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Abstract

Background: P. falciparum malaria has been recognized as one of the prominent evolutionary selective forces of
human genome that led to the emergence of multiple host protective alleles. A comprehensive understanding of
the genetic bases of severe malaria susceptibility and resistance can potentially pave ways to the development of
new therapeutics and vaccines. Genome-wide association studies (GWASs) have recently been implemented in
malaria endemic areas and identified a number of novel association genetic variants. However, there are several
open questions around heritability, epistatic interactions, genetic correlations and associated molecular pathways
among others. Here, we assess the progress and pitfalls of severe malaria susceptibility GWASs and discuss
the biology of the novel variants.

Results: We obtained all severe malaria susceptibility GWASs published thus far and accessed GWAS dataset of
Gambian populations from European Phenome Genome Archive (EGA) through the MalariaGen consortium
standard data access protocols. We noticed that, while some of the well-known variants including HbS and ABO
blood group were replicated across endemic populations, only few novel variants were convincingly identified and
their biological functions remain to be understood. We estimated SNP-heritability of severe malaria at 20.1% in
Gambian populations and showed how advanced statistical genetic analytic methods can potentially be
implemented in malaria susceptibility studies to provide useful functional insights.

Conclusions: The ultimate goal of malaria susceptibility study is to discover a novel causal biological pathway that
provide protections against severe malaria; a fundamental step towards translational medicine such as development
of vaccine and new therapeutics. Beyond singe locus analysis, the future direction of malaria susceptibility requires
a paradigm shift from single -omics to multi-stage and multi-dimensional integrative functional studies that
combines multiple data types from the human host, the parasite, the mosquitoes and the environment. The current
biotechnological and statistical advances may eventually lead to the feasibility of systems biology studies and
revolutionize malaria research.
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Background
Plasmodium falciparum, the causative agent of severe
malaria, has been infecting humans for at least 5000-10,000
years following the advent and expansions of agriculture [1–
3]. Malaria still poses a huge social, economic and health
problems in several low-income countries, particularly in sub
Saharan Africa [4, 5]. P. falciparum infects millions and kills
hundreds of thousands of African children each year. How-
ever, this constitutes only a small proportion (1%) of the
populations in endemic areas in which the infections pro-
gress to severe malaria such as profound anemia or cerebral
malaria [6, 7].
Comprehensive understanding of the genetic basis of re-

sistance and susceptibility to severe malaria is crucial to
understand the molecular mechanisms of host-parasite inter-
actions that can inform the development of effective thera-
peutics, vaccination, diagnostics and risk prediction strategies
[8, 9]. To this end, GWASs have recently been implemented
in malaria endemic areas and replicated some of the well-
known variants including HbS and ABO blood group [10–
13]. Despite the fact that malaria is expected to drive several
protective alleles to high frequencies that can be captured by
GWAS approach, it is unclear why only limited number of
novel variants were identified of which a small fraction was
replicated across endemic populations. Some of the contrib-
uting factors for this discrepancy might include small sample
sizes, the genetic diversity of the malaria endemic popula-
tions and allelic heterogeneity of malaria protective al-
leles among others. On the other hand, several association
signals distributed across the genome that didn’t pass GWAS
significance threshold were observed in these studies [10–
13]; suggesting the possible existence of polygenic effects.
This raises several key questions including 1) What is the
genetic architecture of malaria susceptibility/resistance? 2)
What is the heritability of malaria susceptibility and its distri-
bution across the genome? and 3) What is the extent and
pattern of epistasis and pleiotropy at genome wide scale?
Here we review the current status of malaria susceptibility

GWASs and provide guidance to future research directions.
We begin by assessing the progress and pitfalls of severe
malaria susceptibility GWASs and discuss the biology of the
novel variants. We then provide an overview of the recent
progresses in post-GWAS approaches and discuss how these
methods can be implemented in severe malaria susceptibility
studies to better understand the underlying biology. We con-
clude by discussing on research areas where further works
are needed in light of the global malaria eradication efforts.

Results
Severe P. falciparum malaria susceptibility GWASs:
progress and pitfalls
In malaria endemic areas where repeated P. falciparum
infection is very common, the majority of children
recover from malaria. However, a small proportion of

infections progress to the severe form of the disease
such as severe anaemia, cerebral malaria, acidosis and
respiratory distress [7]. Cerebral malaria is the common-
est cause of death characterized by rapid onset of gener-
alized convulsion followed by coma (a Blantyre coma
score of less than 3 in the presence of P. falciparum
parasitaemia). Severe anaemia is defined as a haemato-
crit of < 15% or haemoglobin < 5 g/dl in the presence of
P. falciparum parasitaemia [14]. Although the clinical
outcome of malaria is determined by several factors in-
cluding infection rate, parasite genetics and the environ-
ment, the host-genetics factor contribute about 25% of
P. falciparum malaria severity. However only small pro-
portions (~ 2%) of heritability is explained by the well-
known variants such as sickle-cell anaemia and α-thalas-
saemia [7]. The conventional approaches such as candi-
date gene-based studies [15–17] and the family based
linkage studies [18, 19] have been implemented at least
for the last three decades and identified several associ-
ation variants. Unfortunately, the majority of the find-
ings were discordant and failed to replicate in different
populations [1].
GWAS in malaria susceptibility study was motivated to

address the acute limitations of the conventional
approaches and provide better understandings of the
underpinning genetics at genome wide scale. To this ef-
fect, a global partnership of malaria researchers, named as
Malaria Genomic Epidemiology Network (MalariaGEN)
was established in 2008 [20]. MalariaGEN has successfully
conducted multi-center-scale GWASs [10–13] and re-
ported some interesting findings which we will discuss in
later sections. However, the GWAS approach has several
limitations including 1) weak performances in genetically
diverse populations [8], lack of translation of associated
loci into suitable biological hypotheses [21], 3) the well-
known problem of missing heritability [22], 4) the lack of
understanding of how multiple modestly associated loci
within genes interact to influence a phenotype [23], 5) in-
efficiency in distinguishing between inflation from bias
(cryptic relatedness and population stratification) and true
signal from polygenicity [24], 6) the imperfection of
asymptotic distribution of current mixed model associ-
ation in the case of low-frequency variants [25]. The
discussion on limitations of GWAS approache is beyond
the scope of this review. Here we focus on the major
challenges of malaria susceptibility GWASs and highlight
the recent positive progresses.

