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Abstract

Background: Identifying molecular biomarkers characteristic of ischemic stroke has the potential to aid in
distinguishing stroke cases from stroke mimicking symptoms, as well as advancing the understanding of the
physiological changes that underlie the body’s response to stroke. This study uses machine learning-based analysis
of gene co-expression to identify transcription patterns characteristic of patients with acute ischemic stroke.

Methods: Mutual information values for the expression levels among 13,243 quantified transcripts were computed
for blood samples from 82 stroke patients and 68 controls to construct a co-expression network of genes
(separately) for stroke and control samples. Page rank centrality scores were computed for every gene; a gene’s
significance in the network was assessed according to the differences in their network’s pagerank centrality
between stroke and control expression patterns. A hybrid genetic algorithm – support vector machine learning tool
was used to classify samples based on gene centrality in order to identify an optimal set of predictor genes for
stroke while minimizing the number of genes in the model.

Results: A predictive model with 89.6% accuracy was identified using 6 network-central and differentially expressed
genes (ID3, MBTPS1, NOG, SFXN2, BMX, SLC22A1), characterized by large differences in association network
connectivity between stroke and control samples. In contrast, classification models based solely on individual genes
identified by significant fold-changes in expression level provided lower predictive accuracies: < 71% for any single
gene, and even models with larger (10–25) numbers of gene transcript biomarkers gave lower predictive accuracies
(≤ 82%) than the 6 network-based gene signature classification. miRNA:mRNA target prediction computational
analysis revealed 8 differentially expressed micro-RNAs (miRNAs) that are significantly associated with at least 2 of
the 6 network-central genes.

Conclusions: Network-based models have the potential to identify a more statistically robust pattern of gene
expression typical of acute ischemic stroke and to generate hypotheses about possible interactions among
functionally relevant genes, leading to the identification of more informative biomarkers.
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Background
The identification of biomarkers characteristic of acute
ischemic stroke (AIS) is important both from the stand-
point of basic research and for clinical practice. Distin-
guishing actual instances of AIS from stroke mimics is
critical for the triage process in emergency medicine. In
addition to providing a method for corroborating diag-
nosis of AIS, stroke biomarkers have the potential to
serve as predictors of stroke severity and clinical out-
comes when the abundance of a particular gene product
has a significant association with patient outcome mea-
sures. Biomarker discovery can also provide additional
insight into the basic physiology and molecular biology
surrounding AIS and similar infarctions, including apop-
tosis of brain cells, by identifying genes in key regulatory
pathways.
Several recent studies have identified molecular AIS

biomarkers from blood samples. Among the bio-
markers considered are the standard metabolites
assayed in hospital labs, mRNA expression array,
RNASeq data, miRNA data, and mass spectroscopy
proteomic data [1–3]. One of the molecular markers
most strongly associated with AIS is the tetracicopep-
tide repeat protein TTC7B, which is responsible for
localizing the P14K kinase in the plasma membrane.
Mutations in TTC7B have been found to be associ-
ated with stroke risk, and the gene appears to be
downregulated in stroke patients in comparison to
control samples [4]. Similarly, miRNA panel assays
found higher blood let-73-5p levels associated with
downregulation of CASP3 and NLK in AIS patients
compared to controls [5].
The conventional approach taken in most of these

studies is to compare gene expression levels (or metabol-
ite densities) between an experimental and control group
of samples, which in this context means samples taken
from stroke patients vs. non-stroke patients. Gene ex-
pression comparisons are made by computing the log
fold change (FC) in relative transcript densities between
stroke and non-stroke in order to determine the extent
to which a gene’s level of expression is up or down-regu-
lated between (for instance) stroke vs. non-stroke cases.
While simple and efficient, such approaches suffer

from several drawbacks. Among these is the fact that
even with p-value corrections for multiple comparisons,
the number of candidate significant genes remains too
high to be of practical value as biomarkers. Furthermore,
the genes identified from FC often have no functional
relationship with one another, nor do comparisons of
gene expression levels identify associations among genes
in common pathways. As a result, even if some tran-
scriptomic analyses of stroke patients seem promising
and were validated with additional qPCR experiments
(e.g. [4], which identified TTC7B), the results were not

reproducible in further studies and thus their predictive
performance for the diagnosis of stroke is limited.
Due to the limitations in the analyses of expression data

that are based solely on FC differences, a number of recent
studies, e.g. [6–8] have applied machine learning algorithms
such as support vector machines, discriminant analysis, and
k-nearest neighbour (KNN) clustering to identify more sta-
tistically robust set of genetic predictors that can consist-
ently distinguish stroke from non-stroke cases. The present
study uses such methods in combination with gene expres-
sion network models as a novel approach to stroke bio-
marker discovery. Analyses of gene expression data make
increasing use of network-based approaches that identify
covarying transcription patterns among genes [9–12]. Sev-
eral algorithms have been used to construct gene networks
from co-expression data: usually graph edges between pairs
of genes are identified from their expression covariances or
mutual Shannon-Weaver information measures [12]. The
significance of a gene within the network can be quantified
in terms of its topological relationship to the other genes –
potentially indicating that a gene plays a key regulatory role
in an expression pathway. Such network significance met-
rics are functions of the degree (number of edges) of each
node and the weighted degrees of some neighborhood set.
Specifically, the “centrality” of a node, computed from its
own degree and a weighted count of its neighbors’ (defined
up to some Hamming distance) determines its topological
importance in a network. A number of network measures
can be used to quantify the functional importance of genes
in an interaction network, including eigenvector centrality
and Page centrality [13, 14].
There has been limited application of network central-

ity measures to the identification ofg stroke biomarkers.
One such study [15] used network models and PageRank
centrality to identify significant miRNA-mRNA interac-
tions in animal models of AIS and validated the signifi-
cant mRNAs by fold change comparisons of human
gene expression levels in stroke vs. control patients. In
this study, we analyse gene expression data from the
blood samples of AIS patients and control groups to
construct gene expression network models. The func-
tional importance of genes will be determined by their
network centrality, the differences in gene centrality be-
tween stroke and control samples will be used to identify
stroke biomarkers using machine learning approaches.
The efficacy of this network-based method will be com-
pared to the traditional approaches based on the magni-
tude of difference (FC) in transcript abundance between
stroke and control samples.

