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Abstract

Background: Synthetic lethal interactions (SLIs) that occur between gene pairs are exploited for cancer therapeutics.
Studies in the model eukaryote yeast have identified ~ 550,000 negative genetic interactions that have been
extensively studied, leading to characterization of novel pathways and gene functions. This resource can be used to
predict SLIs that can be relevant to cancer therapeutics.

Methods: We used patient data to identify genes that are down-regulated in breast cancer. InParanoid orthology
mapping was performed to identify yeast orthologs of the down-regulated genes and predict their corresponding SLIs
in humans. The predicted network graphs were drawn with Cytoscape. CancerRXgene database was used to predict
drug response.

Results: Harnessing the vast available knowledge of yeast genetics, we generated a Humanized Yeast Genetic
Interaction Network (HYGIN) for 1009 human genes with 10,419 interactions. Through the addition of patient-data from
The Cancer Genome Atlas (TCGA), we generated a breast cancer specific subnetwork. Specifically, by comparing 1009
genes in HYGIN to genes that were down-regulated in breast cancer, we identified 15 breast cancer genes with 130
potential SLIs. Interestingly, 32 of the 130 predicted SLIs occurred with FBXW7, a well-known tumor suppressor that
functions as a substrate-recognition protein within a SKP/CUL1/F-Box ubiquitin ligase complex for proteasome
degradation. Efforts to validate these SLIs using chemical genetic data predicted that patients with loss of FBXW7 may
respond to treatment with drugs like Selumitinib or Cabozantinib.

Conclusions: This study provides a patient-data driven interpretation of yeast SLI data. HYGIN represents a novel
strategy to uncover therapeutically relevant cancer drug targets and the yeast SLI data offers a major opportunity to
mine these interactions.
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Background
Genetically, cancer is a complex disease with no two pa-
tients exhibiting the same tumor genetic profiles. Recent
advances in tumor sequencing and identification of key
driver genes has allowed the development of more

targeted treatment strategies by leveraging individual
patient genetics [1]. However, the druggability of these
targets becomes challenging if these genes are not
expressed or are down-regulated in cancers.
Synthetic lethality takes advantage of functional gen-

etic interactions between gene pairs to develop targeted
therapies and are beginning to be appreciated as a
method of choice [2–4]. Inhibiting the synthetic lethal
(SL) partner with a therapeutic drug selectively elimi-
nates cancer cells leaving normal cells unaffected.
Through the exploitation of these interactions, we can
maximize the efficiency of personalized treatment and,
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ultimately, minimize the side effects that a patient expe-
riences as a result of the therapeutic drug. Although the
advent of genome-wide shRNA and CRISPR screens
have provided the specificity needed to perform the
comprehensive epistasis mapping on any number of
chosen gene pairs [5–7], experimentally testing all pos-
sible gene pairs across multiple cell types to identify SL
interactions (SLIs) is laborious and time-consuming. As
early as 1997 Hartwell et al. hypothesized the existence
of conserved SLIs identified initially in yeast that could
be used for therapeutic intervention in human cancers
[8]. Subsequently, yeast genetic interaction data has been
used to identify SLIs in humans [9–11]. These yeast-
directed approaches have helped us to uncover several
interactions in human cells [9–11]. For example, McMa-
nus et al. generated the first humanized SLIs of
RAD54B-deficient human colorectal cancer cells by spe-
cifically translating the corresponding yeast interactions
to human cancer cells [11]. Thus, rather than translating
all the yeast interactions to human, contextualizing these
interactions provided valuable insights.
Here we describe a patient-data driven approach

where conserved SLIs of genes whose expression is lost
in tumors alone are examined. Harnessing the vast avail-
able knowledge of yeast genetics and using yeast-human
ortholog mapping, we generate a Humanized Yeast Gen-
etic Interaction Network (HYGIN) that has the potential
to identify novel cancer-specific SLIs and ultimately
novel treatment strategies. This network is then inte-
grated with patient data from The Cancer Genome Atlas
(TCGA) (https://www.cancer.gov/tcga/) to identify genes
that are down-regulated in breast cancer and provide a
breast cancer-focused version of HYGIN. From this
work, we predict novel SLIs that can be exploited for
patient-specific cancer therapeutics. Some of these in-
volve FBXW7, a well-known tumor suppressor.