Genetic diversity of African population
Owing to the fact that Africa is the origin of modern
humans, there is high level of genetic diversity and weak
linkage disequilibrium (LD) in Africans compared to non-
African populations [26–28]. These distinct genetic
characteristics created major setbacks to GWASs in
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African populations primarily because of lack of represen-
tative dense genotype chips and reference panels [8]. It
was estimated that a GWAS of 0.6 million SNPs based on
HapMap phase 1 dataset in European population has an
equivalent power to the chips with 1.5 million SNPs in
African populations [29].
This might have affected the power of previous malaria

GWASs. For instance, in the first malaria GWAS [10],
HbS locus, a well-known variant conferring resistance to
severe malaria demonstrated a weak signal (p-values
~ 1x10-7) because of the weak LD between causal variants
and the SNPs that were genotyped. After which authors
sequenced the locus, undertook multipoint imputation,
used proper reference panel and dramatically improved
the signal to p-value ~1x10-14. However, coverages of the
genotyping chips have been enormously improved to be
able to capture the genetic diversities among global popu-
lations following the recent technological advances and
availability of diverse reference data sets [27, 30–32]. For
instance, Omni microarrays based GWASs were proven
to have considerable power in African populations [27].
Such developments have also facilitated imputation-

based studies in African populations. For instance,
Band et al. [9] showed the feasibility of multi-point
imputation based meta-analysis in for malaria GWASs
using HapMap3 haplotype panel. Another study
showed a substantial improvement of imputation ac-
curacy by using the more diversified AGVP WGS ref-
erence panel [27]. We believe that the reference
dataset will grow further and accelerate genomic re-
search by including wide range of haplotype diversity
in African populations.

Sample size
In GWAS, a stringent p-value (0.5x10-8) is usually
needed to declare evidences of genuine associations to
minimize false discovery rate that can arise from mul-
tiple testing [33]. Thus, very large sample size is required
to achieve genome-wide significance threshold particu-
larly for loci with modest effect sizes. The required sam-
ple size is even much higher for studies in population of
African ancestry because of the higher genetic diversity.
In contrast, the current sample sizes of GWASs in Afri-
can populations including those of malaria susceptibility
are generally small compared to non-Africans [34] which
might have affected the power of the studies. Therefore,
more powered studies in African population might lead
to the discovery of novel association variants.

Allelic heterogeneity of malaria protective variants
Allelic heterogeneity defined as the presence of multiple
causal variants in the same locus is one of the challenges
of GWA and fine mapping studies [35]. The presence of
multiple causal variants with variable effect sizes and LD

structures limits the power of GWASs. In such cases,
fine-mapping methods will also have lower accuracy to
pinpoint true causal variants among several possible can-
didates [35]. Allelic heterogeneity has been described for
the well-known loci affecting malaria susceptibility,
which is reflected by their geographical distribution
within malaria-endemic regions [36].
Several distinct variants are known to exist at the loci

causing inherited hemoglobinopathies [36]. Allele frequen-
cies, LD structure and effect sizes of these variants differ in
sub-populations within endemic areas [37]. For instance,
the sickle cell allele, HbS, is known to have different haplo-
type structure and effect sizes in different regions of sub-Sa-
haran Africa [27]. HbC allele is common in some parts of
west Africa such as Burkina Faso, Ghana, Togo and Benin
while absent in other west African countries such as
Cameroon and Chad [38]. In the same region, several alter-
native alleles with differing effect sizes are known to exist at
the locus causing G6PD deficiency [36, 39]. Although
population specific studies can minimize such challenges,
the current MalariaGEN datasets are comprised of several
populations each with small sample size; making it difficult
to undertake powered GWASs for specific geographic
areas.

Genetic architecture of malaria susceptibility and resistance
The performance of GWASs is dependent on the genetic
architecture of the diseases and traits under investiga-
tion. For the majority of complex diseases and traits, the
GWAS variants identified thus far, only explain a very
small proportion of heritability; a phenomenon com-
monly termed as ‘missing’ heritability [22] . There have
been different explanations for the ‘missing’ heritability
including common disease rare variant hypothesis [40],
none-additive components, primary epistasis [41, 42]
and polygenic genetic architecture [21].
One of the challenges of malaria GWASs is that we

don’t know much about the genetic architecture of mal-
aria protection trait. First, as one of the prominent evo-
lutionary selective forces, the majority of malaria
protective alleles might have evolved under positive se-
lection and might potentially be balanced by other forces
[43]. In this case, the protective variants are expected to
have large effect sizes with high allele frequencies that
can be detected by the conventional GWAS approaches;
provided that proper reference panel and genotyping
platforms are used [43]. Second, similar to the genetic
architecture of other infectious diseases [44], malaria
protection trait might largely be attributed to few rare
variants of large effect sizes. In this case, the GWASs are
underpowered as rare variants might not be in LD with
common variants. Third, malaria protection trait might
be mainly under polygenic and epistatic control [1, 7,
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45] which the conventional GWAS approach can’t
capture.

