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Abstract

Background: microRNA (miRNA) is a short RNA (~ 22 nt) that regulates gene expression at the posttranscriptional
level. Aberration of miRNA expressions could affect their targeting mRNAs involved in cancer-related signaling
pathways. We conduct clustering analysis of miRNA and mRNA using expression data from the Cancer Genome
Atlas (TCGA). We combine the Hungarian algorithm and blossom algorithm in graph theory. Data analysis is done
using programming language R and Python.

Methods: We first quantify edge-weights of the miRNA-mRNA pairs by combining their expression correlation coefficient
in tumor (T_CC) and correlation coefficient in normal (N_CC). We thereby introduce a bipartite graph partition procedure
to identify cluster candidates. Specifically, we propose six weight formulas to quantify the change of miRNA-mRNA
expression T_CC relative to N_CC, and apply the traditional hierarchical clustering to subjectively evaluate the different
weight formulas of miRNA-mRNA pairs. Among these six different weight formulas, we choose the optimal one, which
we define as the integrated mean value weights, to represent the connections between miRNA and mRNAs. Then the
Hungarian algorithm and the blossom algorithm are employed on the miRNA-mRNA bipartite graph to passively
determine the clusters. The combination of Hungarian and the blossom algorithms is dubbed maximum weighted
merger method (MWMM).

Results: MWMM identifies clusters of different sizes that meet the mathematical criterion that internal connections
inside a cluster are relatively denser than external connections outside the cluster and biological criterion that the intra-
cluster Gene Ontology (GO) term similarities are larger than the inter-cluster GO term similarities. MWMM is developed
using breast invasive carcinoma (BRCA) as training data set, but can also applies to other cancer type data sets. MWMM
shows advantage in GO term similarity in most cancer types, when compared to other algorithms.

Conclusions: miRNAs and mRNAs that are likely to be affected by common underlying causal factors in cancer can be
clustered by MWMM approach and potentially be used as candidate biomarkers for different cancer types and provide
clues for targets of precision medicine in cancer treatment.

Keywords: Cancer, miRNAs and mRNAs, Gene regulation, BRCA, TCGA, Bipartite graph, Graph partitioning, Hungarian
algorithm, Blossom algorithm, Clustering
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Background
Cancer is an abnormal growth of cells, which divide with-
out control and spread into surrounding tissue. According
to the website of the Cancer Statistics Center from the
American Cancer Society (https://cancerstatisticscenter.
cancer.org/#!/), in 2017 in the U.S., there were an esti-
mated 1,688,780 new cancer cases and 600,920 cancer
deaths. Cancer is a genetic disease caused by alterations of
genes that control the cell behavior, like cell growth and
division. Genetic, transcriptional as well as other alter-
ations can be comprehensively identified from next gener-
ation sequencing (NGS) data of samples collected from
tumorous tissue and normal adjacent tissue in the same
patients suffering from a specific type of cancer. Those
data are accumulated and organized by different projects
such as International Cancer Genome Consortium
(ICGC) [1], Encyclopedia of DNA Elements (ENCODE)
[2], and the Cancer Genome Atlas (TCGA) [3]. The
TCGA project was initiated in 2006 to develop a publicly-
accessible infrastructure of data. TCGA finalized tissue
collection with matched tumor and normal tissues from
11,000 patients with 33 cancer types and subtypes, includ-
ing 10 rare types of cancer. TCGA data has been used to
characterize key genomic changes, find novel mutations,
define intrinsic tumor types, discover similarities and dif-
ferences across cancer types, reveal therapy resistance
mechanisms, and collect tumor evolution evidence [3].
microRNA (miRNA) is a very short RNA (~ 22 nt) that

can regulate gene expression at the post-transcriptional
level [4]. Mainly from either intronic or intergenic re-
gions of noncoding or coding genes [5, 6], miRNAs are
transcribed primarily by RNA polymerase II to be parts
of longer primary miRNA (pri–miRNA) transcripts that
are capped, spliced, and polyadenylated [7, 8]. In the nu-
cleus, pri–miRNA is processed, by the Microprocessor
complex that consists of the RNase III enzyme Drosha
and its cofactor DGCR8, to produce precursor miRNA
hairpin (pre–miRNA). The resulting pre–miRNA is then
exported to the cytoplasm and cleaved by Dicer to pro-
duce miRNA:miRNA duplex. Then the functional
miRNA strand and Argonaute (AGO2) proteins are in-
corporated into the RNA–induced silencing complex
(RISC) [9]. The base pairing between miRNA and
mRNA relies on the seed region, about 2–8 nt in an
miRNA, which functions as a part in the RISC, bound to
the complementary region in the 3′ UTR of its target
mRNA [10]. The miRNA guides RISC to silence the tar-
get mRNAs by means of mRNA cleavage, translational
repression, or deadenylation [11].
Regulation of the miRNA and mRNA network is com-

plex. A single miRNA can target many mRNAs, while
many miRNAs are able to cooperatively target a single
mRNA. This allows for fine-tuned gene expression regu-
lation [12]. The cooperativity within some miRNA

families or genomic clusters that target the same
mRNAs is likely to be mainly additive [10]. miRNA also
has sponge function for mRNA. When one of the
mRNAs targeted by a specific miRNA change its expres-
sion level, the specific miRNA will redistribute and alter
the protein translation of several transcripts. [13].
Thereby, considering these complexity, the observed
expression correlation coefficient of a particular
miRNA-mRNA targeting pair can range from − 1 to 1,
not always negative, even if the miRNA-mRNA has pre-
dicted or experimentally validated targeting relation-
ships. The aberration of miRNA expression could affect
a large number of mRNAs and cancer-related signaling
pathways [14]. Some previous studies discovering and
explaining this complexity in cancer are summarized as
follows:
In a breast cancer study, miR-183 was experimentally

proven to directly target the 3′-UTR of its target gene
RAB21, by co-transfecting the luciferase reporters with
33 bp of the predicted target regions. The miR-183/−
96–182 genomic cluster also has transcription factors
HSF2 and ZEB1 that are experimentally validated to
bind to the upstream of the TSS region of the miR-183/
− 96–182. Nevertheless, analyzing the 508 clinical sam-
ples from TCGA data, the correlations between miR-
183/− 96/− 182 cluster miRNAs and their target/regula-
tors do not exhibit simply positive or negative correla-
tions. Experimentally verified direct correlation between
miR-183 and the expressions of RAB21 could not be
found based on the TCGA data analysis. But some inter-
esting correlations between them in different subtypes
were found [15], indicating the clue of solving the
miRNA-mRNA network complexity by grouping the
subtypes of the cancer types.
In a study of ovarian cancer, it was found that the

miRNA-mRNA pair hsa-miR-140-3p/RAD51AP1, was
negatively correlated in both normal and tumorous sam-
ples with downregulated miRNA and upregulated mRNA
expression values in tumor relative to normal samples,
suggesting the expressional dysregulation of a direct
miRNA-mRNA interaction mechanism. However, some
miRNA-mRNA pairs were positively or negatively corre-
lated in the tumor samples, but not in the normal sam-
ples, implying that the miRNAs de novo gain functions in
tumor. Some miRNA-mRNA pairs show correlations in
normal samples but not in tumor samples, implying that
the miRNA de novo lose functions in tumors. Intriguingly,
the miRNA-mRNA pairs that are positively correlated in
both tumor and normal samples were identified, suggest-
ing potential indirect pathways or intermediate regulatory
mechanisms in tumorigenesis [16].
There are bioinformatics tools clustering the miRNA-

mRNA interaction network [17]. Some tools are based
on miRNA-mRNA expressional correlation coefficients
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calculated from NGS expression data [18]. Clustering
results can be enhanced or filtered by integrated analysis
of known or predicted miRNA-mRNA targeting infor-
mation [19]. For example, MAGIA2 utilizes negative ex-
pressional correlation coefficients between miRNA and
mRNA across many matched or unmatched samples
[19]. However, MAGIA2 neglects the situation that the
miRNAs that have positive correlation coefficients also
play a role in the regulatory network. miRMAP studies
both significant negative and positive correlations be-
tween miRNA and mRNA; its bicluster analysis of
miRNA-mRNA bipartite graph provides insights into
how modules of miRNAs regulate groups of functionally
related mRNAs [10]. However, miRMAP only consid-
ered tumor condition. Thereby it lacks the view of the
correlation coefficient changes between normal and
tumor tissues. MMiRNA-Viewer visualizes altered ex-
pressional correlation coefficients of miRNA and mRNA
in both tumor and normal; the correlation coefficient of
a miRNA-mRNA pair could be the same or inverted in
sign in tumor compared to normal [18]. However, the
connections between miRNA and mRNA are not com-
bined together to quantify the miRNA-mRNA correl-
ation coefficient changes from normal to tumor.
Although Jansson and Lund explained the potential

mechanisms of how a target mRNA may become
uncoupled from its targeted miRNA [14], the factors
inverting the miRNA-mRNA expression correlation
coefficient from normal to tumor are still unclear, indi-
cating the complex direct and indirect regulation of the
miRNA and mRNA network. In this study, we proposed
six weight formulas to quantify the change of miRNA-
mRNA expressional correlation coefficients in tumor
relative to in normal. We used the traditional hierarch-
ical clustering algorithm to evaluate different formula
weights of miRNA-mRNA pairs and chose the integrated
mean value weight. Then, we developed a novel bioinfor-
matics pipeline called maximum weighted merger
method (MWMM) based on objective optimization al-
gorithms, namely the Hungarian and blossom algorithm,
to cluster the miRNA–mRNA pairs. We hypothesized
that the miRNA-mRNA pairs with higher weights, if
properly clustered together, are more likely to be in-
tensely affected by common causal factors in the com-
plex direct and indirect network.

