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Abstract

Background: Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease whose pathogenesis
remains incompletely understood. Increasing evidence suggests that both genetic susceptibilities and changes
in DNA methylation influence pivotal biological pathways and thereby contribute to the disease. The role of
DNA methylation in SSc has not been fully elucidated, because existing investigations of DNA methylation
predominantly focused on nucleotide CpGs within restricted genic regions, and were performed on samples
containing mixed cell types.

Methods: We performed whole-genome bisulfite sequencing on purified CD4+ T lymphocytes from nine SSc
patients and nine controls in a pilot study, and then profiled genome-wide cytosine methylation as well as
genetic variations. We adopted robust statistical methods to identify differentially methylated genomic regions
(DMRs). We then examined pathway enrichment associated with genes located in these DMRs. We also tested
whether changes in CpG methylation were associated with adjacent genetic variation.

Results: We profiled DNA methylation at more than three million CpG dinucleotides genome-wide. We
identified 599 DMRs associated with 340 genes, among which 54 genes exhibited further associations with
adjacent genetic variation. We also found these genes were associated with pathways and functions that are
known to be abnormal in SSc, including Wnt/β-catenin signaling pathway, skin lesion formation and
progression, and angiogenesis.

Conclusion: The CD4+ T cell DNA cytosine methylation landscape in SSc involves crucial genes in disease
pathogenesis. Some of the methylation patterns are also associated with genetic variation. These findings
provide essential foundations for future studies of epigenetic regulation and genome-epigenome interaction
in SSc.
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Background
Systemic sclerosis (SSc) is a chronic autoimmune disease
characterized by skin and visceral organ fibrosis [1, 2]. It
is associated with high morbidity and mortality [3–5].
Aside from autologous hematopoietic stem cell trans-
plant, which is associated with serious treatment related
toxicities and is indicated for a small proportion of
patients, no therapies have been shown to meaningfully
modify disease progression [6]. The pathogenesis of SSc
remains to be fully elucidated and this is key to identify-
ing novel therapeutic targets.
Increasing evidence suggests that genetic risk factors are

strongly associated with SSc. Though the human leukocyte
antigen (HLA) class II region is traditionally considered the
most genetically associated with SSc [7–9], non-HLA loci
and corresponding genes have also been identified [10, 11].
However, these SSc-susceptibility loci are estimated to ac-
count for only a small proportion of the disease risk [11].
In recent years, epigenetic dysregulation, including DNA

methylation, histone modifications and microRNA expres-
sion, have been associated with SSc pathogenesis [12]. In
particular, several studies have demonstrated that aberrant
DNA methylation patterns at CpG dinucleotides are asso-
ciated with altered expression levels of key genes related to
SSc [12–14]. These findings complement the known gen-
etic associations and provide tantalizing additional clues to
the etiology of SSc.
However, the majority of epigenetic studies in SSc to

date have three important shortcomings. First, most stud-
ies of DNA methylation used assays that measure DNA
methylation in restricted genic regions. Since these regions
constitute a small proportion of the genome, changes in
DNA methylation patterns are yet to be discovered in the
remaining regions, both genic and intergenic. Second,
though studies of other diseases have unraveled the non-
negligible role of CHG/CHH methylation (where “H”
implies any nucleotide other than G), particularly in cancer
[15, 16], no studies have investigated CHG/CHH methyla-
tion in SSc. Third, most studies sequenced peripheral
blood mononuclear cells (PBMC) without accounting for
the different cell types in the mixture. Given the differences
in DNA methylation across different cell types [17, 18],
studies based on unsorted PBMC samples are prone to
confounding. Though different immune responses convo-
lute in the multi-levelled abnormalities in SSc, T lympho-
cytes play a disproportionate role in SSc [19].
We undertook this pilot study to investigate genome-

wide methylation patterns in CD4+ T cells using whole-
genome bisulfite sequencing (WGBS) to profile the
methylation status of CpG, CHG and CHH cytosines,
and to assess the potential of this platform to identify
changes in methylation. We successfully identified T
cell-specific aberrant methylation patterns in SSc. We
then comprehensively explored the regulatory impacts of

these epigenetic alterations on biological functions and
diseases. We also inferred potential single nucleotide
polymorphisms (SNP)-CpG interactions that implicated
underlying genetic control of methylation status. Finally,
we provide an application enabling visualization of re-
gions and summaries of our results across the genome.

Methods
Study subjects and ethical considerations
Nine SSc patients and nine control subjects gave informed
consent and were recruited from an ongoing SSc research
cohort based at McGill University, Montreal, Canada. Of
the nine SSc patients, none were on immunosuppressive
drugs at the time of sampling (three were previously on
methotrexate and mycophenolate but those medications
had been discontinued for > 1 year).