Methods
Generating the humanized genetic interaction network
In order to generate HYGIN, experimentally validated
yeast interactions from the May 2016 release of The Cell
Map [12] were used. The yeast network contains quanti-
tative genetic interactions for all gene pairs in S. cerevi-
siae and is the result of double mutant arrays conducted
in yeast that represent all of the SL interactions in the
yeast genome. The yeast interaction data contains ~ 550,
000 negative genetic interactions (SL interactions)
between ~ 90% of the genes in the yeast genome [12]. In
order to generate a humanized network, the yeast net-
work was translated in three stages: yeast gene name to
yeast protein, yeast protein to human orthologous
protein, and finally human protein to human gene name.
The UniProt database [13] was used for the first two
stages and InParanoid Version 8.0 [14], an online tool

for identifying orthologs between two species, was used
to identify the human orthologs to the yeast proteins in
stage three. Strict one-to-one mapping with InParanoid
was used for the network to prevent ambiguities in the
translation process (Additional file 2: Table S1). The
humanized gene interaction network and subnetworks
were generated through a combination of bash (UNIX
shell) and Python scripts, and imported into Cytoscape
[15] for visualization and analysis. The resulting network
has 1009 nodes (human genes) and 10,419 edges
(proposed SL interactions between human genes). A
summary of this process can be found in Fig. 2b.

TCGA expression analysis
Gene expression data was downloaded from the
TCGA database (https://www.cancer.gov/tcga/). Gene
expression data for cancerous and breast normal tissue
in the same patient was available for 114 patients: level-
3 HiSeq RSEM gene-normalized RNA-seq data was
obtained for 1104 cancerous and 114 normal samples
for 20,530 genes. However, some genes had zero values
for one or more patients as a result of either there being
no transcripts, or transcripts missing for a particular
gene. To avoid introducing uncertainty into the statis-
tical analysis, only genes that had non-zero values for all
114 patients in both the cancerous tissue and the normal
tissue were included. The data for these 13,983 genes
was analyzed using the Shapiro-Wilk test for normality.
It was found that data for 73% of the genes in the
cancerous dataset, and 45% of the genes in the normal
dataset had a normal distribution. As a result, the non-
parametric Wilcoxon Signed Rank test was used on the
paired data to determine if the median between the
cancer sample and the normal sample was statistically
different (P < 0.05). Since greater numbers of statistical
inferences made from a dataset increases the chances of
an error in any of those inferences, it was imperative to
account for multiple hypotheses. The Benjamini-
Hochberg procedure for multiple hypotheses compari-
son was used to adjust P-values. To determine the fold
change of gene expression between the cancerous and
normal tissue, the ratio of gene expression was then
calculated (cancer/non-cancer) and the log-base-2 of the
ratio was used as the fold change in gene expression in
breast cancer. Significant genes were identified using
a 2-fold cut off and statistically significant P-values
(P-value after adjustment < 0.05).

Generating the breast cancer specific sub-network
The breast cancer down-regulation sub-network was
generated by extracting the genes that were down-
regulated in breast cancer and all of their SL interactions
from HYGIN. The result was a sub-network containing
the potential 130 SL interactions that were specific to
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breast cancer between 130 genes in total, including the
15 genes that were down-regulated in breast cancer.

Verifying overlap with previous work
In order to compare the overlap between HYGIN and
the previous work from Deshpande et al. [9], the latter’s
network was filtered to remove any genes that had many-
to-one, many-to-many, or one-to-many mappings, leaving
only those with one-to-one mappings. As a result, the 10,
419 interactions in HYGIN were compared to 7614 inter-
actions in the Deshpande et al. network. Network
comparison was completed using NetworkX in Python.

Verifying one-to-one ortholog mapping of FBXW7
To confirm that there were no additional yeast-human
orthologs of FBXW7, the InParanoid database was
searched twice: the human genome was searched for the
protein MET30 (the yeast protein that is orthologous to
FBXW7 in humans) and CDC4 (a synonym for FBXW7
in humans).

Gene expression in other cancers
The 15 genes that were identified to be down-regulated
in breast cancer were also analyzed in the 24 types of
cancer in the TCGA database. Gene expression for
cancer tissue was compared to gene expression for
normal tissue within each of the cancer types. Only the
types of cancer where more than 7 of the 15 genes were
identified to have lower expression in cancer than in
normal tissue were included in the results.

