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Abstract

Background: Targeted deep sequencing is a highly effective technology to identify known and novel single
nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer
profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as
different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele
frequencies (VAFs).

Methods: To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g.
with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool
called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and
nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV
detection.

Results: Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between
precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to
the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and
compare the results to digital droplet PCR experiments.

Conclusions: AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low
frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and
tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other
sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve.
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Background
Targeted next-generation sequencing (NGS) is a power-
ful technology to identify known and novel variants in
selected genomic regions of interest [1]. It allows achiev-
ing high coverage levels (i.e., higher than 1000x) and, in
principle, to confidently identify variants even when they
occur at low allele frequencies. This is particularly

important in cancer research and has many clinical appli-
cations, e.g. in relation to disease management. Typically,
tumors are heterogeneous consisting of multiple clones
and sub-clones the relative abundance of which can
change over time depending on several factors, including
treatment [2]. Identification of low frequency mutations is
clinically relevant, among other reasons, for early diagno-
sis, disease monitoring and timely detection of the emer-
gence of resistance clones under treatment [3].
Over the past years, it has been established that cancer

patients’ circulating free DNA (cfDNA) contains tumor-
derived DNA fragments (ctDNA) that can be used as an
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alternative to solid biopsies in clinical settings [4].
However, identifying cancer-specific mutations in li-
quid biopsy samples is challenging, as the relative
proportion of ctDNA in cfDNA can be low, espe-
cially at cancer’s early stages. There are also several
sources of sequencing errors including PCR artifacts,
often reaching up to 1% Variant Allele Frequency
(VAF), that reduce further the analytical sensitivity
for detecting cancer-associated mutations [4]. Error
correction techniques can be incorporated into NGS
assays enabling ultra-sensitive single nucleotide vari-
ant (SNV) detection (VAF ~ 0.1%) but at a signifi-
cant extra cost [5, 6]. Thus, there is a need to
reliably detect SNVs in more conventional deep se-
quencing data.
In-silico identification of SNVs from NGS data is a

well-studied problem [7, 8]. However, the majority of
existing variant calling programs have been designed for
whole-exome and whole-genome experiments sequenced
at coverage of approximately 30x to 100x. At the same
time, available variant calling software for targeted deep
sequencing experiments have been typically developed
for and tested on Illumina data [9].
Compared to Illumina, Ion Torrent sequencing has

a higher per base error rate and an associated lower
accuracy in identifying mutations [10, 11]. However, it
has the advantage of requiring lower amounts of in-
put DNA and it offers both reduced cost and turn-
around time. Thus, it is a cost-effective strategy for
screening large cohorts of patients and it is particu-
larly suited for point-of-care clinical applications [1],
for example in conjunction with the Ion AmpliSeq
Cancer Hotspot Panel. Given its translational poten-
tial, there is a real need to improve the variant calling
workflow and recently a number of methods have
been developed to deal specifically with Ion Torrent
data [12–14].
Here we introduce AmpliSolve, a new bioinformatics

method to detect SNVs in targeted deep sequencing
data. It combines in-silico background error estimation
with statistical modeling and it is particularly suited to
deal with data of comparatively high noise levels, similar
to the ones produced by the Ion AmpliSeq library prep-
aration. In order to estimate background noise levels per
position, strand and nucleotide substitution, AmpliSolve
takes as input deep-sequencing data from a set of nor-
mal samples. This information is then fed to a Poisson
model for the identification of SNVs. Experimental re-
sults using normal samples (self-consistency test), syn-
thetic variants and clinical data sequenced with a
custom Ion AmpliSeq gene panel, demonstrate that
AmpliSolve achieves a good trade-off between precision
and sensitivity, even for VAF values below 5% and as
low as 1%.

Methods
Method overview
AmpliSolve consists of two main programs written in
C++: AmpliSolveErrorEstimation and AmpliSolveVar-
iantCalling. AmpliSolveErrorEstimation requires the
availability of a set of normal samples processed with the
deep sequencing platform and panel of choice. Here, we
focus on the Ion Torrent Personal Genome Machine
(PGM) and a custom AmpliSeq panel, a technology
known to have relatively high rates of sequencing error
compared to others. The program uses the normal sam-
ples to infer position-specific, nucleotide specific and
strand-specific background sequencing error levels
(noise) across the targeted regions. Execution of Ampli-
SolveErrorEstimation is performed only once per panel
design. Error estimates are then used as input to the
AmpliSolveVariantCalling program for SNVs’ detection.
The procedures for in-silico noise estimation and SNV
identification are described below. In Fig. 1 we present a
graphical overview of the AmpliSolve computational
workflow.