Biology of the novel variants identified by severe P.
falciparum malaria GWASs
Severe malaria GWASs have replicated some of the well-
known variants such as HbS and ABO blood groups and
few novel variants related to red blood cell membrane
biology which reinforce the importance of erythrocyte var-
iants for protection against severe malaria. Besides, the
GWASs have identified notable novel association vari-
ants in immune and other pathways that may directly or
indirectly influence the disease outcome. The epidemi-
ology and biology of the well-known variants were
reviewed else-where [1]. Below we characterize the novel
malaria susceptibility genetic variants identified by
GWASs. We first discuss the biology of two variants such
as cluster of the glycophorin genes (GYPA/B/E) and
ATP2B4 that were well-replicated across malaria endemic
populations. We then extend our discussion to other
novel variants.

ATP2B4
The association of variants in ATP2B4 gene with severe
malaria susceptibility was reported by Timmann et al.
[11] in Ghanaian populations and replicated in subse-
quent studies in other populations [12, 46]. SNPs in this
locus were also linked with reduction of mean corpuscu-
lar hemoglobin concentration (MCHC) level [47].
ATP2B4 encodes a ubiquitous plasma membrane cal-
cium-transporting protein (PMCA4b) [48]. PMCA4b is
widely expressed in different tissues and is the main
transporter of Ca2+ in erythrocyte membrane [48].
A recent study showed that the GWAS SNPs are local-

ized in a previously unrecognized ATP2B4 haplotype
named as ‘haplotype-1' and individuals with this haplo-
type exhibit a reduced PMCA4b expression level [49]. In
this study, it was also shown that the reduction of
PMCA4b expression significantly decreases the calcium
extrusion in RBCs. Consistent with this, a study con-
ducted by Lessard et al. and colleagues elegantly charac-
terized the ATP2B4 locus using a combination of
transcriptomic, epigenomic and gene-editing study ap-
proaches [50]. The authors first undertook knock out
experiment and demonstrated that ATP2B4 knocked-out
mice express an elevated level of MCHC. Then, they
conducted expression quantitative trait locus (eQTL)
mapping studies using UK biobank dataset and
showed strong associations between ATP2B4 erythro-
blast specific variants and RBC related traits including
MCHC level, decreased RBC distribution and in-
creased hemoglobin levels.

Further analysis of DNase I hypersensitivity sites
(DHSs) at ATP2B4 and eQTL mapping showed that the
GWAS SNPs are mapped to an erythroid specific enhan-
cer element. Deletion of this enhancer from human
erythroid cell line using CRISPR-Cas9 system showed a
dose dependent reduction of ATP2B4 expression level.
Bi-allelic deletion of the enhancer resulted in eighty
three percent reduction of ATP2B4 expression level
compared to the wild type while mono-allelic deletion
resulted in moderate reduction of the ATP2B4 expres-
sion level [50].
To determine the effects of the regulatory variants at

ATP2B4 gene on calcium homeostasis, Lessard et al.
measured the calcium concentration in unedited and
edited (ATP2B4 enhancer deleted) HUDEP-2 cells. The
edited cells demonstrated higher intracellular calcium
level compared to wild cells indicating that ATP2B4 ex-
pression is essential for plasma membrane calcium
pump. The disturbance of intracellular Ca2+ homeostasis
might play an important role in impairing the invasion,
development and reproduction of malaria parasite in
RBCs [51, 52]. Therefore, ATP2B4 region can potentially
be targeted for development of vaccine and therapeutics.

Cluster of the 3 glycophorin genes (GYPA/B/E)
The largest multi-center malaria susceptibility GWAS
which included eleven populations was conducted by
Band et al. [12]. In this study, 34 genomic regions con-
taining potential susceptibility loci for severe malaria
were identified. Among which, a strong signal was ob-
served at locus between FREM3 gene and cluster of 3
glycophorin genes (GYPA/B/E) on Chromosome 4. A
haplotype (at SNP rs184895969) within this region was
reported to reduce the risk of developing severe malaria
by about 40% and is common in Kenyan populations
with allele frequency reaching 10% [12].
A subsequent study in the same populations identified

a large number of copy number variants which are char-
acterized by deletion, duplications and hybrid structures
in GYPA and GYPB genes [53]. Of which a distinct vari-
ant called DUP4 was reported to reduce the risk of se-
vere malaria by about 40% in eastern African (Kenya)
populations. Further characterization showed that, this
variant is composed of complex GYPB-A hybrid and en-
code Dantu antigen in MNS blood group system [53].
The association of this region with severe malaria was
supported by another recent case control study in Tan-
zanian populations [54]. The glycophorin gene cluster,
GYPA and GYPB encode the MNS blood group system
and are known to be receptors for P. falciparum during
RBC invasion [55]. GYPA and GYPB serve as an erythro-
cyte membrane receptor for EBA-175 and EBL-1 pro-
teins of the parasite respectively [56]. This genomic
region is also known to be under an ancient selective
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pressure resulted from host-pathogen arm races between
P.falciparum and humans [57] . Further functional ana-
lysis is required to better understand how these variants
affect the invasion and/or development of the parasites
in erythrocytes and convey protection against severe
malaria.