Drug data analysis
We performed a drug sensitivity assay using the data
from the cancerRXgene database which contains drug
response data for many cell lines [16]. The cell lines in
the database were divided into two groups: those that
have high expression of FBXW7 and those with low.
Briefly, FBXW7 expression for each cell line was used to
classify all the cell lines into two groups, high and low
FBXW7 expression, using the average FBXW7 expres-
sion across all cell lines as a cut-off. Resulting drug
response doses (IC50 values) were compared between
the two groups. The IC50 values for each group were
used to generate a P-value (Mann-Whitney U test). The
survival percentage data from the cancerRXgene data-
base for each drug at different concentrations was the
basis for the dose-response curves.

Results
Construction of humanized yeast genetic interaction
network (HYGIN) predicted 10,419 potential interactions
involving 1009 human genes
Previously, a yeast genetic interaction network, The Cell
Map, containing ~ 550,000 negative interactions has been

described [12]. Using this information and a strict one-to-
one ortholog mapping from yeast to human from InPara-
noid [14] (Additional file 2: Table S1), we generated a
refined Humanized Yeast Genetic Interaction Network
(HYGIN) (Fig. 1). HYGIN contains all of the yeast
orthologs of human genes and their predicted SLIs. Of the
~ 550,000 negative genetic interactions in yeast (Costanzo
et al.; http://thecellmap.org/costanzo2016/, updated May
2016) we evaluated only statistically significant interac-
tions with a P-value < 0.05 that were also strong negative
interactions where ε < − 0.2. Using InParanoid mapping
from yeast to human, the yeast network was reduced to
predictive negative interactions that exist between the
human orthologs of these yeast genes. The resultant
HYGIN contains 1009 human genes and 10,419 proposed
SLIs (Additional file 3: Table S2). Topology of this
network combined with our Gene Ontology slim terms
(Additional file 4: Table S3) shows dense clustering of
genes involved in DNA damage and repair pathways and
cell cycle regulators, or RNA processing and ribosome
biogenesis and translation components, suggesting we
have recovered meaningful humanized genetic interac-
tions as these are highly conserved processes across the
evolutionary trajectory (Additional file 1: Figure S1). Since
there are only 1266 yeast genes that map to exactly one
human ortholog, it is not surprising that the total number
of human genes in the humanized network is less than
that in the starting yeast network, as only a fraction of
these genes has unique human orthologs.
A similar approach to generate a list of potential human

SLIs based on a previous version of the yeast dataset has
been published by Deshpande et al. [9]. Although this pre-
vious work used the same cut-offs (P < 0.05 and ε < − 0.2),
they also used a relaxed cut-off (ε < − 0.08) for SLIs that
were identified in reciprocal screens. However, to maintain
stringency in our work, we used a consistent cut-off value
(ε < -0.2) irrespective of whether an interaction was identi-
fied in a reciprocal screen or not. This previous work was
compared to HYGIN to determine if there were more in-
teractions identified in our work. Compared to Deshpande
et al. who identified 1522 potential SLIs in humans, we
have identified 10,419 interactions; however, a total of 777
edges were in common between the two networks
(Additional file 1: Figure S2, Additional file 5: Table S4)
[9]. One of the reasons that HYGIN contains more SLIs is
that our study uses a more recent version of The Cell
Map database that includes interactions between essential
and nonessential yeast genes.

Identification of down-regulated genes in breast cancer
and building a breast cancer-specific SL interaction
network
To make HYGIN more applicable for human cancer
therapeutics, we focused on breast cancer and developed
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a breast cancer-specific subnetwork. Exploiting any yeast
SLI may not be beneficial if neither of the genes is al-
tered in cancers. As a result, in order to identify those
interactions in HYGIN that are relevant to breast cancer,
we used TCGA data (https://www.cancer.gov/tcga/) to
identify genes that are down-regulated in breast cancer.
Although there are gene expression data for over 1000
breast cancer patients available in TCGA, because genes
expression is a relative measurement, we chose to use
only those tumor samples that had matching normal
gene expression data. That is, we used data only from
patients where gene expression results were available for
both cancer and normal tissue. This stringent approach
was followed to eliminate those genes that are down-
regulated in cancer, but whose expression in normal
tissue is also low. For each patient, gene expression data
for cancerous and normal tissue was compared to gener-
ate a log-base-2 ratio of cancerous to normal gene

expression. From this, we identified 1745 genes that were
statistically down-regulated in breast cancer with at least a
2-fold change in expression cut off (P < 0.05) (Fig. 2a,
Additional file 6: Table S5). Of these 1745 genes that are
statistically down-regulated in breast cancer, 181 were
previously identified in the Tumor Suppressor Gene data-
base (TSG; https://bioinfo.uth.edu/TSGene/) as potential
tumor suppressors.
The resultant gene set was compared to the HYGIN

network, and it was found that 15 genes were both down-
regulated in breast cancer and present in the HYGIN
network. These 15 genes included some of the well-
established tumor suppressors like CAT [17] and FBXW7
[18]. Using a systematic effort (as depicted in the flow
diagram in Fig. 2b), we generated the breast cancer spe-
cific subnetwork. This subnetwork shows these 15 genes
and the 115 genes that they have SLIs with for a total of
130 genes (Fig. 2c, Additional file 7: Table S6). By targeting

