precisely, the AMISE
expansion given by Equation (10) depends on f through Ψf . The easiest way to
minimize the AMISE is to take, for f , the multivariate Gaussian density N (m, Σ)
with meanm and covariance matrix Σ in the expression of Ψf (see (11)), combined
with K, the standard Gaussian kernel, in the AMISE expression (see (10)). Then,
the AMISE-optimal bandwidth matrix is

ĤRoT =

(
4

n(d+ 2)

) 1
d+4

Σ̂
1
2 ,

where Σ̂ is the empirical covariance matrix of the data (Wand, 1992).

2.2.3 Least-Square Cross-Validation (UCV)

The multivariate generalization of the least-square cross-validation was developed
in Stone (1984). It can easily be observed that computations leading to the Cross-
Validation criterion for univariate densities can be extended without any difficulty
to the case of multivariate densities and we set

Ĥucv = arg min
H

lucv(H),

with

lucv(H) =
1

n2

∑
i

∑
j

K∗H (Xi −Xj) +
2

n
KH(0),

where K∗H(u) = (KH ? K̃H)(u) − 2KH(u), still by denoting ’?’ the convolution
product and K̃H(u) = KH(−u).
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2.2.4 Smoothed Cross-Validation (SCV)

The Smoothed Cross-Validation (SCV) approach proposed by Duong and Hazelton
(2005) is based on the improvement of the AMISE approximation of the MISE by
replacing the first term of (10) with the exact integrated squared bias. Then, cross-
validation is used to estimate the bias term. Therefore, the objective function for
the multivariate SCV methodology is

lSCV(H) =
‖K‖2

ndet(H)
+

1

n2

n∑
i=1

n∑
j=1

(KH?KH?LG?LG−2KH?LG?LG+LG?LG)(Xi−Xj)

where L is the pilot kernel and G the pilot bandwidth matrix and the selected
bandwidth is then

ĤSCV = arg min
H

lSCV(H).

See Section 3 of Duong and Hazelton (2005) or Sections 2 and 3 of Chacón and
Duong (2011) for more details. To design the pilot bandwidth matrix, Duong and
Hazelton (2005) restrict to the case G = g × Id for g ∈ R∗+, whereas Chacón and
Duong (2011) consider full matrices.

2.2.5 Plug-in (PI)

In the same spirit as the one-dimensional SJ estimator described in Section 2.1.5,
the goal of the multivariate plug-in estimator is to minimize H 7→ AMISE(H)
which depends on the unknown matrix Ψf whose elements are given by the ψr’s

for all r = (r1, ..., rd) ∈ Nd such that |r| =
d∑
i=1

ri = 4 and defined by

ψr =

∫
f (r)(x)f(x)dx where f (r) =

∂|r|f

∂xr1
1 . . . ∂xrdd

.

In Wand and Jones (1994b), the elements ψr are estimated by

ψ̂r(G) =
1

n2

n∑
i=1

n∑
j=1

L
(r)
G (Xi −Xj),

where, as usual, L is a pilot kernel and G a pilot bandwidth matrix. Some limi-
tations of this approach are emphasized in Wand and Jones (1994b). This is the
reason why Chacón and Duong (2010) alternatively suggest to estimate Ψf by
using

Ψ̂4(G) =
1

n2

n∑
i=1

n∑
j=1

D⊗4LG(Xi −Xj),

with ⊗r the rth Kronecker product. Section 4.1 of Chacón and Duong (2010)
describes the choice of G and finally the selected bandwidth is given by

ĤPI = arg min
H

̂AMISE(H)

where

̂AMISE(H) =
1

4
µ2
2(K)(vechH2)T Ψ̂4(G)(vechH2) +

‖K‖2

ndet(H)
.
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3 Numerical study

To study the numerical performances of the PCO approach, a large set of testing
distributions has been considered. For the univariate case, we use the benchmark
densities proposed by Marron and Wand (1992) whose list is slightly extended.
See Figure 10 in Appendix and Table 2 for the specific definition of 19 univariate
densities considered in this paper. For multivariate data, we start from the 12
benchmark densities proposed by Chacón (2009) and PCO is tested on an extended
list of 14 densities (see Table 3 and Figure 11). Their definition is generalized to
the case of dimensions 3 and 4 (see Tables 4 and 5 respectively). We provide
3-dimensional representations of the testing densities in Figure 12.

3.1 PCO implementation and complexity

This section is devoted to implementation aspects of PCO and we observe that
its computational cost is very competitive with respect to competitors considered
in this paper. We first deal with the univariate case for which three kernels have
been tested, namely the Gaussian, the Epanechnikov and the biweight kernels,
respectively defined by:

K(u) =
1√
2π

exp

(
−1

2
u2
)
,K(u) =

3

4
(1−u2)1I{|u|≤1},K(u) =

15

16
(1−u2)21I{|u|≤1}.

For any kernel K, ‖Kh‖2 = h−1‖K‖2. If K is the Gaussian kernel, ‖K‖2 =
(2
√
π)−1, and the penalty term defined in (5) can be easily expressed:

penλ(h) =
λ‖Kh‖2 − ‖Khmin −Kh‖

2

n
=

1

2
√
πn

(
λ− 1

h
− 1

hmin
+ 2

√
2

h2 + h2min

)
.

For the Epanechnikov kernel, we have ‖K‖2 = 3/5 and

penλ(h) =
1

n

(
3(λ− 1)

5h
− 3

5hmin
+

3

2

h2 − h2min/5
h3

)
.

With a biweight kernel, since ‖K‖2 = 5/7, the penalty term becomes

penλ(h) =
1

n

(
5(λ− 1)

7h
− 5

7hmin
+

15

8

(
1

h
+
h4min
21h5

− 6h2min
21h3

))
.

Moreover, the loss ‖f̂hmin − f̂h‖
2 can be expressed as

‖f̂hmin − f̂h‖
2 =

1

n2

n∑
i=1

n∑
j=1

(Kh ? Kh)(Xi −Xj)− 2(Kh ? Khmin)(Xi −Xj)

+
1

n2

n∑
i=1

n∑
j=1

(Khmin ? Khmin)(Xi −Xj).
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With a Gaussian kernel, this formula has a simpler expression:

‖f̂hmin − f̂h‖
2 =

1

n2

n∑
i=1

n∑
j=1

K√2h(Xi −Xj)− 2K√
h2+h2

min

(Xi −Xj)

+
1

n2

n∑
i=1

n∑
j=1

K√2hmin
(Xi −Xj).

Omitting terms of lPCO not depending on h (see (4)), for the Gaussian kernel, the
PCO bandwidth is obtained as follows:

ĥPCO = arg min
h∈H

 1

n2

n∑
i=1

n∑
j=1

(
K√2h(Xi −Xj)− 2K√

h2+h2
min

(Xi −Xj)
)

+
1

n
√
π

√
2

h2 + h2min
+

λ− 1

2nh
√
π

}
.

Similarly to ĥUCV, the expression to minimize can be computed through a O(n2)
algorithm. Note that when the tuning parameter is fixed to λ = 1, the PCO
bandwidth is just

ĥPCO = arg min
h∈H

 1

n2

n∑
i=1

n∑
j=1

(
K√2h(Xi −Xj)− 2K√

h2+h2
min

(Xi −Xj)
)

+
1

n
√
π

√
2

h2 + h2min

}
.

One can obtain similar expressions for other kernels. Regarding the set H, the
bandwidth h is chosen in a set of real numbers built from a low-discrepancy se-
quence and more precisely is a rescaled Sobol sequence (Sobol, 1967) such that
we obtain a uniform sampling of the interval [ 1n , 1]. We add to the sequence
hmin = ‖K‖∞/n and finally, card(H) = 400. This choice of hmin stems from
the theory (see Lacour et al. (2017)) since ‖K‖1 = 1, but a deep study of this
parameter hmin is led in Section 3.2.2.

For the multivariate case, similar simplifications can be used. In particular, we
have

‖KH‖2 =
‖K‖2

|detH|

Considering the Gaussian kernel for which we have ‖K‖2 = (2
√
π)−d, we obtain

‖KHmin−KH‖
2 =

1

|det(H)|(2
√
π)d

+
1

|det(Hmin)|(2
√
π)d
− 2√

det(H2 +H2
min)(2π)d/2

and using easy extensions of simplifications detailed for the univariate case, we
obtain

‖f̂Hmin − f̂H‖
2 =

1

n2

n∑
i=1

n∑
j=1

K√2H(Xi −Xj)− 2K√
H2+H2

min

(Xi −Xj)

+
1

n2

n∑
i=1

n∑
j=1

K√2Hmin
(Xi −Xj).



Numerical performance of PCO 17

We easily obtain ĤPCO as

ĤPCO = arg min
H∈H

 1

n2

n∑
i=1

n∑
j=1

(
K√2H(Xi −Xj)− 2K√

H2+H2
min

(Xi −Xj)
)

+
2

n
√

det(H2 +H2
min)(2π)d/2

+
λ− 1

n| det(H)|(2
√
π)d

 .

The construction of H is similar to the case of univariate data by taking H such
that card(H) = 16d. According to Corollary 1, since ‖K‖1 = 1, Hmin is chosen
equal to h̄Id with

h̄d =
‖K‖∞
n

.