In-silico identification of the background sequencing error
Our strategy for estimating background error levels, im-
plemented in the AmpliSolveErrorEstimation program,
is based on the assumption that alternative alleles ob-
served at VAF < 5% in normal samples are, in the major-
ity of cases, the result of sequencing errors (see
Additional file 2: Figure S1 for the distribution of non-
reference allele frequencies in normal samples showing
the separation between heterozygous germline variants
and lower frequency ‘noise’ variants). Accordingly, we
utilize a set of normal samples to estimate background
noise in our custom panel. Notably, we estimate error
levels separately for each genomic position, each nucleo-
tide (alternative allele) and each of the two (forward and
reverse) strands. In particular, for each genomic position
we generate six error estimates (i.e. two each for the
three alternative alleles). Error estimates are fed to a
Poisson model, which is then used to calculate the p-
value of the observed substitutions representing true
variants versus them being noise. The detailed imple-
mentation is as follows. We first extract “raw” counts for
each position, alternative allele and strand from the
BAM files [15] of a set of N normal samples using the
ASEQ software [16]. We run ASEQ with the quality pa-
rameters suggested by the authors of a previous study
based on Ion AmpliSeq data [17], namely: minimum
base quality = 20, minimum read quality = 20 and mini-
mum read coverage = 20. At every genomic position, we
estimate the background error s separately for each al-
ternative allele α and strand (+ or -) by calculating the
fraction of reads carrying the alternative allele on a given
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strand across all normal samples. More specifically we
use the following formula:

sα;þ=− ¼ Erα;þ=−

Erdþ=−
þ C ð1Þ

with

Erα;þ=− ¼
XN

i¼1

Rα;þ=−
i ð1aÞ

and

Erdþ=− ¼
XN

i¼1

RDþ=−
i ð1bÞ

We denote with Ri
α,+ and Ri

α,- the number of reads
supporting the alternative allele α on the forward and re-
verse strand, respectively, in normal sample i. We denote
with RDi

+ and RDi
− the total number of reads (read

depth) at the genomic position of interest on the for-
ward and reverse strand, respectively, in normal sample
i. Summations are taken over all normal samples utilized
for the error estimation. C in eq. (1) is a constant
pseudo-count parameter that is introduced to mitigate
the problem of positions in which the alternative allele

read count might be underestimated (e.g. due to a rela-
tively low read depth at a given position in the normal
samples). In the Results section we test values of C in
the range from 10− 5 to 2•10− 2.
When calculating the summations in (1a) and (1b), we

apply two filters that aim to increase the quality of the
error estimation at specific positions and for specific al-
ternative alleles α at that position. First, at a given pos-
ition, samples for which an alternative allele α has
VAF > 5% are not considered at that position for that
particular allele. This is because a frequency greater than
5% is likely to indicate, in that sample, either the pres-
ence of a real variant (i.e. a single nucleotide polymorph-
ism) or a particularly noisy ‘read-out’. Second, samples
that at a given position have coverage lower than a pre-
defined threshold either on the forward or on the re-
verse strand are not considered for computing Erα, + /−

(1a) and Erd+/− (1b) for any allele α at that position. In
the following we use a threshold of 100 reads which, in
our case, typically excludes 5% of sites per sample (see
Additional file 3: Figure S2); however, this parameter can
be adjusted depending on the study design. After apply-
ing these filters, positions and alternative alleles for
which 2/3 or more of the normal samples cannot be
used for calculating the summations in (1a) and (1b) are

a

b

c

d

Fig. 1 Graphical representation of AmpliSolve’s workflow for estimating the noise levels and detecting SNVs. The workflow comprises the
following steps: a Screening the available normal samples to identify reads supporting alleles other than the reference. b Error estimation per
position, per nucleotide and per strand for all positions in the gene panel based on the distribution of alternative allele counts in (a); only
alternative counts corresponding to VAF < 5% are taken into consideration; c For each genomic position in a tumor sample, the method
identifies the total coverage of the position and the number of reads supporting the alternative alleles, if any. d Given the information from steps
b and c the method applies a Poisson distribution-based model to compute the p-value that the variant (red line) is real. This p-value is then
transformed to a quality score that is used by AmpliSolve together with additional quality criteria to identify SNVs
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considered non-callable. We note that among non-call-
able cases there may be positions with alleles that are ei-
ther frequent in the population or simply over-
represented in the specific set of normal samples used
for the error estimation. However, given that AmpliSolve
main goal is the identification of somatic mutations this
does not constitute a major limitation.

SNV detection using a cumulative Poisson distribution
Given a sample of interest, for every alternative allele α
featuring a non-zero strand-specific (+ or –) variant read
count kα, + /−, the AmpliSolveVariantCalling program
uses a Poisson model to calculate the probability that
kα, + /− or more variant reads are produced by sequencing
errors, i.e. the p-value. Only positions that, in the sample
of interest, have read depth on each strand higher than a
pre-assigned threshold RDmin are considered (in the fol-
lowing, we set RDmin = 100 unless otherwise specified).
At these positions, the calculated p-value is a function of
the normal sample-based sequencing error sα, + /− from
the previous section and of both the number of variant
reads kα, + /− and the strand-specific read depth K+/− in
the sample of interest (K+/− > RDmin). In particular:

p−value variantð j kα;þ=−;Kþ=−; sα;þ=−Þ

¼ 1−e−K�s X
k−1

i¼0

K�sð Þi
i!

