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Abstract

Background: Intra-tumor heterogeneity stems from genetic, epigenetic, functional, and environmental differences
among tumor cells. A major source of genetic heterogeneity comes from DNA sequence differences and/or whole
chromosome and focal copy number variations (CNVs). Whole chromosome CNVs are caused by chromosomal
instability (CIN) that is defined by a persistently high rate of chromosome mis-segregation. Accordingly, CIN causes
constantly changing karyotypes that result in extensive cell-to-cell genetic heterogeneity. How the genetic
heterogeneity caused by CIN influences gene expression in individual cells remains unknown.

Methods: We performed single-cell RNA sequencing on a chromosomally unstable glioblastoma cancer stem cell
(CSC) line and a control normal, diploid neural stem cell (NSC) line to investigate the impact of CNV due to CIN on
gene expression. From the gene expression data, we computationally inferred large-scale CNVs in single cells. Also,
we performed copy number adjusted differential gene expression analysis between NSCs and glioblastoma CSCs to
identify copy number dependent and independent differentially expressed genes.

Results: Here, we demonstrate that gene expression across large genomic regions scales proportionally to whole
chromosome copy number in chromosomally unstable CSCs. Also, we show that the differential expression of most
genes between normal NSCs and glioblastoma CSCs is largely accounted for by copy number alterations. However, we
identify 269 genes whose differential expression in glioblastoma CSCs relative to normal NSCs is independent of copy
number. Moreover, a gene signature derived from the subset of genes that are differential expressed independent of
copy number in glioblastoma CSCs correlates with tumor grade and is prognostic for patient survival.

Conclusions: These results demonstrate that CIN is directly responsible for gene expression changes and contributes
to both genetic and transcriptional heterogeneity among glioblastoma CSCs. These results also demonstrate that the
expression of some genes is buffered against changes in copy number, thus preserving some consistency in gene
expression levels from cell-to-cell despite the continuous change in karyotype driven by CIN. Importantly, a gene
signature derived from the subset of genes whose expression is buffered against copy number alterations correlates
with tumor grade and is prognostic for patient survival that could facilitate patient diagnosis and treatment.
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Background
Intra-tumor heterogeneity contributes to both thera-
peutic resistance and relapse and poses a major chal-
lenge to overcome in the successful treatment of
cancers. Intra-tumor heterogeneity stems from diverse
populations of cells co-existing within the same tumor
that have genetic, epigenetic, functional, and environ-
mental differences [1–3]. Cancer stem cells (CSCs) (also
referred to as tumor-initiating cells) are a source of func-
tional cellular heterogeneity in tumors. According to the
CSC model, CSCs are at the apex of a functional cellular
hierarchy and are the sub-population of cells responsible
for tumor initiation and for sustaining tumorigenesis
while the population of non-CSCs are non-tumorigenic
[3, 4]. Importantly, CSCs contribute to therapeutic re-
sistance and tumor relapse [5, 6].
An additional source of intra-tumor heterogeneity is

genetic heterogeneity resulting from DNA sequence
variation and/or whole chromosome and focal copy
number variations (CNVs). Whole chromosome CNVs
are generated by aneuploid or chromosomally unstable
populations of tumor cells that have abnormal numbers
of chromosomes [7]. Aneuploidy is a stable state with
aneuploid cells in a tumor having the same abnormal
karyotype, and it is prevalent in cancers with over 90%
of solid tumors reported to be aneuploid [8]. In addition,
many aneuploid tumor cells also exhibit chromosomal
instability (CIN). CIN is a persistent and a high rate of
chromosome mis-segregation that causes random
chromosome losses and/or gains [7]. Importantly, both
CSCs and non-CSCs display CIN [9]. Indeed, we previ-
ously demonstrated that for some glioblastoma CSCs
with a CIN phenotype each cell in the population had a
different karyotype [9]. Thus, despite CSC functional
similarity in driving tumorigenesis, CSCs are genetically
heterogeneous with diverse karyotypes [9]. Overall, an-
euploidy and CIN generate genetic diversity among
tumor cells that contributes to therapeutic resistance
and is correlated with poor patient prognosis [10–12].
Whole chromosome CNVs, due to aneuploidy, and

focal CNVs are also thought to cause alterations in gene
transcription [13–18]. Previous studies in aneuploid
yeast and mammalian cells demonstrated that the ex-
pression level of most genes scaled with chromosome
copy number [14–17]. Thus, a change in chromosome
copy number due to aneuploidy causes a corresponding
change in the transcription levels of most genes on that
chromosome. However, these prior studies were per-
formed on stable aneuploid (i.e. all cells in the popula-
tion had the same abnormal karyotype) and/or
genetically selected cells with specific chromosome
gains. Furthermore, gene expression measurements were
performed on bulk populations, which both homoge-
nizes single cell variation and averages gene expression

levels in a population. Accordingly, the relationship be-
tween gene expression and chromosome copy number
in cells that exhibit CIN, with chromosome comple-
ments continuously fluctuating from individual cell to
individual cell, remains unexplored.
Here we investigate the impact of CNV due to CIN on

gene expression by analyzing the transcriptomes of a
glioblastoma cancer stem cell (CSC) line, GliNS2 CSCs,
that is chromosomally unstable and a control normal,
diploid neural stem cell (NSC) line, CB660 NSCs [9, 19,
20]. We chose to compare NSCs and glioblastoma CSCs
because glioblastoma is one of the most lethal cancers
[21], and experimental evidence shows that glioblastoma
CSC populations are both responsible for tumor devel-
opment and are resistant to current treatments [5, 22–
25]. Thus, there is a critical need to develop new thera-
peutic strategies that selectively eradicate glioblastoma
CSCs but spare normal neural cells. Previous gene ex-
pression analysis of CB660 and GliNS2 cells was per-
formed on bulk populations of cells; however, these
approaches homogenize the contribution of single cell
CNV to gene expression levels and to differentially
expressed genes between NSCs and glioblastoma CSCs
[20, 26]. Only single-cell methods are suitable to deter-
mine the impact of CNV due to CIN on gene expres-
sion. Accordingly, we performed single-cell RNA
sequencing of individual CB660 NSCs and GliNS2 CSCs
to investigate the influence of CNV on gene expression
levels in chromosomally unstable cells and to investigate
the contribution of CNV to gene expression differences
between NSCs and glioblastoma CSCs.

Results
Neural stem cells and glioblastoma cancer stem cells
have distinct transcriptomes
To investigate the relationship between gene expression
levels and CNV in chromosomally unstable cells, we
performed single-cell RNA sequencing of chromosom-
ally unstable GliNS2 glioblastoma CSCs and control nor-
mal, diploid CB660 NSCs that were grown in identical
serum-free culture conditions [9, 19, 20]. After perform-
ing data normalization and filtering steps, we obtained
high quality data for 59 CB660 NSCs and 75 GliNS2
CSCs (Additional file 1a-e). As an initial comparison of
CB660 NSCs and GliNS2 CSCs, we performed unsuper-
vised hierarchical clustering using the most variably
expressed genes. Hierarchical clustering showed that
CB660 NSCs and GliNS2 CSCs cluster into two distinct
groups as expected (Fig. 1a). As further validation, we
performed principal component analysis (PCA), and
similar to the unsupervised hierarchical clustering, we
found that CB660 NSCs and GliNS2 CSCs separated
into two distinct groups (Fig. 1b). In addition, we used
gene expression profiles to computationally infer the cell
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cycle phase of each cell. Specifically, we utilized previ-
ously published methods that combine a set of cell cycle
annotated genes with a pair-based classifier to assign cell
cycle phases [27, 28]. CB660 NSCs and GliNS2 CSCs
had different percentages of cells in each phase of the
cell cycle, but overall these differences were not statisti-
cally significant (Fig. 1b-c).