SCO1 and DDC
Notable association signals were identified by the first
malaria susceptibility GWAS conducted in Gambian
population [10]. The first lead SNP (rs6503319) is lo-
cated close to SCO1 (synthesis of cytochrome c oxidase)
gene on chromosome 17p13. SCO1 is a multi-functional
signaling protein which plays an essential role in mito-
chondrial cytochrome c oxidase (COX) copper delivery
pathways [58]. COX catalyzes electron transfer from re-
duced cytochrome c to oxygen and is abundantly
expressed in muscles, brain and liver [58]. Deficiency of
COX caused by mutations in SCO1 gene can lead to re-
spiratory distress and severe metabolic acidosis [59]
which are also the major complications during cerebral
malaria [60]. Further studies are needed to understand
how the variants in SCO1 gene are associated with the
pathological pathways of cerebral malaria.
The second notable association signal identified in this

study was Dihydroxypheny-alanine decarboxylase (DDC)
on Chromosome 7p12.2. A recent study in Tanzanian
populations replicated the association of DDC variants
with cerebral malaria [54]. DDC gene encodes Aromatic-
L-amino-acid decarboxlase enzyme which is involved in
biosynthesis of neurotransmitters such as dopamine and
serotonin [61]. DDC is an essential enzyme for brain and
nervous developments and its deficiency is associated
with reduced cognitive functions [61]. DDC is involved
in cellular immunity and contributes in protection
against parasitic disease in invertebrates [62]. Further-
more, mutations in DDC gene was reported to be associ-
ated with refractoriness of Anopheles gambiae mosquito
against P.falciparum parasites [63]

MARVELD3
In addition to the ATP2B4, Timmann et al. [11] identi-
fied an association SNP (rs2334880) on chromosome
16p 22.2 which is linked to MARVELD3. However, this
association has not been replicated in other studies.
MARVELD3 is one of the components of tight junction
proteins in several epithelial and endothelial tissues and
is expressed as two alternative spliced variants [64].
These proteins are involved in assembly, development,
maintenances and regulations of tight junction. Tight
junctions play a major role in intracellular adhesions and
involved in sub-cellular signaling mechanisms [64].

IL-12 receptors and IL-23 receptors
The most recent malaria susceptibility GWAS was con-
ducted in Tanzanian population [13]. In this study, not-
able associations signals were identified in immune
pathways including in interleukin receptors (IL-23R and
IL-12RBR2), in ketch-like proteins (KLHL3) and Human
Leucocyte Antigen (HLA) regions. Interleukin-12 is
formed from a hetrodimer of IL12B (ILp40 subunit) and
IL-12A (ILp35 subunit) [65]. IL-12 plays a vital role in
stimulating cell-mediated immune responses against
intra-cellular pathogens through binding to high affinity
IL-12RB1 and IL-12RBR2 receptor complexes. It pro-
motes the development of T-helper cells (Th1) and en-
hances the production of INF-γ, both of which are
known to mediate the clearance of intracellular patho-
gens [65]. In malaria, IL-12 has been implicated in medi-
ating the protective immunity both in experimental
animals and in humans [66] . IL-23 is an important pro-
inflammatory cytokine that shares p40 subunits with
IL12 [67]. It induces the differentiation of naive CD4 T-
cells to IL-17 which plays key roles in pathogenesis of
autoimmune diseases [68].
HLA is encoded by the Major Histocompatibility

Complex (MHC), the most polymorphic genes known
in human genome. The diversity of MHC is believed to
be driven by selection pressure from infectious patho-
gens and known to be associated with the risk of sev-
eral infectious diseases [69]. HLA variants such as HLA
class I antigen (HLA-Bw53) and HLA class II variant
(DRB1*1302-DQB1*0501) were reported to confer pro-
tections against severe malaria in Gambian populations
[69]. HLA class I antigen is expressed by liver cells sug-
gesting that T cells (CTL) responses might efficiently
act against the liver stage of malaria parasite in individ-
uals with HLA-Bw53 [69]. On the other hand, individ-
uals with DRB1*1302-DQB1*0501 variant might possess
efficient antigen presentation mechanism that can lead
to rapid clearance of blood stage parasites [69].
Variants in immune pathways are of great interest be-

cause of their potential to inform the development of ef-
fective malaria vaccines [1]. The current study is
interesting in that several putative variants in immune
pathways were identified. However, the power of this
study is limited because of relatively smaller sample size
and weak significance threshold used to interpret the
findings. Therefore, further studies with higher detective
power are needed to consolidate the findings (Table 1).

Polygenic genetic architecture and epistasis: Presenting
the absent in the current severe malaria GWASs
Polygenic genetic architecture
Polygenic view of genetic architecture is gaining ground
in genetic epidemiological studies and widely implicated
for the ‘missing’ of heritability in GWAS analysis [70] .
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The rationale behind polygenic inheritance is that com-
plex-traits/diseases are influenced by multiple variants
with modest effects that are too small to pass the strin-
gent genome wide significance threshold [71]. In stand-
ard GWAS analysis, ‘Genomic control’ (GC) method is
applied as a quality-control measure to minimize spuri-
ous associations that can be caused by population struc-
tures such as population stratification and cryptic
relatedness.
However, a slight inflation of the test statistics (true but

weak signals) which cannot be corrected by GC was ini-
tially observed across the genome in a Schizophrenia
GWAS [72]. Subsequently, this observation has been sup-
ported by other studies [73] and led to the development of
a number of statistical tools aiming to capture polygenic
signals at genome-wide scale including 1) polygenic scor-
ing method implemented in PLINK software [74] ; 2)

Mixed Linear Models (MLM) such as: GCTA [73], BOLT-
LMM [75] , Bayes-R [76] and LDAK [77, 78], PCGC [79]
3) linkage-disequilibrium (LD) score regression method
[80] among others.

