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1. LET pn denote the nth. prime, and 77(2;) the number of primes p
not exceeding x. The existence of an absolute constant 6 < 1 such
that a

(1)n(x) ~ .
log a;

when x -> 00, and therefore
Pn+l~Pn = 0(pB

n) (2)
when n -> 00, was first proved by Hoheisel.f His proof was based
on two propositions concerning the zeros of the Riemann zeta-
function £(«) = £(a-\-ti):

(i) Littlewood's theorem^ that £(«) has no zeros in a domain of

t h 6 t y P e a > l A l ° ^ 1 * > *
a>l-A-—, t>t0,

where A > 0, t0 > 3;

(ii) Carlson's theorem, or rather a refinement of it,§ namely that

N(a, T) = 0(T^^lo^T) (3)
uniformly for £ < £+8 ^ c r ^ l as T ->oo, where N(o, T) is the
number of zeros p = fi-\-yi of £(«) with j3 ^ a, 0 < y ^ T.

Hoheisel proved (1) and (2) with 9 = §§§$, and Heilbronn||
reduced this to j$|j by increasing the numerical value of A in (i). It
was pointed out by Hoheisel in his original paper that the value
6 = J+e (where e is an arbitrarily small positive number) would
follow from his analysis if A could be replaced by an A(t) tending to
infinity with t. This advance has now been made by Tchudakoff with
the aid of Vinogradoff's results on the estimation of trigonometrical
sums.ff
- The aim of this paper is to reduce the index & still, further by a
reconsideration of the exponent of T in (3). The main result (Theorem
4) is that, if ^ + t i ) = 0{(9) ( 4 )

•f Hoheisel (8). See the list of references at the end.
j Landau (12), ii, Satz 397; Titchmarsh (15), Theorem 13.
§ Hoheisel (8), § 2. || Heilbronn (7). ft Tchudakoff (1), (2).
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as t ->oo, where c is a positive (absolute) constant, then (1) and (2)
are true with

2+4c
Thus even the classical value c = J+<r reduces 6 from J + e to §+e.
The Hardy-Littlewood valuef c = £-)-« gives 6 = f+c , while the best
published valuej c = ^ gives 0 = ($£+«. Moreover, if the Lindelof
hypothesis is true (that is to say, if (4) holds with an arbitrarily small
c), then (1) and (2) are true with 6 = i + e . This may be compared
with Cramer's theorem§ that, if the Riemann hypothesis is true, then

2>n+i—Pn = O(pi\ogpn).
The standard proofs of theorems of the type of'(3) are based on

the estimation of a certain integral (the integral in Theorem 2 below).
In Heilbronn's proof of (1) and (2) this integral is introduced directly
into the arithmetical problem without explicit mention of N{a, T),
and his method has the advantage of being applicable to other
problems. In spite of this we shall follow Hoheisel's line of argument,
partly because N(a, T) is of interest in itself and partly because a
new difficulty appears in Heilbronn's method with the reduction of
the index 6 below | .

The inequality for N(a, T) which we actually prove (in Theorem 3)
for application to (1) and (2) is of interest only in the neighbourhood
of a = 1. In Theorem 5 we indicate the proof of a result which,
though less precise in this particular region and less useful for the
arithmetical application, is perhaps more interesting in itself in that
it supersedes existing theorems over the whole range \ < a < 1.
Taken together the two theorems give

uniformly for £ ^ o - ^ 1 as T -> oo, where
A(o-) = min(l+2o-, 2+4c),

t Landau (12), ii, Satz 414; Titchmarsh (15), Theorem 15.
% Phillips (13). A better value c •= ^ (= $jj^) has been obtained by Prof.

Titchmarsh in an unpublished manuscript. This gives 0 = Jf+<•
§ Cramer (3); see also (4). Another proof of this result may be constructed

by performing the operation Ajf, where Af/(x) = f(x+2h)-2f(x+h)+f(x),
on the explicit formula for ifi^x) [Theorem 28 of my tract (10)], using the
inequality „ _,

" " " " h < x)

(where 0 is the upper bound of 'Up), and taking h = Cx8 log x with a sufficiently
large absolute constant O.
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c being a number for which (4) is true. The index (1 + 2CT)(1—a) of
Theorem 5 is an advance on Titchmarah's indexf

1 — (2a— l)/(3-2a) = 4(1—a)/(3-2cr),

The principal weapon is a convexity theorem for integrals. J

2. THEOREM 1. Suppose (i) that £(«) has no zeros in the domain

(A>O;t>to>3),

and (ii) that N{a, T) = O ^ ^ ' l o g ^ T ) (5)

uniformly for \ < <r < 1 as T ->• oo, where 6 > 0, B > 0. Then
(1) and (2) are true for any fixed 0 satisfying

This is essentially the content of Hoheisel's main theorem. For
completeness we reproduce the proof (simplified in detail).