Methods
Datasets
The Gene Expression Omnibus (GEO) was queried to
obtain expression profile data in blood samples taken
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from stroke patients. The transcriptomics data for
both AIS and control (non-stroke) samples were ob-
tained from published stroke gene expression studies
[4, 16, 17]. All of these data were from microarray
experiments (Affymetrix whole-genome expression ar-
rays U133 2.0) on peripheral blood samples from
stroke patients and from control non-stroke patients.

Data integration
Analysis of the pooled data requires integration of the
different expression array datasets from [4, 16, 17] into a
single expression matrix with a consistent scaling of the
expression levels. Dataset [4] consists of 20 stroke and
control peripheral blood mononuclear cell (PBMC) sam-
ples, [16] has 39 stroke and 25 control whole blood sam-
ples, while [17] also has whole blood for 23 stroke and
control samples. Because the three datasets were gener-
ated via different instrumentation and experimental
setup, they were separately and differently normalized in
their initial format. Therefore, we also initially re-nor-
malized each data set separately using robust multi-array
averaging (RMA [18]) and log transformation of the
data. We note that the stroke samples in [16] were eval-
uated at three time points (within 3 h, 5, and 24 h of the
stroke event); only the 3 h time point data were used for
this study.
Additionally, pooling data from different studies meant

combining expression arrays derived from whole blood
samples vs. those from PBMC. Because PBMC excludes
non-nucleate cells, one may expect somewhat different
mRNA profiles with respect to whole blood due to dif-
ferences in cell/tissue type. Consequently, it was neces-
sary to determine whether pooling PBMC and whole
blood data may introduce artifacts due to mRNA profile
differences between the different types of blood samples.
This was achieved by comparing the FC per-gene in the
whole blood only datasets to the pooled blood/PBMC
data using Spearman rank-based correlation analyses.
The data sets were merged by performing a second

layer of joint normalization similar to the standard ap-
proaches used for qPCR data [19]. Initially, we selected 8
commonly used housekeeping genes (ACTB, B2M,
HMBS, HPRT1, RPL13A, SDHA, TBA, YWHAZ) that
were expressed at comparable mean levels in both treat-
ment (stroke) and control groups and followed the pro-
cedures outlined in [19] to identify the minimal subset
of genes that show the most among-experiment variabil-
ity to use as normalizers. Because all of these genes
showed relatively high FC across samples (Log2FC prior
to median per-sample normalization was > 0.3 for all the
examined housekeeping genes), normalization was per-
formed based on median per-sample expression level ra-
ther than rescaling with respect to expression levels of
housekeeping genes.

The pooled data were filtered so that only genes with
less than 10% missing expression values would be
retained for further analysis. For the remaining missing
values, the KNN-Impute method [20] was applied to
properly impute the missing data with K = 20. For the
final stage of quality control, outliers were identified
with a method based on principal components analysis
(PCA) – retaining the principal components that
accounted for 90% of covariation, and then applying the
local outlier factor (LOF) approach [21] to cluster sam-
ples and detect outliers as the unclustered samples. This
analysis indicated that less than 5% of the data were
marked as outliers, thereby passing a predefined thresh-
old of fewer than 10% outliers for a dataset to be consid-
ered valid for further analysis.

Analysis of differential expression
Analyses of differential expression (fold-change in gene
expression levels between stroke and non-stroke sam-
ples) were performed using InSyBio’s implementation of
limma (linear model for microarray) using the Ebayes al-
gorithm [22] to evaluate linear model fit considering the
sample type (PBMC/whole blood) as a covariate. Moder-
ated t-statistics (t-scores where the standard errors are
reduced to a common value across probes) were used to
determine the p-values associated with the log fold-
change (log FC), i.e. log2[XS/XC], where XS and XC, are,
respectively, the mean gene expression levels in the
stroke and control samples. The Benjamini-Hochberg
false discovery rate (FDR) correction [23] was performed
to adjust the p-values for multiple comparison. Statisti-
cally significant log FC values were defined as those with
FDR-adjusted p < 0.05 of the moderated t-statistic.
Differences in instrumentation across samples were

considered a potential source of bias, and was removed
by specifying this variation as a covariate in the Ebayes
algorithm to account for heterogeneity between the
combined expression arrays. Genes with statistically sig-
nificant log FC values between stroke and control sam-
ples are retained as input for prediction models. The
prediction models developed from this gene set were
used for comparison with prediction models using gene
sets derived from the network-based methods of identi-
fying significant genes, as outlined below.