Methods
This study focused on the expression correlation coeffi-
cient changes of miRNA-mRNA pairs that were inverse
from in normal to in tumor. Six edge weight formulas,
which were proposed to simultaneously quantify the
changes, were evaluated using the subjective traditional
hierarchical clustering algorithm. After evaluation, inte-
grated mean value weight was used to quantify the

changes. Then, a maximum weighted merger method
(MWMM) pipeline that consists of continuous iterations
of Hungarian algorithm and several rounds of blossom
algorithm was used to passively cluster the miRNA-
mRNA pairs based on the maximum weighted edge
matching in the bipartite graph and general graph. The
clustered miRNA-mRNA pairs were validated mathem-
atically by the clustering criteria that the inner weights
of the clusters are larger than the outer weights of the
clusters and biologically by the criteria that intra-clus-
ter’s average GO term similarity distance scores are lar-
ger than the inter-cluster’s. Then the genes in clusters
were enriched via functional analysis like KEGG pathway
or GO term. Finally, the effectiveness of MWMM was
tested by applying the MWMM approach to other 14
cancer types and comparing to other six clustering algo-
rithms in terms of GO term similarity distance scores.
The methodology is illustrated in Fig. 1.

Source data of BRCA from TCGA
The invasive breast carcinoma (BRCA) NGS expression
data of miRNA and mRNA in tumor and in normal were
downloaded from the TCGA data portal. BRCA data set
has 863 samples consisting of 87 normal samples and
776 tumor samples. The number of samples in BRCA
and other TCGA data sets used in this study are
described in the first table in [18]. We processed the
downloaded BRCA data set following the same proced-
ure described in [20], and got four expression matrices
across samples, including miRNA expression in tumor,
miRNA expression in normal, mRNA expression in
tumor, and mRNA expression in normal. The expression
matrices involve 1046 miRNA and 20,531 mRNA in
both tumor and normal samples. The row names of the
expression matrices are miRNA names or gene names.
The column names of the expression matrices are sam-
ple names.
Then we used MMiRNA-Tar [20] that takes four ex-

pression matrices as input to calculate the expression
correlation coefficient (Pearson correlation coefficient)
across samples for each possible miRNA-mRNA pair
combination. The resultant miRNA-mRNA pairs in
tumor and normal are filtered following three cutoff
criteria: false discovery rates (FDR) are ≤ 0.1, the correl-
ation coefficients in tumor are opposite to in normal
samples, and target predictions are supported by at
least one of three target prediction databases: Target-
Profiler [21], TargetScan [22], and miRanda [23]. Even-
tually we end up with 20,661 pairs of miRNA and
mRNAs with their expression correlation coefficients in
tumor (T_CC) and correlation coefficients in normal
(N_CC) calculated and organized into a table for down-
stream analysis. The table is exemplified in Table 1.
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Edge-weighted bipartite graph model
A simple graph is defined as G = (V, E), where V(G) or V
denotes a set of vertices, and E(G) or E denotes a set of
edges. E is 2-element subsets of V. An edge is associated
with two vertices. w(e) is defined as edge weight for each
edge. In this study, the miRNA-mRNA interaction net-
work is visualized as an edge-weighted bipartite graph
G = (V, E), where V consists of vertices of mRNAs (VL)
and miRNAs (VR), i.e., V = (VL +VR) and E represents
the weighted edges between the mRNA and miRNA ver-
tices. Let i be the vertex subscript in the VL and j be the

vertex subscript in the VR. Then vivj is the connection
between vi and vj, namely the edge connecting a vertex
in VL to a vertex in VR. An example of a miRNA-mRNA
bipartite graph is shown in Fig. 2. The edge list denoting
the bipartite graph is shown in Table 2.

Edge weight calculation
We combine T_CC and N_CC simultaneously to quantify
the connections or weighted edges between miRNA and
mRNA vertices. The connections reflect the intensity of
inversion of miRNA-mRNA expression correlation

Fig. 1 Conceptual steps of the whole methodology of pipeline. Blue squares denote miRNA. Yellow circles denote mRNAs
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coefficients from in normal to in tumor. The formulas of
calculating edge weights are described as follows.
We propose 6 types of edge weights that consider in-

formation of T_CC and N_CC simultaneously to meas-
ure the connection of the edge vivj, in the case of BRCA,
for 1 ≤ i ≤ 312 and 1 ≤ j ≤ 7874. Based on the foregoing
three cutoff criteria, the number of selected miRNAs is
312 and the number of selected mRNAs is 7874.
The miRNA-mRNA expression correlation coefficients

are separated into two classes based on their parity change,
as shown in Fig. 3. One class has N_CC > 0 and T_CC < 0,
i.e., the correlation coefficients are converted from positive
in normal to negative in tumor. The other class has N_
CC < 0 and T_CC > 0, i.e., the correlation coefficients are
converted from negative in normal to positive in tumor.
Intuitively, the arithmetic mean of absolute values (ie.,

T_CC and N_CC) is an option to quantify the inversion
of their expressional correlation coefficient, namely, in-
version of N_CC to T_CC for a miRNA-mRNA pair as
shown in Fig. 3. However, to increase the contrast of
values in the data, a coefficient can be generated for
each value by dividing that value by the arithmetic mean
of the data. The value is then multiplied by its coeffi-
cient, so that values larger than the arithmetic mean of
the data will become larger, and values smaller than the
arithmetic mean of the data will become smaller. Using
notation, let the T_CC values have the arithmetic mean,
mT _CC. A specific T_CC value is denoted x, while x

mT CC

is that value’s coefficient. The new value is given by x
mT CC

�x, which enhances the importance of the value x if x is
greater than the average mT _ CC, and weakens the im-
portance of the value x if x is smaller than the average
mT _CC.
In our expression correlation coefficient data, the T_

CC values consist of two groups: positive values and

negative values. We calculate the arithmetic mean of the
positive values of T_CC as mþ

T CC and arithmetic mean
of absolute value of the negative values of T_CC as
m−

T CC . Similarly, we calculate the mþ
N CC and m−

N CC

for N_CC’s groups, as shown in Fig. 3. Then, the inte-
grated mean value weight is calculated by assignments
of coefficients λ1 and λ2, shown in Table 3. In such a
way, we can quantify the inversion of the correlation co-
efficients from the positive values of N_CC, N_CC+, to
the negative values of T_CC, T_CC− (λ1), and likewise,
from N_CC− to T_CC+ (λ2) because these two sets rep-
resent different correlation change directions, as shown
in Fig. 3.

Table 1 Calculated miRNA and mRNA expression expressional
correlation coefficients in tumor and normal tissue of BRCA. The
first 10 miRNA-mRNA pairs of the table that has 20,661 pairs are
listed as an example

mRNA microRNA T_CC N_CC

OBFC1 hsa-mir-383 −0.092 0.271

SHROOM2 hsa-mir-130a −0.098 0.442

GABBR2 hsa-mir-452 0.142 −0.376

ZNF90 hsa-mir-452 0.139 −0.365

GIGYF1 hsa-mir-3653 −0.192 0.281

MICALL1 hsa-mir-375 −0.269 0.305

ZNF552 hsa-mir-30e −0.142 0.279

MT2A hsa-mir-744 −0.089 0.341

ISG20 hsa-mir-215 0.110 −0.373

PJA1 hsa-mir-204 0.205 −0.283

Fig. 2 An example of a miRNA-mRNA bipartite graph. The miRNA-
mRNA pairs are represented by an edge-weighted bipartite graph.
The pairs of miRNA-mRNA with the 10 largest integrated mean value
weights (described in the next subsection) are listed as an example in
a railroad display of the bipartite graph
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Based on the above-mentioned reasoning, we propose
the formula of the integrated mean value weight to com-
bine the T_CC and N_CC information simultaneously,
as shown in Table 3 and Table 4. For the sake of com-
parison, we also propose other formulas that are com-
mon in basic mathematics, listed in Table 4. For
example, all negative value weight cannot reflect the cor-
relation coefficient changes of a miRNA-mRNA pair in
tumor relative to normal, but it can act as a random for-
mula as a comparison to see if the proposed integrated
mean value weight is random. Thereby, more possibil-
ities exist beyond these six formulas.

For each miRNA-mRNA pair in every row of the input
table exemplified in Table 1, we calculated their six dif-
ferent weights. For example, the first row of the input
table, the OBFC1 and hsa-mir-383 pair has TCC value −
0.092 and N_CC value 0.271. The six weights of the pair
are 0.225, 0.092, 0.271, 0.182, 0.158 and 0.271, respect-
ively using weight formulas in Table 4.

Evaluation of six edge weight formulas by traditional
hierarchical clustering algorithm
The traditional hierarchical clustering algorithm [24]
was performed to evaluate six edge weight formulas. A
particular clustering is not defined in the traditional
hierarchical clustering algorithm. Instead, a sequence of
clusters is given for researchers to interpret. To run the
traditional hierarchical clustering algorithm on our bi-
partite graph edge list, the original pseudocode in [24] is
adapted and shown in Fig. 4.
To cluster the miRNA-mRNA pairs using traditional

hierarchical clustering algorithm, we subjectively run n
steps, namely add top-n largest weighted edges to the
empty graph to obtain a new graph with n edges. First,
we initialize an empty bipartite graph. In each step, from
the input table of edge list, we choose a miRNA-mRNA
pair if its edge weight is currently the maximum edge
weights, and then add the pair to the bipartite graph; the
chosen pair is removed from the input table of edge list.
The process is repeated n times. n is subjectively deter-
mined by the user, rather than determined by a criterion
inside the algorithm. Finally, there are n edges of
miRNA-mRNA pair in the bipartite graph. The miRNA
and mRNA vertices with weighed edges are visualized
using igraph [25] and ggnet2 (https://briatte.github.io/
ggnet/) packages in R programming language.
The traditional hierarchical clustering algorithm can

be used to evaluate six edge weight formulas. Given a
specific threshold of number of edges, ie., steps, in the
traditional hierarchical clustering, an edge weight for-
mula that produces smaller number of disjoint clusters
suggest that more high-weighted miRNA-mRNA inter-
actions are clustered based on this formula, so this edge
weight formula are considered better than other weight
formulas. Thereby, the correlation between the con-
nected cluster number and different edges/steps using
different weight formulas is studied following the work-
flow diagram in Fig. 5. Based on the result part, the inte-
grated mean value weight is now adopted in the sequel.