Polygenic contributions in malaria susceptibility and
resistance
Co-evolution of host-pathogen model predicts that
multiple host loci are involved in resistance/suscepti-
bility to infectious diseases due to the complex
interactions between the multi-locus parasite geno-
type and the corresponding defense from the host-
genome [42, 81]. Indeed, malaria might have left
multiple genetic variants; the majority of which have
effects too small to be detected by the standard
GWASs. The existence of polygenic inheritance in
malaria protection was predicted by several authors

Table 1 Summary of the novel severe malaria susceptibility and resistance association variants identified by GWASs

Genomic regions containing the association variants Genome-wide association studies

Jallow et.al [10]
Pop: Gambian
N = 2560
(case =1060,
control = 1500)

Timmann et al. [11]
Pop: Ghanaian
N = 2153
(case =1325,
control =828)

Band et al. [12]
Pop: African
(11 countries)
N = 11,552
(case = 5633,
control = 5919)

Ravenhall et al. [13]
Pop: Tanzanian
N = 914
case =449,
control = 465)

Nearest gene name Chr Position SNP ID
(Ref/Alt)

MOI OR p-value OR P-value OR P-value OR P-value

ATP2B4 01 203658471 rs 4951377 (A/G) DO – – – – – 3.1x10−9 – –

203654024 rs 10900585(T/G) AD – – 0.61 1.9 × 10−10 – – – –

203660781 rs4951074(G/A) AD – – 0.62 1.3 × 10−9 – – – –

IL23R, IL12RB 01 67,731,614 rs6682413(−) RE – – – – – – 0.48 8 × 10−7

GYP A/B/E and FREM3 04 143777125 rs184895969(A/C) DO – – – – 0.67 9.5 × 10−11 - -

C4orf17 04 100429757 rs73832816(−) REC – – – – – – 0.29 3.8 × 10− 7

AF146191.4–004 (lincRNA) 04 90717704 rs114169033(−) AD - - - - - - 3.32 6.7 × 10−7

AC108142.1 (antisense) 04 82822332 rs1878468 HET - - - - - - 0.383 9.0 × 10−7

Intergenic 05 43,909,343 rs113449872(−) HET – – – – – 0.35 2.2 × 10−8

KLHL3, MYOT 05 37,011,761 rs2967790(−) AD – – – – – – 0.60 5.9 × 10−7

TREML4 06 41,205,690 rs9296359 (−) HET – – – – – – 4.08 1.2 × 10−7

DDC 07 50,623,201 rs10249420(C/G) AD 0.69 6.8 × 10−5 – – – – – –

rs1451375(−) DO 0.75 6.1x10−6 – – – – – –

Intergenic 07 53,676,837 rs17624383(−) AD – – – – – – – 5.6 × 10−7

CSMD1 08 4754838 rs73505850(−) AD – – – – – 4.79 5.9 × 10− 7

LINC00944 12 127237620 rs11335470 (−) HET – – – – – – 0.40 2.5 × 10−7

Intergenic 11 130,417,522 rs3133394 AD 0.5 9.4X10−7

FAM155A 13 108228013 rs144312179(−) AD – – – – – – 0.2 6.2 × 10−7

MARVELD3 16 71,653,637 rs2334880 (T/C) AD – – 1.19 1.9 × 10−6 – – – –

SOC1 17 10,573,909 rs65033119(−) AD 1.21 7.2 × 10−7 – – – – – –

Intergenic (LINC00670) 17 12,399,526 rs149085856(−) AD – – – – – – 3.87 2.1x10−7

ZNF536 19 1,069,639 rs8109875(−) REC – – – – – – 0.5 5.7 × 10−7

MIO Mode of inheritance, AD Additive, HET Heterozygous, DO Dominant, REC Recessive, OR Odd-ratio, Ref Reference allele, Alt Alternative allele, Pop Population
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[1, 7] and supported by the GWASs. For instance,
the largest malaria susceptibility GWAS so far, iden-
tified 34 regions of the genome containing variants
with evidence of associations [12]. Earlier GWAS in
Ghanaian population identified 40 genomic regions
containing 102 SNPs with evidences of association in
the discovery phase of the study [11]. The recent
GWAS in Tanzanian populations [13] identified 2322
SNPs at several regions across the genome.
Thus, implementation of polygenic analytic methods

in malaria studies may potentially shed more light to the
underlying biology. For instance, heritability can be esti-
mated and partitioned in to different cell-types and
functional groups and molecular pathways which enable
to localize causal variants. Furthermore, these ap-
proaches can be extended to explore the genetic correla-
tions between susceptibility to malaria and
susceptibility to other infectious diseases. The existence
of shared genetic basis between infectious diseases sus-
ceptibility/protection is well-documented [82]. However,
the extent and pattern of these correlations have not
been systematically investigated at genome-wide scale;
partly because of inadequate GWAS data for infectious
diseases. Such studies can potentially provide clues to
common molecular processes between resistance/sus-
ceptibility to infectious diseases that will have practical
importance including designing multi-purpose vaccine
and genetic risk prediction strategies.