We see that the time complexity of PCO is the same as UCV, that is O(d3n2|H|).
BCV and plug-in methods have the same complexity O(d3n2), so that there is
no difference between methods in terms of asymptotic complexity, except for RoT
which is lighter since a single bandwidth is computed. Space complexity of PCO
is also the same as UCV.

3.2 Tuning of PCO and brief numerical illustrations

3.2.1 Tuning the parameter λ

As suggested by Theorem 2 of Lacour et al. (2017) for the univariate case and
Theorem 1 for the multivariate case, the optimal theoretical value for the tuning
parameter λ is λ = 1. See arguments given in Remark 1 which are now confronted
with a short numerical study. For this purpose, we consider the univariate case
and study the risk of the PCO estimate with respect to λ. More precisely, for each
benchmark density, with n = 100, for previous kernels, and for 20 samples, we
determine successively the risk ‖f − f̂‖2; Figure 1 provides the Monte Carlo mean
of the risk over these samples in function of the PCO tuning parameter λ. We
observe very similar behaviors for any density and any kernel, namely:
- very large values of the risk when λ < 0,
- an abrupt change point at λ = 0,
- and a plateau where the risk achieves its minimal value, around the value λ = 1.
Notice that the maximal range for λ considered in Figure 1 is 2 since the risk in-
creases for larger values. We observe very similar behaviors for larger datasets (not
shown). The plateau phenomenon means that in practice, considering λ = 1 in-
stead of the true minimizer of the risk does not impact the numerical performances
of PCO significantly. Thus, in subsequent numerical experiments, the tuning pa-
rameter is fixed at 1. It means that the penalty is tuning-free. This represents
a great advantage compared to other kernel methodologies based for instance on
Lepski-type procedures very hard to tune in practice.

Remark 2 A natural alternative would consist in detecting the abrupt jump ĵ of
one of the functions λ 7→ ĥPCO or λ 7→ ‖f̂ĥ − f̂hmin

‖2 (see Theorem 3 of Lacour

et al. (2017)) and then tuning PCO with λ = ĵ+ 1. This alternative provides very
similar results and is not considered in the sequel.
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(a) Gaussian kernel
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(b) Epanechnikov kernel
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(c) Biweight kernel

Fig. 1: For each benchmark density f , estimated L2-risk of the PCO estimate by
using the Monte Carlo mean over 20 samples in function of the tuning parameter
λ, for the three kernels with n = 100 observations in the univariate case.

3.2.2 Tuning the parameter Hmin

The PCO criterion depends on another crucial parameter, namely hmin for the
univariate case and Hmin for the multivariate case. Indeed PCO relies on compar-
isons with the minimal bandwidth estimator. According to Theorem 1 and Lacour
et al. (2017), hmin and det(Hmin) have to be larger than or equal to ‖K‖1‖K‖∞/n
and this is quite natural to consider to tune them with this lower bound. In order
to test the sensitivity of PCO to this choice, some simulations have been run. More
precisely, for the univariate case and 20 samples associated with the benchmark
laws, the risk of PCO with different values for hmin has been computed and aver-
aged over the 20 samples. For the sake of simplicity, we have only considered the
Gaussian kernel, for which ‖K‖1 = 1. Then, each averaged risk has been normal-
ized according to the minimal averaged risk among all possible hmin’s and finally
averaged over all distributions. The resulting graphs for n = 1000 and

hmin ∈
{
‖K‖∞
n3

,
‖K‖∞
n2

,
‖K‖∞

2n
,
‖K‖∞
n

,
2‖K‖∞

n
,

1

n
,
‖K‖∞
n1/2

,
‖K‖∞
n1/4

,
‖K‖∞
n1/8

}
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are displayed in Figure 2. Figure 2 also displays a similar study for d ∈ {2, 3, 4} by
replacing hmin with det(Hmin). For the sake of completeness, the boxplots of the
risks are presented in Appendix C Fig. 13 to 16. We observe that in some situa-
tions, the value ‖K‖∞/

√
n may give slightly better results in particular for small

dimensions and for some densities. However, when the density to be estimated
is irregular, considering ‖K‖∞/

√
n may be a bad choice since the optimal value

for the bandwidth is too small and is smaller than the minimal value of the grid.
Finally, taking hmin = ‖K‖∞/n for d = 1 and det(Hmin) = ‖K‖∞/n provides
very satisfying results for all situations, meaning that this choice is robust. One
would expect the method to be very sensitive to parameters hmin and det(Hmin).
Actually, this is not the case as shown by Figure 2 as soon as the latter lie in a
convenient zone, which is a good news for practical purposes.

3.2.3 Brief numerical illustration

Before comparing PCO to classical approaches for kernel density estimation, we
briefly illustrate its numerical performances in the multidimensional setting. For
this purpose, we implement in Figure 3 the square root of the ISE for one realiza-
tion with respect to all possible diagonal bandwidths matrices on two benchmark
densities, namely Asymmetric Bimodal and Asymmetric Fountain when n = 100.
Figure 3 shows that the bandwidth selected by PCO is - or is close to - the optimal
bandwidth. This short illustration only deals with d = 2, one given sample size
and a small set of benchmark densities. But similar behaviors are observed in more
general settings. Next sections are devoted to deep numerical comparisons with
the classical kernel approaches described in Section 2.

3.3 Numerical comparisons for univariate density estimation

In this section, for all methods except PCO, the bandwidth selection is performed
through the R stats package (R Core Team, 2015).

For each testing density f and each methodology described in Section 2.1 and
denoted meth, we compute the square root of the Integrated Square Error defined
in (1) associated with the bandwidth selected by each methodology and viewed as

a function of f . With a slight abuse of notation, we denote it ISE
1/2
meth(f). With

n = 100, Table 1 provides ISE
1/2
meth(f), the Monte Carlo mean over 20 samples, for

each kernel. Since results for both variants of the Rule of Thumb approach are very
close (see Figure 4), we only give results associated with Expression (6). We also
provide in Table 6 in Appendix D a comparison with the Goldenshluger-Lepski
approach which has inspired the PCO criterion. For this comparison we have used
the following Goldenshluger-Lepski criterion

ĥGL = arg min
h∈H

{A(h) + V (h)}

where

A(h) = sup
h′∈H

{||f̂h′ − f̂h,h′ ||2 − V (h′)}+, V (h) = κ
||K||21.||K||22

nh
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RoT UCV BCV
G E B G E B G E B

G 0.06 0.07 0.07 0.08 0.08 0.08 0.07 0.07 0.07
U 0.26 0.27 0.28 0.25 0.29 0.28 0.30 0.33 0.32
E 0.29 0.30 0.28 0.24 0.23 0.22 0.31 0.34 0.32
MG 0.26 0.29 0.28 0.13 0.13 0.14 0.17 0.26 0.23
Sk 0.08 0.09 0.08 0.10 0.11 0.08 0.09 0.09 0.08
Sk+ 0.36 0.39 0.39 0.22 0.24 0.22 0.45 0.48 0.46
K 0.32 0.37 0.34 0.25 0.24 0.20 0.48 0.50 0.49
O 0.20 0.22 0.23 0.25 0.25 0.24 1.37 1.40 1.39
Bi 0.09 0.09 0.10 0.09 0.09 0.09 0.12 0.13 0.13
SB 0.21 0.23 0.23 0.12 0.12 0.13 0.12 0.11 0.12
SkB 0.10 0.11 0.11 0.10 0.10 0.10 0.12 0.14 0.13
T 0.10 0.11 0.11 0.10 0.10 0.10 0.13 0.15 0.14
B 0.23 0.23 0.23 0.21 0.23 0.22 0.23 0.24 0.24
DB 0.09 0.10 0.11 0.10 0.11 0.11 0.12 0.14 0.14
AB 0.16 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.17
ADB 0.12 0.12 0.12 0.13 0.12 0.13 0.15 0.16 0.15
SC 0.29 0.31 0.31 0.20 0.20 0.21 0.32 0.34 0.31
DC 0.34 0.36 0.35 0.19 0.19 0.20 0.35 0.35 0.35
MU 0.65 0.67 0.66 0.51 0.51 0.49 0.77 0.76 0.76

SJste SJdpi PCO
G E B G E B G E B

G 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.08
U 0.25 0.25 0.27 0.25 0.26 0.27 0.26 0.30 0.28
E 0.23 0.23 0.23 0.25 0.25 0.24 0.24 0.23 0.22
MG 0.12 0.14 0.12 0.13 0.17 0.15 0.13 0.13 0.14
Sk 0.09 0.10 0.08 0.09 0.09 0.08 0.11 0.11 0.09
Sk+ 0.23 0.27 0.26 0.26 0.31 0.30 0.22 0.24 0.22
K 0.22 0.24 0.20 0.24 0.28 0.24 0.23 0.24 0.21
O 0.22 0.23 0.24 0.21 0.23 0.24 0.24 0.26 0.26
Bi 0.09 0.08 0.09 0.08 0.08 0.09 0.09 0.09 0.09
SB 0.12 0.11 0.11 0.12 0.11 0.12 0.12 0.14 0.13
SkB 0.09 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.10
T 0.09 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.10
B 0.22 0.24 0.23 0.23 0.23 0.23 0.20 0.22 0.21
DB 0.09 0.10 0.10 0.09 0.10 0.10 0.10 0.12 0.11
AB 0.16 0.17 0.17 0.16 0.17 0.17 0.16 0.17 0.17
ADB 0.12 0.10 0.12 0.12 0.10 0.12 0.13 0.12 0.13
SC 0.21 0.21 0.22 0.23 0.24 0.25 0.20 0.20 0.21
DC 0.20 0.20 0.20 0.29 0.31 0.30 0.19 0.19 0.21
MU 0.54 0.56 0.56 0.57 0.59 0.59 0.50 0.50 0.49