Fig. 1 Network representation of HYGIN. Genes are grouped into clusters with an extra central node, which represents the category name (GO
slim term; see Additional file 4: Table S3). Edges connect categories (clusters) only
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the SL partners of the 15 genes that are already down-
regulated in breast cancer, novel targeted therapeutics can
be developed to provide treatment options for patients.
Furthermore, the breast cancer specific subnetwork

from this study was also compared to the 7614

interactions in the Deshpande et al. [9] network and 16
interactions were identified in both networks. As a result,
12% of the interactions in the breast cancer specific sub-
network from this study overlap with the previous work
published by Deshpande et al. It is interesting to note that

A

C

B

Fig. 2 Breast cancer sub-network of SL interactions. a Volcano plot of the average change of expression per gene expressed as log2 (cancer/normal)
plotted against the log10 of the adjusted Wilcoxon P-value. Dots in red represent genes that have an average 2-fold or more decrease in expression.
Back dots represent the 15 genes that are also in the HYGIN network. b Flow diagram showing the flow of data and methods used to generate the
breast cancer specific subnetwork. The final breast cancer network had 15 genes that are down-regulated in breast cancer and 115 genes that interact
with them. As a result, there are 130 genes (nodes) total in the breast cancer subnetwork. c Visualization of the breast cancer specific subnetwork
generated using 15 genes in HYGIN that were found to be down-regulated in breast cancer (yellow) and their corresponding SL gene pairs. Edges
represent proposed SL interactions between genes, and nodes (coloured based on GO slim terms) represent SL partners of the 15 genes
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6 of the interactions with FBXW7 that are in the breast
cancer specific subnetwork were also identified previously
in the Deshpande et al. network. The 6 interactions are
between FBXW7 and each of ADA, BIN3, PDCD6IP,
PEMT, PEX10, and USP14.

Synthetic lethal interactions of FBXW7 and its validation
Having identified FBXW7 as a candidate gene worth
exploring further, its yeast ortholog and expression in
other cancers was investigated. The yeast gene MET30
encodes an F-box protein containing five copies of the
WD40 motif and is known to control cell cycle function
as part of a E3 ubiquitin ligase complex [19]. According
to InParanoid, FBXW7 is the human ortholog of MET30
that shares similar roles in humans [14] (Additional file
1: Figure S3). In fact, FBXW7 is a well-known tumor
suppressor that functions as a substrate-recognition
protein within a SCF (SKP/CUL1/F-Box) E3 complex
ubiquitin ligase complex, which targets numerous proteins
for ubiquitin-mediated proteasomal degradation [20].
FBXW7 is down-regulated not only in breast cancer, but
also in 12 other cancers including colon, liver, lung, and
prostate cancers (Fig. 3a, Additional file 1: Figure S4).
However, FBXW7 is also up-regulated in 6 other cancers
including three types of kidney cancer, lung adenocar-
cinoma, and thyroid carcinoma (Fig. 3a, Additional
file 1: Figure S4). Overall, our analysis identified 32 SL
interactions FBXW7, many of which are proteasome
components such as PSMB3, PSMB4, PSMD2, PSMD7,
and USP14.
In order to validate the novelty associated with the

identified SLIs in breast cancer, below we focus on two
SLIs of FBXW7 and provide evidence from drug screen-
ing data with mechanistic insight from literature. Our
work predicted SLI between FBXW7 and a member of
the Pentose Phosphate Pathway (PPP), Ribulose-5-
Phosphate-3-Epimerase (RPE), which catalyzes the
reversible epimerization of D-ribulose 5-phosphate to D-
xylulose 5-phosphate. Interestingly, previous work has
shown that inhibition of the PPP results in decreased
proliferation of tumor cell lines [21–25]. In addition, it
has also been shown that the PPP is essential for meta-
bolic network modulation to support tumor angiogenesis
as inhibition of VEGFR-2 causes a decrease in PPP flux
[26]. Thus, if inhibition of VEGFR-2 may decrease PPP
flux, we hypothesized that inhibition of VEGFR should
mimic the SL interaction between FBXW7 and RPE. To
test this idea, we used drug response data from the
cancerRXgene database (https://www.cancerrxgene.org)
and asked if cell lines deficient in FBXW7 are sensitive
to the VEGFR-2 inhibitor Cabozantinib. The cancerRX-
gene database contains data for 265 drugs and multiple
cell lines and was examined to identify compounds that
are more effective when used selectively with cell lines