By a known formula§ we have

uniformly for 3 ^ T ^ x asx->cx), where ^(x) = ]£ logp, and

p = P+yi is a typical complex zero of £(«). Hence ,

-«z) = h- y

where O's are uniform for

x+h

c, 0 < h < x, as x ->oo. Since
x+h

f uP-i-du < f û "1 d« < hx?-1,

this implies that

< 7 )

t Titchmarsh (14). % Hardy, Ingham, and P61ya (5), Theorem 7.
S Landau (11), Satz 1.

388J.8 K
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Now we havef

-i_x-i)= y fx«'-1logxda= f

or T a£-i = 2z-W(0, T)+2 f tf(<7, TJz"-1 log a; da. (8)

Since £(«) has only a finite number of zeros p = /3+y» with
\ <! /} < 1, |y| ^ t0 and none with /3 ̂  1, it follows from hypothesis
(i) that we can find a To > 3 so that i\T(er, T) = 0 for T > To,
<r>l—^(J7), where »j(T) = ^(loglog T)/(logT). Further, since
2VXi» 21) ̂  o (T), the case a = I of hypothesis (ii) shows that 6 > 2.
Also 2V(a, T) < 2i^(J, T) for a < i, so that (5) holds uniformly for
0 < <r < 1. Hence by (8), sinoe N(0, T) = O(Tlog T),

fi-1 = O(x-1TlogT)+oi f (—Y'0logBTlogxd<A

\ J \x I I
uniformly for T0^.T^.X&BX-*-CO.

Take T = z°, where a is a constant satisfying 0 < a < 6-1 ( ^ ^).
Then

y xP-1 = 0(xa-Hogx)+0(x<ab-1>**~>logBx)

O{

where 8 = (a"1—6)^1—£. Choose a so that or1 > b+A^B ( ^ b).
Then S > 0, so that by (9) and (7) (with T = xa)

t(i(x) ~ h

when i -»- oo, if h = â  and 6 is a constant satisfying

l>0>l-«(>i).
This implies (1), and therefore (2), sinoe (when A = x6)

( 2
{logx+0(l)}+0( 2 Iog2x)

t Or, using the Stieltjee integral,
1+0 1

T a^-1 = - 2 f z ' - y ^ a . T ) = 2arW(0,T)+2 f N(<r,
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The conditions on a and 6 imply (6), and for any given 0 satisfying
(6) an appropriate a can be found.

3. THBOKEM 2. Let

where /*(») is Mobius's function. Then, if c is an absolute constant for
which (4) is trui,

J l/x(<rH*)l2<tt < C^srT(T+X)]og*(T+X) (10)
I

for £ ̂  or <C 1, T > 1, X > 1, where C is a positive absolute constant.

We may suppose that X ^ 2, since /y(«) = /2M f° r 1 -< X < 2.
We subject T in the first instance only to the restriction T ̂  0.
The absolute constant c of (4) is necessarily positive, and we may
suppose that c < \, since (4) is certainly true for some c < -J. The
symbols Cj, Cg,... denote positive absolute constants.

For a > 1 we have

where ox(n) = Y p(d), (11)

so that ax(l) = 1, ax(n) = 0 for 1 < n < X, and |ox(n)| < d(n) for
all n. Hence, if 0 < 8 < 1,

T T

f |/rd+8+l.-)|««B = 2 ^ S ^ f & r * = I +291 2

-.. (12)
n)

These sums are easily estimated by means of the known inequalities!
Zd'inXCtxlotfx (x^2), (13)

< Cjzlog3* (x > 1). (14)

t For (14) see Ingham (9), 296, Lemmas B2 and B3. (13) is included in an
asymptotic formula stated by S. Ramanujan and proved analytically by B. M.
Wilson, but an elementary proof of (13) is suggested by Heflbronn (7) (cf. 413,
Hilfssatz 20). It may be remarked in passing that the result and proof of
Lemma B2 of my paper (9) remain valid even in the case k = 0 if we replace
V by T ; this provides another elementary proof of (13).
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We deduce, in fact, from (13) that, for 0 < £ < 3,

n>X
2 ~£? = y <*2(n) \^i£dx= \m? 2 di(n)d*

~ £*X ; 4 XHtKix

by the substitution x = Xy^t; and from (14) (since 1 < logA+A"1

< logA+A-* for A > 1) that

d(m)d(n) ^ d(m)d(n) ^ d(m)d(n)

