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Abstract

stoichioproteomics in precision medicine.
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Background: The five-year survival rate and therapeutic effect of malignant glioma is low. Identification of key/
associated proteins and pathways in glioma is necessary for developing effective diagnosis and targeted therapy of
glioma. In addition, Glioma involves hypoxia-specific microenvironment, whether hypoxia restriction influences the
stoichioproteomic characteristics of expressed proteins is unknown.

Methods: In this study, we analyzed the most comprehensive immunohistochemical data from 12 human glioma
samples and 4 normal cell types of cerebral cortex, identified differentially expressed proteins (DEPs), and
researched the oxygen contents of DEPs, highly and lowly expressed proteins. Further we located key genes on
human genome to determine their locations and enriched them for key functional pathways.

Results: Our results showed that although no difference was detected on whole proteome, the average oxygen
content of highly expressed proteins is 6.65% higher than that of lowly expressed proteins in glioma. A total of 1480
differentially expressed proteins were identified in glioma, including 226 up regulated proteins and 1254 down
regulated proteins. The average oxygen content of up regulated proteins is 2.56% higher than that of down regulated
proteins in glioma. The localization of differentially expressed genes on human genome showed that most genes were
on chromosome 1 and least on Y. The up regulated proteins were significantly enriched in pathways including cell
cycle, pathways in cancer, oocyte meiosis, DNA replication etc. Functional dissection of the up regulated proteins with
high oxygen contents showed that 51.28% of the proteins were involved in cell cycle and cyclins.

Conclusions: Element signature of oxygen limitation could not be detected in glioma, just as what happened in
plants and microbes. Unsaved use of oxygen by the highly expressed proteins and DEPs were adapted to the fast
division of glioma cells. This study can help to reveal the molecular mechanism of glioma, and provide a new
approach for studies of cancer-related biomacromolecules. In addition, this study lays a foundation for application of

Background

Glioma is the most popular primary malignant tumor in
neurosurgery [1], and its five-year survival rate is low,
less than 10% [2]. As having been reported earlier [3],
malignant glioma cells can extensively invade normal
brain tissue, and form highly proliferative glioma cell
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clusters [4]. Moreover, the high infiltration of glioma is
one of its features, which makes it extremely difficult to
cure completely [5]. Seizure and cognitive disorder are
the most commonly observed symptoms of glioma in
adults [6]. Beside the lesion of glioma, these additional
problems caused by glioma also haunt patients [7, 8].
Traditionally, surgery is the most frequently suggested
therapy approach in treating glioma [9]. But surgical
treatments can sometimes cause serious postoperative
complications, including cerebral vascular injury, sei-
zures, hematomas, and so on [10]. With the advance-
ment of medical science, more and more methods are
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available for glioma treatments nowadays, such as the
technical adjuncts applied in resection of glioma [9]. For
example, Yellow fluorescein-guided surgery is an import-
ant intra-operative visualization technique, which can
provide surgeon with information to perform the best
possible resection of gliomas [11] (Fig. 1). However, the
safety and recovery from surgical complications are un-
certain. Targeted therapy also provides a new method
for glioma treatment nowadays [12]. Due to the gradual
progression of the disease, the prevention and interven-
tion can be conducted in the early stage of the disease
by detecting the target genes, the early diagnosis of gli-
oma can gain precious time for oncologists to effect
therapy treatments [13].

Up to date, there have been many studies on key genes
and targeted therapy in glioma [12, 14, 15], but the key
genes used for targeted therapy in glioma are far from
being adequate. Chunhai Huang et al. have screened key
genes related to glioma pathways by gene chip [16], and
Yanyan Tang et al. have identified key genes and path-
ways in glioma by RNA-seq [15]. However, identification

Fig. 1 A case of recurrent glioblastoma multiforme (GBM). It is difficult
to distinguish tumor from normal brain tissue under a white light field
(a: Preoperative tumor lesion. ¢: the tumor lesions during procedures).
But easy to distinguish tumor tissue from normal brain tissue under a
fluorescence microscope (b and d: Strong presence of yellow
fluorescence in the tumor lesions during procedures). e: Excised whole
tumor tissue. f Postoperative pathological examination showed that
largely decreased and discontinuous expression of claudin-5 was
observed in the endothelial cells from the tumor lesions. The short red
arrows refer to the tumor lesions. The long red arrow refers to the
expression of claudin-5 in the endothelial cells
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of key genes from proteomic study of glioma is under-
investigated.