Table 2 An example of edge list denoting a miRNA-mRNA
bipartite graph. The edge list has three columns: miRNA vertex,
mRNA vertex, and their edge weight. The pairs of miRNA-mRNA
with the 10 largest integrated mean value weights (described in
the next subsection) are listed as an example

mRNA microRNA weight

ASB8 hsa-mir-378 0.802

FYCO1 hsa-mir-378 0.773

CYB5R1 hsa-mir-378 0.772

TMEM143 hsa-mir-378 0.763

PHKA1 hsa-mir-944 0.759

MYOM3 hsa-mir-95 0.755

PDLIM3 hsa-mir-95 0.751

DCAF6 hsa-mir-944 0.749

ASB14 hsa-mir-378 0.747

PHTF2 hsa-mir-944 0.744

Fig. 3 Definition of means of four subsets in T_CC and N_CC. The
red arrows denote that the correlation coefficients are converted
from negative in normal to positive in tumor. The green arrows
denote that the correlation coefficients are converted from positive
in normal to negative in tumor

Table 3 Coefficient of correlation coefficient in the integrated
mean value weight formula

λ1 ¼ mþ
T CC

mþ
T CCþm−

N CC

1−λ1 ¼ m−
N CC

mþ
T CCþm−

N CC

λ2 ¼ m−
T CC

m−
T CCþmþ

N CC
1−λ2 ¼ mþ

N CC
m−

T CCþmþ
N CC

Ding et al. BMC Medical Genomics          (2019) 12:117 Page 6 of 27

https://briatte.github.io/ggnet/
https://briatte.github.io/ggnet/


The traditional hierarchical clustering algorithm can
actively, not passively, cluster the miRNA-mRNA pairs
and also can filter the top-weighted edges in the graph,
because only the top weighted, namely important, edges
are added to the graph. In the meantime, the smaller
weight edges, which might also have biological roles are
ignored. To solve this issue, we proposed an objective
maximum weighted merger method (MWMM) ap-
proach that also clusters smaller weight edges and tries
to achieve the global optimum instead of only clustering
top-weighted edges. Thereby, traditional hierarchical
clustering algorithm was only used to evaluate six edge
weight formulas in this study.

Graph partitioning of the bipartite graphs
Partitioning the graph G consists of dividing the vertices
into clusters, such that the total weight of the edges

whose end points are in different clusters is minimized.
The objective of this kind of partitioning is to minimize
the cut, i.e. the total weight of the edges crossing the
clusters. This is equivalent to maximizing the total
weight of the edges that are inside the clusters [26].
In general, a graph’s vertex set V(G) may be partitioned

into c disjoint parts, V1, V2, …, Vc, such that V =V1∪V2∪V3

… ∪Vc. Such parts may be referred to as subgraphs, parti-
tions, or communities, but they shall be referred to as clus-
ters in this discussion. A cluster, with more weighted
connections inside and fewer weighted connections to
other clusters, indicates that the members of a cluster are
more similar or linked to each other than those in the por-
tions of the graph outside that cluster [27]. The partitioning
is illustrated in Fig. 6.

Hungarian and blossom algorithm matching in graph
theory
A matching in graph theory is defined as a subset of edges
such that none of the edges in the subset shares a common
vertex. A maximum edge-weighted matching is a matching
where the weight sum of the matched edges is as large as
possible. In other words, we seek a perfect matching M to
maximize the total weight w(M) =∑e ∈Mw(e).
The Hungarian algorithm is a combinatorial

optimization algorithm used to solve the assignment
problem. For example, if the performance of each of n
people on each of n jobs is scored numerically, the as-
signment problem tries to assign people to jobs to make
the sum of the scores as large as possible [28]. A tiny ex-
ample of Hungarian algorithm is drawn in Fig. 7.
The Blossom Algorithm is an algorithm for finding the

maximum matching in a general graph through

Table 4 Formulas of six proposed weights to quantify the T_CC
and N_CC simultaneously

Weight name Formula

integrated mean
value weight

λ1 � T CC þ ð1−λ1Þ � jN CCj; if T CC > 0
λ2 � jT CCj þ ð1−λ2Þ � N CC; if T CC < 0

�

all negative value
weight

jN CCj; T CC > 0
jT CCj; T CC < 0

�

all positive value
weight

T CC; T CC > 0
N CC; T CC < 0

�

arithmetic mean
value weight

jT CCjþjN CCj
2

geometric mean
value weight

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijT CCj � jN CCjp

maximum absolute
value weight

max(|T _ CC|, |N _ CC|)

Fig. 4 Pseudocode of traditional hierarchical clustering algorithm adapted from [24]. The algorithm is applied to a weighted edge list
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Fig. 5 The workflow of the traditional hierarchical clustering algorithm that cluster the miRNA-mRNA pairs based on the edge weights derived
from the different formulas

Fig. 6 An illustration of partitioning V(G) into a number of bipartite subgraphs. The input edge-weighted graph is bipartite, i.e., V(G) = V(A)∪V(B)
and all edges are linked between disjoint parts A and B, where part A represents miRNAs, with (upper) nodes denoted by squares, and part B
represents mRNAs, with (lower) nodes denoted by circles
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shrinking cycles in the graph to reveal augmenting paths.
The Blossom Algorithm is used to solve assignment
problem, traveling salesman problem, etc. Given a gen-
eral graph G = (V, E), the Blossom algorithm finds a
matching M such that each vertex in V is incident with
at most one edge in M and the edge weight w(M) is
maximized [29]. A tiny example of blossom algorithm is
drawn in Fig. 7.

MWMM procedure
The maximum weighted merger method consists of two
major stages. First, MWMM implements Hungarian algo-
rithm to find maximum edge-weighted matchings in bipart-
ite graphs. We iteratively constructed and combined
maximum edge–weighted matchings via the Hungarian al-
gorithm to produce disjointed star graphs, labeled from
K1,1 to K1,k. Second, MWMM implements the Blossom al-
gorithm to find maximum edge-weighted matchings in
general graphs. We iteratively merge the initialized dis-
jointed stars derived from the continuous iteration of Hun-
garian algorithm to form new edge–weighted clusters. The
pseudocode of the MWMM pipeline is described in Fig. 8.
The workflow of MWMM pipeline is depicted in Fig. 9.
Taken together, taking an edge list of edge-weighted

bipartite graph, MWMM approach partition it into clus-
ters that have higher internal connection density inside a
cluster and lower external connection density outside
the cluster. In other words, inner weights of a valid clus-
ter should be greater than or equal to its outer weights.
This clustering criterion is passive and objective to
evaluate the quality of resulting clusters. This passive
evaluation approach is different from, and better than,
the subjective judgement of the cluster in the traditional

hierarchical clustering approach: “clusters are in the eyes
of the beholder”.

Application of Hungarian algorithm
The Hungarian algorithm takes input of a bipartite
graph matrix that has miRNAs as row names, mRNAs
as column names, and edge weights as entries. This raw
bipartite graph matrix is converted from the raw edge
list exemplified in Table 2.
After applying each round of the Hungarian algorithm,

we get an edge list of matched miRNAs and mRNAs.
We remove the matched zero edge weight miRNA-
mRNA pairs from the matched pairs so that the miR-
NAs or mRNAs in the zero edge weight matched pairs
can participate in the next round of Hungarian algo-
rithm to match their non-zero edge weight miRNA or
mRNA mates, instead of being discarded. In other
words, the matched zero edge weight miRNA-mRNA
pairs are still in the remaining bipartite matrix for the
next round of Hungarian algorithm. The matched, non-
zero edge weight mRNA and miRNA pairs are used to
construct star graphs shown in Fig. 10.
Before the next round of Hungarian algorithm applica-

tion, the columns of matched mRNAs are removed from
the remaining bipartite graph matrix, whereas the rows
of matched miRNAs are usually not removed from the
remaining bipartite graph matrix. However, miRNAs
that have zero edge weight with all mRNAs are removed
from the remaining bipartite graph matrix, when each
miRNA row of the remaining bipartite graph matrix is
checked before the next round of Hungarian algorithm.
Since these miRNAs has been matched and stored in the
internal nodes of star graphs, keeping these used

A B

Fig. 7 Tiny example of matching algorithms. Squares or circles are vertices. The numbers are edge weights. Green edges are edges in the maximum
matching. Black edges are edges that are not in the maximum matching. (A): Hungarian algorithm that finds maximum edge-weighted matchings in a
bipartite graph. (B): Blossom algorithm that finds maximum edge-weighted matchings in a general graph. The figure is adapted from https://www-m9.ma.
tum.de/graph-algorithms/matchings-hungarian-method/index_en.html and http://jorisvr.nl/article/maximum-matching
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miRNAs in the remaining bipartite graph matrix make
the Hungarian algorithm hard to match perfectly. Fin-
ishing these processing, the next round of the Hungarian
algorithm was applied to the updated remaining bipart-
ite graph matrix.
This Hungarian algorithm was repeated until all the

miRNAs and mRNAs are removed from the remaining
bipartite graph matrix. Eventually, the Hungarian algo-
rithm merging process yields 312 K1,k (Sk) star graphs.
The Hungarian algorithm implementation is provided by
clue [30] package in R programming language.

Star graph construction by the Hungarian algorithm
In graph theory, a star (graph) is a complete bipartite graph
that has 1 internal node and k leaves, and accordingly the
star graph is named K1,k star or Sk. Note that there are 312
miRNAs and 7874 mRNAs in the raw bipartite graph. Since
one miRNA can target multiple mRNAs, after continuous
iterations of the Hungarian algorithm, we derived 312
merged star graphs. To facilitate programming, disjoint K1,k

star graphs are stored in communities object in igraph ob-
jects in R programming language. The star graph construc-
tion process is illustrated in Fig. 10.