Network-based biomarker characterization
In order to identify biomarkers that are both statistically
and potentially functionally significant, the InSyBio
Bionets network-based approach was applied to the ex-
pression data. The network analyses leverage mutual co-
variance in expression levels to characterize statistical
association of transcription patterns among genes. Fol-
lowing the mutual information-based approach de-
scribed in [24], a correlation network was constructed
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for both control and stroke sample expression data. For
every gene pair, the mutual information value I between
the expression levels of two genes x,y is computed,
where for the probabilities (frequencies) of observed
states i,j ∈ x,y and joint frequencies pij

Ix;y ¼
X

i∈x

X

j∈y

pi;i log
pij
pip j

" #

A first cut-off value of I < 0.2 is used to eliminate un-
correlated data. The statistical significance of covariance
in expression between the remaining gene pairs was de-
termined based on 95% confidence intervals in a bivari-
ate normal distribution, with the final significance
threshold that was used for most gene pairs typically
corresponded to mutual information values of I = 0.7–
1.0. As outlined in [25], weighted edges are assigned to
pairs of nodes with significant mutual information.
The centrality of each node (gene) in the graph was

determined using the PageRank algorithm [13, 14] – a
modified eigenvector centrality algorithm best-known
for its use by Google to identify the most relevant
matches to search query terms. Centrality scores were
assigned to genes in both the stroke and control data
sets. The mean log2 FC in centrality scores between
stroke and control were compared using t-tests (follow-
ing Spiro-Wilcoxon tests for normality) where
statistically significant nodes were defined as those with
FDR-adjusted p < 0.05. We refer to these as network sig-
nificant genes, to distinguish this set of genes from those
identified by expression level FC significance.
The Gene Ontology (GO) resource [26] and DAVID

[27, 28] annotation tools were used to characterize the
functional roles and other shared features of centrally
significant genes using enrichment analysis of the gene
set with respect to functional roles and pathways. In
addition, the Hamming distance d = 1 neighbor set of
each network-central gene was compared to the set of
genes with known or predicted interactions and func-
tional associations with the network-central genes ac-
cording to the STRING database tool [29]. Associations
of genes in the neighborhood sets with hereditary dis-
eases was assessed using the DisGeNet [30] tool, which
assigns an association score to genes whose mutational
variants are linked to known diseases in the biomedical
literature.

Characterization of predictive accuracy
The set of genes with significantly different network cen-
trality values was used to develop machine learning
models that optimize the predictive accuracy of stroke
vs. non-stroke classification using a minimal number of
genes. Generating a manageable and robust model for
stroke prediction/classification requires optimization

with respect to two criteria: the first is the predictive ac-
curacy, i.e. the frequency with which samples are cor-
rectly classified as coming from AIS vs. control based on
gene expression), and second, simultaneously attempting
to minimize the number of genes that are used to gener-
ate the predictive model. This algorithm was applied to
both the set of network-significant genes and the FC-sig-
nificant genes in order to compare the relative predictive
value of genes identified from networks vs. individual ex-
pression levels.
In the optimization process, a multi-objective genetic

algorithm (GA) is used to identify the optimal feature
set input from a population of float vector solutions
(subset of predictor genes and model parameters). The
float vector is initialized with a small number of genes,
and in each subsequent generation the feature set is
added to or subtracted from sequentially via mutation
and recombination operators. Replication of a feature set
proportional to the fitness of a predictive model. In the
multi-objective optimization technique used for this task
the overall fitness is calculated using a combination of
the following independent fitness functions:

� Fitness Function 1: 1/(1 +Νumber of selected
features)

� Fitness Function 2: Classification Accuracy
� Fitness Function 3: Geometric Mean of Sensitivity

and Specificity
� Fitness Function 4: Number of Samples in Training

Set/Number of Support Vectors of the trained
Support Vector Machine Problem

The fitness functions 1 and 4 were used to promote
solutions which lead to the simplest, most general pos-
sible models. The other fitness functions were used to
achieve accurate classification performance, dealing ef-
fectively with the imbalanced nature of the dataset. Spe-
cifically, a weighted sum of the independent fitness
functions was used to calculate the overall fitness of a
solution using the following weights: Fitness function 1:
1, Fitness function 2: 5, Fitness Function 3: 5, Fitness
Function 4: 5. These weights were selected in order to
provide the same (high) emphasis in classification met-
rics, while considering that the simplicity of the model is
of less importance for these problems.
A model’s efficacy was assessed by computing its Pre-

dictive Accuracy = (TP + TN)/(TP + TN + FP + FN) with
TP: True Positives, TN: True Negatives, FP: False posi-
tives, FN: False Negatives. The accuracy of each model
was calculated via 5-fold cross-validation of the dataset.
For every iteration, 80% of the data (both stroke and
control) were used as a training set while the frequency
at which the remaining 20% are correctly classified de-
fined the predictive accuracy.
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Differential expression of micro-RNAs
Recent studies have indicated that several miRNAs
are associated with stroke-related cellular mechanisms
[31, 32]. In order to identify miRNAs that may be
acting as regulators of genes that are stroke-predict-
ive, we utilized the InSyBio ncRNAseq tool [33] to
identify all miRNAs that can potentially target the six
transcripts of interest. For this process we used the
default threshold (0.3) as suggested by [34] for the
predicted confidence score for each miRNA:mRNA
examined found 907 miRNAs. This predicted confi-
dence score is estimated from an epsilon-SVR regres-
sion model using 124 sequential, thermodynamic and
structural features of all potential miRNA:mRNA tar-
get sites and initially trained with a balanced positive
and negative miRNA:mRNA pairs. However, not all
these microRNAs are expressed across multiple tissue
types, therefore, most of them are not identifiable in
blood samples while others are not differentiated in
stroke patients. These 907 miRNAs were further fil-
tered using the high-throughput transcriptomics data
from [35].
Significant differential expression in miRNA between

stroke and controls was analysed using this data. The
analyses were similar to the workflow for mRNA

described in subsection C above, i.e. log FC was com-
puted for miRNA densities in stroke vs. control samples,
and statistically significant magnitudes of FC expression
level were identified via moderated t-statistics and FDR
corrections.