It is commonly accepted that cancer tissue has a hyp-
oxic microenvironment [17], which has become a key
topic of cancer physiology research and treatment for
cancer [18]. The occurrence of cancer hypoxia is caused
by insufficient supply of oxygen (O,), and then lead to
cancer proliferation and deterioration. The occurrence
of cancer hypoxia is strongly associated with tumor
propagation, malignant progression, insufficient supply
of oxygen (O,) in microenvironment [19, 20]. Further-
more, low-level oxygen can result in increased cell inva-
siveness, and promote tumor metastasis [21, 22], which
ultimately leads to resistance to therapy [23]. Hypoxia
has become the key topic of tumor physiology research
and tumor treatment. However, the mechanism of hyp-
oxia of glioma is still unknown and scientists are eager
to explore it. As a rapidly progressing disease without ef-
fective therapies [24], understanding the adaptive mech-
anism of hypoxia in microenvironment might provide a
shortcut for glioma treatment.

Stoichioproteomics is an emerging interdisciplinary
field. By assessment of differential usage of key elements
(e.g., nitrogen, N) in proteins, it provides an entire new
perspective for investigating interactions of proteins evo-
lution and environment [25]. Nutrient limitation theory
suggests that natural selection caused by limited element
supplies might bias to monomer usage to reduce the
corresponding element costs, because amino acids and
nucleotides are different in element counts [26]. This
has been evidenced in plants and microbes. For example,
in microbes [27-29], proteins that respond to N limita-
tion in microbes use reduced amounts of N-rich amino
acids [30]. In addition, in N rich environments, proteins
have higher nitrogen levels in plants [31, 32].

At present, the research on glioma hypoxia is focused
on microscopic, physiological, cellular and molecular re-
search. Stoichioproteomic characteristics of glioma have
not been studied, and whether the oxygen contents of pro-
teins are lessened in a hypoxia microenvironment of gli-
oma is unknown. Immunohistochemical method is the
most accurate protein quantification method. At present,
huge proteomic data based on immunohistochemical
method offered by Human Protein Atlas project (HPA)
[33] are available, which gives us an opportunity to screen
key proteins associated with glioma from the proteome
perspective, and provides us with a possibility to study the
relationship between element content and protein expres-
sion level in hypoxia glioma cancer.

In this paper, we studied the oxygen characteristics of
proteomes of glioma and normal cells in cerebral cortex, to
test whether a hypoxia environment lessened proteins’ oxy-
gen usage as predicted by the resource limitation theory. In
addition, we identified the key proteins, genome locations
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and pathways associated with glioma. The results obtained
here could be used for developing molecularly targeted
therapy and precision medical treatment for glioma.

Method

Data resource

A case of recurrent glioblastoma multiforme (GBM) was
provided by department of neurosurgery, Bishan Hos-
pital, Chongqing. Tumor resection was performed by
fluorescence visualization with a YELLOW 560 nm filter
on a Pentero 900 microscope (Carl Zeiss, Oberkochen,
Germany). Immunohistochemical staining with claudin-
5 antibody (Invitrogen, Camarillo, CA, USA) were used
for postoperative pathological examination.

Human genome sequences and annotation (version
GRCh38.p7) were obtained from NCBI (ftp://ftp.ncbinih.
gov/genomes/H_sapiens/). Proteomic data based on im-
munohistochemical analysis of glioma samples (with 13,
083 proteins expressed) from 12 glioma patients and 4
kinds of normal cell types (Endothelial cells. Glial cells,
Neuronal cells, Neuropil cells, with 12,918, 12,918, 12,919,
12,906 proteins expressed respectively) in cerebral cortex
tissues from normal people were retrieved from Human
Protein Atlas project (http://www.proteinatlas.org/).