that have a low FBXW7 expression. We found that cell
lines with low expression of FBXW7 were more sensitive
to Cabozentanib (P-value = 0.033) (Fig. 3b, c), which
supports our hypothesis that inhibition of VEGFR
should mimic the SLI between FBXW7 and RPE. Unfor-
tunately, our classification of cell lines based on FBXW7
expression for only breast cancer cell lines did not yield
sufficient sample size.
Similarly, we also found a SLI between FBXW7 and

ADA, an adenosine deaminase that regulates cellular
levels of adenosine and deoxyadenosine. ADA, along
with a few other enzymes (for example HGPRT), are
responsible for purine metabolism and are well known
targets for cancer chemotherapy [27]. ADA can both de-
grade adenosine and bind extracellularly to adenosine
receptors to function as an allosteric modulator to
regulate adenosine. In fact, studies in a human astrocy-
toma cells have shown that manipulation of cellular
purine metabolite concentrations can make these cells
more sensitive to apoptosis [28]. While it remains to be
explored if the astrocytoma cell line is deficient in
FBXW7, these studies indicate a potential role for ADA
as a therapeutic target. Interestingly, previous studies
have shown that the expression of ADA is induced by
growth factors like IGF in a Ras-MAPK pathway
dependent manner [29]. To test this idea, we used drug
response data from cancerRXgene database and asked if
cell lines deficient in FBXW7 are sensitive to the MEK
inhibitor Selumitinib that affects the Ras-MAPK path-
way (Fig. 3d). Consistent with our SL prediction, we
found cells with low expression of FBXW7 to be more
sensitive to Selumitinib (P-value = 0.0061). Thus, our
predictive analyses indicate that FBXW7 can be used as
a biomarker to identify and treat patients with drugs like
Selumitinib that indirectly affect the expression of ADA.
Importantly, the availability of ADA inhibitors like
2’deoxycoformycin (Pentostatin) that are already in the
clinics as standard chemotherapeutic agents for lymph-
oid malignancies [30] may also represent a potential
option to test our prediction.

Discussion
In this work we describe a novel approach to identifying
potential SLIs in breast cancer that exploits yeast genetic
networks in conjunction with strict ortholog mapping
and patient gene expression data. Yeast is a common
model organism and generating a human orthologous
network from a yeast gene network provides a major
framework to extend yeast genetic interaction data to
humans. When generating HYGIN, strict one-to-one
yeast-human ortholog mapping was used to avoid ambi-
guity as there are several instances where a single yeast
protein map to multiple human orthologs, and vice versa.
HYGIN is cancer independent, as no assumptions about
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cancer type are made while generating the network. As a
result, any cancer gene expression data can be subse-
quently applied to generate cancer type specific

subnetworks of genetic interactions. We generated a
breast cancer specific subnetwork of HYGIN using breast
cancer patient data from TCGA.

A

B C D

A

B C D

Fig. 3 Analyses of SL interactions of FBXW7. a TCGA gene expression of FBXW7 in 24 cancer types and corresponding normal tissue as calculated
from RNA-seq data by expectation-maximization (log2). The averages of normal and tumor expression of FBXW7 for the same tissue type are
plotted beside each other and colour-coded based on cancer type. Numbers of patient samples are indicated in the x-axis labels. b Box plot
classifying multiple cell lines from the cancerRXgene database based on the expression of FBXW7; up-regulated (red) and down-regulated (blue).
c-d Drug kill curves for cell lines where FBXW7 is down-regulated in blue, and cell lines that have up-regulated FBXW7 in red. c Drug curves for
Cabozantinib, and (d) Selumetinib
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Most studies tend to evaluate additional data as a
means of reaching statistically significant results, or
more data as a means of completing an exhaustive
analysis [31, 32]. However, we used a more stringent
methodology and only analyzed TCGA patient data for
which there was gene expression data for both breast
cancer tissue and normal breast tissue. This not only
increases the confidence in actual gene up- and down-
regulation, but it also helps eliminate false positive
results that occur due to differences in basal gene
expression between individuals. By comparing up- and
down-regulation of genes between two like-tissue
samples from the same patient, changes in expression
are more reliable than pooling cancer samples and com-
paring them to pooled normal samples. Although this
strategy is very stringent, it is also one of the strengths
of our gene expression analysis.
The breast cancer specific interaction network pro-