Chromosomal instability affects gene expression levels
Since the technology to perform simultaneous single-cell
DNA sequencing to obtain the copy number profile and
single-cell RNA sequencing to obtain the gene expres-
sion profile of the same cell is not readily feasible, we
used gene expression levels to computationally infer
large-scale CNV in chromosomally unstable GliNS2
CSCs [29]. The approach is based upon a previously
published method that averages gene expression over
large genomic regions to infer whole chromosome copy
number alterations [29]. Importantly, the method re-
quires gene expression measurements from control dip-
loid cells to establish reference gene expression levels
[29]. More specifically, we calculated GliNS2 CSC rela-
tive gene expression levels against reference normal, dip-
loid CB660 NSC gene expression and then determined

the copy number of a gene as the average relative ex-
pression of its neighboring 50 downstream genes and 50
upstream genes. We repeated this iteratively to predict
the copy number of large genomic regions. Initially, we
validated this method using matched copy number and
gene expression data from glioblastoma multiforme
(GBM) and breast invasive carcinoma (BRCA) samples
in The Cancer Genome Atlas (TCGA). As expected,
there was significantly more inferred CNV in both GBM
and BRCA tumor samples compared to normal samples
with a median Spearman correlation = 0.43 or = 0.46 be-
tween the estimated CNV and known CNV across all
GBM and BRCA tumor samples, respectively
(Additional file 2 a-d and Additional file 3 a-d). As fur-
ther validation, we calculated a chromosomal instability
index to quantify CNV by determining the average abso-
lute estimated copy number (ECN) of each tumor sam-
ple, and as expected, both GBM and BRCA tumor
samples had a significant increase in the chromosomal
instability index compared to normal samples
(Additional file 2b and Additional file 3b). Also, the
BRCA tumor samples had a significantly higher median
chromosomal instability index compared to the GBM
tumor samples (BRCA median = 0.069, GBM median =

Fig. 1 CB660 NSCs and GliNS2 CSCs have distinct gene expression profiles. a, Heatmap showing the normalized gene expression of the most
variably expressed genes used for hierarchical clustering analysis. The top dendrogram shows that CB660 NSCs and GliNS2 CSCs cluster into two
distinct populations. In the row above the heatmap, blue indicates CB660 NSCs and red indicates GliNS2 CSCs. b, Principal component analysis
(PCA) and cell cycle phase analysis of CB660 NSCs and GliNS2 CSCs. The graph shows the separation of CB660 NSCs (circles) and GliNS2 CSCs
(triangles) into distinct groups. The color of the circles or triangles corresponds to the predicted cell cycle phase of each cell. c, Pie plots showing
the fraction of CB660 NSCs and GliNS2 CSCs in each phase of the cell cycle. P > 0.05; Chi-square test comparing the cell cycle profiles of CB660
NSCs and GliNS2 CSCs
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0.056, p < 0.05) in agreement with BRCA tumors having
a higher aneuploidy score than GBM tumors [30].
Next, we applied this method to our single-cell

RNA sequencing data. Based upon consideration for
the number of genes located on each chromosome
and filtering out genes with low expression, we used
6350 genes that represent the top 30th percentile of
genes across all samples (Additional file 4a). Also, we
applied an additional filtering step for cells with low
expression of the 6350 genes using a cutoff of low
normalized library size < 26,000 counts or a high frac-
tion of zero counts (< 25%) (Additional file 4a). After
applying the additional filtering step, 52 CB660 NSCs
and 69 GliNS2 CSCs remained for analysis. Previ-
ously, we showed that CB660 NSCs are predomin-
antly diploid [9], so we averaged the expression of
each of the 6350 genes across CB660 NSCs to estab-
lish reference normal, diploid gene expression levels
for comparison to the gene expression profiles of sin-
gle cells. The ECN profiles for single cells showed
more copy number alterations in GliNS2 CSCs com-
pared to CB660 NSCs (Fig. 2a). Accordingly, GliNS2
CSCs had a significantly higher chromosomal instabil-
ity index compared to CB660 NSCs (Fig. 2b). Further-
more, there was no correlation between the inferred
CNV and cell cycle phase for either CB660 NSCs or
GliNS2 CSCs (Fig. 2a). Overall, these results demon-
strate that, as expected of chromosomally unstable

cells, GliNS2 CSCs have significantly more CNV com-
pared to normal, diploid CB660 NSCs.
To validate this approach, we shuffled neighboring

genes across the genome so that the gene expression for
each gene was not associated with its position on a
chromosome and repeated the copy number and
chromosomal instability estimation analyses. After shuf-
fling neighboring genes, no CNV pattern was observed
for the GliNS2 CSCs, and moreover, there was no sig-
nificant difference in the chromosomal instability index
of CB660 NSCs and GliNS2 CSCs (Additional file 4b-c).
Also, we tested the requirement for a normal, diploid
reference to accurately determine CNV by performing
our ECN analysis using the average expression of GliNS2
CSCs as the reference (Additional file 4d). This approach
did not detect common chromosome copy number al-
terations such as the gains in chromosome 7 or the loss
of chromosome 13 (Fig. 2a) because there is minimal
fold change between the average reference gene expres-
sion levels and the gene expression levels in single
GliNS2 CSCs.
In addition to the increased CNV in GliNS2 CSCs com-

pared to CB660 NSCs, the ECN analysis also revealed
karyotype heterogeneity among single GliNS2 CSCs as
shown by the cell-to-cell variation in chromosome losses
and gains (Fig. 2a) and the range of total CNV among
GliNS2 CSCs as measured by the chromosomal instability
index (Fig. 2b). For example, chromosome 9 and 10 loss

Fig. 2 Gene expression scales with chromosome copy number. a, Heatmap of the estimated copy number (ECN) of all chromosomes (columns)
in single CB660 NSCs and GliNS2 CSCs (rows). On the scale, ECN = 0 indicates diploid gene expression levels. The column adjacent to the
heatmap shows the cell cycle phase of each cell as determined in Fig. 1b with the color of the bar corresponding to the predicted cell cycle
phase. b, Quantification of chromosomal instability in CB660 NSCs and GliNS2 CSCs. Bar, median; box 25th to 75th percentile; whiskers, minimum
and maximum. P < 2E-16; Mann-Whitney U test comparing CB660 NSCs and GliNS2 CSCs. c and d, Heatmaps showing normalized gene
expression in CB660 NSCs and GliNS2 CSCs for chromosome 7 (C) and chromosome 13 (D)
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are commonly reported in GBM [29, 31], and in agree-
ment, our ECN analysis identified chromosome 10 loss in
the majority of TCGA GBM tumor samples sequenced
using bulk methods (Additional file 2a); however, single
GliNS2 CSCs showed variation with respect to chromo-
some 9 or 10 copy numbers. Indeed, only 30.4% or 27.5%
of GliNS2 CSCs had an ECN loss for chromosome 9 or
10, respectively (Fig. 2a). In support, previous cytogenomic
profiles of GliNS2 CSCs also showed heterogeneity among
single cells with both gains and losses in chromosome 9
and 10 reported [9, 32]. Overall, our estimated copy num-
ber analysis demonstrates that GliNS2 CSCs have exten-
sive genetic heterogeneity with respect to chromosome
copy numbers in agreement with our previous karyotyp-
ing data showing that no two GliNS2 CSCs have the same
karyotype [9]. Also, these results demonstrate the utility of
single-cell vs. bulk population approaches when analyzing
chromosomally unstable cells.
Although GliNS2 CSCs had extensive karyotype het-