Cross weight of vertices denoting clusters in the auxiliary
graph
The 312 star graphs constructed by Hungarian algorithm
are initial clusters that will be merged to form new clus-
ters. Then the blossom algorithm is used to combine
these star graphs or clusters. An edge-weighted auxiliary

graph with 312 vertices denoting star graphs or clusters
is formed by contracting each star graphs or (merged)
clusters of miRNAs and mRNAs to a vertex in the auxil-
iary graph. For instance, we contract clusters Ci-1, Ci, Cj,
and Cj + 1 in Fig. 6 to vertices Ci-1, Ci, Cj, and Cj + 1. in
the auxiliary graph. The auxiliary graph is illustrated in
Fig. 11.
Cross weight is defined as the sum of the weights of

the connections between two star graphs or clusters av-
eraged by the number of vertices in the two star graphs
or clusters. Averaging prevents larger clusters to be
merged preferentially only because they are large. The
connections consist of two scenarios. First, the miR-
NA(s) in a star graph/cluster has existing connections to
the mRNA(s) in the other star graph/cluster. Second, the
mRNA(s) in a star graph/cluster has existing connec-
tions to the miRNA(s) in the other star graph/cluster.
The mathematical meaning of the cross weight is to de-
tect the compounded connections between every two
cluster candidates. An example diagram of a cross
weight calculation for two disjoint K1,25 (S25) star graphs
is shown in Fig. 12.
Then the cross weight of vertices denoting clusters or

star graphs in the auxiliary graph are calculated before
each round of the blossom algorithm. The calculated
cross weights are assembled into an edge list with vertex
names of star graphs or clusters as first two column
names and cross weights as the third column name. If a
row of cross weight edge list has zero value cross weight,
the row of the two star graphs or clusters is discarded.

Fig. 8 Pseudocode of the MWMM pipeline
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Fig. 9 Workflow of the Hungarian-blossom clustering approach. The Hungarian algorithm stops when all the miRNA-mRNA pairs are assigned to
star graphs. The blossom algorithm stops when there are at most two or three partitioning parts left. As a result, original partitions produced by
Hungarian algorithm are eventually merged to several partitions by blossom algorithm

Fig. 10 Illustrated example of constructing star-graphs. The miRNA is the internal node (denoted by a square) of a star graph and the mRNA is
the leaf (denoted by a circle) of a star graph. After the first round application of the Hungarian algorithm, disjoint K1,1 stars (S1) are produced.
After the second round application of the Hungarian algorithm, disjoint K1,2 stars (S2) are formed. The internal node of each K1,2 star (S2) is the
same as each corresponding K1,1 star (S1), respectively. One of the leaves of each K1,2 star (S2) is derived from each corresponding K1,1 star (S1),
respectively. After the third iteration of Hungarian algorithm, disjoint K1,3 stars (S3) are produced. The internal node of each K1,3 star (S3) is the
same as the corresponding K1,1 star (S1) and K1,2 star (S2), respectively. Two of the leaves of each K1,3 star (S3) are derived from the corresponding
K1,2 star (S2). Eventually, disjoint K1,k stars (Sk) are constructed. The zero-value-weighted edges were removed from all the star graphs
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The edge list of non-zero cross weight is the input of
each iteration of the blossom algorithm.

The blossom algorithm for merging partitions
Taking the edge list of cross weight of 312 K1,k (Sk) star
graphs as initial input, the blossom algorithm is repeat-
edly applied to match and merge clusters. After applying
each round of the the blossom algorithm to the cross
weight edge list, the maximum edge-weighted matching
of vertices of clusters in the auxiliary graph is found. If
there is no match for some star gaphs or clusters, those

star graphs or clusters are put aside and not used in the
next round of the blossom algorithm. Then, every two
matched star graphs or clusters are merged to form new
clusters. Cross weights of every two newly merged clus-
ters are calculated for the next round of blossom algo-
rithm. Then the blossom algorithm is repeatedly applied
to the edge list of cross weight of vertices of clusters in
newly formed auxiliary graph. The output of each round
of blossom is a communities object in R programming
language containing merged star graphs or clusters. The
blossom algorithm was implemented using NetworkX
package [31] in Python programming language.

Evaluation of six edge weight formulas by MWMM
As for the six different edge weight formulas, it would
be interesting to check how different the obtained final
partitions are. If the traditional clustering algorithm is
used to see the final partitions, all the edges will be
added to the graph, and thereby, the final partitions of
six edge weights formula would be identical. Further-
more, the final partition will have 20,661 edges in the
case of BRCA such that the graph would be indistin-
guishable. Instead, certain number of edges/steps, say,
38 edges/steps, can be used to compare the resultant
partitions of traditional hierarchical clustering algorithm.
However, the partitions from six different edge weight
formula might have different number of nodes. Thereby
it is hard to use the global evaluation metrics such as
the adjusted rand index to compare the similarity of the
partitions. The adjusted Rand index (ARI) can be used
to measure the similarity of the two communities of
clusters. ARI needs the knowledge of the ground truth
classes, which is not available in real data set or requires
manual annotation such as in the supervised learning
(https://scikit-learn.org/stable/modules/clustering.html).
The ARI has a value close to 0.0 for random labeling inde-
pendently on the number of clusters and samples and has

Fig. 11 An illustration of four example vertices of Ci-1, Ci, Cj, and Cj + 1

in the auxiliary graph. Each vertex in the auxiliary graph is a (merged)
cluster of miRNAs and mRNAs. The edge weights among vertices are
measured by cross weights described later. The solid lines denote the
connections among the four example vertices in the auxiliary graph.
The likely connections between example vertices and other vertices in
the auxiliary graph is represented by dotted lines

Fig. 12 Example diagram of a cross weight calculation for two disjoint K1,25 star graphs (S25). The dashed lines denote the cross connections
between the two star graphs. The solid lines denote the connections within a star graph. The weight of each connections are derived from the
raw input edge list. The sum of cross connection weights (dashed lines) are calculated and then averaged by the number of vertices in the two clusters
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a value exactly 1.0 when the clusters are identical (https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.
adjusted_rand_score.html) [32]. So in this study the ARI
cannot be used to tell whether the predicted clusters are
similar to the true clusters. But ARI can be used to com-
pare the similarity of resultant clusters of six weight edge
formulas produced by the MWMM pipeline.

Results
Evaluation of the six kinds of edge weights by traditional
hierarchical clustering algorithm
The traditional hierarchical clustering algorithm can
subjectively cluster the miRNA-mRNA pairs by filtering
the top-weighted edges in the graph. It can also be used
to evaluate the proposed six edge weight formulas. We
calculated the six kinds of edge weights and output the
results as the edge list with miRNA node, mRNA node,
and their edge weight, as is shown in Fig. 2 and Table 2.
Then we ran the traditional clustering algorithm to clus-
ter the miRNA-mRNA pairs based on six proposed edge
weights.
Given a specific number of steps in the traditional

hierarchical clustering, smaller number of disjoint clus-
ters suggest that more high-weighted miRNA-mRNA in-
teractions are clustered. If the miRNA-mRNA pairs with
large edge weights fall into more disjoint small clusters,
there will be a larger number of disjoint clusters, which
suggest that there is no coordinated interaction within

the clusters. From Fig. 13, we can see that under most of
the step values, the integrated mean value weight has
the fewest disjoint clusters and thereby is the preferable
formula in this study. Although we chose the integrated
mean value weight formula, researchers facing different
data can still propose other formulas. These formulas
should simultaneously combine the miRNA-mRNA

Fig. 13 numbers of connected or disjoint clusters derived from traditional hierarchical clustering algorithm with different steps n under six edge
weight formulas. The step value n is the number of the top weighted edges added to the bipartite graph

Fig. 14 Histogram of distribution of integrated mean value weight
in BRCA
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expressional correlation coefficient changes from in nor-
mal to in tumor.

Traditional hierarchical clustering algorithm on top
integrated mean value weight edges
Since we chose integrated mean value weight to quantify
the correlation change as edge weight of the miRNA-
mRNA bipartite graph thereafter, we wanted to see how
the clusters derived from traditional hierarchical cluster-
ing algorithm look like. Since traditional hierarchical
clustering algorithm selects the top weighted edges sub-
jectively by users’ setting, it is sensible to get a threshold
of edge number. Therefore, we plot a histogram to show

the distribution of integrated mean value weight in
Fig. 14. From Fig. 14, we can see that there are 38 edge
weights greater than 0.7, so we subjectively ran 38 steps
of traditional hierarchical clustering algorithm on the
miRNA-mRNA pairs with the integrated mean value
weights. In other words, we selected the top 38 edge-
weighted miRNA-mRNA pairs to form a new bipartite
graph that is shown in Fig. 15. As a comparison, top 38
edge-weighted miRNA-mRNA pairs of all six edge
weight formulas clustered by traditional hierarchical
clustering algorithm are provided in Additional file 1
From Fig. 15, we can see that using the integrated

mean value weight, the top 38 weighted edges are all

Fig. 15 The traditional hierarchical clustering resultant sub-bipartite graphs run with 38 steps based on the integrated mean value weight. The
numbers on the edges are edge weights of the integrated mean value weight. A green edge denotes the correlation coefficient change from
positive in normal to negative in tumor. A red edge denotes the correlation coefficient change from negative in normal to positive in tumor. The
circular vertices are mRNA and the rectangular vertices are miRNA

Table 5 Functions of the three most enriched miRNAs in the literature

miRNA Function Role Cancer type Reference

miR-378 suppresses the proliferation, migration and invasion tumor suppressor colon cancer [33]

miR-944 promotes cell proliferation and tumor metastasis oncogenic breast cancer [34]

miR-95 inhibit tumor cell apoptosis and increase cellular proliferation oncogenic non-small cell lung cancer [35]
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green color, which means that in tumor all the three
miRNAs inhibit the target mRNAs whereas in normal
all these miRNAs are positively correlated with their tar-
get mRNAs. Larger weights are supposed to represent
the bigger correlation inversion from normal to tumor.
The same correlation change direction suggests that
these miRNA and mRNAs are likely to be affected by
the common causal factors and that the miRNAs playing
suppressive roles to their target mRNAs is a characteris-
tics of the cancer development.