duced 130 SL interactions between 15 genes down-
regulated in breast cancer and their 115 SL partners.
The 15 genes that were identified to be down-regulated
in breast cancer were also assessed in 24 other cancer
types. Of the 15 genes, 11 of them were statistically
down-regulated in more than 15 cancer types including
breast cancer (Additional file 1: Figures S5, S6, S7 and
S8). Of note, HAAO, MGLL, and UPGE were down-
regulated in 18 cancer types; ADHFE1, CAT, and MSRA
were down-regulated in 19; and RGN was down-
regulated in 21 different types of cancer. This informa-
tion suggests that SLIs identified in breast cancer for
these genes would be extremely valuable to explore in
other cancers as well. The subnetwork, and ultimately
this subset of SLIs, are an ideal starting point for in vitro
and in vivo validation studies and suggest novel targeted
therapeutic strategies. By extracting 15 genes that were
found to be down-regulated in humans and their SL
partners, we can target their SL partners with known or
novel drugs to develop new treatment strategies on a
patient-by-patient basis. Moreover, knowledge in cancer
genomics (and hence the literature) is not complete.
Hence it is quite possible for a legitimate interaction to
exist in HYGIN that is not (yet) documented in the
literature. To determine any of these as false positives is
difficult; it would require literature that explicitly rules
out the interactions from ever actually occurring.
Further, we note that the interactions reported by
HYGIN that are also not described in the literature are
one of the main contributions of HYGIN. Therefore, we
feel that HYGIN provides a promising list of potential
candidates for future work.
Overall, our analysis identified 32 SL interactions

FBXW7, many of which are proteasome components
such as PSMB3, PSMB4, PSMD2, PSMD7, and USP14.
Given that FBXW7 is a E3 ubiquitin ligase, these

interactions highlight the genetic property of SL rela-
tionships where functional coherence is often observed.
As cyclin E is a substrate of proteasome degradation, it
is interesting to note that the recently published SLI be-
tween FBXW7 and CCNE1 may reflect the interaction
between FBXW7 and proteasome components [33]. Our
stringent ortholog mapping is one-to-one and unfortu-
nately, cyclin E falls into the “more than one ortholog”
category in yeast and “more than one corresponding
ortholog” in humans, and as a result was not included in
HYGIN.
Similarly, our computational prediction suggested a

SLI between FBXW7 and USP14, a gene that codes for a
deubiquitinating enzyme. FBXW7 has been proposed in
the degradation of a number of substrates including
Aurora B [34, 35]. Although Aurora B kinase is primarily
degraded through the Anaphase-Promoting Complex/
Cyclosome (APC/c) [36], negative regulation of Aurora
B by FBXW7 plays an important role in Aurora B
ubiquitination and degradation [35]. USP14 is a major
regulator of the proteasome and one of three proteasome-
associated deubiquitinating enzymes, which also affects
protein turnover in a substrate-specific manner [37].
Interestingly, a recent study has reported that over-
expression of USP14 stabilized and prevented Aurora B
degradation through deubiquitination [38]. Furthermore,
a FBXW7-Aurora B-p53 negative feedback loop has also
been suggested [39]. This feedback loop suggests that a
loss of FBXW7 leads to an increase in Aurora B, which
phosphorylates p53 and leads to MDM2 enhanced
degradation of p53 and ultimately cancer cell growth [39].
While the loss of FBXW7 may already stabilize Aurora B
[34, 35], over-expression of USP14 may be necessary for
continued stability of Aurora B to maintain cell-cycle
progression and cell survival. Thus, consistent with our
observation, loss of USP14 when FBXW7 is down-
regulated may destabilize Aurora B, leading to a SL
phenotype. This meaningful interpretation of the SLIs
between FBXW7 and aurora kinases or proteasome com-
ponents reiterate the potential opportunity of exploiting
yeast genetics and the power of HYGIN to identify and
predict mechanistically relevant relationships between
gene pairs.
Although we have derived supporting data for these