erogeneity, there were examples of chromosome copy
number alterations that occurred in the majority of
GliNS2 CSCs. We utilized these common alterations,
to determine the impact of whole chromosome CNV
due to CIN on gene expression. Specifically, we com-
pared the ECNs for chromosomes 7 and 13 to previ-
ous karyotyping data [9]. because the majority of
GliNS2 CSCs were predicted to have gained or lost
copies of chromosome 7 and 13, respectively. The es-
timated copy number analysis predicted 4 or more
copies for most of chromosome 7 in the majority of
GliNS2 CSCs (Fig. 2a). This estimated copy number
is in agreement with previously published spectral
karyotyping data that demonstrated 76% of GliNS2
CSCs had 4 or more copies of chromosome 7 with a
chromosome mode of 6 copies [9]. In addition, a
comparison of gene expression profiles for chromo-
some 7 showed that 83.9% of genes were
up-regulated in GliNS2 CSCs compared to CB660
NSCs (Fig. 2c). Further, the estimated copy number
analysis predicted a loss of chromosome 13 in GliNS2
CSCs (Fig. 2a). In agreement, previous spectral karyo-
typing data showed that 36% of GliNS2 CSCs had 1
or 0 copies of chromosome 13 [9]. Also, a compari-
son of gene expression profiles for chromosome 13
showed that in GliNS2 CSCs 79.6% of genes were
down-regulated compared to CB660 NSCs (Fig. 2d).
Overall, these results demonstrate that gene expres-
sion scales with chromosome copy number for the
majority of genes on a given chromosome in chromo-
somally unstable cells.
Although for chromosomes 7 and 13 the estimated

copy numbers from the gene expression data were in
agreement with previous karyotyping data, not all pre-
dicted CNV in GliNS2 CSCs was detected. For example,

previous spectral karyotyping demonstrated that 84% of
GliNS2 CSCs had 3 or more copies of chromosome 12
with a chromosome mode of 3 copies [9], but the ana-
lysis did not identify any GliNS2 CSCs with 3 or more
copies of chromosome 12 (Fig. 2a). One explanation is
that the entire population of GliNS2 CSCs analyzed had
2 copies of chromosome 12 since cells were sequenced
at random. Alternatively, there may be compensatory
mechanisms that buffer gene expression levels on
chromosome 12 against chromosome CNV. Although a
previous study reported gene-dosage compensation in
aneuploid yeast cells, only 10–30% of genes on a given
chromosome were buffered against copy number
changes [33]. Lastly, there may be limitations on the
sensitivity of computationally inferring copy number
from single-cell gene expression data. In comparison,
the gain in chromosome 7 copies is at a minimum a
2-fold increase in expression levels from genes on that
chromosome while an increase from two to three copies
of chromosome 12 is only a 1.5-fold change.

CNV dependent and independent mechanisms contribute
to differential gene expression
In addition to investigating the impact of whole chromo-
some CNV due to CIN on gene expression, we also per-
formed differential gene expression analysis between
CB660 NSCs and GliNS2 CSCs to discover new insights
into CSCs biology. In total the expression of 1640 genes
was significantly increased or decreased in GliNS2 CSCs
compared to CB660 NSCs (Fig. 3a) (Additional file 8:
Table S1). Multiple biological mechanisms may account
for gene expression differences between CB660 NSCs
and GliNS2 CSCs including CNV due to either whole
chromosome and/or focal copy number alterations.
After performing differential gene expression analysis
between CB660 NSCs and GliNS2 CSCs, we then deter-
mined the contribution of CNV to the expression levels
of these differentially expressed genes. To do this, we
estimated the copy number of each differentially
expressed gene and then adjusted individual gene ex-
pression levels taking into account the inferred copy
number. Initially, we validated our approach by com-
paring gene expression levels adjusted for copy num-
ber using either SNP-array measured CNV or
RNA-seq inferred CNV in TCGA GBM tumor sam-
ples. There was good agreement between the two ap-
proaches with a median correlation = 0.92 (Additional
file 5a). Next, we predicted the copy number of indi-
vidual differentially expressed genes that were in-
cluded in our initial analysis of 6350 genes by
determining the copy number of a gene as the aver-
age relative expression of its neighboring 50 down-
stream genes and 50 upstream genes as described
above. For the remaining differentially expressed
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genes, we predicted their copy number based upon
their nearest neighbor in the group of 6350 genes.
Notably, this approach will include both CNV arising
from whole chromosome or focal alterations.
On a global scale, the mean log2 fold change in

expression for the majority of differentially expressed
genes shifted after copy number adjustment
(Additional file 5b). Importantly, after adjusting indi-
vidual gene expression levels for copy number, the
differential expression of 1360 genes was no longer
statistically significant (Fig. 3a-c) (Additional file 8:
Table S2). The statistical significance of each gene’s
contribution to the difference between GliNS2 CSCs
and CB660 NSCs decreased after their copy number
adjustment, indicating that CNV accounts for the ma-
jority of the transcription level difference at the single
cell level (Additional file 8: Table S2). Moreover,
though the negative log10 transformed p values

before and after adjustment were highly correlated,
the inconsistency between them indicated that some
genes are more affected by CNV than other genes
(Fig. 3c). For example, the transcription factor c-MYC
is an individual gene whose expression illustrated
copy number dependent differential gene expression.
C-MYC expression positively correlated (SCC = 0.54)
with inferred copy numbers in CB660 NSCs and
GliNS2 CSCs (Fig. 3d). Expression analysis unadjusted
for copy number demonstrated that c-MYC expres-
sion was significantly increased in GliNS2 CSCs com-
pared to CB660 NSCs; however, after adjusting for
copy number the estimated expression of c-MYC was
no longer significantly different between GliNS2 CSCs
and CB660 NSCs (Fig. 3e). In addition, there were ex-
amples of genes that had significantly increased ex-
pression levels in CB660 NSCs compared to GliNS2
CSCs when unadjusted for copy number; however,

Fig. 3 Identification of copy number dependent and independent differentially expressed genes between CB660 NSCs and GliNS2 CSCs. a,
Volcano plot showing both unadjusted and copy number adjusted differentially expressed genes between CB660 NSCs and GliNS2 CSCs. The
dashed line shows the statistical significance cut-off (P.adjust< 0.05, Mann-Whitney U test and Bonferroni adjustment) used for differential gene
expression analysis. Dark red points indicate genes that remain significantly differentially expressed after copy number adjustment while light red
points indicate genes that are not significantly differentially expressed after copy number adjustment. b, Venn diagram showing the number of
overlapping differentially expressed unadjusted and copy number adjusted genes. c, Scatter plot showing the correlation between the negative
log10 transformed p-value of unadjusted and copy number adjusted differential gene expression analysis. Spearman correlation coefficient = 0.77.
d, Scatter plot showing the correlation between c-MYC expression and c-MYC copy number in CB660 NSCs and GliNS2 CSCs. Spearman
correlation coefficient = 0.54. e, Bar graphs quantifying c-MYC expression in CB660 NSCs and GliNS2 CSCs before (left graph) and after copy
number adjustment (right graph). Bar, median; box 25th to 75th percentile; whiskers, minimum and maximum. P.adjust> 0.05 after copy number
adjustment, Mann-Whitney U test and Bonferroni adjustment. f, Scatter plot showing the correlation between SLC23A2 expression and SLC23A2
copy number in CB660 NSCs and GliNS2 CSCs. Spearman correlation coefficient = 0.51. g, Bar graphs quantifying SLC23A2 expression in CB660
NSCs and GliNS2 CSCs before (left graph) and after copy number adjustment (right graph). Bar, median; box 25th to 75th percentile; whiskers,
minimum and maximum. P.adjust = 4E-3 after copy number adjustment, Mann-Whitney U test and Bonferroni adjustment. h, Scatter plot showing
the correlation between TFAP2C expression and TFAP2C copy number in CB660 NSCs and GliNS2 CSCs. Spearman correlation coefficient = − 0.02.
i, Bar graphs quantifying TFAP2C expression in CB660 NSCs and GliNS2 CSCs before (left graph) and after copy number adjustment (right graph).
Bar, median; box 25th to 75th percentile; whiskers, minimum and maximum. P.adjust = 0.02 after copy number adjustment, Mann-Whitney U test
and Bonferroni adjustment
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after copy number adjustment, the gene expression
levels were no longer significantly different
(Additional file 8: Table S2). Thus, these results dem-
onstrate that the gene expression differences between
CB660 NSCs and GliNS2 CSCs for most genes can
be accounted for through CNV due to either whole
chromosome or focal alterations.
On the other hand, after adjusting for copy number,