Table 1: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials with n = 100 for 6

methodologies described in Section 2.1 tested on the 19 one-dimensional densities
and for different kernels (K ∈ {Gaussian (G),Epanechnikov (E),biweight (B)}).
The Monte Carlo mean ISE

1/2
meth(f) is in bold when it is not larger than 1.05 ×

minmeth ISE
1/2
meth(f).

and f̂h,h′ = Kh′ ?f̂h. The hyperparameter κ is notoriously hard to tune. In our im-
plementation, we choose to tune κ on fifty samples of a Gaussian distribution with a
Gaussian kernel. That is, κ is taken as the mean of the fifty values that minimizes
the L2 loss. As illustrated in Table 6, the results of PCO and Goldenshluger-
Lepski approach are very similar but with a very different computational cost
(the Goldenshluger-Lepski is 750 times slower in our implementation, which ap-
proximately corresponds to the theoretical complexity: O(n2|H|) for PCO against
O(n2|H|2) for Goldenshluger-Lepski) thus the Goldenshluger-Lepski approach is
no more used in the following.
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Considering Monte Carlo mean values in bold of Table 1 (such values are not
larger than 1.05 times the minimal one), we observe that overall, PCO achieves
very satisfying results that are very close to those of UCV and SJste. For most of
densities, BCV and RoT are outperformed by other approaches. When comparing
with other methodologies, PCO is outperformed for 4 densities, namely G, U (for
the Epanechnikov kernel), Sk and O. Observe that the smooth unimodal densities
Sk and O have a shape close to G, the Gaussian one. Actually, as expected, com-
petitors (associated with the Gaussian kernel) based on a pilot kernel tuned on
Gaussian densities (RoT and SJ) outperform other methodologies for such densi-
ties. Furthermore, even when PCO, UCV and SJste are not the best methodologies
for a given density f , their performances are quite satisfying. It is not the case for
RoT, BCV and SJdpi that achieve bad results for the densities Sk+, DC and MU.
Finally, the preliminary results of Table 1 show that the kernel choice has weak
influence on the results, which is confirmed for an extended simulation study lead
with many values for n (not shown). So, for the subsequent results, we only focus
on the Gaussian kernel.

In view of satisfying performances of PCO for n = 100, such preliminary results
are extended to larger values of n with in mind a clear and simple though complete
comparison between PCO and other methodologies. For this purpose, we still
consider, for each density f , the square root of the Integrated Square Error for the

bandwidth selected by each methodology, denoted ISE
1/2
meth(f), and we display in

Figure 4 the median over 20 samples of the ratio ISE
1/2
meth(f)/ISE

1/2
PCO(f), namely

rmed
meth/PCO(f) := median

(
ISE

1/2
meth(f)

ISE
1/2
PCO(f)

)
.

for meth ∈ {RoT0,RoT,UCV,BCV,SJste,SJdpi} and n ∈ {100, 500, 1000, 10000}.

A brief look at the results of Figure 4 confirms that PCO, even not dramatically
bad, is not the best methodology for densities ’Gauss’ (G) and ’Skewed’ (Sk).
Similar conclusions are true for ’Outlier’ (O), except when n is large. Actually, the
larger n, the better the behavior of PCO with respect to all other competitors.
In particular, except for Sk, PCO outperforms all competitors when n = 10000.
For small values of n, when considering the densities ’Bimodal’ (Bi), ’Skewed
Bimodal’ (SkB) and ’Double Bart’ (DB), RoT0, SJste and SJdpi achieve better
results than PCO. Otherwise, PCO is preferable. Actually, as already observed for
n = 100, PCO and UCV behave quite similarly except for some densities for which
performances of UCV deteriorate dramatically when n increases (see ’Exp’ (E),
’Kurtotic’ (K) and ’Outlier’ (O)). Even if not reported, our simulation study shows

that the variance of the ISE
1/2
UCV(f) is much larger than for other methodologies.

In particular, PCO has not to face with this issue. Stability with respect to the
trial is a non-negligible advantage of PCO.

Finally, for sake of completeness, each approach is compared to the best one
through the graph of the mean over all densities f of the ratio of

rmeth/min(f) :=
ISE

1/2
meth(f)

minmeth ISE
1/2
meth(f)

.
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Namely, for meth ∈ {RoT,UCV,BCV,SJste,SJdpi,PCO} and n ∈ {100, 1000, 10000},
we display in Figure 5:

rmeth/min :=
1

19

∑
f

rmeth/min(f).

At first glance, we note that instability of UCV has strong bad consequences when
compared to the best method for large values of n. As explained for instance in
Heidenreich et al. (2013), it is well-known that UCV ”leads to a small bias but
large variance” and ”often breaks down for large samples”. This synthetic figure
shows that for small values of n, PCO achieves nice performances and is very
competitive. It is also the case for some other methods (UCV, SJste and SJdpi),
but PCO clearly outperforms any other methodology for large datasets. This result
is quite surprising since PCO is not based on asymptotic approximations.

3.4 Numerical comparison for multivariate density estimation

For multivariate data, we perform selection by usual kernel methods by using the
ks package of R (Duong, 2017). Different sample sizes n ∈ {100, 1000, 10000} with
the Gaussian kernel have been tested.

3.4.1 Diagonal bandwidth matrices

In this section, we compare PCO with UCV, SCV and PI. For each methodology,
the bandwidth matrix is chosen among a set of diagonal matrices. More precisely,
the diagonal terms are built from a rescaled Sobol sequence such that each of
them is larger than (||K||∞/n)1/d and smaller than 1. The mean over 20 samples
of the square root of the ISE is given in Table 7 for bivariate data, in Table
8 for trivariate data and in Table 9 for 4-dimensional data (see Appendix D).
We also provide synthetic graphs to outline comparisons between each estimator.

More precisely, Figure 6 displays boxplots of the ratio
ISE

1/2

meth

minmeth ISE
1/2

meth

for each

methodology over our benchmark densities for d = 2, 3, 4 and for different sample
sizes. We also provide simple summary graphs in Figure 7, in the same spirit as
Figure 5.

Analyzing results of Table 7 devoted to the dimension d = 2, we note that, as
expected, performances of all methodologies improve significantly when n increases
for all benchmark densities, except for UCV whose performances deteriorate for
D and SK+. Actually, as explained in Section 3.3, UCV suffers from instability
leading to break down issues for large datasets. PCO achieves very satisfying
performances except for Sk+ and for UG when n = 100. It is also the case to a
less extent for CG and U when n = 10000. These conclusions are in line with those
of Section 3.3. Even if PI achieves bad results for AF (for which PCO or UCV
are preferable), it remains the best methodology for bivariate data when diagonal
bandwidths are considered. See the left columns of Figures 6 and 7.

Now, let us consider 3 and 4-dimensional data for which the studied sample
size is not larger than 1000 to avoid too expensive computational time for all
methodologies. Tables 8 and 9 show that all kernel strategies suffer from the curse
of dimensionality for a non-negligible set of benchmark densities. See the results
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for irregular spiky densities Sk+, D, K and AF. Note that these densities have
also strong correlations between components of the Xi’s. Whereas PI achieves
good results for d = 2, it is no longer the case for d ≥ 3 and n = 100 due to many
stability issues. This can be explained by the fact that the pilot bandwidth is
proportional to identity, which is not convenient for many densities. Furthermore,
whereas for d = 2, a closed form for ĤPI exists, it not the case for d ≥ 3 and
optimization algorithms are necessary. When comparing methodologies between
them, by analyzing Figures 6 and 7, we observe that relative performances of PI
and UCV improve when n increases. When n = 1000, both PCO and UCV are
very competitive, whereas SCV has to be avoided. However, PCO remains the best
methodology for any density and for n ∈ {100, 1000}, except for two cases: Sk and
n = 100 when d = 3 and U and n = 100, when d = 4 (see Tables 8 and 9).

To summarize, this simulation study shows that when the ratio n/d is large
enough, PI is a very good strategy when considering diagonal bandwidth matrices.
These graphs emphasize the remarkable property of stability of PCO. In particular,
for this reason, PCO seems to be the best kernel strategy and is preferable to UCV,
SCV and PI as soon as d ≥ 3 as soon as very few is known about the density to
estimate (see for instance the synthetic Figure 7).

3.4.2 Symmetric definite positive bandwidth matrices

In this section, we investigate possible improvements of PCO for the general case,
namely by considering a suitable subset of symmetric definite positive bandwidth
matrices. The goal is then to detect hidden correlation structures of components
of the Xi’s and our strategy is based on the eigendecomposition of the covariance
matrix of the data. For this purpose, let us denote Σ̂ the empirical covariance ma-
trix of the data and Σ̂ = P−1DΣ̂P its eigendecomposition, where DΣ̂ is diagonal.
Then, we consider H, the set of matrices of the form P−1DP , where D is diagonal
and the diagonal terms are built from a rescaled Sobol sequence such that each of
them is larger than (||K||∞/n)1/d and smaller than 1.