SLIs from either drug response data from the cancerRX-
gene database (https://www.cancerrxgene.org) or from
previous publications, we acknowledge that our predic-
tions require further experimental validations in cell line
or animal models of breast cancer. Moreover, SLIs of
FBXW7 are potential targets for cancer therapeutics in
only some cancers as not all cancers have decreased
expression of FBXW7. For example, FBXW7 is also up-
regulated in 6 other cancers including three types of kid-
ney cancer, lung adenocarcinoma, and thyroid carcinoma

Kirzinger et al. BMC Medical Genomics          (2019) 12:112 Page 8 of 11

https://www.cancerrxgene.org


(Fig. 3a, Additional file 1: Figure S4). In these instances,
the SLIs we have identified will not work. While there
are several genes that are either up- or down-regulated
in multiple cancers, in the context of synthetic lethality,
only those patients with low expression of FBXW7 will
benefit from this therapy [40]. Therefore, it would not
be appropriate to use this strategy on all tumor types.
While targeting SLIs of FBXW7 may have a wide oppor-
tunity for clinical application, it must be used in con-
junction with genetic testing and patient gene
expression data. Another caveat in our study is that not
all classical breast cancer-related tumor suppressors have
yeast orthologs. And even if they do, if any of them be-
come an essential gene in yeast, then the current yeast
data does not capture this efficiently. Although
temperature-sensitive (ts) mutants are used for capturing
genetic interactions, distinct ts mutants capture distinct
genetic interactions. Thus, as it stands, for the 1745 genes
that are down-regulated in breast cancer, even though 181
were previously identified in the Tumor Suppressor Gene
database (TSG; https://bioinfo.uth.edu/TSGene/), only 15
of these had yeast orthologs that had interactions in
HYGIN. Thus, as powerful as it is, the evolutionary
distance between yeast and human has its limitations.
Of note, FBXW7 and PEMT are both down-regulated

in breast cancer and they share a proposed SLI in
HYGIN. The gene expression ratios for all 114 patients
for both FBXW7 and PEMT were evaluated to further
investigate this finding. Results showed that 20% of pa-
tients have gene expression ratios less than 2-fold for
both FBXW7 and PEMT, and one patient had gene ex-
pression less than 4-fold for both genes. There are two
possibilities that could lead to this result. First, it is pos-
sible that at some point in evolutionary time this SLI
was valid. However, the cancer cells overcame the SL
dependency of these two genes in humans, and what we
expect to manifest as cell death results in cell survival.
Second, it is possible that this result is a false positive.
Previous work has shown that there is only 23% overlap
in SLIs between two species of yeast (S. cereviseae and S.
pombe) [41]. This means that although 65% of genes
between these two species retain essential function, SL
relationships are lost over evolutionary time. Thus, we
are expecting to see a loss of some SLIs in our
network as a result of a larger species gap between
Homo sapiens and S. cerevisiae. Ultimately, this result
highlights the need for careful biological testing of these
SLIs. Though the network is based on valid research
methods, cell lines and animal models behave differently
than predicted results. Therefore, the breast cancer
specific network contains interactions that are valuable
starting points for SL research moving forward and pro-
vides a valuable source of SLIs for the scientific commu-
nity to explore in vitro.

Conclusion
Overall, this study provides a patient-data driven inter-
pretation of yeast SLIs. We believe further extrapolation
of the cancer-independent HYGIN network represents a
novel strategy to derive therapeutically relevant cancer
drug targets. Specifically, we present evidence for the
identification of breast cancer-specific SLIs for the
tumor suppressor FBXW7.