Heritability of severe malaria in Gambian population
To figure out how polygenic analysis can be implemented
in malaria susceptibility, we accessed the Gambian malaria
susceptibility GWAS dataset from European Phenome
Genome Archive (EGA) through data application proced-
ure and estimated heritability of malaria susceptibility using
MLM approaches. The Gambian GWAS data is the
largest MalariaGen dataset obtained from a single

country comprised of 4920 samples (2429 cases and
2491controls) and 1.6 million SNPs that passed
GWAS quality control (QC). We first excluded the
known malaria susceptibility associated loci and per-
formed stepwise extra QC filtering. Specifically, we fo-
cused on sample relatedness, SNP missingness
proportion and SNP differential missing proportion
which are well-known to affect the accuracy of herit-
ability estimation [78]. We then estimated the herit-
ability using GCTA model for different QC thresholds
by including 10 principal components (PCs) as fixed
effects to account for population structure. As ex-
pected, the estimation was unstable when less strin-
gent QC thresholds is applied (varying from 37.8 to
20.1%) as shown in Table 2. However, when more
stringent QC (Relatedness threshold (5%), SNP differ-
ential missingness proportion (p < 1 × 10 − 3) and
SNPs missing proportion of (p > 0.02)) was applied,
the estimation became stable (~ 20.1%, SE = .05). Nei-
ther the inclusion of more PCs (15, 20) as fixed ef-
fects nor SNP phasing further brought down the
estimate. Using the same stringent QC threshold, the
estimation was approximately the same for Mandinka
ethnic group (~ 24.3%, SE = 0.6). We couldn’t estimate
for other ethnic groups because of smaller sample
sizes. Furthermore, the use of PCGC model which is
designed for case/control approximately showed the
same estimate (19.8%, SE = .07).
Although our heritability estimation is fairly stable

when stringent QC is implemented, care should be taken
in interpreting these results: First, all polygenic methods
perform better in less structured data obtained from
homogenous populations than the MalariaGen dataset
which is comprised of diverse populations spanning
most of the Malaria endemic belt in Africa. Second, the
methods are designed and perform well in highly poly-
genic traits/diseases in which effects of each variant is

Table 2 SNP-heritability of severe malaria susceptibility/resistance in Gambian population at different basic quality threshold using
MLM

Population Sample relatedness-
threshold

SNP missingness-
proportion

SNP differential-
missingness
Proportion

Prevalence Covariate
principal-
components

No.
Samples

No.
SNPs

GCTA
h2(%
SE)

PCGC
h2(
SE)

Gambia – 5% – 1% 10 4920 1627656 37.8(.05).

5% 5% 1 × 10−10 1% 10 4128 1627656 30.5(.05)

5% 5% 1x10− 5 1% 10 4128 1607610 28.7(.05)

5% 5% 1 × 10−3 1% 10 4128 1570344 25.1(.05)

5% 2% 1 × 10− 3 1% 10 4128 1486554 20.1(.05) 19.8(.07)

5% 2% 1 × 10−3 1% 15 4128 1486554 22.5(.05)

5% 2% 1x10−3 1% 20 4128 1486554 19.5(.05)

Phased – – 1% 10 4128 1627656 20.4(.06)

Mandinka 5% 2% 1x10−3 1% 10 1281 1486554 24.2(0.6)

GCTA Genome Complex Trait Analysis, PCGC Phenotype Correlation Genotype Correlation regression
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mostly modest. In contrast, a considerable proportion of
malaria protection trait might be attributed to rare vari-
ants of large effect sizes that might not be in LD with
common variants and can’t not be ‘tagged’ by SNPs chip
which means that the contributions of such variants will
not be accounted for. Third, subtle population structure
that cannot be corrected by conventional methods such
as unmatched case/control can potentially create sys-
tematic biases to the estimates.

Epistasis
Epistasis is becoming one of the hot research topics in
genetic epidemiological studies in the last few years be-
cause of the fact that none additive genetic variations
are shown to have significant influence on the phenotype
of complex traits/diseases than previously expected [83].
The available statistical approaches and software pack-
ages for detection of epistasis at genome-wide scale were
reviewed elsewhere [83, 84]. These approaches have
been applied in genetic studies of complex diseases such
as lupus erythematosus [85], anklosing spondlylitis [86],
psiorosis [87] and unraveled previously unknown epista-
sis interactions between risk loci which explained a sig-
nificant proportion of ‘missing’ heritability of the
respective diseases.
Epistasis between malaria risk loci have been well docu-

mented and implicated as one of the possible reasons for
lack of replication of susceptibility variants in different
populations and the ‘missing’ heritability. For instance,
sickle-cell trait (HbS) and α thalassaemia were shown to
demonstrate negative epistatic interactions such that the
protection against severe malaria offered by HbS is re-
duced when co-inherited with α+ thalassaemia [88].
A case-control study in Kenyan population also reported

that α+ thalassaemia modulates the effects of Haptoglobin
(Hp) variants in predicting the risk of severe malaria [89].
In this study, it was shown that the combination of α+

thalassaemia and Hp2–1 variant synergistically increase
the protection against severe malaria by about 37%. How-
ever, the protective effect is decreased to 13% when α +

thalassaemia is inherited with Hp1–1 and further dimin-
ished to neutral (zero) when inherited with Hp2–2. Simi-
larly, in a multi-center case control study, the existence of
negative epistasis interaction between HbC and ATP2B al-
leles was reported [15].

Another recent case control study of severe malaria
in Kenya reported the existence of negative epistasis
between a compliment receptor called S12 and
α+thalassaemia in which the protective effect of S12
higher in children with normal α-globin [90]. The ex-
tent and pattern of epistatic interaction at genome-
wide scale is yet to be explored. In malaria suscepti-
bility GWAS, the priority has been given to a single

locus analysis to identify novel risk loci. We expect
that, the next step of malaria susceptibility GWAS
will include the investigations of epistasis at genome-
wide scale.