the differential expression of 269 genes remained sig-
nificantly different between CB660 NSCs and GliNS2
CSCs (Fig. 3b-c) (Additional file 8: Table S3). Within
the 269 copy number independent differentially
expressed gene set there were genes whose expression
was influenced by copy number yet their expression
remained significantly different between CB660 NSCs
and GliNS2 CSCs even after adjusting gene expres-
sion levels for copy number. An example is SLC23A2
whose gene expression level positively correlated
(SCC = 0.51) with inferred copy numbers in CB660
NSCs and GliNS2 CSCs (Fig. 3f ). Yet, after adjusting
for copy number, the expression of SLC23A2
remained significantly increased in GliNS2 CSCs com-
pared to CB660 NSCs (Fig. 3g). In total, only 25%
(Spearman correlation ≥0.3) of the copy number inde-
pendent genes had expression levels that were posi-
tively influenced by estimated copy number but still
remained significantly differentially expressed after
adjusting gene expression levels for copy number.
These results demonstrate that for some of the copy
number independent differentially expressed genes,
multiple mechanisms regulate gene expression levels,
including copy number, to contribute to the total
level of differential expression between CB660 NSCs
and GliNS2 CSCs.
Yet for the majority of genes in the copy number

independent differentially expressed gene set there
was virtually no change in differential gene expression
levels after adjusting for copy number. An example of
this is the transcription factor TFAP2C whose gene
expression level did not correlate (SCC = -0.02) with
inferred copy numbers in CB660 NSCs and GliNS2
CSCs (Fig. 3h), and after adjusting for copy number
the estimated expression of TFAP2C remained signifi-
cantly decreased in GliNS2 CSCs (Fig. 3i). In
addition, there were examples of genes whose expres-
sion remained significantly increased in GliNS2 CSCs
even after adjusting gene expression levels for copy
number (Additional file 8: Table S3). These results
demonstrate that for most copy number independent
differentially expressed genes transcriptional and/or
post-transcriptional mechanisms predominantly regulate
their gene expression with no or minimal contribution of
copy number to the total level of differential expression
between CB660 NSCs and GliNS2 CSCs.

A CNV independent gene signature correlates with tumor
grade and is prognostic for patient survival
We focused our further analysis efforts on the 269 copy
number independent differentially expressed genes for
the following reason: these genes are differentially
expressed between normal stem cells and CSCs, but im-
portantly, this gene set may also offer insights into
mechanisms that allow CSCs to maintain functional
similarity despite a CIN phenotype with continual fluc-
tuations in chromosome copy numbers. First, we per-
formed Gene Ontology (GO) enrichment analysis on
both the copy number independent significantly up- and
down-regulated differentially expressed genes (Fig. 4a,
Additional file 8: Table S3, Additional file 6a-b, and
Additional file 8: Table S4). For the genes with increased
expression levels independent of copy number in GliNS2
CSCs relative to CB660 NSCs, the most significantly
enriched pathway involved the negative regulation of cell
proliferation (Fig. 4a and Additional file 6a). In this cat-
egory were genes that regulate several major signaling
pathways that control proliferation including the se-
creted frizzled related protein, FRZB (also known as
sFRP3), that is an antagonist of the Wnt pathway [34],
the protein tyrosine phosphatase, PTPRJ, that negatively
regulates tyrosine kinase signaling [35], and the GTPase
activating protein, DLC-1, that inhibits Rho signaling
[36]. (Fig. 4a and Additional file 8: Table S5). Although
cancer cells are typically defined by uncontrolled prolif-
eration, previous studies have shown that CSCs are a
slow-proliferating/quiescent population of cells in com-
parison to non-CSCs [22, 37]. In agreement with the
slow-proliferating/quiescent phenotype of CSCs [22, 37],
GliNS2 CSCs double approximately every 74 h in culture
compared to glioma non-CSCs that double between
every 21–46 h in culture (Additional file 6c) [20, 38].
Thus, up-regulated expression of these genes may con-
tribute to this phenotype and allow GliNS2 CSCs to
maintain a slow-proliferating phenotype despite exhibit-
ing CIN.
Second, from the expression pattern of the copy

number independent genes, we established a copy
number independent (CI) gene signature. We vali-
dated our CI gene signature using publicly available
gene expression data to test for association between
additional glioma CSCs, glioma non-CSCs, and nor-
mal astrocytes with a CI gene signature score [39,
40]. Glioma CSCs had the highest CI gene signature
score followed by glioma non-CSCs and then normal
astrocytes (Additional file 7a). Thus, the CI gene sig-
nature is a gene expression pattern that is enriched in
multiple glioma CSCs and is not unique to only GliNS2
CSCs. Also, we tested if the CI gene signature correlated
with a previously defined gene signature for glioblastoma
proneural, neural, classical, or mesenchymal molecular

Zhao et al. BMC Medical Genomics           (2019) 12:79 Page 7 of 16



sub-types [41]. Overall, 34 genes overlapped between the
269-CI gene signature and the 840-gene signature estab-
lished by Verhaak et al. [41]. Although the proneural mo-
lecular sub-type had the highest CI gene signature score
(Additional file 7b), a heatmap of the non-overlapping
genes showed that the CI gene signature did not clearly
distinguish any of the four molecular sub-types
(Additional file 7c). Thus, the CI gene signature is a novel
set of genes that does not overlap with the previously
characterized gene signature for proneural, neural, clas-
sical, or mesenchymal glioma molecular sub-types.
To further explore the relevance of the CI genes to

the pathogenesis of gliomas, we tested for association
between both tumor grade and patient survival time
with a score for the CI gene signature. Low grade I/II
pilocytic or diffuse astrocytomas tumors scored high-
est for the CI gene signature followed by grade III
anaplastic astrocytomas, and then grade IV glioblast-
oma tumors (Fig. 4b) [42]. To independently confirm
this result, we tested for association of the CI gene
signature score with tumor grade using a distinct
gene expression data set [43]. This analysis confirmed
our finding of a correlation between tumor grade and
CI gene signature score (Additional file 6d). These re-
sults demonstrate the broad applicability of a CI gene

signature score to stratify multiple types of gliomas
by tumor grade despite the fact that the GliNS2 CSCs
used to derive the CI gene signature were established
from a grade IV glioblastoma [20].
Glioma tumor grading is based in part upon histo-

logical features assessed by tissue morphology and one
criterion is the level of mitotic activity present in speci-
mens with low grade tumors having minimal mitotic ac-
tivity while high grade tumors have high levels of
proliferation [44]. Accordingly, these results show that
low grade tumors that proliferate slower had the highest
CI gene signature score. One mechanism that may ac-
count for this is the increased expression of genes in-
volved in pathways that negatively regulate cell
proliferation in the CI gene signature (Fig. 4a).
In addition to tumor grade, we also tested for association

between patient survival time with a score for the CI gene
signature. We used tumor gene expression data integrated
with clinical data, to dichotomize patients into CI-Hi and
CI-Lo groups using the median CI score to stratify patients
into either group. Patients in the CI-Hi group had a signifi-
cantly longer survival time than patients in the CI-Lo group
(e.g. GSE16011 HR= 0.46, P = 8E-9). Overall, the CI gene
signature score was prognostic for patient survival (Fig. 4c)
in four independent patient data sets [43, 45–48].