ð2Þ

Where, for better readability, on the right side of the
equation we have omitted all α symbols for k and s, as
well as, +/− symbols for k, K and s. We observe that K*s
is the expected number of random substitutions for a
depth of coverage K or the mean of the Poisson distribu-
tion. Note that p-values are not corrected for multiple
testing. The strand-specific p-values are finally converted
to quality scores using the formula Q = -10*log10(p-
value). In its output, for all positions in the panel carry-
ing substitutions with Q score equal to or greater than 5
on both strands, AmpliSolve reports the average Q score
between the two strands. Vice versa, positions with no
substitutions or with substitutions with associated Q
score lower than 5 on one or both strands are not re-
ported in AmpliSolve’s output. All reported SNVs are
further tested for and potentially assigned one or more
of the following warning flags:

a) ‘LowQ’ if the Q score is lower than 20 in at least
one of the two strands.

b) ‘LowSupportingReads’ if the SNV is supported by
less than 5 reads per strand in the tumor samples
being analysed.

c) ‘AmpliconEdge’ if the SNV is located within
overlapping amplicon edge regions, which may
result in sequencing artifacts.

d) ‘StrandBias’ if the SNV is associated to a strand-
bias. We apply Fisher’s exact test to each SNV
under the null hypothesis that the number of
forward and reverse reads supporting the variant
should be proportional to the total number of reads
sequenced in the forward and reverse strands,
respectively. The flag is assigned to substitutions for
which the p-value of the Fisher’s exact test is lower
than a pre-defined value SBth. In the following we
set SBth = 0.05 (unless otherwise specified).

e) ‘HomoPolymerRegion’ if the SNV is located within a
homopolymer region using the same criteria as in [18].

f ) ‘PositionWithHighNoise’ if the SNV is supported by
more than 5 reads per strand but the associated VAF
is lower than the maximum VAF at this position
across all normal samples in the training set.

If no warning is issued, AmpliSolve assigns a ‘PASS’
flag to the SNV.

Performance measures
To assess AmpliSolve’s success in detecting SNVs, we
use a number of performance metrics:

1. Sensitivity or True Positive Rate (TPR) = TP /
(TP + FN)

2. Precision or Positive Predictive Value (PPV) = TP/
(TP + FP)

3. False Discovery Rate (FDR) = 1-PPV=FP / (FP + TP)
4. Harmonic mean of Precision and Sensitivity (F1) =

2*TP / (2*TP + FP + FN)

Where, TP is the number of True Positive predictions,
FN is the number of False Negative predictions and FP
is the number of False Positive predictions.

Clinical data used in this study
For the development and evaluation of AmpliSolve, we
have access to an extensive collection of clinical samples
from castration-resistant prostate cancer (CRPC) pa-
tients, part of which had been already presented in pre-
vious publications [17, 19–21]. The collection comprises
184 germline samples (white blood cells, buccal swabs
or saliva) and more than 450 liquid biopsy plasma sam-
ples (note that for some patients there are multiple li-
quid biopsies and a small minority of liquid biopsy
samples has no matched normal). In practice for this
study, we rely on all 184 normal samples but only use 96
liquid biopsy samples for which results from digital
droplet PCR (ddPCR) assays are available (see below).
For 5 additional patients we have access to 10 solid
tumor samples from metastatic sites (1, 2 and 3 samples
from respectively 1, 3 and 1 patients) and their
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associated 5 germline samples. For the available samples,
we have the following data:

a) For all samples (germlines, liquid biopsies and solid
tumors), we have Ion Torrent sequencing data
obtained using a custom Ion AmpliSeq panel of 367
amplicons spanning 40,814 genomic positions at
around 1000-1500x coverage. The panel targets
both intronic and exonic regions in chromosomes
8, 10, 14, 17, 21 and X including commonly
aberrated genes such as PTEN, CYP17A1, FOXA1,
TP53, SPOP as well as the androgen receptor (AR)
gene, which is one of the main drivers of CRPC,
and the drug target CYP17A1. More details about
the sequencing protocol, data processing and
additional information about the application of our
custom Ion AmpliSeq panel in CRPC diagnostic
studies can be found in [17, 19]. These papers also
include a description of a variant caller that we
used as starting point for developing AmpliSolve.
We call variants in these Ion AmpliSeq data with
our program AmpliSolve.

b) For the 10 solid tumor samples and 5 matched
germline samples, in addition to Ion Torrent data,
we have Illumina Whole Genome Sequencing
(WGS) data at around 80-100x (tumor) and 30x
(germline) coverage. We call variants in WGS data
according to a previously established pipeline [22],
which we describe in the next section.

c) For 96 liquid biopsy samples, we have results from
ddPCR assays to screen 3 clinically relevant SNVs
in the AR gene. These SNVs have been linked to
resistance to targeted therapy in CRPC patients,
namely: 2105 T > A (p.L702H), 2226G- > T
(p.W742C) and 2632A > G (p.T878A). ddPCR in
the plasma samples was performed using 2–4 ng of
DNA, using Life Technologies Custom Taqman snp
genotyping assay (product codes AH0JFRC,
C_175239649_10 and C_175239651_10,
respectively). Following droplet generation
(AutoDg, Bio-Rad) and PCR, samples were run on
the Bio-Rad QX200 droplet reader and analyzed
using the QuantaSoft software.