Literature spot-checks of the most enriched miRNAs
To study function of the three most enriched miRNAs
based on the integrated mean weight edge shown in Fig.
15, we looked up these miRNAs in the literature. We
found that all three miRNAs are functionally related to
cancer [33–35]. Their functions are listed in Table 5

Apply MWMM pipeline in BRCA
The whole MWMM pipeline first calculates edge
weights from table of edge list of miRNA-mRNA pairs

Table 6 Similarities of communities structures of clusters derived from six edge weight formulas using Hungarian algorithm in the
MWMM pipeline. All combinations of every two edge weight formulas are listed. Their similarity score of ARI are calculated

from to ARI

all_negative_value_weight all_positive_value_weight 0.025

all_negative_value_weight arithmetic_mean_value_weight 0.022

all_negative_value_weight geometric_mean_value_weight 0.027

all_negative_value_weight integrated_mean_value_weight 0.027

all_negative_value_weight maximum_absolute_value_weight 0.026

all_positive_value_weight arithmetic_mean_value_weight 0.03

all_positive_value_weight geometric_mean_value_weight 0.037

all_positive_value_weight integrated_mean_value_weight 0.036

all_positive_value_weight maximum_absolute_value_weight 0.039

arithmetic_mean_value_weight geometric_mean_value_weight 0.04

arithmetic_mean_value_weight integrated_mean_value_weight 0.062

arithmetic_mean_value_weight maximum_absolute_value_weight 0.046

geometric_mean_value_weight integrated_mean_value_weight 0.03

geometric_mean_value_weight maximum_absolute_value_weight 0.036

integrated_mean_value_weight maximum_absolute_value_weight 0.088

Table 7 Similarities of communities structures of clusters derived from six edge weight formulas using blossom 01 in the MWMM
pipeline. All combinations of every two edge weight formulas are listed. Their similarity score of ARI are calculated

from to ARI

all_negative_value_weight all_positive_value_weight 0.526

all_negative_value_weight arithmetic_mean_value_weight 0.527

all_negative_value_weight geometric_mean_value_weight 0.551

all_negative_value_weight integrated_mean_value_weight 0.557

all_negative_value_weight maximum_absolute_value_weight 0.531

all_positive_value_weight arithmetic_mean_value_weight 0.541

all_positive_value_weight geometric_mean_value_weight 0.565

all_positive_value_weight integrated_mean_value_weight 0.511

all_positive_value_weight maximum_absolute_value_weight 0.58

arithmetic_mean_value_weight geometric_mean_value_weight 0.542

arithmetic_mean_value_weight integrated_mean_value_weight 0.5

arithmetic_mean_value_weight maximum_absolute_value_weight 0.541

geometric_mean_value_weight integrated_mean_value_weight 0.58

geometric_mean_value_weight maximum_absolute_value_weight 0.545

integrated_mean_value_weight maximum_absolute_value_weight 0.541
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with their expression T_CC and N_CC, exemplified in
Table 1. The calculated edge weights of integrated mean
value weight are exemplified in Table 2. The raw edge
list contains 20,661 pairs of miRNA and mRNAs, includ-
ing 312 unique miRNAs and 7874 unique mRNAs. This
raw edge list is converted to raw bipartite graph matrix
for the Hungarian algorithm to run on. The number of
Hungarian algorithm iterations is 202 rounds. The mer-
ging process yields 312 K1,k (Sk) star graphs, from which
the blossom algorithm is repeatedly applied to match
and merge clusters. The blossom algorithm run 8 times
to eventually merge 312 starting star graphs or clusters
into a single cluster. One single cluster doesn’t make
sense for the purpose of clustering, but the clusters of

last iteration of Hungarian algorithm and each round of
blossom algorithm are output to communities objects in
R programming language. Users can use mathematical
and biological metrics to select clusters derived from
Hungarian algorithm or from first several rounds of
blossom algorithm to achieve the trade-off between clus-
ter size and cluster number.

Evaluation of six edge weight formulas by MWMM
To see the effects of six different edge weight formulas,
ARI was used to compare the similarity of resultant clus-
ters based on six weight edge formulas produced by
MWMM pipeline. MWMM started with six different
edge weight formulas and produced six communities
structures of clusters, respectively. Communities is a
structure in igraph package in R programming language
to represent clusters. We compared similarity of two
communities structures of clusters derived from every
two different edge weight formulas using ARI. The com-
munities structures of clusters produced by Hungarian
algorithm and blossom 01 of the MWMM approach
were shown as examples in Tables 6 and 7, respectively,
to tell whether different edge weight formulas lead to
different communities structures. From Tables 6 and 7,
we found that the communities structure of clusters de-
rived from every two edge weight formulas using Hun-
garian or blossom algorithm 01 were very similar,

Table 8 definition of three different weights for a given cluster
candidate Ci
Notation Abbreviation the sum of edge-weight

connections

inner weight IW between miRNAs and mRNAs
within a cluster candidate Ci

emitter to matched
receiver outer weight

E2MROW from miRNAs in the cluster
candidate Ci to mRNAs in all other
cluster candidates Cj where j≠ i

receiver to matched
emitter outer weight

R2MEOW from mRNAs in the cluster
candidate Ci to miRNAs in all
other cluster candidates Cj where
j≠ i

Fig. 16 The diagram of inner weight and outer weight of a given cluster Ci. The outer weights are classified into two categories: emitter to matched
receiver outer weight and receiver to matched emitter outer weight
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because their ARI values are in the same order of magni-
tude The overall similarity using blossom 01 is higher
than that using Hungarian algorithm, perhaps because
the blossom algorithm merge the clusters generated
from Hungarian algorithm, and thereby the communities
structures of clusters are more similar using blossom al-
gorithm than these using Hungarian algorithm. Since
ARI only compares clusters based on their topological
structures, ignoring their edge weights, ARI is not a suit-
able metrics to select a good edge weight formula,
whereas traditional hierarchical clustering algorithm did
the job.

Mathematical metrics of MWMM-derived clusters
A well-partitioned cluster should have more weighted
connections inside the cluster and fewer weighted con-
nections to any other outside clusters, so that the mem-
bers of the cluster are more similar or linked to each
other than to the members of other outside clusters.
This characteristics of clusters leads to the clustering
metrics used in this study. We define three weight nota-
tions to describe the connections between the micro-
RNA (emitter) and mRNA (receiver) within and across
clusters to measure the inner weight and outer weight of
clusters generated by the Hungarian algorithm and the

blossom algorithm. The three definitions are listed in
Table 8. The diagram of the calculation of inner and
outer weights are portrayed in Fig. 16.
Accordingly, we propose two conditions to validate

the mathematical significance of a candidate cluster Ci.
Condition one specifies IW > E2MROW. Condition two
specifies 2 × IW > E2MROW+R2MEOW. It is note-
worthy that in the condition two the inner weight
should be doubled, because the condition two’s outer
weights measure the connections from miRNAs inside a
cluster to mRNAs outside that cluster as well as the
mRNAs inside that cluster to the miRNAs outside that
cluster; correspondingly, the inner weight of a cluster
should also be measured twice to characterize the con-
nections from miRNAs inside a cluster to mRNAs inside
that cluster as well as from mRNAs inside that cluster to
miRNAs inside that cluster. The difference of meeting
condition one and condition two may result from that
condition one is based on only the miRNA side, whereas
condition two is based on both miRNA and mRNA
sides. Condition one is less stringent than condition two,
because condition one only compares the inner and the
outer connections to the miRNAs inside a cluster,
whereas condition two compares the inner and the outer
connections to both miRNAs and mRNAs inside a

Fig. 17 The change of cluster numbers and condition satisfactions as more merging rounds are applied. The MWMM approach is applied to
BRCA data set
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cluster. Therefore, condition one is easily met by fewer
rounds of merging algorithm.
The whole MWMM procedure consists of continuous

iterations of the Hungarian algorithm and several rounds
of the Blossom algorithm. The MWMM procedure tries
to merge existing clusters to generate new clusters that
have greater inner weight than the outer weight, seen in
Fig. 17. If we keep merging, eventually there will be one
or several very dense clusters, which have small outer
weight. Thereby, we need to make a trade–off between
the sizes and density of the clusters. In other words, we
want denser clusters with proper sizes.
From Fig. 17, we can see that continuous application

of the Hungarian algorithm produces 312 star graphs.
Afterwards, using eight rounds of application of Blossom
algorithm. The 312 star graphs/clusters are merged to one
cluster round by round. The merger effects are evaluated
by the above-mentioned condition one and condition two.
We can see that as more rounds of merging algorithm are
applied, the number of clusters first decreases dramatically

and then tends to be stable; the clusters of different sizes
satisfying condition one and/or condition two are pro-
duced by the MWMM procedures and the percent of
clusters that meets the condition one (IW > E2MROW)
and condition two (2 × IW> E2MROW+R2MEOW)
gradually increases to 100% and becomes stable. The de-
tailed metrics of the final clusters defined in Table 8 are
provided in Additional file 2.

Kyoto encyclopedia of genes and genomes (KEGG)
analysis of the clustering results
KEGG function analysis shows the biological significance
of genes that are potentially regulated by miRNAs in the
derived clusters. The biological factors enriched in the
clusters provide a new viewpoint on how mRNA–miRNA
pairs contribute to cancers. Functional analysis of genes in
clusters is implemented using clusterProfiler, an R package
for comparing biological themes among gene clusters
[36]. For example, in Fig. 18, we analyze 312 clusters de-
rived from the Hungarian algorithm result and get 22

Fig. 18 KEGG pathway enrichment of clusters derived from the Hungarian algorithm result in BRCA. The upper row of the x axis label is the ordinal
number of the 312 clusters that are significant enriched KEGG pathways. The lower row of the x axis label is value of n in geneRatio that is defined as
k/n, where n is the size of the list of genes of interest and k is the number of genes within that list which are annotated to the node. Technical details
of geneRatio refers to instructions of DOSE packages [37]
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clusters enriched in KEGG pathways with pvalueCutoff =
0.01 and qvalueCutoff = 0.05. For example, genes in 189th
cluster are enriched in cell cycle, p53 signaling pathway,
progesterone−mediated oocyte maturation, and oocyte
meiosis, suggesting the theme of the genes in the cluster
related to cancer. The members of 189th cluster (star
graph) are visualized in Fig. 19, where the internal node
miRNA hsa-mir-379 is reported to be a tumor suppressor
playing a role in inhibiting cell proliferation, migration,
and invasion in breast cancer [38], cervical cancer [39],
glioma [40], non-small cell lung cancer [41], bladder
cancer [42], osteosarcoma [43], hepatocellular carcinoma
[44], gastric cancer [45]. The genes interacting with hsa-
mir-379 in the cluster is worth further experimental
exploration, for example, CCNB1, MCM4, CCNB2, and
CDK1 that are involved in cell cycle.