Fig. 4 A copy number independent gene signature is prognostic for tumor grade and patient survival. a, Heatmap showing the relative gene
expression of the copy number independent differentially expressed genes that are involved in pathways that negatively regulate cell
proliferation in GliNS2 CSCs compared to CB660 NSCs. b, Graph showing the copy number independent (CI) gene signature score for glioma
samples in data set GSE1993 stratified by histological grade. Grade I/II = pilocytic astrocytoma (n = 2) and diffuse astrocytoma (n = 5), Grade III =
anaplastic astrocytoma (n = 19), and Grade IV = glioblastoma (n = 39). Bar, median; box 25th to 75th percentile; whiskers, minimum and
maximum. P = 1E-3, ANOVA analysis. c, Kaplan-Meier plots showing that the CI gene signature score is prognostic for patient survival in four
independent data sets. The median CI score was used as the cutoff to dichotomize patients into CI-Hi and CI-Lo groups with the number of
patients in each group indicated in parentheses. Hazard ratios were calculated using a Cox regression model, and p-values were calculated by
using log-rank tests to determine statistical differences between survival curves. Below each Kaplan-Meier plot is a table showing the number of
patients at risk over time
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Given the correlation between the CI gene signature
score and tumor grade (Fig. 4b) and that patients with
low grade tumors have significantly increased median
survival times compared to patients with high grade gli-
omas [44], we reasoned that the CI-Lo and CI-Hi groups
may also stratify patients by tumor grade. In agreement,
there was a significant percent increase in patient sam-
ples with grade III tumors in the CI-Hi group compared
to the CI-Lo group with only 13.2% of the samples in
the CI-Lo group (n = 43) having grade III tumors (Add-
itional file 6e) [46]. Taken all together, these results dem-
onstrate that the CI gene signature score defined here is
prognostic for glioma tumor grade and patient survival.

Discussion
CIN is a source of intra-tumor genetic and transcriptional
heterogeneity
Here we show that the genetic diversity generated by
CIN also leads to heterogeneity in gene expression
levels. In contrast to a stable aneuploid state, CIN is
a persistent source of change. Indeed, both our previ-
ous karyotyping data [9]. and our ECN profiles of sin-
gle chromosomally unstable CSCs demonstrate the
extensive genetic heterogeneity that arises due to
CIN. Such heterogeneity necessitates the use of
single-cell methods to investigate the impact of gen-
etic diversity on tumor cell functions; however,
single-cell multiomics approaches to simultaneously
determine chromosome copy number and additional
omics profiles are not currently readily feasible. To
overcome this limitation, we used single-cell RNA se-
quencing combined with bioinformatics analysis to es-
timate the impact of CNV on gene expression in
chromosomally unstable CSCs. Although compared to
single-cell DNA-seq or SNP arrays, the resolution of
this method is more limited to detect CNV, this ap-
proach importantly does not require performing sim-
ultaneous copy number and gene expression
sequencing on the same single cell.
Moreover, we show that in chromosomally unstable

CSCs whole chromosome CNV due to CIN generates a
corresponding change in transcript levels for the major-
ity of genes on a given chromosome. Further, our data
demonstrate that both chromosome loss or chromosome
gains cause a corresponding decrease or increase, re-
spectively, in gene expression levels. To our knowledge,
this is the first demonstration of cell-to-cell variation in
gene expression caused by changes in chromosome copy
number in chromosomally unstable cells. Thus, CIN is
not only a source of genetic heterogeneity but also a
source of transcriptional heterogeneity because the ex-
pression of most genes scales with chromosome copy
number in each cell.

Importantly, CIN will cause large-scale transcriptional
alterations, as the copy number of numerous genes will
change simultaneously following mis-segregation of a
whole chromosome. Consequently, the karyotype and
transcriptional changes caused by CIN provide one
mechanism for studies that infer dosage-sensitive path-
ways fuel tumor initiation, evolution and adaptability.
For example, a previous study proposed that the cumu-
lative gene-dosages of tumor suppressor STOP genes
and oncogenic GO genes drive tumorigenesis [49]. In-
deed, our data for c-Myc expression levels provides dir-
ect evidence that changes in gene expression levels
caused by copy number alterations influence the gene
dosage of GO genes [49]. Therefore, CIN is one mech-
anism to alter the gene-dosage of STOP and GO genes
giving tumor cells the adaptability needed to survive and
propagate under changing selective pressures during
tumor growth. Conversely, a direct relationship between
chromosome copy number and gene expression levels
also provides a mechanism for previous studies propos-
ing to increase the rate of CIN above a tolerable thresh-
old as a therapeutic strategy to cause a loss of tumor cell
function and/or viability [9, 50–52]. The opposing ef-
fects of CIN may in part depend on the frequency of al-
tering gene expression levels with low rates of change
providing adaptability but high rates of change fre-
quently generating transcriptional programs that are in-
compatible with supporting tumorigenesis or viability [9,
52, 53]. Thus, the genetic and transcriptional diversity
caused by CIN can be beneficial or detrimental depend-
ing on the rate of mis-segregation.
Previous studies using stable aneuploid yeast and

mammalian cells have shown that the levels of most pro-
teins tend to reflect mRNA levels and to scale propor-
tionally with chromosome copy number [16, 17, 54].
Based on those results and our data, we would predict
that CIN generates extensive cell-to-cell variation in pro-
tein levels in conjunction with karyotype and transcrip-
tional changes arising from the persistent and high rates
of chromosome mis-segregation. A direct test of this
prediction will require the development of quantitative
methodology for the analysis of genome, transcriptome,
and proteome levels within single cells.

Buffering gene expression against CIN
Our data demonstrate that having a CIN phenotype will
not only cause continual fluctuations in the karyotypes
but also the transcriptomes (and, by extension, the pro-
teomes) of tumor cells. Such continual alterations in
chromosome copy numbers and transcriptional pro-
grams may influence the functional properties of tumor
cells including CSC populations. In support of this, ele-
vated rates of CIN in CSCs drive CSCs to a non-CSC
phenotype causing a loss of CSC function and inhibition
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of tumor initiation [9]. Accordingly, this raises the
question of how CSCs maintain functional similarity
to drive tumorigenesis despite a CIN phenotype. Our
differential gene expression analysis of NSCs and
CSCs demonstrates that CNV accounts for most dif-
ferential gene expression but that the differential ex-
pression of a subset of genes is independent of CNV.
Consequently, the copy number independent regula-
tion of gene expression buffers transcript levels
against continual fluctuations in whole chromosome
copy numbers due to CIN and, presumably, against
focal copy number alterations as well. Buffering gene
expression levels from copy number changes is one
mechanism that preserves gene expression patterns
and would allow CSCs to maintain functional similar-
ity in the presence of a CIN phenotype. In support,
we show that the genes differentially expressed and
up-regulated independent of copy number in glio-
blastoma CSCs compared to normal NSCs are
enriched in pathways that negatively regulate cell pro-
liferation. A defining functional characteristic of CSCs
is that CSCs are slow-proliferating/quiescent cells [22,
37], and the up-regulated copy number independent
expression of these genes may allow glioblastoma
CSCs to maintain this phenotype despite continual
changes in karyotype and transcriptional programs
due to CIN. Importantly, given that CSCs are thought
to be resistant to current therapeutics in part because
of their slow-proliferating/quiescent phenotype an im-
portant implication of this work is that insulating the
expression levels of certain genes against CNV may
provide a selective advantage to CSCs. Overall, the
buffering of gene expression levels against CIN may
not be unique to CSCs but rather a general
phenomenon that occurs in other chromosomally un-
stable tumor cells that must cope with continual copy
number and transcriptional changes. The experimen-
tal interrogation of non-CSCs for genes whose expres-
sion levels are regulated independent of copy number
will address this possibility.
Multiple cis- or trans-acting effects may buffer gene