WGS variant calling pipeline
We used Illumina WGS data to generate a benchmark
set of calls (“ground-truth”) against which AmpliSolve
performance is evaluated. WGS data have been proc-
essed using standard tools, such as Skewer [23] for
adapter trimming, BWA-MEM [24] for mapping and
Picard [25] for duplicate removal. In order to call SNVs
we run a previously developed pipeline [22] that utilizes
jointly Mutect [26] and Platypus [18] (throughout the
manuscript this pipeline is denoted as MutPlat). Briefly,

we first run Mutect (default parameters) on each paired
tumor-normal samples. Then, we use Mutect’s calls as
priors for Platypus and jointly call variants on all tumors
and matched normal samples of a patient (further details
are provided in Additional file 1: Supplementary
Methods). Our ground-truth set of calls consists of both
germline and somatic mutations extracted as explained
below.
Germline variants are identified as those variants

called in the normal (GT = 0/1 or 1/1) and that, add-
itionally, have either a PASS filter flag or don’t have a
PASS filter flag (could have e.g. ‘badReads’) but are
present in 1000 genomes (phase 3 release) [27]. For
AmpliSolve validation purposes we consider only tumor
samples but include both germline and somatic SNVs.
By including germline SNVs, in particular, we are able to
test a higher number of low VAF mutations than would
be possible when considering only somatic mutations.
This is due to a combination of somatic deletions and
germline DNA contamination in the tumor samples. In-
deed, while somatic deletions cause loss of some germ-
line SNPs in tumor DNA, germline DNA contamination
(i.e. < 100% tumor purity) means that these mutations
may still be present in the tumor samples, albeit with a
lower VAF. Note that if somatic deletions occur in high
tumor purity samples and/or the sequencing coverage is
not deep enough, germline variants may have no sup-
porting read at all in the WGS tumor data. We keep also
these limiting cases as part of our ground-truth set of
variants as they might be (and sometimes are) detectable
in the targeted Ion AmpliSeq data.
To call a somatic SNV we require all of the following

criteria to be met: i) Platypus filter: PASS, alleleBias,
Q20, QD, SC or HapScore, ii) at least 3 reads supporting
the variant in the tumor, iii) at least 10 reads covering
the position in the germline and no support for the vari-
ant in the germline (NV = 0 and genotype GT = 0/0), iv)
SNV not present in the 1000 genomes database.

SNV callers tested for comparison
On WGS and ctDNA samples, we compare AmpliSolve
to SiNVICT [12], a tool that has been shown to be ef-
fective in detecting mutations at very low VAF in Ion
Torrent data. We run SiNVICT (version 1.0) with de-
fault parameters and with no additional data pre-pro-
cessing steps. We split the tumor samples (10 metastatic
solid tumors plus 96 ctDNA samples) into 3 batches of
similar size and we run SiNVICT simultaneously on all
samples from each batch. SiNVICT applies a number of
post-processing filters and calls variants at 6 different
confidence levels, with level 6 assigned to variants that
pass all filters. On ctDNA samples, we additionally com-
pare AmpliSolve to deepSNV [9], a state-of-the-art
method for calling low allele frequency variants in deep
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sequencing data (although originally designed to detect
sub-clonal mutations on Illumina rather than Ion Ampli-
Seq data). We run deepSNV (version 1.21.3) with default
parameters following the available vignette in the R
package.

How to run AmpliSolve
AmpliSolve two modules, AmpliSolveErrorEstimation
and AmpliSolveVariantCalling, can be downloaded from
github (https://github.com/dkleftogi/AmpliSolve). Add-
itional requirements include running versions of the
programs Samtools [15], ASEQ [16] and the Boost li-
braries for C++. Here we provide a brief description of
how to run AmpliSolve, however, more detailed infor-
mation and a number of examples are available on the
github page.
For a given amplicon panel, error estimation at each

genomic position, for each alternative nucleotide and for
each of the two strands requires availability of amplicon-
based data from N normal sample files. Although we
don’t enforce a minimum value for N, values below 10
are likely to give low-quality error estimations. In gen-
eral, we suggest using as many normal samples as pos-
sible when training the error matrix for your panel. If
normal samples are not available, AmpliSolveErrorEsti-
mation assigns a constant error rate to all positions, nu-
cleotides and strands in the panel. The default constant
error is 0.01 but the user can specify a different value if
needed (e.g. for different sequencing platforms). Note
that AmpliSolveErrorEstimation does not take bam files
as input but rather bam-derived read count files. Read
count files can be obtained by running the program
ASEQ [16]. Once the read count files have been pro-
duced, the user needs to set the value of the C pseudo-
count parameter (eq. (1)). The choice of C will depend
on the trade-off between precision and sensitivity the
user is interested in. Users can refer to the benchmark-
ing experiments performed in this paper. In general,
values of C between 0.001 and 0.01 should suit most
applications.
Once the error matrix has been calculated, it can be

fed to the AmpliSolveVariantCalling program together
with read count files for the tumor samples again to be
produced by running ASEQ. Note that AmpliSolveVar-
iantCalling does not require matched normal-tumor
samples for calling SNVs. In fact, AmpliSolveVariantCal-
ling calls all variants it can find in the tumor sample, in-
cluding germline variants. To separate germline from
somatic variants users will need to run AmpliSolveVar-
iantCalling on a matched normal sample and take the
difference between the two output files. Command-line
syntax for running AmpliSolveErrorEstimation and
AmpliSolveVariantCalling is provided on github.