Results
Normalization and processed dataset
Following normalization, imputing of missing data, and
outlier removal, the total merged dataset consists of 137
samples (82 stroke patients and 55 control subjects),
with a total of 13,243 quantified transcripts. The validity
of merging PBMC with whole blood datasets was con-
firmed by analyses of differential expression in the com-
bined vs. whole blood-only samples. Additional file 1:
shows a volcano plot of FC vs. p-value for the blood only
data (compare to Fig. 1 for the pooled data), while the
second figure in the supplement shows a scatterplot of
FC between blood-only and pooled expression arrays. A
Spearman rank-based correlation value of 0.99 and p < <
0.001 confirms the consistency of blood-only and pooled
data doesn’t introduce artifacts associated with disparate
gene expression profiles. Pooling PBMC and whole
blood samples does slightly increase the variance and
range in gene expression, which accounts for the fact

Fig. 1 Volcano Plot of Differential Expression Analysis. The genes with the largest and most statistically significant absolute fold-change between
treatment and control are those at the upper left and right corners
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that 584 significantly differentially expressed genes were
found in the whole blood samples vs. 557 in the com-
bined data set.

Differential expression analysis
A total of 557 genes are significantly differentially
expressed between stroke and non-stroke samples (see
Additional file 2: for a complete list). The distribution of
log FC and p-values for the entire set of genes is shown
as a volcano plot in Fig. 1, and Table 1 summarizes the
log FC data and statistics for the 10 genes with the most
statistically significant (smallest FDR-adjusted p-value
based on t-statistics) differential expression between
stroke and control samples. The median values in ex-
pression level between the stroke and control samples
are strongly separated for these 10 genes, as shown in
the Fig. 2 boxplot panels.

Network-based biomarkers
Using the criteria of differences in PageRank centrality
values between stroke and normal samples, 47 potentially
significant differentially expressed genes were identified.
The rank list of genes in the differential expression ana-
lysis is summarized in the Additional file 3.
Both the stroke and control networks have high con-

nectivity, with statistically significant edges linking most
groups of genes in such a way that there are few disjoint
sets and the path distance between randomly selected
genes is short. This can be seen from the distribution of
node (gene) degrees over the entire gene set is summa-
rized in Fig. 3, which compares connectivity within the
stroke and control networks to a power law distribution.
Due to a larger number of degree 1–2 nodes in compari-
son to intermediate or high degree nodes, the fit of the
observed node degree distribution in the gene networks
to a power law distribution appears poor. However, a
Spearman rank correlation analysis comparing predicted
to observed degrees give correlation coefficients ρ =

0.596 and 0.612 for stroke and control, respectively, with
p < 0.001, indicates a statistically significant concordance
between the observed distribution and a power law. This
pattern is consistent with “small world” phenomena [36],
where every node connects to most other nodes through
a comparatively short path. This high connectivity indi-
cates at least an indirect statistical interaction between
co-expression levels of most genes, especially in the
stroke samples. Specifically, the expected number of
edges connecting a random gene pair increases logarith-
mically with the number of genes, i.e. at a less than lin-
ear rate.

Predictive analytics
Single-gene expression levels give a maximum predictive
accuracy of 70%, this can be seen from the plot of indi-
vidual predictive accuracy among the 10 most strongly
differentially expressed genes in Fig. 4 (with DNA oxida-
tive demethylase ALKBH2 and lactadherin MFGE8 giv-
ing the highest predictive accuracies of 0.70).
Furthermore, when the 10 most highly dysregulated
genes are used jointly in machine learning models, the
predictive accuracy remains at or below 75.1%. The same
is true if a larger set of highly dysregulated genes is se-
lected using the same optimization criteria (objective
function) as for selection of the network gene set, i.e. a
model with 26 genes selected by the GA-SVM
optimization algorithm only increases the predictive ac-
curacy to 81.2% (see Table 2). A model using the 10
genes identified by O’Connell et al. [8] gave predictive
accuracy of 82.1% with cross-validation sampling, as
shown in Table 2.
Application of feature selection to the significant net-

work-based biomarkers led to the identification of 6
genes whose expression values gave higher joint predict-
ive accuracy than any combination of genes from the
differential expression analysis (Table 2). In what follows,
we will refer to this set as “network-central predictors,”

Table 1 Differential gene expression of the 10 genes with the most statistically significant (smallest FDR-adjusted p-values)
associated with the fold change between stroke and control samples

Gene Symbol Log FC Average Overall Expression in the Dataset t p-value Benjamini-Hochberg Adjusted p-value

EXOSC5 −0.39998 6.43394 −8.12935 1.58E-13 1.41E-09

ARG1 1.040751 5.385215 8.073018 2.18E-13 1.41E-09

TIMM44 −0.27118 6.158495 −8.00489 3.21E-13 1.41E-09

ALKBH2 −0.41991 5.966395 −7.91172 5.43E-13 1.80E-09

ID3 −0.91519 6.336414 −7.55943 3.90E-12 1.03E-08

CD79B −0.5584 5.968423 −7.22571 2.44E-11 5.36E-08

HECW2 0.550209 5.12878 7.198337 2.83E-11 5.36E-08

GRAP −0.39057 5.862544 −7.12923 4.12E-11 6.82E-08

MFGE8 −0.4621 5.820657 −6.88759 1.51E-10 2.22E-07

TNFRSF25 −0.66299 6.376879 −6.77806 2.69E-10 3.57E-07
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in reference to the fact that they were identified by sig-
nificant differences in network centrality between stroke
and control expression arrays. As seen in Table 2, ex-
pression values from the genes ID3, MBTPS1, NOG,
SFXN2, BMX, and SLC22A1 can jointly distinguish
stroke from non-stroke samples with a high level of
accuracy: 89.6% of samples are correctly classified in
cross-validation sampling. As a qualitative comparison, a
predictive model based on the 10 genes in [8] had
82.07% accuracy when trained with the dataset of the
current study and evaluated with the same cross-validat-
ing sampling strategy.
While most of the 6 network central genes also have