Table 13 in Appendix D emphasizes the benefits of using a full matrix rather
than a diagonal one. The results in green reflect improvements of the use of a full
matrix while the red ones correspond to the cases where the full matrix deteriorates
numerical results. It is clear that using a full matrix can give worse results only
when the sample size is small. In all other cases, the full matrix gives, at worse,
similar results. It is also clear that taking a full matrix is significantly advantageous
when the distribution has a strong privileged direction, as for instance CG, Sk+,
D and AF.

We compare PCO with all other methodologies based on symmetric definite
positive bandwidth matrices. The mean over 20 samples of the square root of the
ISE is given in Table 10 for bivariate data, in Table 11 for trivariate data and
in Table 12 for 4-dimensional data (see Appendix D), whereas Figure 8 (resp.
Figure 9) is the analog of Figure 6 (resp. Figure 7).

Let us analyse values of the risk provided by Tables 10, 11 and 12 to evaluate
the gain or the loss of this new setting. First of all, we observe that for d ≥
3, bad results obtained by diagonal bandwidths for estimating Sk+, D, K and
AF are not really improved. Secondly, as an illustrative example, let us consider
purely Gaussian distributions. As expected, on the one hand, performances of PCO
improve for CG as desired by using the matrix bandwidth parametrization for any
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value of n and any value of d. It is also the case for most of other methodologies;
note however two exceptions for PI (with n = 1000) and UCV (with n = 100) for
the 4-dimensional cases. On the other hand, as also expected, there is no benefit
from using kernel rules with non-diagonal bandwidth for estimating the density
UG. For PI and UCV, in some situations, results are even worse. More generally,
we observe that results of PCO never deteriorate in this new setting with some
clear improvements but only in few situations (for instance for d = 2 and with
benckmark densities Sk+, D and AF). Other procedures have mixed results with
some deteriorations or some improvements. For instance, when d = 2, the new
setting improves results of SCV and PI for Sk+ but deteriorates for Sk. We can
however observe that except for CG, when d ≥ 3, results of UCV when n = 100
(resp. PI when n = 1000) never improve and even, in many situations, deteriorate.

We now compare different methodologies by analyzing Figures 8 and 9. Hi-
erarchy between strategies and conclusions can differ significantly from those of
Section 3.4.1. We first observe that PCO is still very stable, except for the case
d = 4 for which, in particular, estimation of Sk+ is much worse than for other
strategies. RoT achieves nice results for the densities UG, CG and U (see Tables
10, 11 and 12 ) but this approach, which is very unstable, is outperformed by the
other ones in particular when n is large. As for the case of diagonal bandwidth
matrices, PI is very satisfying for d = 2 but suffers from the curse of dimension-
ality with poor stability properties as soon as d/n is large. It is also the case for
UCV but note that the latter outperforms all other strategies when d/n is small.
Besides, UCV is known for working well for moderate sample size and ”neither
behaving well for rather small nor for rather large samples” (Heidenreich et al.,
2013) (in our context of dimension 3 or 4, n = 1000 is rather a moderate sample
size than a large one). For many situations SCV and PCO have a similar behav-
ior but for d ≥ 3 and n small, SCV is preferable, maybe due to over-smoothing
properties of SCV. Note however that PCO is more stable than SCV for d ≤ 3.

To summarize, these conclusions and numerical results show that in full gen-
erality, thanks to its stability properties, PCO is probably the best strategy to
adopt for most of densities and for not too large values of n.

4 Conclusion

As a general remark, we see from the boxplots resulting from our simulation studies
that PCO has a stable behavior. In the univariate case, its performance is never
far from optimal. In this sense, simulations corroborate what was expected from
theory and validate the choice of the tuning constant in the penalty term as its
optimal asymptotic value which is equal to 1. Furthermore, we have shown that
the choice of the parameter hmin is not very sensitive and taking hmin = ‖K‖∞/n
is suitable and robust. These parameters being tuned once for all, PCO becomes a
ready to be used method which is further more easy to compute. To summarize the
results for multivariate data, the performance of PCO is always close to the optimal
for a diagonal bandwidth. For full bandwidth this remains true in dimension 2 and
also in dimension 3 and 4 as long as the correlations are not too strong. We did not
check what happens in dimension larger than 5, partly because things are becoming
harder from a computational point of view and partly because kernel density



Numerical performance of PCO 25

estimation is unlikely to be a relevant method to be used when the dimension space
increases (this is the curse of dimensionality). As compared to other methods it
is not always the best competitor (but you will never beat the rule of thumb for
instance when the true density happens to be Gaussian) but it has the advantage
of staying competitive in any situation. In the univariate case, it is never far from
cross-validation methods for small sample sizes and is better for large sample sizes
while it tends to be always better than smoothed plug-in methods. Talking about
future directions of research, it would be interesting to develop PCO, both from
a theoretical and a practical perspective for other losses than the L2 loss. The
cases of the L1 loss, which has been extensively studied by L. Devroye (see for
instance Devroye (1989)), or the Hellinger loss are of special interest because they
correspond to some intrinsic quantities which stay invariant under some change of
the dominating measure. We also believe that the PCO approach is relevant for
other estimator selection problems than bandwidth selection for kernel estimation
but this is another story...
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Fig. 2: Normalised risk averaged over all laws versus hmin and det(Hmin) with
n = 1000 for d ∈ {1, 2, 3, 4}.



Numerical performance of PCO 29

●
●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●●
●●
●
●
●

●
●

●●

●●

●●

●
●●

●
●●
●

●

●●

●
●

●●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●●

●●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●●
●
●●

●

●
●
●

●

●
●

●
●

●

● ●

●

●

●

●●
●●●

●

●
●
●

●
●

●

●●

●
●●●

●
●

●●●
●

●
●

●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

det(H)

|f̂H
−

f|

(a) ABi

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●●

●
●

●
●

●
●

●
●

●
●●
●

●

●

●

●
●

●
●

●
●

●●

●●●●●

●●
●●

●

●

●●

●●

●●

●

●

●●
●●

●

●

●●

●

●

●●

●

●

●
●

●●
●
●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●
●
●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

det(H)

|f̂H
−

f|
(b) DF

Fig. 3: Square root of the ISE against det(H) for all H ∈ H with H a set of 2× 2
diagonal matrices for densities ABi and DF, with n = 100. The square corresponds
to the bandwidth selected by PCO.
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Fig. 4: Median over 20 samples of the ratio ISE
1/2
PCO(f)/ISE

1/2
meth(f) for meth ∈

{RoT0,RoT,UCV,BCV,SJste,SJdpi} with the Gaussian kernel versus the sample
size.
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over the 14 test densities described in

Tables 3, 4 and 5 for the diagonal case. First row: n = 100; second row: n = 1000;
third row: n = 10000. First column: d = 2; second column: d = 3; third column:
d = 4.
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for meth ∈ {UCV,SCV,PI,PCO} versus the sample size.



34 Suzanne Varet et al.

UCV SCV PI RoT PCO

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

UCV SCV PI RoT PCO

1.
0

1.
2

1.
4

1.
6

1.
8

UCV SCV PI RoT PCO

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

UCV SCV PI RoT PCO

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

UCV SCV PI RoT PCO

1.
0

1.
5

2.
0

2.
5

3.
0

UCV SCV PI RoT PCO

1.
0

1.
5

2.
0

2.
5

UCV SCV PI RoT PCO

1
2

3
4

5
6

7

Fig. 8: Boxplots of the ratio
ISE

1/2

meth

minmeth ISE
1/2

meth

over the 14 test densities described in
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d = 4.
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Fig. 9: Graph of the mean over all densities f of the ratio of rmeth/min(f) :=
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meth(f)
for meth ∈ {UCV,SCV,PI,RoT,PCO} versus the sample size.
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A Proofs

The notation � denotes an absolute constant that may change from line to line. We denote
Ĥ = ĤPCO and 〈·, ·〉 the scalar product associated with ‖ · ‖.

A.1 Proof of Theorem 1

The proof uses the lower bound (13) stated in the next proposition.

Proposition 1 Assume that K is symmetric and
∫
K(u)du = 1. Assume also that det(Hmin) ≥

‖K‖∞‖K‖1/n. Let Υ ≥ (1 + 2‖f‖∞‖K‖21)‖K‖∞/‖K‖2. For all x ≥ 1 and for all η ∈ (0, 1),
with probability larger than 1 − �|H|e−x, for all H ∈ H, each of the following inequalities
holds:

‖f − f̂H‖2 ≤ (1 + η)

(
‖f − fH‖2 +

‖KH‖2

n

)
+ �

Υx2

η3n
,

‖f − fH‖2 +
‖KH‖2

n
≤ (1 + η)‖f − f̂H‖2 + �

Υx2

η3n
.

The proof of this proposition is an easy generalization of the proof of Proposition 4.1 of Lerasle
et al. (2016) (combined with their Proposition 3.3) to the case of bandwidth matrices. We now

give a general result for the study of f̂ := f̂Ĥ , which is the analog of Theorem 9 of Lacour
et al. (2017). We set for any H ∈ H,

penλ(H) := −
‖KHmin −KH‖2

n
+ λ
‖KH‖2

n
.