expression levels against CNVs including DNA sequence
mutations and transcriptional or post-transcriptional mecha-
nisms. Transcriptional or post-transcriptional mechanisms
include epigenetic mechanisms such as histone modifications
or DNA methylation or post-transcriptional mechanisms
such as RNA processing that modifies RNA stability. Identifi-
cation of the specific mechanisms that buffer gene expres-
sion levels from CNV opens potential therapeutic
opportunities. Given that the regulation of gene expression
independent of copy number may allow CSCs to maintain
functional similarity, targeting the mechanisms responsible
may render their expression copy number-dependent leading
to transcriptional programs in CSCs that drive CSCs to a

non-CSC phenotype inhibiting tumorigenesis and making
these cells more susceptible to treatment.

Clinical relevance of the CNV independent gene signature
These data not only uncover mechanistic insights into
how CSCs maintain functional similarity despite a CIN
phenotype, but importantly, the copy number independ-
ent differentially expressed gene set also defines a signa-
ture that is prognostic for tumor grade and patient
survival. Gliomas account for over 70% of malignant
brain tumors in adults making gliomas the most com-
mon form of primary malignant brain tumors [44, 55].
Gliomas are sub-classified based upon histological and
molecular features according to guidelines put forth by
The World Health Organization (WHO) [56] with glio-
blastoma grade IV tumors being the most aggressive and
lethal brain tumors. Patients diagnosed with glioblast-
oma have only a 10% five-year survival rate despite ag-
gressive treatment with radiotherapy and chemotherapy
[21]. Extensive experimental evidence shows that
glioblastoma CSCs are the population of tumor cells re-
sponsible for tumor development and therapy resistance
[5, 22–24, 57].
We find that the CI gene signature score derived from

differentially expressed genes between normal NSCs and
glioblastoma grade IV CSCs stratifies gliomas according
to tumor grade with grade I/II tumors scoring the high-
est followed by grade III tumors, and grade IV glioblast-
oma tumors scoring the lowest. One criterion for
assessing tumor grade is the proportion of proliferating
tumor cells found upon histological examination with
low grade gliomas being more indolent and less prolifer-
ative than high grade gliomas [44, 58]. Our data suggests
that the up-regulation of genes that negatively regulate
proliferation, including genes that inhibit several major
signaling networks controlling cell growth, in the CI
gene signature may provide an explanation for the cor-
relation with tumor grade. In addition, patients with low
grade gliomas have a significant increase in median sur-
vival time compared to patients diagnosed with high
grade gliomas that is in part attributed to the levels of
mitotic activity present in tumors [44, 58]. Accordingly,
we also show that the CI gene signature is prognostic
for patient survival with patients in the high CI gene sig-
nature score group (CI-Hi) having either grade III or IV
tumors and increased survival times compared to pa-
tients in the low CI gene signature score group (CI-Lo)
having predominantly grade IV tumors and decreased
survival times. Overall, the CI gene signature is prognos-
tic for tumor grade and patient survival.
Importantly, the stratification of tumor grade and pa-

tient survival by CI gene signature score has clinical im-
plications that could facilitate patient diagnosis and
treatment. In clinical practice, tumor grade is assessed
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morphologically and determined based upon levels of
nuclear atypia, mitotic activity, microvascular prolifera-
tion, and necrosis; therefore, diagnosis is conditional on
observer subjectivity [44]. To reduce observer subjectiv-
ity and standardize brain tumor classification, the WHO
recently set new guidelines for diagnosis that include
both molecular testing and histological examination
[56]. Therefore, we would propose that the CI gene sig-
nature score be used in conjunction with histological
examination as a diagnostic tool to determine tumor
grade. Importantly, using the CI gene signature score as
a diagnostic tool does not require isolating specific pri-
mary tumor cell populations (e.g. CSCs) given that the
CI gene signature score is prognostic for tumor grade
using data sets that performed bulk tumor cell gene ex-
pression profiling. In addition, a custom gene signature
expression panel of the 269 copy number independent
genes could be used to focus bioinformatics analysis ef-
forts. Notably, any gene expression profiling approach
reduces inter-observer subjectivity and variability to fa-
cilitate clinical diagnosis.
In addition to using the CI gene signature to assess

tumor grade, we propose that patients could be stratified
into CI-Hi and CI-Lo groups to inform clinical manage-
ment of the disease. Patients in the CI-Lo group would
potentially require more aggressive treatment plans as
this group has a shorter survival time while patients in
the CI-Hi group with longer survival times could poten-
tially follow less intensive treatment regimens to
minimize complications and adverse side effects. The
use of the CI gene signature to inform treatment options
will require additional studies to validate this approach.
Ultimately, however, both patients in the CI-Hi and
CI-Lo groups succumb to the disease illustrating the
critical need for new therapeutic strategies to treat gli-
omas. Our differential gene expression analysis of NSCs
and CSCs provides a list of potential candidates to se-
lectively target CSCs over NSCs.

Conclusions
In conclusion, we show that CIN is an extensive
source of both genetic and transcriptional intra-tumor
heterogeneity in chromosomally unstable cells as most
gene expression scales proportionally to chromosome
copy number. However, we also identify a subset of
genes whose expression levels are regulated independ-
ent of copy number delineating a mechanism that
buffers gene expression levels against the continual
variability arising from a CIN phenotype. Moreover,
from the genes whose expression levels are buffered
against copy number alterations, we define a gene sig-
nature that predicts glioma tumor grade and patient
survival which could help to inform clinical diagnosis
and disease management.

Methods
Acquisition of single-cell RNA sequencing libraries
The CB660 NSCs and GliNS2 CSCs were washed and
filtered with 20 μm strainer before loading into C1IFC.
Live/DEAD solutions and single cell suspension were
loaded following the C1 mRNA seq protocol. Each cap-
ture was examined under the microscope for viability
and doublets. The cell lysing, RT and cDNA amplifica-
tion were performed on C1 Single Cell Auto Prep sys-
tem (Fluidigm). The cDNA was harvested only from the
viable, single cells and Illumina sequencing library was
constructed with Nextera XT DNA sample prep kit
(Illumina).

Pre-processing of single-cell RNA sequencing data
Beginning with 192 cells, cells with barcodes labeled as
duplicates or no cell were filtered out, resulting in 155
cells. Of those 155 cells, cells with a low library size (li-
brary size < median library size – 3*median absolute de-
viation (MAD) of the library size distribution) or with a
high fraction of mitochondrial genome (fraction of mito-
chondria genome > median fraction of mitochondria
genome + 3*MAD of mitochondria genome distribution)
were filtered out, resulting in 134 cells. Raw counts from
the remaining cells were normalized using the normalize
function from the “simpleSingleCell” R package [28].
The cell cycle phase of each single cell was computa-

tionally determined using previously published methods
for identifying transcriptional cell cycle signatures [27,
28]. More specifically, cell cycle genes were constructed
by identifying pairs of genes where the difference be-
tween gene expression within each pair correlated with
the cell cycle phase. The cell cycle was then assigned by
examining the difference of the gene pairs for each cell
in our data. To do this, we used cyclone function from
the “scran” R package for cell cycle inference [27].