Protein expression evaluation

Protein expression evaluations were based on immunohis-
tochemical data from HPA, which includes the assessment
of staining intensity (negative, weak, medium or strong)
and fraction of staining cells (<25%, 25-75% or > 75%)
(Additional file 1: Table S1). According to HPA, the de-
gree of a protein’s expression is measured to 4 levels: not
detected, low, medium and high, which were further con-
verted to score: 0, 3, 6, 12. In order to make use of experi-
mental data as much as possible, the expression value of 0
were replaced by 0.1 in differentially expressed proteins
identification, which is a conventional processing method
used in RNA-Seq [34]. In order to ensure accuracy of
experiments, only protein with expression score in at least
3 glioma samples and 3 normal cell type samples were
used in our study. The above procedures were realized by
our in-lab developed Perl scripts.

Principal component analysis (PCA)

PCA is a dimensionality reduction method [35], and cur-
rently it is one of the most popular methods used for
judging whether several groups of samples are divisible
or not, which is widely used in the field of life science
research [36, 37]. In our study, PCA of expressional
patterns could indicate relationships among groups of
variables in a data set and show relationships that might
exist between proteomes of glioma and normal cerebral
cortex cells. PCA was performed by R packages “Facto-
MineR” [38] and “Factoextra”.

Page 3 of 12

Identification of highly expressed, lowly expressed and
differentially expressed proteins (DEPs)

In proteomes of glioma and four kinds of normal cere-
bral cortex cells, top 1%, top 3%, top 5% proteins with
high expression scores and threshold (with maximum
expression score) proteins were selected as highly
expressed proteins, and bottom 1%, bottom 3%, bottom
5% proteins with low expression scores and threshold
(with expression score <0.1) were marked as lowly
expressed proteins.

The expression data between glioma and four normal
cerebral cortex proteomes were analyzed by “edgeR” [39]
and “limma” [40] package in statistical software R (ver-
sion 3.4.1) [41] to screen the differential expressed pro-
teins. Proteins with Log2 ratio equal or greater than 1
were considered as up regulated proteins, and Log2 ratio
equal or less than -1 as down regulated proteins. P <
0.05 was used as a criterion for “statistically significant”
and FDR level (q-value< 0.01) was used as a criterion for
false positive rejections.

theexpressionscoreof proteinsinglioma
Log2ratio = Log2 P - fp — 8 >
theexpressionscoreof proteinsinnormalcells

Estimation of elemental contents on amino acid side chains
The following algorithms were used for calculating elem-
ent compositions, see detail in our published paper [42].

[frequency]| = Zwi x pi/L

In formula, wi is the number of elements in the side
chain of amino acids (between 0 and 10), pi is the number
of i (a amino acid) in a protein sequence, and L is the se-
quence length. The content of an element in multiple se-
quences is the average value of the element content on
the side chain of amino acids in all sequences. In this
study we only considered oxygen and carbon element. A
carbon: oxygen ratio (C:O) was calculated as the ratio of
nitrogen atoms to carbon atoms for each protein.

Functional enrichment

Gene Set Enrichment Analysis (GSEA) (http://software.
broadinstitute.org/gsea/index.jsp) is a web-based soft-
ware application for integrating, analyzing, and under-
standing statistically significant, concordant differences
between two interested biological samples [43]. KEGG
annotations and enrichment for human genes were ex-
tracted and performed by GSEA.

Statistics and visualizations

We used statistical software R (version 3.4.1) [41] for
statistical analysis and packages “ggplot2” [44], “ggrepel”
[45], “grid” [46] for visualization. In addition, R package
“circlize” [47] was used to locate genes on genome and
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“Clusterprofiler” [48] was used to plot functional enrich-
ment results.