Theorem 2 Assume that K is symmetric and
∫
K(u)du = 1. Assume also that det(Hmin) ≥

‖K‖∞‖K‖1/n and ‖f‖∞ < ∞. Let x ≥ 1 and θ ∈ (0, 1). With probability larger than 1 −
C1|H| exp(−x), for any H ∈ H,

(1− θ)‖f̂Ĥ − f‖
2 ≤ (1 + θ)‖f̂H − f‖2 +

(
penλ(H)− 2

〈KH ,KHmin 〉
n

)
−
(

penλ(Ĥ)− 2
〈KĤ ,KHmin 〉

n

)
+
C2

θ
‖fHmin − f‖

2

+
C(K)

θ

(
‖f‖∞x2

n
+

x3

n2 det(Hmin)

)
,

where C1 and C2 are absolute constants and C(K) only depends on K.

The oracle inequality directly follows from this theorem, see Section 5.2 in Lacour et al. (2017).

Proof of Theorem 2

Let θ′ ∈ (0, 1) be fixed and chosen later. Following Lacour et al. (2017), we can write, for any
H ∈ H,

‖f̂Ĥ−f‖
2 ≤ ‖f̂H−f‖2+

(
penλ(H)− 2〈f̂H − f, f̂Hmin − f〉

)
−
(

penλ(Ĥ)− 2〈f̂Ĥ − f, f̂Hmin − f〉
)
.

(14)

Then, for a given H, we study the term 2〈f̂H − f, f̂Hmin − f〉 that can be viewed as an ideal
penalty. Let us introduce the degenerate U-statistic

U(H,Hmin) =
∑
i6=j
〈KH(.−Xi)− fH ,KHmin (.−Xj)− fHmin 〉

and the following centered variable

V (H,H′) =< f̂H − fH , fH′ − f > .
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We have the following decomposition of 〈f̂H − f, f̂Hmin − f〉:

〈f̂H − f, f̂Hmin − f〉 =
〈KH ,KHmin 〉

n
+
U(H,Hmin)

n2

−
1

n
〈f̂H , fHmin 〉 −

1

n
〈fH , f̂Hmin 〉+

1

n
〈fH , fHmin 〉

+V (H,Hmin) + V (Hmin, H) + 〈fH − f, fHmin − f〉.

We first control the last term of the first line and we obtain the following lemma.

Lemma 1 With probability larger than 1− 5.54|H| exp(−x), for any H ∈ H,

|U(H,Hmin)|
n2

≤ θ′
‖K‖2

ndet(H)
+

�‖K‖21‖f‖∞x2

θ′n
+

�‖K‖∞‖K‖1x3

θ′n2 det(Hmin)

Proof The proof uses a concentration inequality for U -statistics. It is similar to the proof of
Lemma 10 in Lacour et al. (2017), using that

‖KH‖∞ ≤
‖K‖∞
det(H)

and ‖KH‖2 =
‖K‖2

det(H)
.

We control (16) and (17) similarly to Lacour et al. (2017). Then, from Lemma 1, we obtain
the following result. With probability larger than 1− 9.54|H| exp(−x), for any H ∈ H,

|〈f̂H − f, f̂Hmin − f〉 −
〈KH ,KHmin 〉

n
| ≤ θ′‖fH − f‖2 + θ′

‖K‖2

ndet(H)
+

(
θ′

2
+

1

2θ′

)
‖fHmin − f‖

2

+
C1(K)

θ′

(
‖f‖∞x2

n
+

x3

n2 det(Hmin)

)
,

where C1(K) is a constant only depending on K. Now, Proposition 1 gives, with probability
larger than 1− �|H| exp(−x), for any H ∈ H,

‖fH − f‖2 +
‖K‖2

n det(H)
≤ 2‖f̂H − f‖2 + C2(K)‖f‖∞

x2

n
,

where C2(K) only depends on K. Hence, by applying (18), with probability larger than 1 −
�|H| exp(−x), for any H ∈ H,∣∣∣∣〈f̂H − f, f̂Hmin − f〉 − 〈KH ,KHmin 〉n

− 〈f̂Ĥ − f, f̂Hmin − f〉+
〈KĤ ,KHmin 〉

n

∣∣∣∣ ≤ 2θ′‖f̂H − f‖2

+2θ′‖f̂Ĥ − f‖
2 +

(
θ′ +

1

θ′

)
‖fHmin − f‖

2 +
C̃(K)

θ′

(
‖f‖∞x2

n
+

x3

n2 det(Hmin)

)
,

where C̃(K) is a constant only depending on K. It remains to use (14) and to choose θ′ = θ
4

to conclude.

A.2 Proof of Corollary 1

We shall use the following Lemma to control the bias terms.

Lemma 2 Let H be a symmetric positive matrix with diagonalization H = P−1DP with P
orthogonal and D diagonal. Then

‖fH − f‖ = ‖f̃D − f̃‖

with f̃ = f ◦ P−1, f̃D = K̃D ? f̃ and K̃ = K ◦ P−1. Moreover, if f ◦ P−1 belongs to the
anisotropic Nikol’skii class N2,d(β,L) and K is order ` > maxj=1,...,d βj then there exists
C > 0 such that

‖fH − f‖ ≤ C
d∑
j=1

Ljh
βj
j

where (hj)
d
j=1 are the eigenvalues of H.
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Proof of Lemma 2

Compute for any t ∈ Rd,

fH(t) =
1

det(H)

∫
K(P−1D−1P (t−u))f(u)du =

1

det(D)

∫
K(P−1D−1(P t−v))f(P−1v)dv

=
1

det(D)

∫
K̃(D−1(P t− v))f̃(v)dv = K̃D ? f̃(P t) = f̃D(P t).

Thus

‖fH−f‖2 =

∫
|fH(t)−f(t)|2dt =

∫
|f̃D(P t)−f(t)|2dt =

∫
|f̃D(y)−f(P−1y)|2dy = ‖f̃D−f̃‖2.

Note that if K is order `, then K̃ is order `. Then we apply Lemma 3 of Goldenshluger and
Lepski (2014) to f̃ . �

Now, let E be the event corresponding to the intersection of events considered in Theorem 1
and Proposition 1. For any A > 0, by taking x proportional to logn, P(E) ≥ 1− nA. On E

‖f̂Ĥ − f‖
2 ≤ C0(ε, λ)(1 + η) min

H∈H

C d∑
j=1

L2
jh

2βj
j +

‖K‖2

n
∏d
j=1 hj


+C2(ε, λ)C

d∑
j=1

L2
j h̄

2βj + C′
(logn)3

n
.

But, on Ec, for any H ∈ H, ‖f̂H − f‖2 ≤ 2‖f‖2 + 2‖K‖2(‖K‖∞‖K‖1)−1n. Thus

IE
[
‖f̂Ĥ − f‖

2
]
≤ IE

[
‖f̂Ĥ − f‖

21E
]

+ IE
[
‖f̂Ĥ − f‖

21Ec
]

≤ M

 d∏
j=1

L

1
βj

j


2β̄

2β̄+1

n
− 2β̄

2β̄+1 ,

where M is a constant depending on an upper bound of f , β, K, d and λ.

B Testing densities

In this section, we present the testing distributions. We respectively denote N , E and U the
Gaussian, exponential and uniform distributions.
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Dist. name Abb. Distribution

Gauss G N (0, 1)

Uniform U U([0, 1])

Exponential E E(1)

Mix gauss MG 1
2
N (0, 1) + 1

2
N (3, ( 1

3
)2)

Skewed Sk 1
5
N (0, 1) + 1

5
N ( 1

2
, ( 2

3
)2) + 3

5
N ( 13

12
, ( 5

9
)2)

Strong skewed Sk+
∑7
l=0

1
8
N (3(( 2

3
)l − 1), ( 2

3
)2l)

Kurtotic K 2
3
N (0, 1) + 1

3
N (0, ( 1

10
)2)

Outlier O 1
10
N (0, 1) + 9

10
N (0, ( 1

10
)2)

Bimodal Bi 1
2
N (−1, ( 2

3
)2) + 1

2
N (1, ( 2

3
)2)

Separated bimodal SB 1
2
N (− 3

2
, ( 1

2
)2) + 1

2
N ( 3

2
, ( 1

2
)2)

Skewed bimodal SkB 3
4
N (0, 1) + 1

4
N ( 3

2
, ( 1

3
)2)

Trimodal T 9
20
N (− 6

5
, ( 3

5
)2) + 9

20
N ( 6

5
, ( 3

5
)2) + 1

10
N (0, ( 1

4
)2)

Bart B 1
2
N (0, 1) +

∑4
l=0

1
10
N ( l

2
− 1, ( 1

10
)2)

Double bart DB 49
100
N (−1, ( 2

3
)2) + 49

100
N (1, ( 2

3
)2) +

∑6
l=0

1
350
N ( l−3

2
, ( 1

100
)2)

Asymetric bart AB 1
2
N (0, 1) +

∑2
l=−2

21−l

31
N (l + 1

2
, ( 2−l

10
)2)

Asymetric double
bart

ADB
∑1
l=0

46
100
N (2l−1, ( 2

3
)2)+

∑3
l=1

1
300
N (− l

2
, ( 1

100
)2)+

∑3
l=1

7
300
N ( l

2
, ( 7

100
)2)

Smooth comb SC
∑5
l=0

25−l

63
N (

65−96( 1
2
)l

21
, ( 32

63
( 1
2

)l)2)

Discrete comb DC
∑2
l=0

2
7
N ( 12l−15

7
, ( 2

7
)2) +

∑10
l=8

1
21
N ( 2l

7
, ( 1

21
)2)