Clustering method comparison
To see if our MWMM approach surpasses existing clus-
tering methods, we need to conduct performance

comparisons. Which clustering approaches are suitable
for comparison? First, the MWMM method is a down-
stream analysis approach taking certain input format, an
edge list with miRNA vertex name, mRNA vertex name,
and their edge weight. The integrated mean value weight
characterizes the correlation change in two conditions.
Therefore, the clustering approaches that only consider
one condition like MAGIA2 or miRMAP are not com-
parable to the MWMM. Second, other known clustering
algorithm might not fit the data structure of bipartite
graph in a form of edge list. For example, in a study
using time course mRNA microarray data, a non-linear
primary component analysis (PCA) neural network was
used to extract the feature vector that was afterwards
fed into a probabilistic principal surfaces (PPS) model to
find and visualize latent variables or clusters of genes
that were afterwards merged by an agglomerative clus-
tering algorithm based on negentropy information. This
negentropy clustering (NEC) algorithm can automatic-
ally determine the cluster of numbers [46], so it is better

Fig. 19 The miRNA and mRNA members of 189th cluster (star graph) derived from the Hungrian algorithm. The numbers on the edges are edge
weights of the integrated mean value weight. A green edge denotes the correlation coefficient change from positive in normal to negative in
tumor. A red edge denotes the correlation coefficient change from negative in normal to positive in tumor. The circular vertices are mRNA and
the rectangular vertices are miRNA
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than the traditional hierarchical clustering algorithm that
needs subjective determination of the cluster number.
However, this study concentrates in the miRNA-mRNA
interactions, in which a bipartite graph is constructed, so
the clustering approaches like PPS-NEC [46], k-means
[47], or WGCNA [48] that have been used to find gene
expression “modules” or clusters are unsuitable for com-
parison. Third, the miRNA-mRNA interaction bipartite
graph is not a connected graph, and thereby, some clus-
tering algorithms like minimum spanning tree cannot be
applied. Considering the above-mentioned constraints,
we choose louvain, fast_greedy, walktrap, leading_eigen,
label_propagation, and edge_betweenness to compare
with the MWMM approach. Implementations of these
clustering approaches are derived from igraph package
in R programming language.
The biological validation would benefit from a system-

atic methodology in addition to literature spot-checks.
Thereby, we biologically validate the derived clusters by
calculating their average Gene Ontology (GO) term

similarity distance scores. The GO similarity scores would
give an idea of how the genes within a cluster or across
clusters are functionally related or similar. Based on the
definition of clustering, elements within a cluster are more
similar or linked than the elements among clusters in
some traits, for example, GO term similarity. Thereby,
clusters identified by a good clustering algorithm should
have higher intra-cluster GO similarity distance scores
and lower inter-cluster GO similarity distance scores. In
other words, the difference between intra-cluster GO
similarity score and inter-cluster GO similarity score
should be higher for a good clustering algorithm.
To compare and evaluate clusters generated by differ-

ent clustering algorithms in BRCA, the GO similarity
distance scores of genes in the clusters are calculated
using GOSemSim, an R package for measuring semantic
similarity among GO terms and gene products [49]. GO
similarity distance score is calculated in three categories
of GO terms: molecular function (MF) describing mo-
lecular activities of gene products, cellular component

Fig. 20 Average GO term (Biological Process) similarity distance scores of different algorithms in BRCA. In the legend, intra-cluster means GO similarity
scores within a cluster; inter-cluster means GO similarity scores across clusters; difference is the difference between intra-cluster and inter-cluster GO
similarity scores
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(CC) describing where gene products are active, and bio-
logical process (BP) describing pathways and larger pro-
cesses made up of the activities of multiple gene
products. From Figs. 20, 21, and 22, we can see that
compared to other algorithms, the Hungarians or Blos-
som algorithm 01 have relatively higher intra-cluster
similarity and relatively lower inter-cluster similarity in
all three GO term categories. This result shows the ad-
vantage of MWMM approach over other approaches in
biological meaning.
Besides comparison with different methods like Louvain,

fast_greedy, walktrap, leading_eigen, label_propagation,
and edge_betweenness algorithms in terms of GO terms,
a mathematical comparison in term of strength of the
connection inside the cluster and outside the clusters is
also meaningful. So we calculated the inner weight and
outer weight and conditions defined in Table 8 for the
MWMM pipeline and other compared algorithms. Differ-
ent algorithms produced different number of clusters in
the resultant communities structures. To summarize, the
IW, E2MROW, and R2MEOW of clusters produced using

each algorithm were averaged, and the percent of how
many clusters produced using each algorithm meet condi-
tion 01 or 02 were also calculated, respectively. The result
summary is listed in Table 9. From Table 9, we can see
that louvain, fast_greedy, and leading_eigen algorithms
yielded clusters with the larger inner weights relative to
outer weights and high percent of condition 01 and 02 sat-
isfaction. By comparison, the Hungarian and blossom al-
gorithms in the MWMM approach at the beginning did
not produce clusters with the larger inner weights relative
to outer weights and high percent of condition 01 and 02
satisfaction, however, as the merger process went on in
the MWMM, the Hungarian and blossom algorithms in
the MWMM approach gradually generated clusters with
the larger inner weights relative to outer weights and high
percent of condition 01 and 02 satisfaction. These
phenomena comply with expectations, because all the
clustering algorithms try to make clusters based on math-
ematical criteria, while clusters are defined as inner con-
nections or similarities greater than the outer connections
or similarities.

Fig. 21 Average GO term (Cellular Component) similarity distance scores of different algorithms in BRCA. In the legend, intra-cluster means GO similarity scores
within a cluster; inter-cluster means GO similarity scores across clusters; difference is the difference between intra-cluster and inter-cluster GO similarity scores
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The running speed of different algorithms were com-
pared by running on the same data set: the edge list of
miRNA and mRNAs with integrated mean value edge
weight from BRCA. The running time was recorded re-
spectively and listed in Table 10. From Table 10, we can
see that the label-propagation, Louvain, fast_greedy,
leading_eigen, and walkstrap algorithms are fast. Our
hungagrian_blossom (MWMM) approach is acceptable.
Edge_betweenness algorithm is slow.

Clustering algorithm validation on test data sets
The MWMM approach is developed using BRCA as train-
ing data set. Can this approach also applied to some test
data sets and achieve similar clustering results in terms of
mathematical cluster traits and biological meaning? To
answer this question, we ran MWMM approach and other
six foregoing clustering algorithms on other 14 cancer
types: Bladder Urothelial Carcinoma (BLCA), Colon
adenocarcinoma (COAD), Esophageal carcinoma (ESCA),
Head and Neck squamous cell carcinoma (HNSC), Kidney

Chromophobe (KICH), Kidney renal clear cell carcinoma
(KIRC), Kidney renal papillary cell carcinoma (KIRP),
Liver hepatocellular carcinoma (LIHC), Lung adenocar-
cinoma (LUAD), Lung squamous cell carcinoma (LUSC),
Prostate adenocarcinoma (PRAD), Stomach adenocar-
cinoma (STAD), Thyroid carcinoma (THCA), and
Uterine Corpus Endometrial Carcinoma (UCEC).
Similar to BRCA, the input table of the 14 cancer
types exemplified in Table 1 were derived from results
of our previous study [18].
We find that similar to in BRCA the MWMM can also

detect clusters that has internal weights greater than or
equal to external weights in the test data sets of 14 can-
cer types. Graph of inner weights, outer weights, and
cluster sizes of KIRP is drawn in Fig. 23 as an example.
Graphs of other 13 cancer types are supplied in
Additional file 3.
We also tried to find out whether the MWMM ap-

proach can cluster miRNAs and mRNAs such that the
difference between intra-cluster and inter-cluster average

Fig. 22 Average GO term (Molecular Function) similarity distance scores of different algorithms in BRCA. In the legend, intra-cluster means GO
similarity scores within a cluster; inter-cluster means GO similarity scores across clusters; difference is the difference between intra-cluster and
inter-cluster GO similarity scores
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GO similarity distance score is relatively larger com-
pared to other algorithm results. The clustering algo-
rithms that obtain the highest differences between intra-
cluster and inter-cluster average GO similarity distance
score in each GO term category in each cancer type are
summarized in Table 11. We can see that in MWMM
has the best GO metrics in terms of BP in 11 out of 15
cancer types, CC in 13 out of cancer types, and MF in
14 out of 15 cancer types. The results suggest that the
MWMM are also effective in other cancer types, though
it is not always the best. The supporting materials for
Table 11 are provided in Additional file 4.

Discussion
There are some miRNA-mRNA clustering studies, how-
ever, these studies did not focus on the expression cor-
relation coefficient changes of miRNA-mRNA pairs that
are inverse from in normal to in tumor. The miRNAs

and mRNAs can be clustered based on their expression
correlation coefficient changes under the assumption
that the changes are not random but caused by factors
involved in cancer development. Hence, we tried to cap-
ture and cluster these miRNA-mRNA interactions.
To simultaneously quantify the changes, we proposed

integrated mean value weight that increases the contrast
of values in the data as well as other five edge weight
formula as comparison or control. Then the subjective
traditional hierarchical clustering algorithm was used to
evaluate the advantages of different edge weight formu-
las. After evaluation, integrated mean value weight was
favored because it can produce more connected clusters
at certain steps. We did not just use the traditional hier-
archical clustering algorithm only to cluster miRNA and
mRNA pairs in this study; instead, we only use it as a
tool to evaluate the edge weight formulas. This is
because traditional hierarchical clustering algorithm is
subjective and thereby makes the researchers feel diffi-
cult to determine the cluster number. Furthermore, trad-
itional hierarchical clustering algorithm only cluster the
top miRNA-mRNA pairs, and thereby it doesn’t reach a
global optimal clustering that should also involve the
low edge weight miRNA-mRNA pairs. To get around
these limitations, we proposed the maximum weighted
merger method (MWMM) pipeline.
The MWMM pipeline includes continuous iterations

of Hungarian algorithm and several rounds of blossom
algorithm. MWMM pipeline passively clusters miRNA-
mRNA pairs using maximum weighted edge matching in
the bipartite graph and general graph. Based on the GO
similarity results, the Hungarian algorithm or blossom