Results

Principal component analysis and differentially
expressed protein (DEPs) identification

To explore the expression differences between glioma
cells and normal cells, the proteomic data of 12 glioma
samples were compared with that of 4 cerebral cortex
cell types, using the principal components analysis
(PCA) (Fig. 2). This analysis summarized the variations
in glioma and cerebral cortex samples, based on the ex-
pression differences in proteins, and generated plots that
separated samples. Twelve glioma samples were indi-
cated as yellow triangles, and 4 cerebral cortex cell types
were indicated as green dots. Glioma and cerebral cortex
samples were clustered respectively, and 64.6% of vari-
ance was explained by the first two principal compo-
nents. We found that glioma samples were separated
from normal cerebral cortex samples, which revealed
that glioma and cerebral cortex samples were expres-
sional indistinguishable at the overall proteomic level
(Fig. 2a), and expressional differences between them
could be used for further analysis.

In order to explore the occurrence and development
mechanism of glioma, differentially expressed proteins
were identified between glioma and 4 normal cerebral
cortex samples, with established criteria (P <0.05 and
FDR level < 0.01). A total of 1480 differentially expressed
proteins were obtained, which consisted of 226 up regu-
lated proteins and 1254 down regulated proteins in gli-
oma (Additional file 1: Table S4, Fig. 2b).

Oxygen and carbon contents in all proteins expressed in
glioma and normal cerebral cortex cells

After retrieving proteomic data of glioma and four normal
cerebral cortex samples, we calculated and compared
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oxygen contents and C:O ratios of proteins. The average
oxygen content of all expressed proteins was 0.482 in gli-
oma, and 0.483, 0.484, 0.482, 0.481 in four normal cerebral
cortex samples (Additional file 1: Table S2). No significant
differences of oxygen contents and C:O ratios among the
selected groups were detected (Fig. 3a-b, Additional file 1:
Table S2). The average oxygen content in proteins
expressed in glioma was not significantly different from
that of the normal cerebral cortex samples (P> 0.05, Fig.
3c). The average C:O ratio of proteins expressed in glioma
was also similar to that of the normal cerebral cortex sam-
ples (P > 0.05, Fig. 3d). Since no differences of oxygen con-
tents were found in this step, we only analyzed oxygen
contents in proteins. We did not associate it with the pro-
tein’s expression levels.

Patterns of oxygen contents in highly and lowly
expressed proteins

To better explore the association between a protein’s
oxygen content and its expression level, we further cal-
culated and compared the oxygen contents in the highly
and lowly expressed proteins in glioma and four kinds of
normal cerebral cortex cells. To ensure the result reli-
ability, the highly and lowly expressed proteins were
screened out based on the top/bottom 1% proteins, top/
bottom 3% expressed proteins, the top/bottom 5%
expressed proteins and proteins with threshold expres-
sion score of >maximum/<0.1. Meanwhile the C:O ratio
in each protein was calculated and used as a control for
oxygen content comparisons. As the principal element
of organisms, carbon is a suitable control for element
composition analysis [49].

Our results showed that, in both glioma and 4 kinds of
normal cerebral cortex cells, the oxygen contents of highly
(proteins with maximum threshold expression score) and
lowly (proteins with threshold expression score of <0.1)
expressed proteins were significantly different (Fig. 4,
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Additional file 1: Table S3). Average oxygen content of
highly expressed proteins is 6.65% higher than that of
lowly expressed proteins in glioma, and this trend was less
pronounced in endothelial, glial, neuronal, and neuropil
cells (with 2.43% averaged) (Additional file 1: Table S3).
Of the 5 samples considered, the distributions of oxygen
content of the highly and lowly expressed proteins are en-
tirely nonoverlapping (0.477 in the lowest highly expressed
proteins vs. 0.475 for the highest lowly expressed proteins;
Additional file 1: Table S3). All results were agreed for
proteins expressed at the top/bottom 1, 3% or 5%, or pro-
teins with a preset threshold score, and significant differ-
ence of oxygen contents could be detected in the majority
(Fig. 4, Additional file 1: Figures S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15, S16).