From GWAS to biology: multi-step and multi-dimensional
analyses
Fine-mapping and pathway analyses
The ultimate goal of genetic susceptibility studies is to
identify causal variants and understand the underlying
biological pathways which can lead to translated medicine
such as effective vaccines and therapeutics. However,
translating GWAS signals in to biological themes remains
an open problem because of the confounding effects from
LD between association SNPs, limited knowledge of gene
functions and localization of the majority of GWASs hits
in none protein coding regulatory regions (regulatory
SNPs) [91–93]. In attempt to address this challenge, sev-
eral fine mapping strategies have been developed and im-
plemented [94]. One such strategy is trans-ethnic fine
mapping in which the natural variability of haplotype
structure across ethnically diverse populations is used to
narrow down candidate causative variants [95]. The
smaller LD and diversity of haplotype structure in African
population makes it relatively easier to identify the causal
SNPs and target gene/genes through fine mapping ap-
proaches [8]. However, the fact that malaria protective al-
leles are heterogeneous across populations might
challenge the application of trans-ethnic fine-mapping ap-
proaches in malaria susceptibility studies.
Alternatively, several fine mapping statistical tools

have recently been developed following the advances in
annotation data bases and improved reference panels.
These include Bayesian approach, heuristic approach
and penalized regression methods [96]. The principles,
applications, strength and weakness of these methods is
reviewed elsewhere [94, 96]. These methods are increas-
ingly playing crucial role in the efforts being made to
pinpoint causal variants of complex diseases/traits. For
instance, Galarneau et al. [97] identified novel independ-
ent association signals by fine-mapping three loci that
are known to influence fetal hemoglobin (HbF) levels.
The authors sequenced the three loci (BCL11A, β-globin
and HBS1L-MYB), undertook dense genotyping, per-
formed step-wise conditional analysis and revealed pre-
viously un-recognized SNPs that explain additional
genetic variation. Similarly, a recent fine mapping study
of HLA region identified several susceptibility loci for
multiple infectious diseases [82]. More sophisticated
studies that combine statistical and functional fine-map-
ping strategies have recently been implemented and pro-
vided mechanistic insights to the genetic basis of
complex diseases [98].
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In addition to fine mapping approaches, pathway and
interaction analysis can be another avenue for exploring
molecular basis of Malaria susceptibility/resistance. Instead
of emphasizing on single-variant analysis, these approaches
test the coordinated effects of several variants at systems
level using biological information from annotation data
basis [99]. Pathway analysis improve study power by inte-
grating cumulative effects of weak association signals and
provide functional information by identifying associated
sets of genes/proteins [100]. By implementing the pathway
analysis approaches, several studies have gained new in-
sights in understanding the genetic basis of complex dis-
eases [101–103]. The available statistical tools for pathway
and interaction analysis is reviewed in [104]. We therefore,
advocate for the implementation of fine mapping and path-
way analytic methods in malaria susceptibility studies to
shed more light in to the underlying biology.

Epigenomics and Epigenome wide association studies
Epigenetics refers to heritable phenotype changes that
do not involve alterations in the DNA sequences such as
methylation, post-translational histone modification, his-
tone variation, chromatin remodelling and non-coding
RNAs [105]. Epigenetic impacts have recently been im-
plicated in malaria susceptibility and resistance [106,
107]. For instance, in a recent study, strong transcrip-
tional response was detected in monocytes of P. falcip-
arum infected individuals from Fulani, an ethnic group
that is less susceptible to malaria [107]. The authors sug-
gested that, this response is likely regulated by genome
wide chromatin alterations. The discussion on the pos-
sible mechanisms of epigenetic impacts on malaria sus-
ceptibility and resistance is beyond the scope of this
paper and is reviewed in [108].
However, the majorities of epigenetic studies including

those of malaria susceptibility and resistance have been
limited to either small sample sizes or inadequate gen-
ome coverage and thus, lack adequate power to decipher
the epigenetic impacts on complex diseases [105]. In ef-
fort to address this challenge, investigators recently de-
veloped a large-scale, systematic epigenomic equivalents
of GWAS called epigenome-wide association studies
(EWAS) that attempts to uncover epigenetic variants
underlying common diseases/phenotype using genome-
wide technologies such as Illumina 450 K array [109].
EWA approach recently gains a considerable attention
partly due to the fact that the majorities of the GWAS
SNPs are mapped to none coding regions of the genome
implying that the variant SNPs cause changes in gene
expression levels rather than causing changes in protein
function [109]. Thus, combining both genetic (GWA)
and epigenetic (EWA) approaches in parallel may prove
a fruitful approach for understanding mechanisms of
disease risk [109]. Undoubtedly, application of such

approaches may shed new light into mechanisms of mal-
aria susceptibility and protection.

Multi-omics approaches
Today, there are significant advances in high throughput
technologies that can generate big ‘-omic’ data from all
spectrum of molecular biology [91]. The ‘-omics’ studies
(Genomics, Epigenomics, Transcriptomics, Proteomics,
Metabolomics) are crucial to understand the underpin-
ning biology of complex diseases. In severe malaria,
‘-omics’ studies have provided important clues about the
molecular events that lead to either complications or re-
covery from diseases. For instance, following the discov-
ery of glycophorin regions by the GWAS, a whole
genome sequencing-based study [53] was conducted to
characterize variants in this region and identified a novel
distinct copy number variant called DUP4 which reduces
the risk of severe malaria by about 33% . In addition to
this, a genome-wide gene expression study was con-
ducted in Kenyan children and reported increased ex-
pression of genes related to neutrophil activation during
malaria infections [110]. The authors also observed dif-
ferential expression of heme- and erythrocytes-related
genes in acute malaria patients which reaffirms the im-
portance of erythrocyte-related genes in malaria suscep-
tibility and resistance.
In another host-parasite interaction study, the import-