Results
Sequencing error estimation, self-consistency test and
AmpliSolve FDR
AmpliSolve estimates the background sequencing noise
by analyzing the distribution of alternative alleles in nor-
mal samples. As previously reported, PGM errors tend
to be systematic [11]. For example, we observe that A >
G (T > C) and, to a lesser extent, C > T (G > A) muta-
tions tend to have a higher background error level (see
Additional file 4: Figure S3). For this reason, AmpliSolve
assigns separate error levels to each genomic position,
each alternative allele and each strand (see Add-
itional file 5: Figure S4). These are then utilized to build
the Poisson models that are at the core of AmpliSolve
SNV calling (Methods). In this section, we study Ampli-
Solve variant calling performance as a function of two
parameters: the pseudo-count C (eq. (1) in Methods)
and the number of normal samples N that are used to
calculate the error estimations.
We perform a self-consistency test using sets of nor-

mal samples to train our models and other, non-overlap-
ping sets of normal samples for testing them. Given a
dataset of N = 184 normal samples (Methods), we
proceed as follows: 1) we select a number M <N of sam-
ples at random and additionally a value c of the C par-
ameter; 2) we use the M samples to train our Poisson-
models with C = c; 3) we use the models obtained in 2)
to predict SNVs in the remaining N-M samples; 4) we
calculate FDR and TPR by defining as negatives all alter-
native alleles that have VAF < 20% and as positives those
for which VAF ≥ 20%. This threshold is chosen empiric-
ally based on the distributions of VAFs that we observe
in the data (Additional file 2: Figure S1); 5) we repeat
steps 1) to 4) 50 times for each pair of (M,c) values, each
time selecting a new set of M samples at random; 6) we
calculate median FDR and TPR over the 50 experiments.
We perform steps 1) to 6) for all combinations of the
following values of M (size of the training set) and c
(parameter C): M = 10, 20, 40, 80, 120 and c = 10− 5,
5*10− 5, 10− 4, 5*10− 4, 10− 3, 2*10− 3, 5*10− 3, 10− 2, 2*10−
2. In Fig. 2a and b, we plot the median FDR for each size
of the training set (10–120) as a function of C; addition-
ally, for comparison, we plot the median FDR of a
method in which we skip the error estimation step and
we set instead s = c for all positions, nucleotides and
strands (‘baseline caller’) (see eq. (1) in Methods for the
definition of s). The FDR reported in Fig. 2a is calculated
by considering an SNV as called by AmpliSolve if and
only if it has a Q score higher or equal 20 (i.e. p-value
≤0.01; this is equivalent to the SNV not having a LowQ
flag, see Methods). The FDR reported in Fig. 2b, instead,
is calculated by considering an SNV as called by Ampli-
Solve if and only if the program assigns a ‘PASS’ flag to
it, that is, if none of the warnings described in the
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Methods section applies. In Fig. 2a we see that, for rela-
tively small values of c, the training set size N affects the
method performance, with more samples providing bet-
ter error estimation and thus lower FDR. Also, our ap-
proach provides an approximately 2- to 4-fold FDR
improvement over the baseline caller at all values of
c ≤ 0.01. For values of c > 0.01, instead, differences with
the baseline caller become negligible. Figure 2b shows
that filtering AmpliSolve’s SNV calls using the warning
flags that we define on top of LowQ (such as those re-
lated to low number of supporting reads, homopolymer
regions, etc.) has the effect of further improving the
FDR. Also, it reduces differences between FDRs obtained
when using training sets of different size. All of the
above findings suggest that estimating the background
noise at each position, for each nucleotide and for each
strand is important for reducing the number of FPs aris-
ing from noise in Ion AmpliSeq data. If we now consider
the median values of the Sensitivity measure (or TPR),
we discover that in all our experiments they are close to
1, irrespective of the value of M and c. This close to per-
fect Sensitivity is not surprising as our definition of posi-
tives (VAF ≥ 20%) makes them relatively simple to
discriminate from the background noise especially con-
sidering the fact that most of them have VAFs that are
much higher than 20% (Additional file 2: Figure S1).
Thus, in order to truly test AmpliSolve Sensitivity, we
have to perform a different kind of experiment, which
we describe in the next section.

Synthetic variants test for TPR estimation
In order to test the sensitivity of our method at low VAFs
(0.5 to 4%), we design the following experiment. We first
select two amplicons on the AR gene (1,017 genomic posi-
tions overall); the AR gene is chosen because clinically

relevant but for this purpose other choices would be equally
valid. Then, we use 120 normal samples randomly selected
from the full set of 184 described in Methods to estimate
the errors at each position in the two amplicons, for each
nucleotide and each strand, according to formula (1). Next,
we test the method’s sensitivity on synthetic variants. For
each possible alternative allele at each of the 1,017 ampli-
con positions, we set read depth to a fixed value COV and
the number of reads supporting the allele to 2a (a support-
ing reads on the forward strand and a on the reverse
strand). We use COV= 800, 1600, 3200, 6400 (values in
this range apply to more than 60% of full panel positions
with coverage > 200, see Additional file 6: Figure S5) and
for each value of COV we select a corresponding to VAFs
of 0.5, 1, 1.25, 2, 3 and 4%. For example for COV= 800 we
test a = 2, 4, 5, 8, 12, 16. We then apply the Poisson models
previously trained on the 120 normal samples to predict
variants at each position and for each alternative allele and
consider only AmpliSolve calls with a ‘PASS’ quality flag.
We consider all synthetic variants to be positives (thus, no
FDR can be calculated in this case) and ask how many of
these can be detected by AmpliSolve. We stress that while
in each experiment the VAF is by design the same at all po-
sitions and for each alternative allele and strand, following
estimation from the normal samples the error estimate is
position-, alternative allele- and strand-dependent. We cal-
culate the TPR for all combinations of COV and VAF. We
do this for several values of the pseudo-count parameter C
in the range of low AmpliSolve FDR as calculated from the
self-consistency test in the previous section or the range of
main interest for applications (C = 0.001, 0.002, 0.005, 0.01,
0.02, see Fig. 2b).
Figure 3a-e highlight the role of the C parameter as an