Meanwhile the C:O ratio in each protein was calculated
and used as another indicator for oxygen content changes.
As carbon-to-nitrogen ratios had been used as an indica-
tor for nitrogen limitation of plants and other organisms
[50], this method could reduce the deviation caused by
side chain lengths. Our results showed that the C:O ratio
of highly expressed proteins (5.820, 6.291, 6.129, 6.153
and 6.117) was 4.50% lower than that of lowly expressed
proteins (6.488, 6.362, 6.375, 6.390 and 6.339) in both gli-
oma and 4 kinds of normal cerebral cortex cell types, and
the C:O ratio of highly and lowly expressed proteins in
both glioma and 4 normal samples were significantly dif-
ferent (p = 2.47e-10,1.30e-2, 1.01e-13, 1.3%e-9 and 6.93e-3,

Ks test, Additional file 1: Table S3) and their distributions
were largely separated (Fig. 4).

All together, these results suggested that there was an
association existed between proteins’ oxygen contents
and their expression levels in glioma and four normal
cerebral cortex samples. On average, oxygen content
was 3.27% higher in the highly expressed proteins than
that in the lowly expressed proteins.

Patterns of oxygen contents in up regulated and down
regulated proteins in glioma
After observing the fact that oxygen contents of the
highly expressed proteins were higher than that of the
lowly expressed proteins in glioma and four cerebral
cortex samples, we checked whether this phenomenon
existed between up regulated and down regulated pro-
teins. After screening the differentially expressed pro-
teins, we identified 226 up regulated and 1254 down
regulated proteins in glioma. We then calculated and
compared the oxygen contents in these proteins. The
average oxygen content (0.481) of up regulated proteins
was 2.56% higher than that (0.469) of the down regu-
lated proteins in glioma, and the difference was statisti-
cally supported (p=0.0195, Ks test, Additional file 1:
Table S5). The distribution of oxygen contents in up and
down regulated proteins was largely separated (Fig. 5).
Meanwhile the carbon contents were calculated and
used as a control for oxygen content calculations. The



Yin et al. BMC Medical Genomics (2019) 12:125 Page 6 of 12

P
C:0 of highly expressed proteins Oxygen content of highly expressed proteins
C:0 of lowly expressed proteins Oxygen content of lowly expressed proteins
6.0 A 6.0 B
4.0 P4 0505 40
> 2
E E
2.0 20
P=2476-10 P=9.996-12
0.0 0.0
0o 0’5 10 15 20 25 0o 05 10 15 20 25
Element amount Element amount
1.0 c 1.0 D
0.8 0.8
§ 0.6 P=4.386-2 § 0.6 P=5.606-7
s 2
£ os £ 04
P=7.07e-73
0.2 0.2
0.0 0.0+
03 04 05 06 07 03 04 05 0% o7
Element content Element content
1.0 E 1.0 F
0.8 0.8
306 306
s P=5376-17 S P=1.3564
=l El
£ o4 & o4
P=6.930-3
0.2 0.2
0.0 0.0+
03 04 05 0% o7 03 04 05 0% o7
Element content Element content
Fig. 4 Distribution of C:O ratio of highly expressed and lowly expressed proteins in glioma and 4 cerebral cortex samples. (a) Glioma. (b) Glioma (top/
bottom 3%). (c) Endothelial cells. (d) Glial cells. () Neuronal cells. (f) Neuropil. (For a,c,d.ef, proteins with threshold expression score of Zmaximum/
<0.1 were studied. In addition, to make them better presented, the value of C:O ratio were divided by 5 in a and b, and divided by 10in ¢, d, e and f
J
P
o ]
© |
o
>
O ©
= P=0.335
08)- P=0.0195
Cow
g
N [O] of up regulated proteins in glioma
o 7 [O] of down regulated proteins in glioma
[C)/10 of up regulated proteins in glioma
o [C]/10 of down regulated proteins in glioma
=
T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7
Element content
Fig. 5 Distribution of oxygen and carbon contents of DEPs between glioma and four cerebral cortex samples. (In order to present results within
the same scale, the values of carbon content were reduced by ten times)




Yin et al. BMC Medical Genomics (2019) 12:125

average carbon contents of DEPs in glioma and cerebral
cortex tissues weren't significantly different (p = 0.335,
Ks test, Additional file 1: Table S5). As it was shown, the
distribution of carbon contents in the up and the down
regulated proteins virtually overlapped, which indicated
no significant carbon content differences between glioma
and four cerebral cortex proteomes (Fig. 5).