significantly different expression levels between stroke
and control, with the exception of ID3, they are not ne-
cessarily among the set of most highly dysregulated
genes. Indeed, the differences in expression level for
SLC22A11 between stroke and control are not even sta-
tistically significant. The mRNAs of ID3, MBTPS1,
NOG, and SFXN2 have lower concentrations (are down-
regulated) in the stroke samples (log FC = − 0.915, −
0.356, − 0.752, − 0.301, respectively) while BMX and
SLC22A11 are up-regulated (log FC = 0.456, 0.365) in
the stroke patients.
These network-central genes have intersecting sets of

Hamming distance 1,2 neighbors. Indeed some gene
pairs are within mutual d = 1 neighborhoods (e.g.
SLC22A1 is a d = 1 neighbor to SFXN2, BMX, NOG, and
MBTPS1, and all of the gene pairs except those with ID3
are within mutual Hamming distance d ≤ 2 of one an-
other). Consequently, none of these neighborhoods are
mutually disjoint, so that no more than two significant
associations (edges) separate any pair from the 6 genes.
This can be seen in Fig. 5a-b, which respectively show
the d ≤ 2 neighborhoods of the 6 network-central genes
in the control and stroke networks (note that these
graphs are somewhat “truncated” for readability by
showing only the edges with I ≥ 0.75). This high connect-
ivity is consistent with the distribution of node degrees
and fit to power law distributions shown in Fig. 3, and
with the fact that these genes have physiologically re-
lated functions associated with secretion and cell
signalling.
However, there are significant differences in connectivity

between the stroke and control networks. For example,
Fig. 5b shows a single I ≥ 0.75 connection for ID3, vs. 3 in
the control network. If all d = 1 neighbors are considered
without the truncation (see Additional file 4), there are ac-
tually 7 neighbors in the stroke network and 9 in the

Fig. 2 Boxplots showing the range in gene expression for the 10
most statistically significant differentially expressed genes, illustrating
the extent of FC and the separation of median expression levels
between stroke and control samples
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control, indicating a small decrease in connectivity – none
of the genes in the two networks are shared, which ac-
counts for the statistically significant changes in network
centrality. In contrast, the connectivity of the other 5
genes is higher in the stroke vs. control networks: for
MBTPS1, the control and stroke d = 1 neighborhoods have
20 vs. 49 genes, respectively, for NOG 13 vs. 65, for
SFXN2 42 vs. 62, for BMX 22 vs. 61, and for SLC22A1, 15
vs. 63 neighbors.
None of the genes in the d = 1 neighborhoods of the

network-central gene set are identified as neighbors in
STRING db. However, in the case of SFXNL, STRING
db identifies functionally similar genes to those in the
neighborhood set of our networks. Specifically, STRING
db lists solute carriers SLC25A19, 25A1 and heat shock
protein HSPA14 as interacting with SFXNL. The d = 1
neighborhoods for SFXNL in our analyses include the

solute carriers SLC22A1, SLC41A1 and the heat-shock
protein HSPH1.

Functional annotation
The six network-central predictor genes are functionally
disparate, however, mosts of them are.involved in
secretory and signalling pathways. The inhibitor of DNA
binding ID3 interferes with the binding of helix-loop-
helix proteins; the protein noggin (NOG) binds and inac-
tivates TGF-beta growth factors; membrane bound
transcription factor site-1 protease MBTPS1 processes
proteins through secretory pathways; cytoplasmic tyro-
sine protein kinase BMX is a receptor molecular in-
volved in several transduction pathways, solute carrier
SLCA11 is a voltage-gated transporter, and sideroflexin
SFXN2 regulates cation transport.

Fig. 3 Frequency distribution of node (gene) degrees (edge numbers) for both a) the control and b) the stroke networks, compared to a model
power law distribution of node degree. Blue line depicts the node degrees frequency distribution for the recontrsucted networks while green line
depicts the anticipated node degrees frequency distribution based on the power law model
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Enrichment analyses of d = 1 network neighborhoods
of the 6 predictor genes reveal several functional and
structural classes of genes associated with changes to
network centrality in stroke patients – significant en-
richment classes are summarized in Table 3, while Add-
itional file 5: contain the complete DAVID enrichment
analysis tables.
For the 47 genes with significant differences in their

network centrality between stroke and non-stroke, there
is significant enrichment of nucleoplasm proteins (num-
ber of genes ng = 15, OR = 2.18). There are high odds ra-
tios associated with enrichment of other functional and
structural classes of genes, e.g. U-box domain genes
(ng = 2, OR = 121.96), but these are not statistically
significant.
The relatively small neighborhood of ID3 (7 genes with

shared edges + ID3 itself ) contain 2 genes involved in

repression of apoptosis in bone marrow (LEF1, FLT3LG,
with OR = 25) as well as enrichment for transcription
factor binding genes (LEF1, ID3, TRIB2, OR = 37.5). For
MBTPS1, the strongest enrichments are seen for zinc
finger proteins (ng = 23, OR = 89.23) and for ligases (5,
ng = 5.60). The NOG neighborhood is enriched for 5
genes (OR = 6.89) in the endoplasmic reticulum, 2 genes
of the microvillus assembly (OR = 100.25, and 10 genes
whose proteins bind poly(A) RNA (OR = 2.27). Of the 65
genes in the SFXN2 d = 1 neighborhood, 39 are
phosphoprotein (OR = 1.52), 13 are mitochondrial (OR =
2.83), and 19 are involved in acetylation (OR = 1.78). In
the degree 1 neighborhood of BMX, the strongest en-
richments are for nucleotide and ATP-binding (14 and
11 genes with OR = 2.60, 2.63, respectively) and 6 genes
for nuclear localization (OR = 5.64). SLC22A1, being
within d = 1 of SFXN2, also has a neighborhood enriched