approximate lower bound for AmpliSolve sensitivity (see
eq. (1)). Typically, AmpliSolve identifies few or no

a b

Fig. 2 Assessing AmpliSolve’s performance using normal samples. a Median AmpliSolve FDR (%) as a function of the model pseudo-count
parameter, when using different numbers M of normal samples as training set and testing on the remaining normal samples. We consider as TP
all normal variants with VAF≥ 20% and as FP all normal variants with VAF < 20% (see Text). We consider all AmpliSolve calls that have Q-score≥
20. b Same as (a) when considering only AmpliSolve calls with a ‘PASS’ quality flag (see Text)
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variants at allele frequencies equal to or lower than C, in
the range of tested coverage depth (see, in particular,
Fig. 3c-e). For example, for C = 0.005 no calls are made
at VAF = 0.5% even at values of COV as high a 6,400.
Along the same lines, for values of C equal 0.01 and
0.02, which correspond to FDRs below 1.6 and 0.6%, re-
spectively (Fig. 2b), the lowest VAFs that AmpliSolve
can detect are above 1 and 2%, respectively. For VAF
values above C, on the other hand, sensitivity grows
quickly with increasing VAF. For example within the
depth of coverage range that we have analyzed, when
using C = 0.01 and C = 0.02 AmpliSolve successfully calls
the vast majority of synthetic variants at VAF 2 and 3%,
respectively. When we compare the Sensitivity histo-
grams in Fig. 3a-e to the FDR curves in Fig. 2b, we see
that AmpliSolve can reliably predict synthetic SNVs at
VAFs as low as 1% while still in a regime of relatively
low FDR. Indeed for C = 0.002, at an estimated FDR of
6.8% (Fig. 2b), AmpliSolve calls most SNVs with 1% al-
lele frequency at depth of coverage > 1,600 and most
SNVs with allele frequency 0.5% at depth of coverage >
3,200. While it will be up to the user to select the best
trade-off between FDR and TPR for a specific experi-
ment, it would appear that values of C between 0.001
and 0.01 would likely represent a reasonable comprom-
ise between these two performance measures in most
applications.

Benchmarking AmpliSolve perfomance using Illumina
WGS data
For 5 additional CRPC patients, we have access to 10
metastatic solid tumor (for some patients more than one
metastasis) and associated normal samples. These were
sequenced both with our custom Ion AmpliSeq panel

and with the Illumina platform as WGS (the latter, with
average coverage ~100X) (Methods). We use these 10
samples to provide a validation of AmpliSolve SNV calls
in a more realistic set-up with respect to what shown in
the previous two sections. For training our AmpliSolve
Poisson models, we use the full set of 184 normal sam-
ples sequenced with the Ion AmpliSeq technology and
we set C = 0.002.
In the solid tumor samples, when run on the Ion

AmpliSeq data AmpliSolve identifies a total of 556
SNVs. For the same set of genomic positions processed
by AmpliSolve, our WGS-variant calling pipeline Mut-
Plat (Methods) calls a total of 603 SNVs in the corre-
sponding Illumina data. The list of positions processed
by AmpliSolve includes all those covered by our ampli-
con panel minus the ones for which no background
error estimate can be produced (Methods). Almost all
SNVs identified in the WGS data are germline (592 out
of 603) but some of them have low VAF in the tumor
samples because of deletions and loss of heterozygosity
(LOH) events in the tumor DNA combined with germ-
line DNA contamination. It is therefore a very valuable
test set that includes confidently identified variants at
low VAF.
The level of agreement between AmpliSolve and the

ground-truth set of calls from MutPlat is summarized in
Fig. 4a and in Table 1. On this data, AmpliSolve achieves
87% TPR, 94% PPV and 90% F1. In particular, of the 556
SNVs called by AmpliSolve, 525 SNVs are also identified
by MutPlat (TP). The remaining 31 are likely false posi-
tives (FP) although some of them might be real somatic
variants with very low VAFs (and hence non detectable
by a WGS done at 100x). The 78 SNVs additionally
identified by MutPlat in the WGS data are likely

a b

c d e

Fig. 3 Assessing AmpliSolve’s sensitivity using synthetic data. a-e AmpliSolve TPR (Sensitivity) values in in-silico synthetic variant experiments. We
test different combinations of VAF, depth of coverage and C parameter values (see Text)
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AmpliSolve false negatives (FP). However, we note that
48 of them correspond to positions not called because
the coverage in the tumor samples was below the
threshold of 100 reads per strand and 26 were filtered
out because of the strandBias flag. By simply setting
more lenient parameters RDmin = 50 and SBth = 0.01 we
are able to drastically reduce the number of missed calls

without affecting AmpliSolve precision. With these set-
tings we obtain 571 TP, 34 FP and 32 FN, which trans-
lates into 95% TPR, 94% PPV and 94% F1.
In Fig. 4b and c we report a scatter plot of the VAFs in

the WGS and AmpliSeq data with colors indicating
common calls (purple), MutPlat-only calls (green) and
AmpliSolve-only calls (blue), respectively. Overall there
is a good concordance between AmpliSolve and MutPlat
calls, even at low VAF (Fig. 4c). In particular, AmpliSolve
correctly identifies 18 out of 21 SNVs with VAF < 5% in
the WGS calls. AmpliSolve does call a number of likely
false positives at low VAF, however we note that most of
them occur at recurrent positions across patients and
could therefore potentially be identified and discarded at
a post variant calling analysis stage.
In Table 1, we additionally compare AmpliSolve’s per-