Localization of differentially expressed genes on genome

As described above, the oxygen contents of up regulated
proteins were higher than that of the down regulated
proteins in glioma, which is of great significance for
deciphering the mechanism of oxygen element usage
bias. Meanwhile, differentially expressed genes (DEGs)
could help us to better understand the mechanism of
glioma. Those genes coding the up or down regulated
proteins were commonly considered as key disease-asso-
ciated genes. We further determined the genome loca-
tion of genes encoding these up and down regulated
proteins. 226 up regulated genes and 1254 down regu-
lated genes were respectively located on human genome
(Fig. 6). Most differentially expressed genes were distrib-
uted on chromosome 1, with 25 up regulated and 108
down regulated genes respectively, following with 17 up,
68 down regulated genes on chromosome 2, and 15 up,
67 down regulated genes located on chromosome 19.
Fewest differentially expressed genes were distributed on
chromosome Y, with only 1 gene being located.

Among these key genes, ZSWIM5 was the most up
regulated, which plays a possible role in nerve conduc-
tion formation [51], and was considered as high cyto-
plasmic expression gene of interest for human glioma
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[52]. In addition, CCR9, ADGRE5 and MEOX1 were sig-
nificantly up regulated. CCR9 associated with T lympho-
cyte development when bound to its specific ligand, and
is highly expressed in variety of cancers [53]. MEOX1
plays key role in regulating somite development, which
associated with cancer progression [54]. ADGRE5 was
closely related with tumor cell adhesion, migration,
angiogenesis, and apoptosis [55]. These key genes play
important roles in glioma proliferation.

Functional enrichment and dissection
After locating the key genes on human genome, we fur-
ther analyzed functional enrichments of these key genes,
which could help us to efficiently examine large gene
lists in a network context. KEGG enrichments were per-
formed respectively for genes of up regulated proteins
and down regulated proteins to check the specific path-
ways enriched by these two gene groups. A total of 14
pathways were enriched by genes of up regulated pro-
teins, 62 pathways were enriched by genes of down regu-
lated proteins, with FDR value less than 0.05 and p value
less than 0.05 as the threshold for enrichment analysis.
The top 10 enriched pathways of up regulated proteins
were illustrated in Fig. 7a and Additional file 1: Table S6.
The most enriched pathway was cell cycle, which were
enriched by 12 proteins. Other proteins were enriched in
MAPK signaling pathway (7 proteins), pathways in cancer
(7 proteins), p53 signaling pathway (5 proteins), VEGF sig-
naling pathway (5 proteins), oocyte meiosis (5 proteins),
DNA replication (4 proteins), peroxisome (4 proteins),
progesterone-mediated oocyte maturation (4 proteins),
apoptosis (4 proteins), arginine and proline metabolism (3
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Functional dissection of proteins, with oxygen content equal or higher

proteins), arachidonic acid metabolism (3 proteins), gly-
colysis/gluconeogenesis (3 proteins) and alpha-Linolenic
acid metabolism (2 proteins). In addition, the top ten
enriched pathways of down regulated proteins were pre-
sented in Fig. 7a and Additional file 1: Table S6. Twenty-
eight proteins were enriched in Focal adhesion, and 26
proteins were enriched in regulation of actin cytoskeleton
and neuroactive ligand-receptor interaction. Other pro-
teins were enriched in MAPK signaling pathway (25 pro-
teins), tight junction (21 proteins), calcium signaling
pathway (21 proteins), endocytosis (20 proteins), leukocyte
transendothelial migration (17 proteins), axon guidance
(17 proteins) and ECM-receptor interaction (14 proteins).