(n/m) J
n

= ?{i+t)+ f l± | y d("W"> fe
^ ^ ™ + J ^Hfm^x(«»»)*log(»/m)

+^ l 0 f o<p. (16)

Hence by (12) (since (logZJ'/Z*5 <

0 * '

For a = £ we use the inequalities

|/jr|*<2(|a8|Jtfxl2+l).

(since I/log A < A/(A-i) < 1+A*/(A-1) for A > 1), and deduce by
(4) that T

j (18)

the inequality holding down to T = 0 since the integral is at most
CSX.T < G^T^X for 0 < T < 1.
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From (17) and (18) we shall deduce an inequality valid for
\ ^ a ^ 1+8 by means of a convexity theorem. Write

h(T) = j \fx(o+ti) |* dt, Jo = J Mo+H) |2 dt,
0 —oo

^ (r>3/W).

In the strip \ < a < 1+8, ^(s) is regular and satisfies

and is therefore certainly bounded (for fixed X and T). Further, for
£ < a < 1+8, a ^ 1,

00 00

Ja < 2 J <7ee-*-|/s:(or+«)|* eft = 2C9 J e-"/CT(r«) du,
o o

by partial integration and the substitution t = ru; whence, by
(17) and (18), „

<̂  < C'IS J e-u(rJi)fc(
o

It followsj that, for \ < CT < 1+8,

)^8 yir^ (20)

Now |fl«)|* > Cue^|/A-(a)|2 (i < a < 1+8, « > 1).

Hence (20) implies that, for T > 1, 4 < a < 1,

l-2a icjl + i-a)

< Ii+28 T i « r (T+I)max(Cn S-«,
(on simplification of the right-hand side). Taking T = C1S T,
S = C16flog(T-\-X), we deduce the theorem, since

< e2

1+2

t Hardy, Ingham, and P<ilya (5), Theorem 7.
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THEOREM 3. / / (4) is true, then
N(a, T) = O{T^+^l

uniformly for $ ^ a ^ 1 when T -*• oo.

This may be deduced from Theorem 2 by a familiar argument.
We have, in the notation of Theorem 2,

l-Px = £MX(2-ZMX) = (g = h,
where g(a) = gx(8) and h(a) = hx(s) are regular except at a — 1; and

Also, for a ^ 2,

if X > Cy, > 1; whence

*X^C\ (22)
>*>W- ( 23 )

Take X > C17> 31 > 4, and choose ^ and T2 so that 3 < T± < 4,
J7 < Tg < T + l , and A(«) has no zeros on either of the segments
t = Tx or t = Tj, ( | < a < 2). Then, writing

tf{(a; 21,2i) = JVtfcr, T 2 ) - ^ ( < T , 21),

where the suffix ^ refers to the funotion ^(s), and extending the nota-
tion to g(a) and h(a), we have, applying a theorem of Littlewoodf
and taking account of (22),

T,

J |) dt += J
+ J ( (24)

for -J- ^ cr0 ^ 1, where argA(«) is 0 when a = 2 and varies continu-
ously along the lines a = 2, t = Tlt t = T%. By (21), Theorem 2,
and (23), the first integral on the right is less than

C{T+ l)*o-vJX1-2t'>(T+1+X)logl(T+1+X)+TX~\
In the second integral

|argA(a+Trt)| < K + l ) i r (r = 1,2),

where mr is the number of points of the segment t = Tr, a0 < a < 2,
at which 5RA(«) = 0; for argA(«) cannot vary by more than IT on any
of the m,+ l pieces into which these-points divide the broken line

t Titchmarah (15), 3.52, 3.53; or (16), 3.8.
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(2,2+Tr\, ao+Tri), since 9lA(a) ^ 0 on the vertical part by (22).
But t ^ is the number of zeros of the function

B^a) = #h(s+Tri)+h(8-Tri)}

on the segment t = 0, o-0 < a < 2, and therefore cannot exceed the
number of zeros of 11,(8) in the circle |«—2| ^ §. Hence, since
flj.(s) is regular for \s—2| < f, we havef