Mix Uniform MU 1
25
U([0, 3

20
]) + 29

200
U([ 3

20
, 1
5

]) + 17
200
U([ 1

5
, 3
8

]) + 1
20
U([ 3

8
, 4
8

]) + 7
50
U([ 4

8
, 3
5

]) +
1
5
U([ 3

5
, 4
5

]) + 7
50
U([ 4

5
, 7
8

]) + 1
5
U([ 7

8
, 1])

Table 2: Definition of one-dimensional testing densities

Dist. name Abb. Distribution

Uncorrelated
Gauss

UG N (0; (0.25, 0, 1))

Correlated Gauss CG N (0; (1, 0.9, 1))

Uniform U U({x | ‖x− a‖2 ≤ r2,a = (2, 2), r = 1})
Strong Skewed Sk+

∑7
l=0

1
8
N
(
(3
(
1− ( 4

5
)l
)
,−3

(
1− ( 4

5
)l
)

; ( 4
5

)2l(1,− 9
10
, 1)
)

Skewed Sk 1
5
N ((0, 0); (1, 0, 1)) + 1

5
N
(
(5, 5); ( 4

9
, 0, 4

9
)
)

+ 3
5
N
(
(10, 10); ( 25

81
, 0, 25

81
)
)

Dumbbell D 4
11
N
(
(− 3

2
, 3
2

); 9
16
I
)

+ 4
11
N
(
( 3
2
,− 3

2
); 9

16
I
)

+ 3
11
N
(
0; 9

16
( 4
5
,− 18

25
, 4
5

)
)

Kurtotic K 2
3
N
(
0; 9

16
(1, 1, 4)

)
+ 1

3
N
(
0; 9

16
( 4
9
,− 1

3
, 4
9

)
)

Bimodal Bi 1
2
N
(
(−1, 0); ( 4

9
, 2
9
, 4
9

)
)

+ 1
2
N
(
(1, 0); ( 4

9
, 2
9
, 4
9

)
)

Bimodal 2 Bi2 1
2
N
(
(−1, 1); ( 4

9
, 1
3
, 4
9

)
)

+ 1
2
N
(
0; 4

9
I)
)

Asymmetric Bi-
modal

ABi 1
2
N
(
(1,−1); ( 4

9
, 14
45
, 4
9

)
)

+ 1
2
N
(
(−1, 1); 4

9
I
)

Trimodal T 3
7
N
(
(−1, 0); 1

25
(9, 63

10
, 49

4
)
)

+ 3
7
N
(

(1, 2√
3

); 1
25

(9, 0, 49
4

)
)

+

1
7
N
(

(1,− 2√
3

); 1
25

(9, 0, 49
4

)
)

Fountain F 1
2
N (0; I) + 1

10
N
(
0; 1

16
I)
)

+
∑2
i,j=1

1
10
N
(
((−1)i, (−1)j); 1

16
I
)

Double Fountain DF 12
25
N
(
(− 3

2
, 0); ( 4

9
, 4
15
, 4
9

)
)

+ 12
25
N
(
( 3
2
, 0); ( 4

9
, 4
15
, 4
9

)
)

+
8

350
N
(
0; 1

9
(1, 3

5
, 1)
)

+
∑1
i=−1

1
350
N
(
(i− 3

2
, i); 1

15
( 1
15
, 1
25
, 1
15

)
)

+∑1
j=−1

1
350
N
(
j + 3

2
, j); 1

15
( 1
15
, 1
25
, 1
15

)
)

Asymmetric Foun-
tain

AF 1
2
N (0; I) + 3

40
N
(
0; 1

16
(1,− 9

10
, 1)
)

+ 1
5
N
(
(1, 1); 1

4
(1,− 9

10
, 1)
)

+
3
40
N
(
(−1, 1); 1

8
I
)

+ 3
40
N
(
(−1,−1); 1

8
(1,− 9

10
, 1)
)

+ 3
40
N
(
(1,−1); 1

16
I)
)

Table 3: Definition of bi-dimensional testing densities
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Fig. 10: Representation of one-dimensional testing densities
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Fig. 11: Representation of bi-dimensional testing densities
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Dist. name Abb. Distribution

Uncorrelated
Gauss

UG N (0; (0.25, 0, 0, 1, 0, 1))

Correlated Gauss CG N (0; (1, 0.9, 0.9, 1, 0.9, 1))

Uniform U U({x | ‖x− a‖2 ≤ r2,a = (2, 2, 2), r = 1})
Strong Skewed Sk+

∑7
l=0

1
8
N ((m1,m2,m3) ; (σ11, σ21, σ31, σ22, σ32, σ33)) with mj =

3(−1)j+1
(
1− ( 4

5
)l
)
, σjj = ( 4

5
)2l and σjk = − 9

10
( 4
5

)2(l−1) for j 6= k

Skewed Sk 1
5
N (0; I) + 1

5
N
(
5; 4

9
I
)

+ 3
5
N
(
10; 25

81
I
)

Dumbbell D 4
11
N
(
(− 3

2
, 3
2
,− 3

2
); 9

16
I
)

+ 4
11
N
(
( 3
2
,− 3

2
, 3
2

); 9
16
I
)

+
3
11
N
(
0; 9

16
( 4
5
,− 18

25
,− 18

25
, 4
5
,− 18

25
, 4
5

)
)

Kurtotic K 2
3
N (0; (1, 1, 1, 4, 1, 4)) + 1

3
N
(
0; ( 4

9
,− 1

3
,− 1

3
, 4
9
,− 1

3
, 4
9

)
)

Bimodal Bi 1
2
N
(
(−1, 0, 0); ( 4

9
, 2
9
, 2
9
, 4
9
, 2
9
, 4
9

)
)

+ 1
2
N
(
(1, 0, 0); ( 4

9
, 2
9
, 2
9
, 4
9
, 2
9
, 4
9

)
)

Bimodal 2 Bi2 1
2
N
(
(−1, 1, 1); ( 4

9
, 1
3
, 1
3
, 4
9
, 1
3
, 4
9

)
)

+ 1
2
N
(
0; 4

9
I)
)

Asymmetric Bi-
modal

ABi 1
2
N
(
(1,−1, 1); ( 4

9
, 14
45
, 14
45
, 4
9
, 14
45
, 4
9

)
)

+ 1
2
N
(
(−1, 1,−1); 4

9
I
)

Trimodal T 3
7
N
(
(−1, 0, 0); 1

25
(9, 63

10
, 63
10
, 49

4
, 63
10
, 49

4
)
)
+ 3

7
N
(

(1, 2√
3
, 2√

3
); 1

25
(9, 0, 0, 49

4
, 0, 49

4
)
)

+

1
7
N
(

(1,− 2√
3
,− 2√

3
); 1

25
(9, 0, 0, 49

4
, 0, 49

4
)
)

Fountain F 1
2
N (0; I) + 1

18
N
(
0; 1

16
I)
)

+
∑2
i,j,k=1

1
18
N
(
((−1)i, (−1)j , (−1)k); 1

16
I
)

Double Fountain DF 12
25
N
(
(− 3

2
, 0, 0); ( 4

9
, 4
15
, 4
15
, 4
9
, 4
15
, 4
9

)
)
+ 12

25
N
(
( 3
2
, 0, 0); ( 4

9
, 4
15
, 4
15
, 4
9
, 4
15
, 4
9

)
)
+

8
350
N
(
0; 1

9
(1, 3

5
, 3
5
, 1, 3

5
, 1)
)
+
∑1
i=−1

1
350
N
(
(i− 3

2
, i, i); 1

15
( 1
15
, 1
25
, 1
25
, 1
15
, 1
25
, 1
15

)
)
+∑1

j=−1
1

350
N
(
j + 3

2
, j, j); 1

15
( 1
15
, 1
25
, 1
25
, 1
15
, 1
25
, 1
15

)
)

Asymmetric Foun-
tain

AF 1
2
N (0; I) + 3

40
N
(
0; 1

16
(1,− 9

10
,− 9

10
, 1,− 9

10
, 1)
)

+
1
5
N
(
(−1,−1,−1); 1

4
(1,− 9

10
,− 9

10
, 1,− 9

10
, 1)
)

+∑4
k=1

9
280
N
(

((−1)2k, (−1)(2k+1)div2, (−1)(2k+3)div4); 1
2k+2 (1,− 9

10
,− 9

10
, 1,− 9

10
, 1)
)

+∑3
k=1

9
280
N
(

((−1)2k+1, (−1)(2k+2)div2, (−1)(2k+4)div4); 1
2k+2 I

)
with div

the integer division

Table 4: Definition of tri-dimensional testing densities
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Fig. 12: Representation of tri-dimensional testing densities
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Dist. name Abb. Distribution

Uncorrelated
Gauss

UG N (0; (0.25, 0, 0, 0, 0.25, 0, 0, 1, 0, 1))

Correlated Gauss CG N (0; (1, 0.9, 0.9, 0.9, 1, 0.9, 0.9, 1, 0.9, 1))

Uniform U U({x | ‖x− a‖2 ≤ r2,a = (2, 2, 2, 2), r = 1})
Strong Skewed Sk+

∑7
l=0

1
8
N ((m1,m2,m3,m4) ; (σ11, σ21, σ31, σ41, σ22, σ32, σ42, σ33, σ43, σ44))

with mj = 3(−1)j+1
(
1− ( 4

5
)l
)
, σjj = ( 4

5
)2l and σjk = − 9

10
( 4
5

)2(l−1) for
j 6= k

Skewed Sk 1
5
N (0; I) + 1

5
N
(
5; 4

9
I
)

+ 3
5
N
(
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I
)
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11
N
(
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2
, 3
2
,− 3