Fig. 4 Predictive accuracies of the 10 genes with the strongest differential expression (see Table 1) between stroke and control, illustrating how
no gene provides a predictive accuracy individually exceeding 70%

Table 2 Comparison of gene set and predictive accuracy based on log FC expression level significance vs the network-based
model. The first row is for predictive models using single differentially expressed genes; the second is based on the 10 most
significant FC values (see Table 1); the third uses the hybrid machine learning algorithm to identify a set of predictor genes from the
557 signficant FC genes; the fourth uses 10 genes identified by O’Connell et al’s predictive model; the last row uses the 6 network-
central genes in the prediction model

Method Number of biomarkers Predictive Accuracy (results with 5-
fold cross validation)

Differential Expression analysis 557 < 71%

Support Vector Machines (default parameters) using the10 most
differentially expressed genes as input

10 75.1%

InSyBio predictive analytics approach using differentially expressed
gene set

25 81.21%

Gene expression signature from O’Connell et al. 2017 10 (ANTXR2, STK3, PDK4, CD163, MAL, GRAP,
ID3, CTSZ, KIF1B, PLXDC2)

82.07%

InSyBio predictive analytics using network significant gene set 6 (ID3, MBTPS1, NOG, SFXN2, BMX, SLC22A1) 89.57%
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in mitochondrial genes (ng = 11 of the 65 neighbors +
SLC22A1, OR = 3.07), as well as nucleolar (ng = 8, OR =
2.74 and ATP-binding (ng = 10, OR = 2.24).
A DisGeNet [28] search of the 6 network-central genes

identified several diseases associated with their mutational
variants or dysregulation in the literature. Figure 6 sum-
marizes the diseases with a threshold association score >
0.001 for each gene (see Additional file 6: for a complete
list); only SFXN2 had not been previously significantly as-
sociated with any disease in the database While the other
genes have not been previously linked to AIS, they have
been linked with diseases and comorbidities such as dia-
betes (ID3, SLC22A1), obesity (SLC22A1), and myocardial
ischemia (ID3).

Stroke related miRNAs
A set of 115 miRNAs were found to be significantly dif-
ferentially expressed between stroke and controls. Fol-
lowing the preliminary filtering based on confidence
scores, this initial set of miRNAs was reduced to 27
(Table 4, see Additional file 7: for a complete list of
associations between miRNA and the network-central 6-
gene set). Among this set of miRNAs, eight (hsa-miR-
1181, hsa -miR-1207-3p, hsa -miR-1246, hsa -miR-3180,
hsa -miR-3960, hsa -miR-4436a, hsa -miR-517a-3p, hsa
-miR-517a-3p) were determined to target two or more
transcripts from the set of 6 network-central predictor
genes, with the exception of SFXN2. The increased cor-
relation between the stroke related miRNAs identifiable
in blood and the set of predictor genes provides an

additional validation of the statistical and potentially
functional significance of these genes as stroke
biomarkers.

Discussion
Previous studies have used gene sets identified from FC sig-
nificance to achieve similar predictive accuracies stroke vs.
controls samples via machine learning models. For ex-
ample, [6] identified a set of 29 genes that provided 93.5%
sensitivity and 89.5% specificity in distinguishing control vs.
stroke, while [7, 8] used expression levels from a panel of
10 genes to achieve 95.6% predictive accuracy. None of the
29 genes in [6] are in our set of 6 network central genes,
while of the 10 in [7, 8], ID3 is the only shared gene.
The predictive accuracies in these studies vs. our

results are not directly comparable, insofar as we use
a different (merged) dataset for model building.
Nevertheless, the regression analyses summarized in
S1 indicate that differences in gene expression level
between whole blood and PBMC are sufficiently simi-
lar to make at least qualitative comparisons of pre-
dictive accuracies across these sample types and
combinations thereof. To further address the contra-
ints of comparison across sample types, the prediction
model suggested in [8] was retrained using the data-
set of the current study and evaluated using the same
cross validation setup used for the evaluation of the
network-central gene models. When gene sets identi-
fied in [7, 8] are used as model predictors with the
merged training data, our network-based models per-
form favorably in comparison.

Fig. 5 a Partial gene network for the 6 network-central predictor genes (ID3, MBTPS1, NOG, SFXN2, BMX, SLC22A1) for network of gene
associations from control (non-stroke) samples. Neighborhood sets of Hamming distance d≤ 2 are shown for each gene, based on statistically
significant edges between gene pairs. In order to highlight the strongest associations and improve readability, only those edges corresponding to
a mutual information values I≥ 0.75 are shown. b A partial gene network, as in a, for the stroke samples
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Another potentially significant caveat to the current study
is the fact that due to limited data, the examined predictive
models and biosignatures used only cross-validation analysis,
as opposed to an independent external dataset for validation.

As additional gene expression data in stroke patients be-
come available, the prediction model based on network-cen-
tral gene biosignatures should be subjected to further
external validation with additional, independent data.