6" - m a X

by (22) and the definition of h(s). The second integral on the right
of (24) is therefore less than C10log(T-\-X). Collecting these results,
we obtain

s
Nh(o; Tv T2) da<C

since TX'1 < TX1-*** and log(T+X)
On the other hand, since Nh = JV^+A^ > fy,

j Nh(cx; 31, T2) da > ]" ^ ( a ; 31, T2) da > 8iV{(ao+8; 31, T3),
a, a,

if 0 < 8 < 1. Writing a for ao+S, we deduce, since

that

JV{(a, T) < CnS

( i+8 < or < 1).
But (since T > 4)

Nfr, T) < Cn Tlog T^Cn T*l~°^log T (J < a < |+8)-

The theorem follows from these inequalities if we take

X = T > max(C17,4), 8 = I/log T.

4. THEOREM 4. / / (4) is true, then (1) and (2) ore true for any fixed
6 satisfying 1 + 4 c

2+4c
<B< 1.

t By a well-known corollary of Jensen's formula. For a direct proof of thia
particular result see, for example, Ingham (10), 49, Theorem D.
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Tchudakoff has. provedf that £(a) has no zeros in a domain of the
type i

where a < 1, tt > 2. The condition (i) of Theorem 1 is therefore
satisfied with an arbitrarily large A and an appropriate t0.

By Theorem 3 the condition (ii) of Theorem 1 is satisfied with
b = 2+4c and B = 5.

Theorem 4 therefore follows from Theorem 1, since

lim II 1 = 1 = ———
A-«*>\ b+A-xB] b 2+4c

5. Theorem 3 is specially designed for application to Theorem 4.
The result itself is of no interest over the range

i < a < (l + 4c)/(2+4c)

where the exponent of T is greater than 1. We shall now give a result
which is non-trivial over the whole range \ < a < 1. It is better
than Theorem 3 for \ < a < |+2c , but worse for \-\-2c < a < 1.
Where the argument is similar to that of § 3 some of the details will
be omitted.

THEOBEM 5. We have

N(a, T) = 0(Ta+io'>(1-0H.o^T)

uniformly for £ ^ a ^ 1 when T -v oo.

We need a new estimate of the integral of Theorem 2. We con-
sider first the corresponding integral with fx(s) replaced by

fXy{s) = £(a) X (̂ttjw."8— 2 ax(ri)n~* = t,(s)Mx{8)—AXty(s),
n<JC n<F

say, where 2 ^ X ^ Y, and the coefficients ax(n) are defined by (11).
Suppose that T > 0.

For a > 1 we have

whence, as in § 3,
T

(0 < S < 1). (25)

t Tchudakoff (1). By using the full force of this result we could replace
3? = 2<i-Hc)/(«+*c>+t = gft,+t in (i) by ^.eCo"1)" (a < a' < 1), and indeed by
something a little better. [Cf. Tchudakoff (2).]
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For a = \ we use the inequalities!

J I/X.FI2^ < / miMx?+\Ax,T?)
0

T T > , T

( J |£|«cft J \M^dtY- + 2J \Ax>T\*dt;
' 0 0 ' 00 0 0

fm+ti)\ldt< (724Tlog4(T+2), (26)
o

)r*< r2^r+4 2
,Ylog*Y, (27)

and obtain,
T

(28)

J
(29)

Using a convexity argument as in § 3 and taking
8 = (7M/log(T+r) < 2Cl8/log(T+TiX+Y),

we deduce from (25) and (29) that, f o r ^ < C T < l , 7 7 > l ,

(30)
Now

r(8), (31)

d(m)d(n)

say, and (for \ ^ a ^ 1, T >

2
t (26) is a well-known result of Hardy and Littlewood (6), Theorem D

(3.12); see also Titchmarsh (17). (27) and (28) follow from (13) and (14).
% The inequalities used here may be deduced from (13) and (14) in much

the same way as (15) and (16) were deduced. Alternatively, we can deduce
them directly from (15) and (16) by using the inequalities n~to < X1~*°Y(n~1~l,
(mn)-° < y ' ^ + ^ m n ) - 1 - * (£ > 0), and taking £ = I/log T.
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Combining this with (30), we obtain, by (31),

fxio+W dt

By considering separately the ranges 7 ^ T and Y < T, we see
at once that (for given T, X, a) the right-hand side of this is of
lowest order when T = T, and this choice gives

for i < a < 1, 2 < X < T.
Arguing now as in the deduction of Theorem 3 from Theorem 2,

and taking X = C^T", we obtain Theorem 5.
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