

核反应堆系统设计技术重点实验室

Science and Technology on Reactor System Design Technology Laboratory

Research & Development on Advanced PWR Design Improvement and Innovation in NPIC

YU Hongxing Chief Director of LRSDT

OUTLINE

2

Development of advanced PWR in NPIC

Design refinement of advanced PWR in NPIC

Research on key issues of advanced PWR in NPIC

SMR: ACP100

1.1 General Introduction

Large Scale Advanced PWR

Small Module Reactor

PWR : ACP1000

Advantages:

- **\ Good Economy**
- **↘** Technology Maturity Based on Gen II+
- **▲** Active & Passive Reliable, efficient + SBO

Testing & verification:

- ❑ Reactor integral hydraulic test, by-pass Test, lower plenum mixing test
- **** Cavity Injection and Cooling System test
- Test for Passive Residual Heat Removal System of Secondary Side(PRS)
- **** Internals flow induced-vibration test
- **** Control Rod Drive Line anti-seismic test

First Site: Fuqing 5&6, Fujian, China

Advantages:

- **u** Multi-application
- ****Flexible site selection
- **≌** Inherent Safety

Testing & verification:

- ▲ Control rod drive line anti-seismic & control rod drive line cold & hot test
- **** Fuel assembly CHF testing
- ▲ Passive emergency core cooling system integration testing
- **** Internals vibration testing
- **\U0155** CMT and passive heat removal system testing

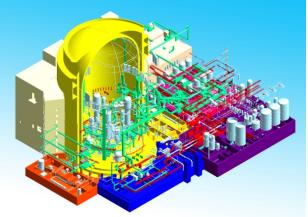
Demonstration Site: Putian, Fujian, China

2015/2/6

1.1 ACP1000 (Hualong)

Main Parameters

- **Core Nominal Thermal Power: 3050MWt**
- **Nominal Electrical Power: >1100MWe**
- **TDF flowrate: 22840 m³/h/loop**
- **Design Pressure: 17.23 MPa**
- **Design temperature: 343°C**
- **Solution** Fuel assembly number: **177**
- **Section 2** Fuel type: CF3
- **Operating Pressure: 15.5 MPa**
- **Reactor inlet temperature: 291.5°C**
- Seactor outlet temperature: 328.5℃
- Sore average temperature: 310℃



1.1 ACP1000 (Hualong)

Technical Features

Nuclear Design

- **Loading strategy for 18-month refueling**
- **CF3** advanced fuel assembly
- Advanced in-core measurements (RII)
 - **LPD & DNBR online monitoring system**
- □ Advanced CRDM (ML-B)

- **Integrated latch housing & integrated rod travel housing**
- Reactor Coolant System Design
 - **Dedicate depressurization system for severe accident**
 - **PRV** high point venting system
 - LBB technology
 - ➤ Passive secondary side heat removal system (PRS): ≥72 hours
 - Solution Core Cavity Injection and cooling system (CIS): IVR, ≥ 72 hours
 - **▶** Passive Containment Heat Removal System(PCS): ≥ 72 hours

□ Main Equipment 60 years 2015/2/6

核反应堆系统设计技术重点实验室 Science and Technology on Reactor System Design Technology Laboratory

1.1 ACP1000 (Hualong)

Main Features

- **Design Lifetime: 60 years**
- **Cycle Length: 18 months**
- **DNB margin > 15%**
- **Operating Mode: Mode G**
- Sector ≥ 90%
 Sector ≥ 90%
- **Extreme safety ground motion (SL-2): 0.3g**
- **Core Damage Frequency** < 1 × 10⁻⁶
- **▲** Large Early Release Frequency < 1 × 10⁻⁷

核反应堆系统设计技术重点实验室 Science and Technology on Reactor System Design Technology Laboratory

1.2 ACP100 (Longxing)

Main Parameters

- **Core Nominal Thermal Power: 310MWt**
- **Electricity power: ~100 MWe**
- **Best estimate flowrate: 6500 m³/h**
- **Fuel assembly number: 57**
- Fuel enrichment: 4.2%
- **Fuel type: CF2 shortened assembly**
- **Operating Pressure: 15 MPa**
- **Reactor inlet temperature: 282°C**
- **Reactor outlet temperature: 323°C**
- Sore average temperature: 303℃
- SG type: OTSG

2015/2/6

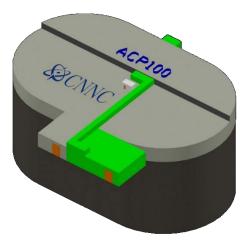
Development of advanced PWR

1.2 ACP100 (Longxing)

Technical Features

□ Integral reactor module

- **OTSG, Canned motor pump, Integrated reactor head package**
- All main components mature