Table 3 Enrichment by function of gene sets derived from significant FC and from Hamming distance d≤ 1 neighborhoods of the
network-based predictor genes ID3, MBTPS1, NOG, SFXN2, BMX, SLCA11 in the stroke networks. The last column shows the number
of genes in the cluster, the associated enrichment odds ratio, the raw/Benjamini-Hochberg FDR-adjusted p-value for the OR are p/p*

Gene Set Number of
Genes

Functional Classes Subset, OR, p/p*

Genes with significantly different centrality values between stroke
and control networks

47 nucleoplasm 34, 2.18, 0.005/
0.344

ID3 d≤ 1 neighbors in stroke network 7 Negative regulation of apoptotic process in
bone marrow

2, 1049.5, 0.002/
0.198

Transcription factor binding 3839.6, 0.006/
0.274

Cytoplasm 6, 22.29, 0.024/
0.394

MBTPS1 d≤ 1 neighbors in stroke network 53 Zinc finger 3,89.23,4.8 × 10−4/
0.077

Ligase 5,5.60,0.011/0.978

Transmembrane helix 23,1.581,0.014,
0.427

Lumenal topological domain 5, 4.21,0.029/
0.909

NOG d≤ 1 neighbors in stroke network 70 Transmembrane transport 3,39.57,0.002/
0.727

Endoplasmic reticulum lumen 5,6.98,0.005,0.437

Regulation of microvillus assembly 2, 100.25, 0.020/
0.994

Arachinodic acid metabolism 3,11.94,0.024/
0.795

Poly(A) RNA binding 10,2.27,0.028/
0.991

SFXN2 d≤ 1 neighbors in stroke network 65 Phosphoprotein 39, 1.52, 0.001/
0.124

Mitochondrial 13,2.83,0.002/
0.156

Acetylation 19,1.78,0.002/
0.136

BMX d≤ 1 neighbors in stroke network 62 Nucleotide-binding 14,2.60,0.002/
0.257

Nuclear localization signal 6,5.64,0.004/0.664

ATP-binding 11,2.63,0.004/
0.664

Phosphoprotein

SLC22A1 d≤ 1 neighbors in stroke network 65 Mitochondrion 11,3.07,0.003/
0.344

Protein binding 42,1.28,0.017/
0.929

Nucleolus 8,2.74,0.024/0.914

DNA catabolic process 2,66.63,0.020/1.0

ATP-binding 10, 2.24,0.030,
0.815
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Apart from potentially achieving similar levels of pre-
dictive accuracy with a smaller array of genes, the princi-
pal advantage of the network-based approach lies in
providing greater information content through the iden-
tification of genes with co-expression patterns correlated
with those in the prediction model, i.e. the d = 1, 2 net-
work neighbors. Network models leverage joint informa-
tion about pairwise co-expression patterns, and so can
provide additional insights into the functions and path-
ways of genes underlying a disease or condition. Such
statistical associations generate hypotheses for future ex-
perimental confirmation of the significance of the identi-
fied network-central predictor genes and their neighbors
to stroke physiology, and consequently, their potential to
serve as biomarkers in clinical assays.
There are a number of possible biological explanations

for the observed changes in network connectivity and
gene centrality between stroke and control samples. The
identification of 6 network-central genes whose expres-
sion levels are strongly characteristic of acute ischemic
stroke is thought to be a consequence of specific, corre-
lated patterns of gene expression linked to stroke and
associated reactions to anoxia, inflammation, and cell
death in both the brain and in blood vessels. Such corre-
lated patterns of gene activity are particularly evident in
the increased number of interactions (or at least statisti-
cally significant associations) between control and stroke
for NOG, BMX, SFXN2 and SLC22A12 vs. the decrease

in association with ID3 and MBTPS1, as evidenced by
the relative sizes of d = 1 neighborhoods.
While differential gene expression is necessary for the

identification of gene centrality in a network, it is not
necessarily the case that the most strongly dysregulated
genes are associated with the overall biological changes
driven by a particular disease or condition. The fact that
none of the genes with the strongest differences in net-
work centrality (with the exception of ID3) are charac-
terized by with largest FC further illustrates the efficacy
and power of network-based approaches to the analysis
of gene expression. It is also noteworthy that signifi-
cantly differentially expressed genes from independent
studies such as TTC7B [4] were not found to be signifi-
cant in the integrated dataset, either in the analyses of
log FC differences or in the network models. This could
indicate that the significant FC observed for this gene in
individual studies are due to particular characteristics of
that experimental design, or due to the gene expression
outcomes specific to the therapy/drug treatments re-
ceived by a specific cohort of patients.
A large difference in centrality score between stroke

vs. non-stroke samples may be indicative of gene regula-
tory pathways that are disrupted (either differentially ac-
tivated or repressed) during a stroke even in the absence
of large changes in the expression levels of individual
genes. For example, the existence of less highly con-
nected neighborhoods associated with specific genes

Fig. 6 Association of 5network-central predictor genes (ID3, MBTPS1, NOG, BMX, SLC22A1) with known diseases according to the DisGeNet
database using the default threshold of 0.001 (no such associations were identified for SFXN2)
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may provide insight into gene expression “modules” as-
sociated with specific pathways. This modularity is dis-
rupted during stroke events (and potentially other
pathological states) through the up or down-regulation
of genes that link the once functionally and statistically
separated pathways.
As a potential limitation to these interpretations, it is

noted that some of the changes in mRNA density associ-
ated with stroke may be a “passive” result of cell death
rather than due to stroke-specific changes in gene ex-
pression patterns. The genes associated with these
mRNAs are less likely to be part of regulatory or signal-
ling cascades unique to stroke, and as such of limited
interest as possible therapeutic targets. This aspect is
particularly relevant in the case of circulating miRNAs.

miRNA/mRNA interactions occur in the cytoplasm, so
changes in the concentrations of circulating miRNAs
may be the result of differential expression of miRNA in
cells that die and lyse.
Similar considerations apply to the differences in

mRNA densities that are a consequence of changes in
relative leukocyte densities rather than differential ex-
pression. Several recent papers [37–39] have shown
that the density of lymphoid cells in whole blood de-
creases following stroke, while the relative abundance
of neutrophils and other myeloid cells increases. Con-
sequently, at least part of the changes to mRNA
densities in whole blood reflect changes in relative
leukocyte abundance rather than changes in transcrip-
tion patterns as such.