formance to the one of SiNVICT when run on the same
10 solid tumor samples. (MutPlat calls on the Illumina
data are used as ground truth in both cases). SiNVICT
assigns a confidence level (1 to 6) to its calls according
to a series of hierarchical filters (each filter eliminates
some calls from the previous level). On our dataset, SIN-
VICT’s highest confidence level (level 6) although very
precise appears to miss a substantial number of SNVs

a

b c

Fig. 4 Benchmarking AmpliSolve calls with Illumina WGS calls. a Venn diagram of mutations on 10 samples sequenced with both Ion Torrent and
Illumina platforms and called respectively by AmpliSolve and by MutPlat. Low coverage positions denote mutations excluded by AmpliSolve
because poorly covered (< 100 reads on at least one strand, ‘uncallable’ by AmpliSolve). b Scatter plot of VAFs in WGS and AmpliSeq data. Note
that all the SNVs not called by AmpliSolve (green point) have some support in the data and are reported in its output (hence they have AF > 0)
but are filtered out, mostly because of strand bias. c Same as (b) but for VAFs< 20%. Note that some concordant calls (purple points) have WGS
AF = 0; these are real germline variants with no support in the tumor (Methods). For the sake of this comparison, both in (b) and in (c) we don’t
consider the 49 mutations at positions of low coverage in Ion Ampliseq data (see (a)) (‘uncallable’ for AmpliSolve)

Table 1 Comparison between AmpliSolve and SiNVICT calls
across the targeted panel. MutPlat calls on Illumina WGS data
have been used as ground-truth. SiNVICT levels correspond to
confidence levels in the calls (6 being the highest). TP = True
Positives, FP=False Positives, FN = False Negatives, TPR = True
Positives Rate (Sensitivity), PPV=Positive Predictive Value
(Precision), F1 = Harmonic mean of Precision and Sensitivity

TP FP FN TPR PPV F1

AmpliSolve 525 31 78 87% 94% 90%

SiNVICT Level 1 591 156 12 98% 79% 88%

Level 2 587 154 16 97% 79% 87%

Level 3 575 34 28 95% 94% 95%

Level 4 575 34 28 95% 94% 95%

Level 5 141 12 457 24% 92% 38%

Level 6 104 3 494 17% 97% 29%
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(i.e. it has low sensitivity), especially at low VAF. Better
overall results are obtained at confidence levels 3 and 4,
In this case, precision and sensitivity values are similar
to the ones obtained by Amplisolve when using RDmin =
50 and SBth = 0.01. Interestingly, at low VAF AmpliSolve
and SiNVICT seem to identify slightly different sets of
SNVs, suggesting that it might be possible to improve
SNV calling by appropriately combining them.

Clinical application using ctDNA samples and ddPCR for
validation
One of the most promising clinical applications of ctDNA
is profiling of specific mutations associated with tumor pro-
gression and resistance to cancer therapies. To evaluate
AmpliSolve’s usefulness for this important task, we use re-
sults from a ddPCR screen on 96 samples from our CRPC
patients at three genomic positions within the AR gene,
which are associated with resistance to targeted therapy
(Methods). ddPCR detects 30 variants in total at these posi-
tions in a VAF range of 0.1 to 49% (note, however, that in
some experiments only the presence or absence of the

variant was recorded). Next, we compare AmpliSolve calls
at the same positions in the AmpliSeq NGS data for the
same samples (predictions made after training AmpliSolve
with pseudo-count parameter C = 0.002 on 184 normal
samples). In Fig. 5a we summarize the level of agreement
between AmpliSolve and the ddPCR experiments. Ampli-
Solve correctly calls 19 out of 30 ddPCR variants and pre-
dicts variants at two additional positions. If we take the
ddPCR experiments as our ground-truth, this translates
into 90% PPV 63% TPR and 74% F1 for AmpliSolve at
these 3 clinically relevant genomic positions.
As a comparison, we run the SiNVICT and deepSNV

methods on the same Ion Torrent data and extract their
SNV calls at these positions. The results are summarized
in Table 2. Similar to what observed in the previous sec-
tion, SiNVICT highest confidence levels (5 and 6) have
low sensitivity (30% TPR). Better results are obtained at
lower confidence level (1 to 4) whereby SiNVICT cor-
rectly identifies 17 out of 30 ddPCR variants without
introducing any false positives. In total deepSNV calls 18
SNVs, 15 of which are correct.

a

b

Fig. 5 Validating AmpliSolve performance with ddPCR experiments. a Venn diagram of mutations in 96 samples at 3 positions as determined by
AmpliSolve and ddPCR experiments. False positives refer to variants called by AmpliSolve and not detected by ddPCR, false negatives the
opposite. In 256 out of 288 cases neither AmpliSolve nor ddPCR detect a mutation. b Scatter plot of the VAFs in the ddPCR and Ion Torrent data.
Most of the SNVs missed by AmpliSolve (green points) have some support in the NGS data but they cannot be distinguished from noise. Because
of the log scale, we arbitrarily set AF = 10− 4 for negative calls with AF = 0. Similarly, we set AF = 1 for ddPCR calls for which no allele frequency
information is available
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When looking at AmpliSolve predictions in more details
(Fig. 5b), we note that all ddPCR positives not called by
our program (and additionally missed by both SiNVICT
and deepSNV) have VAF < 1% in the NGS data and that
AmpliSolve succeeds in calling all ddPCR positives at
higher NGS frequencies including several at VAFs be-
tween 1 and 5%. It is also important to note that Ampli-
Solve correctly predicts 256 out of 258 (99.2%) ddPCR
negatives. While the results presented in this section refer
to only three genomic positions, they are indicative of
AmpliSolve’s potential value in a clinically relevant setting.