Table 9 Average inner weight and outer weights of clusters produced using each algorithm and how many percent of clusters
meet the conditions

Average IW Average E2MROW Average R2MEOW Condition 01 true percent Condition 02 true percent

hungarian_algorithm 0.243 0.249 0.589 63.14% 16.99%

blossom_01 0.282 0.296 0.552 62.75% 15.69%

blossom_02 0.305 0.303 0.513 59.21% 23.68%

blossom_03 0.331 0.295 0.477 68.42% 28.95%

blossom_04 0.366 0.288 0.42 78.95% 42.11%

blossom_05 0.42 0.268 0.346 100.00% 66.67%

blossom_06 0.508 0.193 0.223 100.00% 100.00%

blossom_07 0.598 0.126 0.127 100.00% 100.00%

blossom_08 0.725 0 0 100.00% 100.00%

fast_greedy 0.289 0.14 0.141 86.36% 95.45%

leading_eigen 0.27 0.165 0.111 90.00% 90.00%

edge_betweenness 0.266 0.331 0.3 46.32% 37.89%

label_propagation 0.243 0.162 0.069 80.00% 100.00%

louvain_algorithm 0.302 0.157 0.123 95.24% 100.00%

walktrap_algorithm 0.228 0.173 0.164 70.80% 81.42%

Table 10 Running time of different algorithms on BRCA data
set edge list of miRNA and mRNAs with integrated mean value
edge weight

Algorithm name Running time (second)

label-propagation 0.048

louvain_algorithm 0.062

fast_greedy 0.657

leading_eigen 1.073

walkstrap 3.078

hungagrian_blossom (MWMM) 449.232

edge_betweenness 125,278
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01 can produce clusters that have a good trade-off be-
tween the cluster size and GO similarity, compared to
the other algorithms that produce several huge-sized
clusters along with some small-sized clusters. Functional
enrichment analysis such as KEGG pathway and GO
terms was performed to find out the underlying factors
or themes from genes in each derived cluster. For ex-
ample, genes involved in p53 signaling pathway and cell
cycle pathways were successfully identified.
The effectiveness of MWMM was validated both

mathematically and biologically. Mathematically, the
MWMM-derived clusters were analyzed with respect to
their inner weights and outer weight. The percent of
clusters that meet the condition one and two gradually
increases as the MWMM merger process goes on. Even-
tually, all MWMM-derived clusters have inner weights
greater than their outer weight, namely, greater inside
connection than outside connection. Biologically,
MWMM-derived clusters have intra-cluster’s average
GO term similarity distance scores much larger than the
inter-cluster’s, compared to other six algorithms.
MWMM approach was also applied to other 14 cancer
types and it can merge initial clusters to yield clusters
that mostly keep the inner weights larger than or equal
to the outer weight in other 14 cancer types. Biologically,

the MWMM approach yields clusters that has relatively
higher intra-cluster and relatively lower inter-cluster
average GO term similarity distance scores compared to
other six clustering algorithms in most of cancer types
that are tested. This shows that the MWMM can also be
applied to data sets other than BRCA.
In the future, more information could be integrated

into MWMM pipeline. First, the expression fold change
of miRNAs and mRNAs could also be considered into
the edge weights of the miRNA-mRNA interactions to
see the relationship between the expression fold change
and correlation coefficient change. Second, the current
study is configured such that it only considers the in-
verse correlation coefficient change, namely from posi-
tive to negative or from negative to positive. It would be
interesting to see whether from high positive to low
positive or from high negative to low negative matters.
Third, more filters could be applied to the clustering al-
gorithm such as filtering out the smallest weight edges
of miRNA-mRNA pairs. Fourth, more underlying factors
or themes of each derived clusters would be easier to be
unraveled by considering other factors like gene muta-
tions, transcription factors, long noncoding RNAs, other
regulatory elements, etc. This needs incorporating litera-
ture studies and other formats of omics data.

Fig. 23 the change of cluster numbers and condition satisfactions as more merging rounds are applied. The MWMM approach is applied to KIRP
data set
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Conclusions
In this study, the expression correlation coefficient changes
of miRNA-mRNA pairs that are inverse from in normal to
in tumor were quantified by integrated mean value weight
out of proposed six edge weight formulas. The integrated
mean value weight was favored based on the evaluation of
the subjective traditional hierarchical clustering algorithm.
Then, a maximum weighted merger method (MWMM) ap-
proach combining the Hungarian algorithm and blossom al-
gorithm was used to passively cluster the miRNA-mRNA
pairs using the maximum weighted edge matching in the bi-
partite graph and general graph. The resultant clusters can
effectively capture and enrich cancer-associated miRNA-
mRNA pair candidates in different cancer types and achieve
more biologically significant clusters than other existing,
available algorithms such as Louvain, fast greedy, walktrap,
leading eigen, label propagation, and edge betweenness algo-
rithms. In the future study, it is worthwhile to investigate
how to use the clustered miRNAs and mRNAs as candidate
biomarkers for different cancer types, identify cancer driver
genes, provide clues for targets of precision medicine in can-
cer, and develop new treatment strategies.

Additional files

Additional files 1: Description of data: top 38 edge-weighted miRNA-
mRNA pairs of all six edge weight formulas clustered by traditional
hierarchical clustering algorithm are shown in the graphs. (ZIP 39 kb)

Additional files 2: Description of data: inner weight, emitter to
matched receiver outer weight, receiver to matched emitter outer
weight, condition 01, and condition 02 of each cluster derived from a
specific algorithm in the MWMM approach. (ZIP 18 kb)

Additional files 3: Description of data: the graphs describe the change
of cluster numbers and mathematical condition satisfactions as more
merging rounds are applied to different cancer types by MWMM
approach. The supplementary graphs have the same setting as Figs. 17
and 23 in the context. (ZIP 62 kb)

Additional files 4: Description of data: average GO similarity distance
scores of intra-cluster, inter-cluster, and difference between intra-cluster
and inter-cluster in each algorithm in each cancer type. (ZIP 8 kb)

Abbreviations
ARI: Adjusted Rand Index; BLCA: Bladder Urothelial Carcinoma; BRCA: Breast
invasive carcinoma; COAD: Colon adenocarcinoma; E2MROW: Emitter to
matched receiver outer weight; ENCODE: Encyclopedia of DNA Elements;
ESCA: Esophageal carcinoma; GO: Gene ontology; HNSC: Head and Neck
squamous cell carcinoma; ICGC: International Cancer Genome Consortium;
IW: Inner weight; KEGG: Kyoto Encyclopedia of Genes and Genomes;
KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma;
KIRP: Kidney renal papillary cell carcinoma; LIHC: Liver hepatocellular
carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell
carcinoma; MWMM: Maximum weighted merger method; N_CC: The miRNA-
mRNA expressional correlation coefficients in normal.; NEC: Negentropy
clustering; NGS: Next generation sequencing; PPS: Probabilistic principal
surfaces; PRAD: Prostate adenocarcinoma; R2MEOW: Receiver to matched
emitter outer weight; STAD: Stomach adenocarcinoma; T_CC: The miRNA-
mRNA expressional correlation coefficients in tumor; TCGA: The Cancer
Genome Atlas; THCA: Thyroid carcinoma; UCEC: Uterine Corpus Endometrial
Carcinoma

Acknowledgements
The results published here are in whole or part based upon data generated
by the TCGA Research Network: http://cancergenome.nih.gov/. We thank
Cheng Zhao and Peng Zhao for his input for the initial design of main
algorithms, Vincenzo Isaia for technical writing assistance, Hegui Zhu and
Qingsong Tang for the Matlab codes, Hui Jiang for statistical advice, Xinqing
Dai for assisting to write some scripts, Tao Chen for helping plotting graphs.
We also thank other members in the Bai lab at Indiana State University. The
authors would like to thank Department of Internal Medicine and Health
Information Technology & Services at University of Michigan for their
support.

Table 11 summary of which clustering approaches achieve the highest difference of intra-cluster and inter-cluster average GO
similarity distance score in three GO term categories in 15 cancer types

cancer_type top_BP_difference top_CC_difference top_MF_difference

BLCA MWMM MWMM MWMM

BRCA MWMM MWMM MWMM

COAD MWMM edge_betweenness leading_eigen

ESCA label_propagation MWMM MWMM

HNSC MWMM MWMM MWMM

KICH MWMM MWMM MWMM

KIRC MWMM MWMM MWMM

KIRP MWMM MWMM MWMM

LIHC MWMM MWMM MWMM

LUAD MWMM MWMM MWMM

LUSC label_propagation MWMM MWMM

PRAD MWMM leading_eigen MWMM

STAD MWMM MWMM MWMM

THCA label_propagation MWMM MWMM

UCEC label_propagation MWMM MWMM

Ding et al. BMC Medical Genomics          (2019) 12:117 Page 25 of 27

https://doi.org/10.1186/s12920-019-0562-z
https://doi.org/10.1186/s12920-019-0562-z
https://doi.org/10.1186/s12920-019-0562-z
https://doi.org/10.1186/s12920-019-0562-z
http://cancergenome.nih.gov/


Authors’ contributions
LD wrote and revised the manuscript, wrote the codes, and drew diagrams
and graphs. ZF wrote codes and plotted graphs and revised the manuscript.
YB designed and guided the project and finalized the revision. All authors
read and approved the final manuscript.

Funding
This research was supported by senior research grant funds from the Indiana
Academy of Sciences to YB, start-up funds from Indiana State University to
YB, and Department of Internal Medicine at University of Michigan Medical
School. The authors thank The Center for Genomic Advocacy (TCGA) and the
Department of Mathematics and Computer Science at Indiana State Univer-
sity for computing servers. The funders had no role in the study design, data
collection and analysis and interpretation, decision to publish, or preparation
of the manuscript.

Availability of data and materials
The source codes supporting the conclusions of this article are available in
the GitHub at https://github.com/BaiLab/MWMM.

Ethics approval and consent to participate
Not available

Consent for publication
Not applicable.

Competing interests
Author Yongsheng Bai is the editorial board member for BMC Medical
Genomics. All other authors declare that they have no competing interests.