Table 4 MiRNAs targeting the 6 significant genes (confidence score > 0.3) and their expression profile in blood samples of ischemic
stroke patients from [34]

MiRNA Predicted Targets and Confidence Score Expression in Blood samples of Ischemic Stroke Patients

hsa-miR-1181 ID3 (1.223), MBTPS1 (0.454), SLC22A1(0.302) Downregulated

hsa-miR-1207-3p BMX (0.896), NOG(0.687), MBTPS1 (0.57), SLC22A1 (0.404) Downregulated

hsa-miR-1229-3p ID3 (0.555) Downregulated

hsa-miR-1246 NOG (0.359), MBTPS1(0.331) Upregulated

hsa-miR-1262 NOG (0.305) Downregulated

hsa-miR-138-2-3p NOG (0.45) Downregulated

hsa-miR-1909-5p NOG (0.445) Downregulated

hsa-miR-199a-5p ID3 (0.338) Upregulated

hsa-miR-29c-5p MBTPS1 (0.315) Downregulated

hsa-miR-3129-5p ID3 (0.395) Downregulated

hsa-miR-3180 MBTPS1 (0.782), NOG (0.782), ID3 (0.587), SLC22A1 (0.556) Downregulated

hsa-miR-3180-3p NOG (0.539) Downregulated

hsa-miR-3612 BMX (0.554) Downregulated

hsa-miR-3620-3p ID3 (0.786) Downregulated

hsa-miR-3657 MBTPS1 (0.481) Downregulated

hsa-miR-371a-3p NOG (0.703) Downregulated

hsa-miR-3960 MBTPS1 (1.179), NOG (0.868), ID3 (0.532), SLC22A1 (0.439) Upregulated

hsa-miR-4259 NOG (0.349) Downregulated

hsa-miR-4436a MBTPS1 (0.601), SLC22A1 (0.339), NOG (0.314) Downregulated

hsa-miR-4725-5p ID3 (0.405) Upregulated

hsa-miR-517a-3p ID3 (0.79), SLC22A1 (0.343) Downregulated

hsa-miR-517b-3p ID3 (0.79), SLC22A1 (0.343) Downregulated

hsa-miR-520a-3p NOG (0.348) Downregulated

hsa-miR-532-5p MBTPS1 (0.323) Downregulated

hsa-miR-548n NOG (0.362) Downregulated

hsa-miR-551b-3p MBTPS1 (0.302) Downregulated

hsa-miR-5587-3p ID3 (0.615) Downregulated

hsa-miR-5588-5p ID3 (0.392) Downregulated

hsa-miR-607 ID3 (0.388) Downregulated

hsa-miR-615-5p NOG (0.39) Downregulated
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Notably, the 10 genes used as stroke predictors in [7, 8]
are differentially expressed between myeloid and lymphoid
leukocytes, so that the change in relative cell count ex-
plains most of the observed variation [40]. Among these
genes is ID3, which is also a predictor gene in the present
study. However, whether differential expression vs. changes
in leukocyte densities account for differential abundance of
mRNA in the remaining 5 predictor genes and those in
their network neighbors remains an open question. GO
analyses of genes in the neighborhoods of the network-cen-
tral predictors (and the predictor genes themselves, apart
from ID3) do not indicate enrichment with respect to im-
mune function or differentiation of blood cells. Further-
more, ID3 is the only gene in the set of 6 which has among
the highest differences in mRNA abundance between
stroke and control, so it is possible that the patterns seen
for the remaining 5 genes and their network neighbors are
not being driven by the same processes as those leading to
differential mRNA densities in ID3.

Conclusions
The results of this study suggest a number of possible di-
rections for future research. To further validate the applic-
ability of the significant genes as biomarkers, it would be
of value to repeat the analyses with a control set of stroke
mimics (i.e. samples from non-AIS patients who exhibit
stroke-like symptoms) rather than the healthy controls ob-
tained from the GEO public data sets. Beyond the specific
applicability of these results to distinguishing stroke from
non-stroke, we can further refine our classification of clin-
ical phenotypes according to patient outcomes (e.g. based
on NIH Stroke Scale or Rankin scores) and associating
these with characteristic gene expression patterns. This
would allow us to identify biomarkers predictive of patient
outcomes and perhaps eligibility for therapeutic
interventions.
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whole blood + PBMC samples vs. whole blood only. Figure S1.1 shows a
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Additional file 4 : This file contains a complete list of Hamming
distance d = 1 neighborhoods for the 6 predictive network-central genes,
for both the control (non-stroke) and stroke gene expression networks.
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Additional file 5 : DAVID enrichment clusters for the genes with
statistically significant FC between stroke and control (S5A), as well as for
Hamming distance d ≤ 1 neighborhoods for each of the network-central
predictor genes: S5B – ID3, S5C – MBTPS1, S5D – NOG, S5E – SFXN2, S5F
– BMX, S5G – SLC22A1. (7Z 17 kb)

Additional file 6 : Diseases associated with variants or differential
expression of the 6 predictive network-central genes with a gene-disease
association (GDA) or variant-disease association (VDA) score > 0.001
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Additional file 7 : miRNA:mRNA target predictions – a complete list of
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log FC in the 6 network-central predictor genes, including the
confidence scores. (TXT 29 kb)
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