2
, 3
2

); 9
16
I
)
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11
N
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2
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2
, 3
2
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2
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I
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+
3
11
N
(
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16
( 4
5
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5
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5
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3
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9
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)
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, 1
3
, 4
9
, 1
3
, 1
3
, 4
9
, 1
3
, 4
9

)
)
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2
N
(
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9
I)
)
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ABi 1
2
N
(
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9
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9
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9

)
)

+
1
2
N
(
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I
)
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4
)
)
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7
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3
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3
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4
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4
)
)

+

1
7
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3
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3
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)
)
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2
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)
+
∑2
i,j,k,l=1

1
34
N
(
((−1)i, (−1)j , (−1)k, (−1)l); 1

16
I
)

Double Fountain DF 12
25
N
(
(− 3

2
, 0, 0, 0); ( 4

9
, 4
15
, 4
15
, 4
15
, 4
9
, 4
15
, 4
15
, 4
9
, 4
15
, 4
9

)
)

+
12
25
N
(
( 3
2
, 0, 0, 0); ( 4

9
, 4
15
, 4
15
, 4
15
, 4
9
, 4
15
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)
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+
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9
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5
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5
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5
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5
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5
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)
+
∑1
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1
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N
(
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2
, i, i, i); 1
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5
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5
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5
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5
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)
)
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1
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)
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AF 1
2
N (0; I) + 3

40
N
(
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,− 9

10
,− 9

10
, 1,− 9

10
,− 9

10
, 1,− 9

10
, 1)
)

+
1
5
N
(
(−1,−1,−1,−1); 1

4
(1,− 9

10
,− 9

10
,− 9

10
, 1,− 9

10
,− 9

10
, 1,− 9

10
, 1)
)

+∑8
k=1

9
600
N
(

((−1)2k, (−1)ik , (−1)jk , (−1)lk ); 1
2k+2 (1,− 9

10
,− 9

10
,− 9

10
, 1,− 9

10
,− 9

10
, 1,− 9

10
, 1)
)

+∑7
k=1

9
600
N
(

((−1)2k+1, (−1)(2k+2)div2, (−1)(2k+4)div4, (−1)(2k+8)div8); 1
2k+2 I

)
with div the integer division, ik = (2k + 1)div2, jk = (2k + 3)div4 and
lk = (2k + 7)div8

Table 5: Definition of quadri-dimensional testing densities
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C Boxplots of Monte Carlo mean of ISE values for different hmin and
Hmin

The following four figures are the boxplots from which the averaged risk of Fig. 2 has been
obtained. They illustrate that the choice hmin = ||K||/

√
n or det(Hmin) = ||K||/

√
n can be

a bad choice for irregular densities. This is noticeable with the mixed uniform density (MU)
in dimension 1 (Fig. 13) or with uniform (U) and fountain (F) distributions in dimension 4
(Fig. 16).
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Fig. 13: Boxplots of ISE
1/2
PCO(f) over 20 trials for 9 values of hmin tested on the

19 benchmark 1-dimensional densities for n = 1000.
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Fig. 14: Boxplots of ISE
1/2
PCO(f) over 20 trials for 9 values of det(Hmin) with

diagonal bandwidth tested on the 14 benchmark 2-dimensional densities for n =
1000.
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Fig. 15: Boxplots of ISE
1/2
PCO(f) over 20 trials for 9 values of det(Hmin) with

diagonal bandwidth tested on the 14 benchmark 3-dimensional densities for n =
1000.
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Fig. 16: Boxplots of ISE
1/2
PCO(f) over 20 trials for 9 values of det(Hmin) with

diagonal bandwidth tested on the 14 benchmark 4-dimensional densities for n =
1000.
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D Tables of Monte Carlo mean of ISE values

PCO GL
n = 100 n = 1000 n = 10000 n = 100 n = 1000 n = 10000

G 0.08 0.04 0.012 0.08 0.03 0.012
U 0.26 0.15 0.085 0.26 0.16 0.088
E 0.24 0.13 0.072 0.24 0.13 0.074
MG 0.13 0.05 0.021 0.14 0.05 0.021
Sk 0.11 0.04 0.017 0.10 0.04 0.016
Sk+ 0.22 0.09 0.039 0.22 0.10 0.040
K 0.23 0.09 0.036 0.24 0.09 0.036
O 0.24 0.11 0.044 0.22 0.11 0.043
Bi 0.09 0.04 0.015 0.09 0.04 0.015
SB 0.12 0.05 0.019 0.12 0.05 0.018
SkB 0.10 0.04 0.019 0.11 0.04 0.019
T 0.10 0.04 0.018 0.10 0.04 0.018
B 0.20 0.08 0.034 0.19 0.08 0.033
DB 0.10 0.06 0.041 0.10 0.05 0.040
AB 0.16 0.08 0.037 0.16 0.08 0.040
ADB 0.13 0.07 0.037 0.13 0.07 0.038
SC 0.20 0.10 0.047 0.20 0.10 0.049
DC 0.19 0.10 0.039 0.19 0.10 0.040
MU 0.50 0.26 0.150 0.51 0.27 0.149

Table 6: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials with n = 100, n = 1000

and n = 10000 for PCO and Goldenshluger-Lepski methodologies tested on the
19 one-dimensional densities with Gaussian kernel.

UCV PI SCV PCO
n 102 103 104 102 103 104 102 103 104 102 103 104

UG 0.111 0.049 0.023 0.097 0.047 0.023 0.093 0.047 0.023 0.109 0.049 0.023
CG 0.142 0.070 0.033 0.138 0.068 0.033 0.134 0.068 0.033 0.141 0.071 0.035
U 0.234 0.150 0.102 0.219 0.155 0.113 0.220 0.159 0.115 0.225 0.150 0.110
Sk+ 0.355 0.487 0.095 0.347 0.199 0.096 0.367 0.216 0.104 0.384 0.234 0.158
Sk 0.108 0.056 0.024 0.105 0.053 0.024 0.108 0.053 0.024 0.109 0.056 0.025
D 0.118 0.077 0.281 0.115 0.066 0.031 0.119 0.072 0.033 0.118 0.067 0.031
K 0.101 0.049 0.024 0.097 0.051 0.025 0.099 0.051 0.025 0.099 0.049 0.025
Bi 0.110 0.050 0.023 0.102 0.050 0.023 0.107 0.052 0.023 0.108 0.050 0.024
SBi 0.120 0.061 0.027 0.116 0.057 0.027 0.120 0.058 0.027 0.119 0.061 0.027
ABi 0.109 0.058 0.025 0.108 0.057 0.025 0.110 0.057 0.025 0.109 0.058 0.025
T 0.099 0.050 0.024 0.097 0.048 0.024 0.102 0.049 0.024 0.099 0.050 0.025
F 0.166 0.078 0.038 0.173 0.087 0.040 0.187 0.089 0.040 0.165 0.077 0.042
DF 0.121 0.063 0.037 0.120 0.063 0.037 0.130 0.066 0.038 0.120 0.063 0.036
AF 0.179 0.103 0.053 0.190 0.125 0.067 0.202 0.132 0.070 0.179 0.108 0.054

Table 7: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for 4 methodologies

described in Section 2.2 with diagonal bandwidth tested on the 14 benchmark 2-

dimensional densities for different values of n. The Monte Carlo mean ISE
1/2
meth(f)

is in bold when it is not larger than 1.05×minmeth ISE
1/2
meth(f).
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UCV PI SCV PCO
n 102 103 102 103 102 103 102 103

UG 0.073 0.039 0.115 0.040 0.068 0.038 0.070 0.039
CG 0.202 0.092 0.335 0.092 0.163 0.103 0.155 0.092
U 0.250 0.180 0.316 0.177 0.234 0.185 0.235 0.179
Sk+ 14.973 15.928 14.976 15.928 14.973 15.928 14.973 15.927
Sk 0.107 0.053 0.114 0.081 0.093 0.100 0.098 0.053
D 4.728 4.686 4.728 4.687 4.728 4.687 4.728 4.686
K 5.498 5.392 5.496 5.391 5.495 5.391 5.496 5.391
Bi 0.109 0.054 0.145 0.055 0.097 0.060 0.100 0.055
SBi 0.132 0.071 0.162 0.070 0.120 0.077 0.124 0.072
ABi 0.122 0.065 0.140 0.065 0.108 0.073 0.113 0.066
T 0.101 0.052 0.120 0.051 0.086 0.056 0.090 0.052
F 0.153 0.094 0.148 0.103 0.167 0.124 0.151 0.095
DF 0.147 0.101 0.171 0.103 0.140 0.107 0.138 0.101
AF 8.205 7.695 8.205 7.695 8.204 7.696 8.205 7.695

Table 8: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for 4 methodologies

described in Section 2.2 with diagonal bandwidth tested on the 14 benchmark 3-

dimensional densities for different values of n. The Monte Carlo mean ISE
1/2
meth(f)

is in bold when it is not larger than 1.05×minmeth ISE
1/2
meth(f).