ance of miRNA in inhibiting parasite growth in erythro-
cyte was reported [111]. The authors observed
translocation of several host RBC miRNAs in to P.
falciparum parasites, as well as fusion of these human
miRNAs with parasite mRNA transcripts to inhibit the
translation of enzymes that are vital for the parasite de-
velopment. Specifically, two micro-RNAs, miRNA-451
and let-7i, were highly enriched in HbAS and HbSS
erythrocytes and these miRNAS along with miR-223
were shown to attenuate the growth of parasite [111].
However, ‘-omics’ studies are limited to single data-

type analysis and lack adequate power to explain the
complexity of molecular processes and usually lead to
identification of correlations than causations [112].
Thus, integrating and analysing multiple ‘-omics’ data
enables better understanding of the molecular processes
and interactions that give rise to complex diseases/traits.
For example, leveraging host microbiome relative abun-
dance data as a second (quantitative) trait, and perform-
ing a joint analysis of bivariate phenotypes can increase
statistical power by maximizing phenotypic information
and inform how the interaction between host genotype
with microbiome impacts the phenotype.
Multi-omics approaches aim to integrate big ‘-omics’

data, undertake ‘multi-step’ and ‘multidimensional’ ana-
lysis for elucidating complex biological problems [112] .
Driven by the massive abundance of ‘-omics’ data from
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wide ranges of biological molecules, multi-omics strategy
have recently provided unprecedented successes in com-
plex diseases/trait studies. The current state of art of
multi-omics approach and available statistical methods
is recently reviewed in Hasin et al. [112]
Malaria susceptibility and resistance is influenced by

several host, parasite and environmental factors as
depicted in Fig. 1. The protective alleles have inde-
pendently evolved in different populations being
shaped by the co-evolution and interaction between
the human genome, the parasite and the environment
[1]. Thus far, single ‘-omics’ data analysis enabled us
to understand some of the factors that are associated
with the malaria protective traits. To progress beyond
associations and pinpoint the causal pathways, it may
require to implement carefully designed, coordinated
multi-omics studies that involve human host, the
parasite, the environment and possibly mosquito. The
current advents of high-throughput technologies in
generating massive ‘-omics’ data and their continu-
ously decreasing cost complemented with the avail-
ability of statistical tools which able to simultaneously
capture millions of data points will lead to the

implementations of multi-omics approaches in malaria
susceptibility studies.

Conclusions and perspectives
The ultimate goal of malaria susceptibility study is to
discover a novel causal biological pathway that provide
protections against severe malaria; a fundamental step
towards translational medicine such as development of
vaccine and new therapeutics that can facilitate the glo-
bal malaria eradication efforts. To achieve this goal, vari-
ous study approaches have been implemented at least
for the last three decades and successfully identified sev-
eral association variants.
Recently, a number of GWASs have been implemented

in malaria endemic areas to better understand the
underlying biology. While some of the well-known vari-
ants were replicated, only few novel variants were con-
vincingly identified and their biological functions
remains to be understood. Several limiting factors in-
cluding genetic diversity of population in malaria en-
demic areas, allelic heterogeneity of protective variants,
small sample sizes, lack of proper reference panel and

Fig. 1 Schematic representation of the integrative analyses. Systems biology approach which incorporate multiple layers of information from host
(multi-omics), the environment and parasite genetic factors can potentially lead to the discovery of malaria protective pathways

Damena et al. BMC Medical Genomics          (2019) 12:120 Page 10 of 14



proper genotyping chips might have negatively impacted
the malaria GWASs.
Another challenge is that we don’t know much

about the genetic architecture of malaria protective
trait. There are at least two scenarios in which
GWAS approach might fail; First, malaria protective
trait might largely be attributed to rare variants of
large effect sizes that might not be in LD with com-
mon variants and can’t be captured by the GWAS
approach. Second, malaria might have left multiple
genetic variants distributed across human genome;
the majority of which have effects too small to be
detected by the standard GWASs [1, 7]. Theoretic-
ally, the large sample sizes, dense genotyping chips
or whole genome sequencing, use of appropriate ref-
erence panels and effective genotype imputation can
address the majority of the challenges. However,
given the resource constraints; especially, in Africa
where malaria problem is the greatest, this will likely
take several years to achieve.
On the other hand, the recent advances in statistical

techniques is enabling to extract useful information
from the present-day GWAS sample sizes. For ex-
ample, a number of statistical approaches have been
developed to capture polygenicity in complex diseases.
We showed how these methods can potentially be
implemented in malaria susceptibility studies and pro-
vide useful insights. We believe that further studies
with larger sample sizes can elucidate the polygenic
effects in malaria protective trait by extending the
analysis to genome partitioning, risk prediction and
genetic correlations.
Beyond singe locus analysis, multi-step and multi-

locus analyses including pathway analysis, fine mapping
and interaction analysis can potentially be implemented
in malaria susceptibility GWASs to gain new insights to
the underpinning biology. For instance, pathway analysis
can provide important information by analyzing the co-
ordinated effects of several variants at systems level
using biological information from annotation databases.
Methods that combine statistical and functional fine-
mapping strategies can potentially be implemented to
pinpoint the causal variants from the GWAS association
signals.
Most importantly, the future direction of malaria sus-

ceptibility requires a paradigm shift from single ‘-omics’
to multi-stage and multi-dimensional integrative func-
tional studies that combines multiple data types from
the human host, the parasite, the mosquitoes and the
environment. The current biotechnological advances, an
ever-increasing annotation data bases and availability of
advanced analytical techniques, will eventually lead to
feasibility of systems biology studies and revolutionize
malaria research.
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