Additional files

Additional file 1: Figure S1. Twenty-two GO Slim terms and the inter-
actions between them are represented in this table. The interactions were
translated from yeast. Cells are colour-coded according to the number of
interactions between two groups of GO terms, where the dark red cells
represent more interactions and white cells represent fewer interactions.
Figure S2. Schematic showing overlap between this work and the work
of Deshpande et al. [9]. The interactions in the two networks generated
in this work (HYGIN and the breast cancer specific subnetwork) are
compared to the “Complete Set” from the Deshpande et al. research.
Figure S3. FBXW7 Orthologs. Two searches of the InParanoid database
were conducted to verify that FBXW7 has a strict one-to-one mapping.
A) The human genome was searched for the protein MET30 (the yeast
protein that is orthologous to FBXW7 in humans). As expected, a single
ortholog mapping was identified between Saccharomyces cerevisiae and
Homo sapiens. B) The protein CDC4, a synonym for FBXW7, in humans
was subsequently searched for in humans. Finding no ortholog in hu-
man, InParanoid reported “hits” in other organisms. Results showed that
there is no entry for CDC4 in humans, which means that there is no add-
itional FBXW7 ortholog in Saccharomyces cerevisiae. Figure S4. P-values
for gene up- and down-regulation of the 15 genes found to be down-
regulated in breast cancer. The 15 genes that are the basis for the breast
cancer subnetwork were analyzed across 24 different cancer types. The
19 cancer types where the majority of the 15 genes are down-regulated
are depicted here. Significant values in blue denote statistically significant
lower expression in pooled cancer tissue when compared to pooled nor-
mal tissue, values in red denote statistically higher expression in cancer,
and NS values denote a non-significant change in gene expression be-
tween cancer and normal tissues. All P-values were calculated using the
Mann-Whitney U test. Figure S5. Gene expression calculated by RNA-seq
by expectation-maximization (log2) for ABCG2, ABHD6, ADHFE1, and AIFM2
for 24 different cancer types. Box plots are colour-coded in pairs based
on cancer type where the boxplot on the left is gene expression in can-
cer and the plot on the right is gene expression in normal tissue. Labels
on the x-axis represent the abbreviation of the cancer type, whether the
sample represents tumor (T) or normal (N) tissue, and the sample size.
Figure S6. Same as description as in Additional file 1: Figure S5, except
for AMT, CAT, HAAO, and LARP6. Figure S7. Same as description as in
Additional file 1: Figure S5, except for LDHD, MGLL, MSRA, and PEMT.
Figure S8. Same as description as in Additional file 1: Figure S5, except
for RGN and UPG2. (PDF 5032 kb)

Additional file 2: Table S1. Strict one-to-one ortholog mapping for
yeast genes in humans. Ortholog mapping information was taken from
InParanoid and filtered to identify instances where one yeast protein
mapped to one human protein. The resulting 1,266 pairs of orthologs
can be found in this table. (XLS 134 kb)

Additional file 3: Table S2. HYGIN network table. This table contains
the initial mapping data from the yeast network where SL interactions
are represented in pairs by A and B (Yeast Gene ID A, Yeast Gene ID B,
Yeast Gene Name A, Yeast Gene Name B, E-value, and P-value). Through
the 3-stage mapping process used to generate HYGIN, it also contains
columns corresponding to Yeast Protein Accession (A and B), Human Pro-
tein Accession (A and B), and Human Gene Name (A and B). Human gene
names were used to generate the network in Cytoscape. Due to some
reciprocal screens in the initial yeast screen, there were some duplicate
(reciprocal) entries in this table. Once the network was loaded into
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Cytoscape, “Remove duplicate edges” was used to eliminate reciprocal
hits. This resulted in the 1,009 genes and 10,419 edges in the final HYGIN
network. (XLS 2700 kb)

Additional file 4: Table S3. GO Slim mapping table. Twenty-two GO
Slims used for colouring the HYGIN network in Cytoscape, courtesy of
the Vizeacoumar research group. The common name for the human
protein and its accession number accompany the GO Slim terms that
have been curated by the Vizeacoumar research group. *DDR Pathways
= “DNA Damage and Repair Pathways” and NA Metabolism = “Nucleic
Acid Metabolism”. (XLS 141 kb)

Additional file 5: Table S4. Synthetic lethal interactions in common
with previous work. List of the 777 SL interactions that are in common
between HYGIN and the network published by Deshpance et al. [9].
GeneA and GeneB have an SL interaction according to both networks.
(XLS 100 kb)

Additional file 6: Table S5. List of genes that were identified as down-
regulated in breast cancer at a 2-fold cut-off and with a Wilcoxon Signed
Rank P-value less than 0.05. Mean expression is the average of the log2
ratio (cancer gene expression/normal gene expression) for each gene.
P-values are from Wilcoxon Signed Rank test (Python) after adjustment
(Benjamini-Hochberg procedure), and log10(P-values) were used to
generate the volcano plot in Fig. 2a. (XLS 230 kb)

Additional file 7: Table S6. Genetic interactions in the breast cancer
subnetwork. The table contains a list of the SL gene pairs that make up
the breast cancer specific subnetwork where column GeneA represents
the genes that are down-regulated in breast cancer, and column GeneB
are their SL gene pairs. (XLS 66 kb)
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