Chromosome copy number estimation
To analyze copy number variation, we used a method simi-
lar to the one reported by Patel et al. [29]. This method de-
termines copy number using the average relative expression
level of a sliding window of genomically-adjacent genes. To
achieve an accurate estimation of the copy number vari-
ation, we first filtered out low abundance genes, defined as
genes whose average expression is in the bottom 70th per-
centile, which may confound estimation analysis. Moreover,
cells with a normalized library size < 26,000 counts (library
size < median library size – 2*median absolute deviation
(MAD) of the library size distribution) or a high fraction of
zero counts (fraction of zero counts< 25%) in the remaining
genes were filtered out. In total, 121 cells expressing 6350
genes were used for the analysis.
To create a reference normal profile, we took the geo-

metric mean of each gene across all CB660 NSCs. We
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then calculated the relative gene expression of each sin-
gle GliNS2 CSCs or CB660 NSCs as the log2 gene
fold-change compared to the reference profile. Median
normalization was used to normalize the relative gene
expression profiles of each 121 cells. We then arranged
each gene by their chromosomal coordinates and calcu-
lated the estimated copy number (ECN) of each gene i
in cell k was calculated using the following formula [29]:

ECNk ið Þ ¼
Piþ50

j¼i−50Xk jð Þ
101

where ECNk(i) refers to the estimated copy number of
cell k at gene i and Xk(j) refers to the relative gene ex-
pression of that gene in cell k. To minimize noisy copy
number estimates, we forced all values where |ECNk(i)| <
log2(0.5) to be zero.
To quantify the chromosome instability, we used the

following formula:

Chromosome instabilityk ¼
Pn

i¼1 ECNk ið Þj j
n

where Chromosome instabilityk refers to the chromo-
some instability of cell k, ECNk(i) refers to the estimated
copy number of cell k at gene i and n refers to the total
number of genes that were used for copy number
estimation.

Copy number independent signature and score
calculation
We defined the copy number independent (CI) gene
signature by comparing the differential expression of
genes between GliNS2 CSCs and CB660 NSCs while
adjusting for their estimated chromosome copy num-
ber. We imputed the copy number of genes lacking
ECN values using the average of nearest genes’ esti-
mated copy number. For each gene, we then con-
structed a logistic regression model using cell labels
as the response variable (Y = 1 for GliNS2 cells, and
Y = 0 for CB660 cells).

In
Y

1−Y

� �

¼ β0 þ β1 � exp þ β2 � CNV

The predictor variables include expression level of the
gene under consideration (exp) and that gene’s copy
number. We used models to compare the copy number
adjusted differential expression activity between GliNS2
CSCs and CB660 NSCs, and then estimated the coeffi-
cients (β-values) and the statistical significance (p-value)
for all genes with corresponding Bonferroni-corrected
statistical significance. We then used the β-values to sep-
arate the genes into up- and down-regulated gene sets,
which were annotated as a pair of weight profiles, w+

and w− for up and down respectively. For each weight

profile, we forced genes exhibiting a significantly differ-
ential up- or down-regulated expression to equal 1 and
forced insignificant genes to be 0. The resulting weight
profiles define the magnitude by which each gene is dif-
ferentially expressed in GliNS2 CSCs after adjusting for
copy number. For example, if a gene i is more signifi-
cantly up-regulated in GliNS2 CSCs versus CB660
NSCs, it will have a wþ

i of one and w−
i of zero. For

down-regulated genes, the reverse will be true, with
these genes having a w−

i of 1 and a wþ
i of 0. To generate

the CI score, we then integrated the sample-specific ex-
pression profiles of the glioma patients with the weight
profiles, as previously described [59, 60]. We annotated
the function of the CI signature using gene ontology
(GO) enrichment analysis from the GO database.

Public dataset collection
We used RNA-seq and copy number variation (CNV) data
for breast invasive carcinoma (BRCA) and glioblastoma
multiforme (GBM) samples generated by The Cancer Gen-
ome Atlas (TCGA) to validate the CNV estimation method.
We downloaded Level 3 TCGA BRCA and GBM RNA-seq
and CNV data from FireBrowse (gdac.broadinstitute.org/).
The processed BRCA datasets consisted of gene expression
profiles for a total of 1100 tumor samples and 112 normal
samples and provided the RSEM-normalized expression
and CNV for 20,502 genes. The processed GBM datasets
consisted of gene expression profiles for a total of 161
tumor samples and 5 normal samples, and provided the
RSEM-normalized expression and CNV for 20,502 genes.
Also, we used microarray data for GBM samples generated
by TCGA to examine the association between CI score and
molecular subtypes, and these processed datasets consisted
of gene expression profiles for a total of 539 samples and
provided the lowess-normalized expression for 12,042
genes.
We used five additional microarray gene expression

datasets to perform a series of analyses, including associ-
ation analysis of the clinical factors and prediction of pa-
tient survival. Four datasets are available from the Gene
Expression Omnibus (GEO) database under accession
numbers GSE4271, GSE4412, GSE16011 and GSE1993.
Sample sizes of these datasets are 77, 85, 263 and 65, re-
spectively [42, 43, 46–48]. We also downloaded a dataset
from a published paper by Nutt et al. [45] with a sample
size of 50 (Additional file 8: Table S6).

Statistical analysis
The R function heatmap.2 was used to perform hier-
archical clustering analyses. Principal component ana-
lysis was performed using the R function prcomp. To
annotate the function of the CI signature, we performed
the gene ontology (GO) enrichment analysis using the
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GO database. All analyses were performed under R ver-
sion 3.4.3.
Survival regression was performed using Cox pro-

portional hazard models to investigate the association
between patient-specific CI score and patient overall
survival. To perform two-class comparisons, samples
were stratified using the median CI score. We then
fitted a univariate Cox regression model to determine
the association between the dichotomized CI score
and patient survival. Log-rank tests were used to
compare survival distributions between two groups.
All survival analyses were performed using the R

“survival” package (3.4.3). Specifically, the “coxph”
function was used to construct Cox proportional haz-
ard models. The “survfit” function was used to gener-
ate a Kaplan-Meier survival curve for each group.
The “survdiff” function was used to perform the
log-rank test comparing the difference between sur-
vival curves.

Additional files

Additional file 1: Single-cell RNA sequencing data normalization and
filtering steps. a, Flowchart depicting data pre-processing steps. b, Graph
showing the distribution of library sizes for all single cells. The red line
indicates the cut-off used for filtering cells with low library size. c, Graph
showing the distribution of the number of expressed genes in all single
cells. The red line indicates the cut-off used for filtering cells with low
numbers of expressed genes. d, Graph showing the distribution of
mitochondrial genome in all single cells. The red line indicates the cut-off
used for filtering cells with a high fraction of mitochondrial genome. e, Bar
graphs showing the total counts distribution before and after normalization
using four cells as examples. The green color indicates GliNS2 CSCs and the
blue color indicates CB660 NSCs. Bar, median; box 25th to 75th percentile;
whiskers, minimum and maximum. (TIF 9424 kb)

Additional file 2: Validation of estimated copy number in TCGA GBM
dataset. a, Heatmap of estimated copy number (ECN) of all chromosomes
(columns) in GBM cancer tissue and adjacent normal tissue (rows). On
the scale, ECN = 0 indicates diploid gene expression levels. b,
Quantification of chromosomal instability in tumor tissue and adjacent
normal tissue. Bar, median; box 25th to 75th percentile; whiskers,
minimum and maximum. P = 2E-4, Mann-Whitney U test comparing
tumor and normal tissue. c, Correlation between ECN and SNP-array mea-
sured copy number using patient sample TCGA-12-0619-01A. Spearman
correlation coefficient = 0.71. d, The distribution of the correlation coeffi-
cient across samples in the glioma dataset. The dashed line indicates the
median correlation. (TIF 5482 kb)