Inherent Safety

- **>** Integrated arrangement
- Canned motor pump
- Small power, small residual heat, small source term
- Low Power Density
- **Large Reactor Coolant Inventory**
- **NSSS Underground**

Passive Safety

- > Passive core cooling system
- > Passive residual heat removal system
- **Solution** Passive containment heat removal system
- **>** Passive inhabitation system
- **** Automatic depressurization system

1.2 ACP100 (Longxing)

Main Features

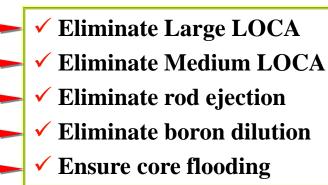
- Primary system and equipment integrated layout.
 - **The max size of the conjunction pipe is 5-8 cm, whereas the large PWR is 80-90cm**
- Large primary coolant inventory.
- Small radioactivity storage quantity.
 - **Total radioactivity of SMR is 1/10 of large PWR's**
- Vessel and equipment layout is benefit for natural circulation
- Assurance decay heat removal more effectively
 - **2-4 times of the efficiency of large PWR heat removal**
- Smaller decay thermal power
 - ▲ 1/5-1/10 times of decay thermal power comparing that of large PWR after shutdown, and is easier to achieve safety by the way of "passive"
- Reactor and spent fuel pool lay under the ground level for better against exterior accident and good for the reduction of radioactive material release

2.1 ACP600

10 design refinement of ACP1000

- 24-month refueling capability
- Load following without boron regulation
- Extended scoping time without operator actions
- Refinement of operation flexibility
- 🔰 New ZH60 SG design
- **On-line fatigue monitoring system**
- Refinement of reactor vessel structure design
- Enhanced CIS design
- Fuel assembly seismic against 0.3g
- Enlarged pressurizer volume

Better performance, economy, safety and reliability

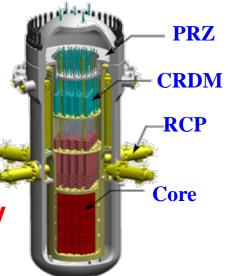


2.2 ACP100+

Brand New SMR Design

Evolutionary improvements on safety

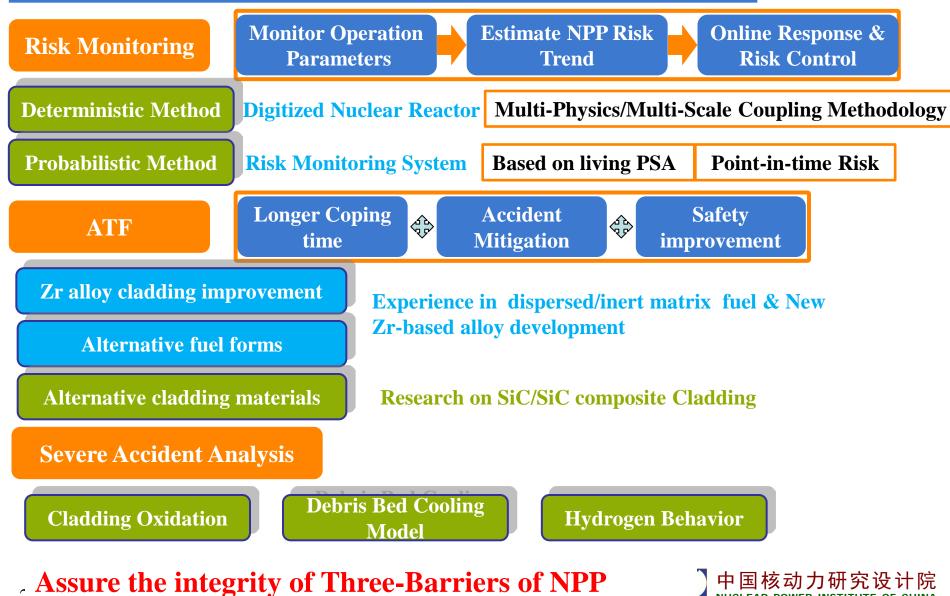
- Integrated RCS
- 🔰 internal steam pressurizer
- **internal CRDM**
- **Solution** Control rods for reactivity control
- Fully flooded containment



The objective of ACP100+ is to meet the multifunction requirement on nuclear co-generation of heat, electricity, pure water and etc. for in-land and/or coast with more inherent safety features.

□ Better safety & Economics □ Site flexibility

- Simplified system, Less Devices
- Shortened construction



NUCLEAR POWER INSTITUTE OF CHINA

Practical elimination of large radioactive release from NPP

Thank you!