These pathways enriched by up regulated proteins and
down regulated proteins could help us to explain the
pathogenetic mechanisms of glioma. Peroxisome is an
important site for biological oxidation and energy me-
tabolism. Up-regulation of this pathway increases the en-
ergy metabolism of glioma cells [56], which supplies
adequate energy to the rapid proliferation of glioma

cells. Peroxisomes are also major oxygen users and the
oxygen produced from hydrogen peroxide is used within
the organelle [57]. In addition, p53 signaling pathway and
apoptosis have also be determined to be closely related to
the occurrence of glioma. Pathways enriched by down reg-
ulated proteins suggested that neuroactive-ligand receptor
interaction pathway and axon guidance were associated
with the occurrence of glioma. As having been reported,
the interruption of neuroactive-ligand receptor interaction
pathway could cause some neuron related diseases [58].
Proper function of axon guidance is essential for avoiding
neurological disorders [59]. So the disorders of neuroac-
tive ligand-receptor interaction and axon guidance inevit-
ably lead to glioma.

Further, we dissected these pathways enriched by
genes of up regulated proteins for understanding which
kind of up regulated proteins consumed more oxygen in
the hypoxic microenvironment of glioma. The functions
of those proteins with oxygen content higher than the
average (of five proteomes, 0.482) were checked one by
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one manually (Fig. 7b, Additional file 1: Table S7). We
found that, most of these proteins with high oxygen con-
tents were involved in cell cycle (33.33%), followed by
signaling (23.08%), cyclins (17.95%), apoptosis (12.82%),
metabolism (7.69%), and transcription factor (5.13%)
(Fig. 7¢).

Discussion

A total of 226 up regulated proteins and 1243 down reg-
ulated proteins were identified in glioma, and genes en-
coding these key proteins were located on human
genome, which showed the distribution characteristics of
key genes. These marker proteins could lead to new
ways for glioma diagnosis and treatments. The genome
location of key genes laid foundation for genome study
of glioma, and allowed for studies of the upstream and
the downstream regulations of key genes, which could
ultimately improve the understanding of the molecular
mechanism of glioma.

An association of oxygen content with protein expres-
sion level was detected in both glioma and 4 kinds of
normal cerebral cortex cells, and this association was
more pronounced in glioma cells. However, no carbon
content differences between the highly and the lowly
expressed proteins were detected. In addition, oxygen
contents of up regulated proteins were 2.56% higher
than that of the down regulated proteins in glioma,
which was contrary to the resource limitation theory.

Resource limitation theory [30] could not be applied
to human glioma cells. Since our results suggested that
cancer hypoxia microenvironment didn’t lessen the oxy-
gen contents in the up regulated proteins as predicted
by the theory. On the basis of this theory, if the environ-
ment lacks a particular element, the corresponding-
element-rich proteins should have reduced abundances
[30]. In agreement with this theory, proteins that re-
spond to N limitation in microbes decrease the use of
N-rich amino acids [30] and proteins with high nitrogen
contents in plants live in nitrogen-rich environments
[31]. On the contrary, we found that in the hypoxia
microenvironment of glioma, oxygen contents of highly
expressed proteins were higher than that of the lowly
expressed proteins. Moreover, compared with normal
cerebral cortex cells, up regulated proteins’ oxygen con-
tents were 2.56% higher than that of the down regulated
proteins in glioma. These findings indicated that highly
expressed and up regulated proteins did not save the use
of oxygen in the glioma hypoxia microenvironment.