Additional file 3: Validation of estimated copy number in TCGA BRCA
dataset. a, Heatmap of estimated copy number (ECN) of all chromosomes
(columns) in breast cancer tissue and adjacent normal tissue (rows). On
the scale, ECN = 0 indicates diploid gene expression levels. b,
Quantification of chromosomal instability in tumor tissue and adjacent
normal tissue. Bar, median; box 25th to 75th percentile; whiskers,
minimum and maximum. P < 2E-16, Mann-Whitney U test comparing
tumor and normal tissue. c, Correlation between ECN and SNP-array mea-
sured copy number using patient sample TCGA-BH-A0DS-01A. Spearman
correlation coefficient = 0.77. d, The distribution of the correlation coeffi-
cient across samples in BRCA dataset. The dashed line indicates the me-
dian correlation. (TIF 5896 kb)

Additional file 4: Estimated chromosome copy number analysis in
GliNS2 CSCs and CB660 NSCs. a, The distribution of average normalized
expression across cells (left) and the distribution of the total normalized

counts of the 6350 genes across cells (right). The red line indicates the
threshold used to filter out the unqualified genes or cells for estimated
chromosome copy number analysis. b, Heatmap of shuffled ECN for all
chromosomes (columns) in single CB660 NSCs and GliNS2 CSCs (rows).
On the scale, ECN = 0 indicates diploid gene expression levels. The
column adjacent to the heatmap shows the cell cycle phase of each cell
as determined in Fig. 1b with the color of the bar corresponding to the
predicted cell cycle phase. c, Quantification of chromosomal instability for
shuffled ECN analysis in CB660 NSCs and GliNS2 CSCs. Bar, median;
box 25th to 75th percentile; whiskers, minimum and maximum. P > 0.05;
Mann-Whitney U test comparing CB660 NSCs and GliNS2 CSCs. d, Heat-
map of ECN for all chromosomes (columns) in single GliNS2 CSCs (rows)
using average gene expression in GliNS2 CSCs as the reference. On the
scale, ECN = 0 indicates diploid gene expression levels. The column adja-
cent to the heatmap shows the cell cycle phase of each cell as deter-
mined in Fig. 1b with the color of the bar corresponding to the
predicted cell cycle phase. (TIF 13786 kb)

Additional file 5: Validation of adjusting gene expression by ECN. a, The
distribution of correlation coefficients between adjusted gene expression
using SNP-array measured CNV and RNA-seq inferred CNV for TCGA GBM
tumor samples (n = 17,949 genes). The median correlation is 0.92. b, Scat-
ter plot showing the mean log2 fold change in expression for each differ-
entially expressed gene before and after copy number adjustment. Red
points indicate genes that remain significantly differentially expressed
after copy number adjustment while blue points indicate genes that are
not significantly differentially expressed after copy number adjustment.
Spearman correlation coefficient = 0.93. (TIF 7342 kb)

Additional file 6: Gene enrichment analysis, growth rate of GliNS2 CSCs,
and CI gene signature score. a, Gene ontology analysis of copy number
adjusted genes with increased expression in GliNS2 CSCs compared to
CB660 NSCs. Dashed line indicates an enrichment ratio = 1. b, Gene
ontology analysis of copy number adjusted genes with decreased
expression in GliNS2 CSCs compared to CB660 NSCs. Dashed line
indicates an enrichment ratio = 1. c, The growth of GliNS2 CSCs was
monitored every other day for 13 days total with an alamarBlue® assay.
GliNS2 CSC population doubling time was calculated during the
exponential phase of growth from Days 3–9. Three independent
replicates were performed and error bars represent ±SD. d, Graph
showing the copy number independent (CI) gene signature score for
glioma samples in data set GSE16011 stratified by histological grade.
Grade I/II = pilocytic astrocytoma (n = 8), astrocytoma (n = 13),
oligodendroglial (n = 8) and mixed oligoastrocytic (n = 3), Grade III =
astrocytoma (n = 16), oligodendroglial (n = 44) and mixed oligoastrocytic
(n = 25), and Grade IV = glioblastoma (n = 159). Bar, median; box 25th to
75th percentile; whiskers, minimum and maximum. P = 7E-11, ANOVA
analysis. e, Bar graph showing the proportions of grade III or grade IV
tumors in the CI-Lo and CI-Hi groups for GSE4412. The exact percent of
Grade III tumors in each group is indicated on top of the bars. P = 3E-4,
Chi-square test comparing distribution between CI-Lo and CI-Hi groups.
(TIF 17547 kb)

Additional file 7: CI gene signature is a novel gene signature in
glioblastoma. a, Bar graph showing the average CI gene signature score
across glioma CSCs (ALPS 1459), glioma non-CSCs (U87MG), and normal
human astrocytes. The error bar is one standard deviation plus the CI
score. P = 2E-3, ANOVA analysis. b, Bar graph showing the CI gene signa-
ture score across the four glioblastoma molecular subtypes classified in
Verhaak et al. [41] using TCGA glioblastoma data. Pro = proneural, Neu =
neural, Clas = classical, and Mese =mesenchymal. Bar, median; box 25th
to 75th percentile; whiskers, minimum and maximum. P < 2E-16, ANOVA
analysis. c, Heatmap showing the relative gene expression of the CI genes
that do not overlap with the gene signature identified by Verhaak et al.
[41] using TCGA glioblastoma data. (TIF 5435 kb)

Additional file 8: Table S1. Differentially expressed genes unadjusted
for copy number. The column names refer to the T.score, T.test p value,
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Mann-Whitney U test p value, the log2 gene expression fold change and
the average gene expression between GliNS2 and CB660 cells. Table S2.
Copy number dependent differentially expressed genes. The column
names that are labeled in green refer to the CNV unadjusted T.score,
T.test p value, Mann-Whitney U test p value and the Bonferroni adjusted
p value. The column names that are labeled in red refer to the CNV
adjusted coefficient in the model, p value and adjusted p value. The col-
umn names that are labeled in blue refer to the pearson correlation coef-
ficient between original gene expression and its estimated copy number,
spearman correlation coefficient between original gene expression and
its estimated copy number and the chromosome position of the genes.
Table S3. Copy number independent differentially expressed genes. The
column names that are labeled in green refer to the CNV unadjusted
T.score, T.test p value, Mann-Whitney U test p value and the Bonferroni
adjusted p value. The column names that are labeled in red refer to the
CNV adjusted coefficient in the model, p value and adjusted p value. The
column names that are labeled in blue refer to the pearson correlation
coefficient between original gene expression and its estimated copy
number, spearman correlation coefficient between original gene expres-
sion and its estimated copy number and the chromosome position of
the genes. Table S4. Copy number adjusted differentially expressed
genes enrichment. Gene ontology enrichment analysis of the CI genes.
The column names refer to the gene ontology (GO) term, the number of
genes in the GO term, the number of overlapped genes between CI
genes and the GO term, the enrichment ratio of the GO term, the statis-
tical significance of the enrichment (p value) and the statistical signifi-
cance of the enrichment after multiple testing correction (p.adjust). Table
S5. Genes enriched in negative regulation of cell cycle. The column
names refer to the coefficient of the gene in the copy number adjusted
model, the p value of each gene after copy number adjustment, the log2
gene fold change between GliNS2 and CB660 cells, the average gene ex-
pression between GliNS2 and CB660 cells, the Pearson and Spearman
correlation between original gene expression and copy number variation,
the position of each gene on the chromosome, the GO term ID and GO
term name. Table S6. Dataset summary. Sample sizes for the five add-
itional microarray gene expression datasets used to perform association
analysis of clinical factors and prediction of patient survival. (XLSX 434 kb)
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