Discussion
In this study we present AmpliSolve, a new bioinformat-
ics method that combines position-specific, nucleotide-
specific and strand-specific background error estimation
with statistical modeling for SNV detection in amplicon-
based deep sequencing data. AmpliSolve is originally de-
signed for the Ion AmpliSeq platform that is affected by
higher error levels compared to, for example, Illumina
platforms. Our method is based on the estimation of
noise levels from normal samples and uses a Poisson
model to calculate the p-value of the detected variant.
We assess AmpliSolve’s performance with experiments
that use normal samples (self-consistency tests) and sim-
ulated data (synthetic variants) and, additionally, with
tests that utilize real metastatic samples sequenced with
both Ion Torrent and Illumina platforms. In these exper-
iments, AmpliSolve achieves a good balance between
precision and sensitivity, even at VAF < 5%. These exper-
iments also suggest possible ways to further improve the
method, such as adopting a better strand bias filter, re-
ducing the minimum coverage requirement for calling a
variant and introducing a ‘black list’ of positions charac-
terized by an unusual noise distribution across samples
(e.g. bimodal). Further, we test AmpliSolve in a clinically
relevant setting by calling SNVs in 96 liquid biopsy sam-
ples at 3 positions that had been additionally screened
by ddPCR assay. In this experiment AmpliSolve

successfully identifies SNVs at VAF as low as 1% in the
NGS data. This opens up interesting possibilities for
clinical applications using the Ion Torrent PGM such as,
for example, tracking mutations in ctDNA to monitor
treatment effectiveness and/or disease relapse.

Conclusions
AmpliSolve is a new computational tool for the detection
of low frequency SNVs in targeted deep sequencing data. It
uses a set of germline samples to build a sequencing error
profile at each genomic position of interest. Based on these
profiles AmpliSolve estimates the likelihood of a variant be-
ing real or just the result of sequencing artefacts. We test
AmpliSolve on clinical cancer samples sequenced with a
custom Ion AmpliSeq gene panel and show that Ampli-
Solve can correctly identify variants even at allele frequency
below 5% and as low as 1%. This is significant because de-
tecting variants with low allele frequency can be challen-
ging using Ion Torrent sequencing. From a methodological
point of view, we believe that the use of models with pos-
ition-specific error estimates, as described here, could have
a significant impact on variant detection for other sequen-
cing platforms as well.
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Additional file 1: Supplementary Methods. Details of the MutPlat
pipeline. (DOCX 15 kb)

Additional file 2: Figure S1. Variant allele frequency (VAF) distributions
for the A, T, C, G nucleotides as calculated from 30 randomly chosen
normal samples across our custom AmpliSeq panel. Only VAFs < 60% are
displayed. The red lines mark VAF = 20%. (PPTX 278 kb)

Additional file 3: Figure S2. Fraction of sites in a normal sample
sequenced at a given coverage or more across our custom AmpliSeq
panel. The values are calculated over 30 randomly selected samples.
(PPTX 59 kb)

Additional file 4: Figure S3. Distributions of background error values
by mutation type. Panels (a), (b), (c) and (d) refers to mutations from
reference allele A, C, G and T respectively. Mutations are split by
alternative allele and strand, (+) and (−). Note the higher error values for
A > G (T > C) and C > T (G > A) mutations. Plots are bound to error values
of 0.005 on the y-axis for visual clarity. (PPTX 201 kb)

Additional file 5: Figure S4. Position-specific, allele-specific and strand-
specific frequency of alternative alleles in 100 consecutive positions in
the AR gene. (PPTX 116 kb)

Additional file 6: Figure S5. Fraction of sites in our custom AmpliSeq
panel sequenced at a given coverage or more. The values are calculated
over 30 randomly selected ctDNA samples. Note that positions with
depth of coverage less than 200 are not considered for calculating the
total number of positions. The red lines represent the upper and lower
bounds of coverage used in the synthetic variant test. (PPTX 64 kb)
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Sequencing; PGM: Personal Genome Machine; PPV: Positive Predictive Value;
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Table 2 Comparison of SNV calling on 96 samples at 3
genomics positions. The 3 positions on the AR gene were
screened by ddPCR used here as ground-truth. SINVICT Levels 5
and 6 and Levels 1, 2, 3 and 4 have been grouped as they give
the same results. TP = True Positives, FP=False Positives, FN =
False Negatives, TPR = True Positives Rate (Sensitivity), PPV=
Positive Predictive Value (Precision), F1 = Harmonic mean of
Precision and Sensitivity

TP FP FN TPR PPV F1

AmpliSolve 19 2 11 63% 90% 74%

SiNVICT Levels 1,2,3,4 17 0 13 57% 100% 73%

Levels 5,6 9 0 21 30% 100% 46%

deepSNV 15 3 15 50% 83% 62%
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