Functional enrichment and dissection of up regulated
proteins play key roles in explaining the mechanism of
oxygen usage bias. Firstly, by functional enrichment, cell
cycle, oocyte meiosis DNA replication were firstly
enriched out, which were closely related to cell division
and cytoskeleton, and consistent with the characteristics
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of rapid proliferation and division of cancer cells. Unregu-
lated cell cycle leads malignant proliferation, which is the
most typical feature of cancer [60], and error-prone phe-
notypes in DNA replication often lead to serious, unex-
pected spread of cancer. Our previous studies have shown
that cytoskeleton proteins possess much acidic amino
acids and high oxygen contents [26]. Rapid proliferation
and division of tumor cells require frequent dissociation
and recombination of cytoskeleton. Up-regulation of these
pathways consume more oxygen, which cause oxygen
usage bias in glioma cells. Secondly, functional dissection
of up regulated proteins with high oxygen contents
showed that 51.28% of the proteins were involved in cell
cycle and cyclins, which further suggested that proteins in-
volved in cell cycle and cyclins were up regulated and con-
sumed more oxygen in glioma cells.

We attempted to explain the molecular mechanism of
oxygen usage bias detected in glioma cells from a func-
tion point of view. The oxygen content differences of up
regulated and down regulated proteins might be closely
related to their functions. More oxygen consumed by
the up regulated proteins could be explained by the need
for faster division and numerous activities of cytoskel-
eton. In addition, large amount of oxygen consumed by
the up regulated proteins might have played a role in ag-
gravating hypoxia microenvironment in glioma tissue.
Deviated from resource limitation theory, the increased
amount of oxygen consumed by the up regulated pro-
teins was not caused by a hypoxic microenvironment.
On the contrary, the increased amount of oxygen con-
sumed by the up regulated proteins promoted the for-
mation of a hypoxic microenvironment in glioma.

KEGG enrichment of DEPs helps to clarify the molecu-
lar mechanism of glioma. VEGF signaling pathway is a key
to initiate tumor angiogenesis [61], and new vessels to
transport sufficient nutrition and oxygen for tumor cell,
which ensures the stately physiological activity of the
tumor cell [62]. Studies have shown that VEGF-A signal-
ing pathway is an effective target for therapy, and the
tumor-related diagnosis could be studied according to
endothelial growth factor (VEGF) family [63].

Focal adhesion and tight junction play critical roles in
adhesion [64], and down-regulation of focal adhesion and
tight junction pathways decreased the adhesion between
glioma cells and rendered cells enhanced migration abil-
ities. Tight junction and leukocyte transendothelial migra-
tion play vital roles in immunity surveillance [65, 66].
Down regulation of these pathways helped glioma cells
proliferate in the body without being eliminated by the
immune system.

Interestingly, MAPK signaling pathway was enriched
by both up regulated and down regulated proteins in
our study. Constitutive activating MAPK signaling path-
way often leads to promotion of abnormal cell growth
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and tumorigenesis [67]. However, suppressing the
MAPK signaling pathway could not only suppresses mi-
gration and invasion of malignant glioma cells, but also
inhibit the viability and promote the senescence and
apoptosis of glioma cells [68, 69]. This could explain
why this pathway was repeated enriched.

Conclusion

In this report, stoichioproteomic characteristics of prote-
ome in glioma and 4 normal cerebral cortex cells were
studied. We found that the oxygen contents of highly
expressed proteins were 3.27% higher than that of lowly
expressed proteins in all samples. Besides, we identified
226 up regulated proteins and 1254 down regulated pro-
teins in glioma, and found that oxygen contents of up reg-
ulated proteins were 2.56% higher than that of down
regulated proteins, which was contrary to the resource
limitation theory. Genome location of key genes showed
that most of the gens were located on chromosome 1, and
least on chromosome Y. Pathway enrichment results were
closely related to proliferation, energy and immune, such
as cell cycle, peroxisome, focal adhesion and so on. Func-
tional dissection showed that 51.28% of the up regulated
proteins with high oxygen contents were involved in cell
cycle and cyclins. Our discovery on oxygen content bias in
glioma proteomes will provide new insights in studies of
hypoxic microenvironment and disease-related biological
macromolecules. Key proteins and pathways detected in
this study will play crucial roles in revealing the molecular
mechanism of glioma and oxygen usages bias, and estab-
lish a foundation for application of stoichioproteomics in
precision medicine.
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