UCV PI SCV PCO
n 102 103 102 103 102 103 102 103

UG 0.075 0.041 0.140 0.044 0.069 0.041 0.069 0.041
CG 0.193 0.110 0.474 0.114 0.191 0.132 0.194 0.116
U 0.261 0.199 0.453 0.201 0.251 0.202 0.267 0.209
Sk+ 20.373 25.881 20.375 25.883 20.374 25.884 20.373 25.883
Sk 0.142 0.055 0.102 0.082 0.077 0.098 0.078 0.051
D 2.503 2.473 2.504 2.472 2.503 2.472 2.503 2.472
K 3.345 3.341 3.345 3.341 3.345 3.341 3.345 3.341
Bi 0.096 0.055 0.179 0.056 0.088 0.061 0.086 0.055
SBi 0.133 0.080 0.188 0.081 0.121 0.090 0.121 0.080
ABi 0.113 0.069 0.157 0.079 0.109 0.069 0.109 0.069
T 0.077 0.047 0.107 0.060 0.077 0.047 0.075 0.047
F 0.138 0.094 0.135 0.095 0.142 0.111 0.134 0.095
DF 0.234 0.199 0.259 0.207 0.221 0.200 0.218 0.199
AF 17.498 15.178 17.497 15.182 17.497 15.183 17.497 15.182

Table 9: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for 4 methodologies

described in Section 2.2 with diagonal bandwidth tested on the 14 benchmark 4-

dimensional densities for different values of n. The Monte Carlo mean ISE
1/2
meth(f)

is in bold when it is not larger than 1.05×minmeth ISE
1/2
meth(f).
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UCV RoT PI
n 102 103 104 102 103 104 102 103 104

UG 0.124 0.055 0.023 0.093 0.047 0.022 0.097 0.047 0.023
CG 0.123 0.052 0.025 0.098 0.048 0.024 0.102 0.049 0.024
U 0.249 0.152 0.102 0.219 0.161 0.128 0.220 0.155 0.113
Sk+ 0.297 0.153 0.068 0.325 0.226 0.133 0.272 0.151 0.069
Sk 0.125 0.057 0.025 0.253 0.223 0.182 0.196 0.094 0.032
D 0.115 0.056 0.024 0.104 0.067 0.037 0.098 0.053 0.024
K 0.110 0.048 0.022 0.112 0.078 0.050 0.100 0.051 0.024
Bi 0.116 0.051 0.022 0.104 0.057 0.028 0.100 0.048 0.022
SBi 0.129 0.059 0.025 0.119 0.065 0.035 0.115 0.054 0.025
ABi 0.116 0.055 0.023 0.160 0.109 0.064 0.123 0.059 0.024
T 0.108 0.049 0.023 0.102 0.059 0.032 0.094 0.045 0.023
F 0.172 0.078 0.039 0.187 0.132 0.084 0.174 0.087 0.040
DF 0.117 0.060 0.035 0.146 0.096 0.059 0.115 0.060 0.036
AF 0.164 0.086 0.042 0.202 0.164 0.126 0.190 0.117 0.057

SCV PCO
n 102 103 104 102 103 104

UG 0.094 0.047 0.023 0.110 0.049 0.023
CG 0.100 0.048 0.024 0.114 0.051 0.026
U 0.221 0.159 0.115 0.226 0.149 0.110
Sk+ 0.285 0.154 0.069 0.325 0.157 0.088
Sk 0.210 0.104 0.037 0.114 0.055 0.025
D 0.103 0.054 0.024 0.103 0.052 0.024
K 0.103 0.052 0.024 0.098 0.048 0.024
Bi 0.105 0.049 0.022 0.107 0.051 0.024
SBi 0.119 0.054 0.025 0.123 0.055 0.025
ABi 0.125 0.058 0.024 0.103 0.053 0.023
T 0.099 0.046 0.023 0.103 0.049 0.023
F 0.187 0.089 0.040 0.165 0.076 0.042
DF 0.121 0.061 0.036 0.118 0.062 0.036
AF 0.202 0.122 0.059 0.167 0.095 0.043

Table 10: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for 5 methodologies

described in Section 2.2 with non-diagonal bandwidth tested on the 14 bench-
mark 2-dimensional densities for different values of n. The Monte Carlo mean
ISE

1/2
meth(f) is in bold when it is not larger than 1.05×minmeth ISE

1/2
meth(f).

UCV RoT PI SCV PCO
n 102 103 102 103 102 103 102 103 102 103

UG 0.112 0.042 0.069 0.038 0.115 0.053 0.069 0.038 0.071 0.039
CG 0.181 0.078 0.114 0.066 0.199 0.092 0.114 0.066 0.122 0.069
U 0.286 0.184 0.235 0.180 0.315 0.187 0.235 0.180 0.235 0.178
Sk+ 13.882 14.098 14.972 15.927 14.971 15.926 14.971 15.926 14.973 15.927
Sk 0.137 0.087 0.190 0.177 0.154 0.099 0.164 0.102 0.097 0.054
D 4.179 3.541 4.728 4.687 4.727 4.685 4.728 4.686 4.727 4.685
K 4.862 4.109 5.495 5.391 5.496 5.391 5.495 5.391 5.496 5.390
Bi 0.131 0.054 0.096 0.059 0.131 0.062 0.094 0.052 0.098 0.053
SBi 0.162 0.067 0.124 0.083 0.142 0.071 0.118 0.066 0.122 0.070
ABi 0.136 0.064 0.149 0.114 0.128 0.071 0.119 0.067 0.107 0.062
T 0.111 0.050 0.092 0.062 0.102 0.052 0.086 0.050 0.087 0.049
F 0.163 0.095 0.171 0.142 0.149 0.095 0.167 0.110 0.152 0.096
DF 0.146 0.099 0.153 0.121 0.158 0.103 0.137 0.099 0.138 0.100
AF 7.912 6.563 8.204 7.696 8.205 7.695 8.204 7.695 8.204 7.694

Table 11: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for 5 methodologies

described in Section 2.2 with non-diagonal bandwidth tested on the 14 bench-
mark 3-dimensional densities for different values of n. The Monte Carlo mean
ISE

1/2
meth(f) is in bold when it is not larger than 1.05×minmeth ISE

1/2
meth(f).
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UCV RoT PI SCV PCO
n 102 103 102 103 102 103 102 103 102 103

UG 0.128 0.046 0.070 0.041 0.144 0.068 0.070 0.041 0.070 0.041
CG 0.271 0.089 0.146 0.082 0.284 0.136 0.145 0.082 0.186 0.098
U 0.383 0.205 0.257 0.197 0.449 0.246 0.253 0.198 0.272 0.212
Sk+ 14.264 15.316 14.187 16.195 12.486 10.438 12.600 11.517 20.373 25.883
Sk 0.141 0.056 0.139 0.132 0.126 0.098 0.129 0.098 0.078 0.051
D 2.338 1.904 2.503 2.472 2.503 2.471 2.503 2.472 2.503 2.472
K 3.332 2.780 3.345 3.341 3.345 3.341 3.345 3.341 3.344 3.340
Bi 0.148 0.054 0.085 0.056 0.154 0.074 0.084 0.052 0.084 0.053
SBi 0.184 0.075 0.122 0.092 0.158 0.083 0.115 0.075 0.121 0.079
ABi 0.151 0.065 0.137 0.113 0.136 0.081 0.119 0.075 0.104 0.063
T 0.104 0.049 0.077 0.055 0.097 0.052 0.073 0.046 0.072 0.045
F 0.162 0.095 0.142 0.128 0.135 0.095 0.141 0.111 0.134 0.096
DF 0.253 0.198 0.223 0.207 0.243 0.203 0.218 0.199 0.217 0.199
AF 17.674 15.386 17.497 15.184 17.497 15.182 17.497 15.183 17.497 15.182

Table 12: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for 5 methodologies

described in Section 2.2 with non-diagonal bandwidth tested on the 14 bench-
mark 4-dimensional densities for different values of n. The Monte Carlo mean
ISE

1/2
meth(f) is in bold when it is not larger than 1.05×minmeth ISE

1/2
meth(f).

n = 102 n = 103 n = 104

H diag H full H diag H full H diag H full
UG 0.109 0.110 0.049 0.049 0.023 0.023
CG 0.141 0.114 0.071 0.051 0.035 0.026
U 0.225 0.226 0.150 0.149 0.110 0.110
Sk+ 0.384 0.325 0.234 0.157 0.158 0.088
Sk 0.109 0.114 0.056 0.055 0.025 0.025
D 0.118 0.103 0.067 0.052 0.031 0.024
K 0.099 0.098 0.049 0.048 0.025 0.024
Bi 0.108 0.107 0.050 0.051 0.024 0.024
SBi 0.119 0.123 0.061 0.055 0.027 0.025
ABi 0.109 0.103 0.058 0.053 0.025 0.023
T 0.099 0.103 0.050 0.049 0.025 0.023
F 0.165 0.165 0.077 0.076 0.042 0.042
DF 0.120 0.118 0.063 0.062 0.036 0.036
AF 0.179 0.167 0.108 0.095 0.054 0.043

Table 13: Monte Carlo mean of ISE
1/2
meth(f) over 20 trials for PCO with diagonal

and full matrices bandwidths tested on the 14 benchmark 2-dimensional densities
for different values of n. The Monte Carlo mean ISE

1/2
meth(f) is in green (resp.

red) when using full (resp. diagonal) matrices gives better results. Black results
corresponds to cases where there is no significant difference.