Author details
1Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
2Department of Mathematics and Computer Science, Indiana State
University, Terre Haute, IN 47809, USA. 3Department of Internal Medicine,
University of Michigan, Ann Arbor, MI 48105, USA.

Received: 10 February 2019 Accepted: 26 July 2019

References
1. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, Liang Y, Rivkin E,

Wang J, Whitty B, et al. International Cancer genome consortium data
portal—a one-stop shop for cancer genomics data. Database. 2011;2011:
bar026.

2. ENCODE_Project_Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489(7414):57–74.

3. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer genome atlas
(TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;
19(1a):A68–77.

4. Shahab SW, Matyunina LV, Mezencev R, Walker LD, Bowen NJ, Benigno BB,
McDonald JF. Evidence for the complexity of microRNA-mediated
regulation in ovarian cancer: a systems approach. PLoS One. 2011;6(7):
e22508.

5. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA
transcripts. Proc Natl Acad Sci U S A. 2007;104(45):17719–24.

6. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of
mammalian microRNA host genes and transcription units. Genome Res.
2004;14(10a):1902–10.

7. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are
transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

8. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from
capped, polyadenylated transcripts that can also function as mRNAs. RNA.
2004;10(12):1957–66.

9. Melamed Z, Levy A, Ashwal-Fluss R, Lev-Maor G, Mekahel K, Atias N, Gilad S,
Sharan R, Levy C, Kadener S, et al. Alternative splicing regulates biogenesis
of miRNAs located across exon-intron junctions. Mol Cell. 2013;50(6):869–81.

10. Bryan K, Terrile M, Bray IM, Domingo-Fernandéz R, Watters KM, Koster J,
Versteeg R, Stallings RL. Discovery and visualization of miRNA–mRNA
functional modules within integrated data using bicluster analysis. Nucleic
Acids Res. 2014;42(3):e17.

11. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity:
microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;
11(3):228–34.

12. Nunez YO, Truitt JM, Gorini G, Ponomareva ON, Blednov YA, Harris RA,
Mayfield RD. Positively correlated miRNA-mRNA regulatory networks in
mouse frontal cortex during early stages of alcohol dependence. BMC
Genomics. 2013;14(1):1–21.

13. Karapetyan AR, Buiting C, Kuiper RA, Coolen MW. Regulatory roles for long
ncRNA and mRNA. Cancers (Basel). 2013;5(2):462–90.

14. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.
15. Li P, Sheng C, Huang L, Zhang H, Huang L, Cheng Z, Zhu Q. MiR-183/−96/

−182 cluster is up-regulated in most breast cancers and increases cell
proliferation and migration. Breast Cancer Res. 2014;16(6):1–17.

16. Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G. Identifying
microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes. 2012;
5(1):1–10.

17. da Silveira W, Renaud L, Simpson J, Glen W, Hazard E, Chung D, Hardiman
G. miRmapper: a tool for interpretation of miRNA–mRNA interaction
networks. Genes. 2018;9(9):458.

18. Bai Y, Ding L, Baker S, Bai JM, Rath E, Jiang F, Wu J, Jiang H, Stuart G. Dissecting
the biological relationship between TCGA miRNA and mRNA sequencing data
using MMiRNA-viewer. BMC Bioinformatics. 2016;17(13):336.

19. Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C. MAGIA (2): from
miRNA and genes expression data integrative analysis to microRNA–
transcription factor mixed regulatory circuits (2012 update). Nucleic Acids
Res. 2012;40(Web Server issue:W13–21.

20. Liu Y, Baker S, Jiang H, Stuart G, Bai Y. Correlating bladder cancer risk genes
with their targeting microRNAs using MMiRNA-tar. Genomics Proteomics
Bioinformatics. 2015;13(3):177–82.

21. Oulas A, Karathanasis N, Louloupi A, Iliopoulos I, Kalantidis K, Poirazi P. A
new microRNA target prediction tool identifies a novel interaction of a
putative miRNA with CCND2. RNA Biol. 2012;9(9):1196–207.

22. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell. 2005;120(1):15–20.

23. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human
MicroRNA targets. PLoS Biol. 2004;2(11):e363.

24. Hunter DJ. Thinking through applications. In: Essentials of Discrete
Mathematics, vol. 396. 3rd ed. Burlington: Jones & Bartlett Learning, LLC; 2015.

25. Csárdi G, Nepusz T. The igraph software package for complex network
research. InterJournal Complex Syst. 2006;5:1695.

26. Boulle M. Compact mathematical formulation for graph partitioning. Optim
Eng. 2004;5(3):315–33.

27. Qi X, Tang W, Wu Y, Guo G, Fuller E, Zhang C-Q. Optimal local community
detection in social networks based on density drop of subgraphs. Pattern
Recog Lett. 2014;36:46–53.

28. Kuhn HW. The Hungarian method for the assignment problem. Nav Res
Logist. 1955;2(1–2):83–97.

29. Edmonds J. Paths, trees, and flowers. Can J Math. 1965;17(3):449–67.
30. Hornik K. A CLUE for CLUster Ensembles. J Stat Softw. 2005;14(12):1–25.
31. Hagberg A, Schult D, Swart P. Exploring network structure, dynamics, and

function using NetworkX. In: Proceedings of the 7th Python in Science
Conference (SciPy 2008). Los Alamos: Los Alamos National Lab.(LANL); 2008.
p. 11–5.

32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in
Python. J Mach Learn Res. 2011;12(Oct):2825–30.

33. Zeng M, Zhu L, Li L, Kang C. miR-378 suppresses the proliferation, migration
and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett.
2017;22(1):12.

34. He H, Tian W, Chen H, Jiang K. MiR-944 functions as a novel oncogene and
regulates the chemoresistance in breast cancer. Tumour Biol. 2016;37(2):
1599–607.

35. Ma W, Ma CN, Li XD, Zhang YJ. Examining the effect of gene reduction in
miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer
Gene Ther. 2016;23(2–3):66–71.

36. Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS. 2012;16(5):284–7.

37. Yu G, Wang L, Yan G, He Q. DOSE: an R/Bioconductor package for
disease ontology semantic and enrichment analysis. Bioinformatics.
2015;31(4):608–9.

Ding et al. BMC Medical Genomics          (2019) 12:117 Page 26 of 27

https://github.com/BaiLab/MWMM


38. Khan S, Brougham CL, Ryan J, Sahrudin A, O'Neill G, Wall D, Curran C,
Newell J, Kerin MJ, Dwyer RM. miR-379 regulates cyclin B1 expression and is
decreased in breast cancer. PLoS One. 2013;8(7):e68753.

39. Shi X, Xiao X, Yuan N, Zhang S, Yuan F, Wang X. MicroRNA-379 suppresses
cervical Cancer cell proliferation and invasion by directly targeting V-crk
avian sarcoma virus CT10 oncogene homolog-like (CRKL). Oncol Res. 2018;
26(7):987–96.

40. Li L, Zhang H. MicroRNA-379 inhibits cell proliferation and invasion in
glioma via targeting metadherin and regulating PTEN/AKT pathway. Mol
Med Report. 2018;17(3):4049–56.

41. Zhou F, Nie L, Feng D, Guo S, Luo R. MicroRNA-379 acts as a tumor
suppressor in non-small cell lung cancer by targeting the IGF1R-mediated
AKT and ERK pathways. Oncol Rep. 2017;38(3):1857–66.

42. Wu D, Niu X, Tao J, Li P, Lu Q, Xu A, Chen W, Wang Z. MicroRNA-379-5p
plays a tumor-suppressive role in human bladder cancer growth and
metastasis by directly targeting MDM2. Oncol Rep. 2017;37(6):3502–8.

43. Xie X, Li Y-S, Xiao W-F, Deng Z-H, He H-B, Liu Q, Luo W. MicroRNA-379
inhibits the proliferation, migration and invasion of human osteosarcoma
cells by targetting EIF4G2. Biosci Rep. 2017;37(3):BSR20160542.

44. Chen JS, Li HS, Huang JQ, Dong SH, Huang ZJ, Yi W, Zhan GF, Feng JT, Sun
JC, Huang XH. MicroRNA-379-5p inhibits tumor invasion and metastasis by
targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Lett. 2016;
375(1):73–83.

45. Xu M, Qin S, Cao F, Ding S, Li M. MicroRNA-379 inhibits metastasis and
epithelial-mesenchymal transition via targeting FAK/AKT signaling in gastric
cancer. Int J Oncol. 2017;51(3):867–76.

46. Amato R, Ciaramella A, Deniskina N, Mondo CD, di Bernardo D, Donalek C,
Longo G, Mangano G, Miele G, Raiconi G, et al. A multi-step approach to
time series analysis and gene expression clustering. Bioinformatics. 2006;
22(5):589–96.

47. MacQueen J. Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics: 1967. Berkeley:
University of California Press; 1967. p. 281–97.

48. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol. 2005;8. https://doi.org/10.22
02/1544-6115.1128.

49. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for
measuring semantic similarity among GO terms and gene products.
Bioinformatics. 2010;26(7):976–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ding et al. BMC Medical Genomics          (2019) 12:117 Page 27 of 27

https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Source data of BRCA from TCGA
	Edge-weighted bipartite graph model
	Edge weight calculation
	Evaluation of six edge weight formulas by traditional hierarchical clustering algorithm
	Graph partitioning of the bipartite graphs
	Hungarian and blossom algorithm matching in graph theory
	MWMM procedure
	Application of Hungarian algorithm
	Star graph construction by the Hungarian algorithm
	Cross weight of vertices denoting clusters in the auxiliary graph
	The blossom algorithm for merging partitions
	Evaluation of six edge weight formulas by MWMM

	Results
	Evaluation of the six kinds of edge weights by traditional hierarchical clustering algorithm
	Traditional hierarchical clustering algorithm on top integrated mean value weight edges
	Literature spot-checks of the most enriched miRNAs
	Apply MWMM pipeline in BRCA
	Evaluation of six edge weight formulas by MWMM
	Mathematical metrics of MWMM-derived clusters
	Kyoto encyclopedia of genes and genomes (KEGG) analysis of the clustering results
	Clustering method comparison
	Clustering algorithm validation on test data sets

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