Cell purification and whole-genome bisulfite sequencing
(WGBS)
Forty milliliters of blood were obtained from each study
subject and processed fresh within 4 h of being drawn.
CD4+ T cells were positively selected [anti-CD4
microbeads (Miltenyi Biotec) and auto-MACS] and their
purity assessed with flow cytometry. Only samples with
a purity > 95% were used for genomic DNA extraction
and sequencing. The samples were processed using the
in-house DNA isolation and Illumina HiSeq 4000 PE
100 WGBS workflows at the McGill University and Gen-
ome Quebec Innovation Centre. Quality control of the
genetic materials was performed using fluorescence
assay quantification, agarose gel electrophoresis and
NanoDrop nucleic acid quantification to ensure suffi-
cient quantity, quality and purity (Additional file 18:).

Data processing and filtering
The WGBS data were aligned to the human genome
GRCh37 (hg19) using the NovoAlign™ pipeline (http://
www.novocraft.com/). For each cytosine retained for
further analysis, coverage by both strands in the paired-
end sequencing library was required. To ensure accuracy
in estimation of methylation level, valid cytosines with
good read depth were extracted for CpG, CHG, and
CHH motifs respectively. For each valid CpG dinucleo-
tide, the estimated methylation level was obtained after
merging methylated and unmethylated read counts for
the forward and reverse cytosines. Read depth was re-
quired to be deeper than 3 at both C/G or C/H sites and
the between-site difference in empirical methylation β
values was required to be less than 0.2. For each valid
CHG/CHH, minimum read depth required for further
analysis was 6. Genome-wide SNPs were identified from
the same dataset using the Bis-SNP pipeline [20].
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Identification of differentially methylated regions
We used bumphunter version 3.3 [21] to identify DMRs
in five sets of comparisons:
(i) SSc cases (N = 9) versus female controls (N = 4);
(ii) SSc cases (N = 9) versus all controls (N = 9);
(iii) Diffuse SSc cases (N = 6) versus female controls

(N = 4);
(iv) Limited SSc cases (N = 3) versus female controls

(N = 4);
(v) Diffuse SSc cases (N = 6) versus limited SSc cases

(N = 3).
In all sets of comparisons, we adjusted for the additive

effect of age within bumphunter. Moreover, in (ii), we
additionally adjusted for the effect of gender.
To maintain statistical power, we restricted the analysis

to regions with consistently high coverage across samples
and imposed a minimum coverage rate on a per-CpG di-
nucleotide or per-CHG/CHH site basis. We imposed a
minimum sample-level coverage rate for each site ana-
lyzed; minimum sample sizes for the analyses presented in
(i)-(v) were 6/9, 4/6, 3/4 and 3/3, respectively. Cytosines
were then clustered into regions with a maximum 200 bp
gap between two cytosines in the same region. The total
number of tests done for each of (i)-(v) was 392,810, 383,
235, and 380,756 for CpG, CHG and CHH, respectively.
Regions with an adjusted p value (q-value) < 0.05 and an

average methylation level difference > 0.2 reported by bum-
phunter were considered to be DMRs. A Bonferroni cor-
rected p-value threshold of significance for five genome-
wide analyses each comprising more than 106 comparisons
would require a significance threshold below 2 × 10−7,
which would be very unlikely to achieve here given the
sample size. For example, for a simple t-test we would re-
quire a standardized difference of 9.2 to obtain 90% power
at this significance level; that is, the mean difference in
methylation between SSc and controls would have to be
nine times larger than the standard deviation. Thus, our re-
sults should be considered as preliminary and therefore we
have placed most emphasis on the results of analysis (i) as
they included all the female patients and avoided the poten-
tial confounding effect of sex.

Multiple testing
We used the false discovery rate estimates from bumphun-
ter to select DMRs, and added a filter requiring that the
difference in methylation be at least 0.2. We also per-
formed a permutation test of the primary analysis compari-
son between SSc cases (N = 9) versus female controls (N =
4). We randomly relabelled samples as SSc cases or con-
trols, and then repeated the genome-wide identification of
DMRs using bumphunter. We repeated the permutation
and genome-wide analysis 40 times, and then counted in
how many permutations a previously identified DMR was
still identified as a DMR with an identical or smaller p

value. We also compared the number of identified DMRs
between the original data and the permutations.

Annotation of DMR and functional analysis
Genomic context of each DMR was annotated by annotatr
[22] based on the most recent annotations of human gen-
ome downloaded from the UCSC genome browser (http://
hgdownload.soe.ucsc.edu/goldenPath/hg38/database/.
Accessed 5 March 2019). All genes overlapping with DMR
were regarded as DMGs. We performed functional analysis
using Ingenuity Pathway Analysis [23] to investigate poten-
tial biological impacts through epigenetic alterations in
these DMGs. Adjusted p values and averaged methylation
level difference of DMRs were used to indicate the degree
of discrepancy. For single-DMR genes, the averaged differ-
ence of the corresponding DMR represents the gene-level
difference. For genes associated with more than one DMR,
we calculated the average of the averaged difference of
each DMR to represent overall methylation level differ-
ence. Genes with both hypermethylated and hypomethy-
lated DMRs may therefore have had the differences
neutralized. Identification of DMR and functional analysis
were conducted on CpG, CHG and CHH separately.

Detection of SNP-CpG associations
We explored short-range SNP-CpG associations around a
selected subset of CpG-based DMR identified in the com-
parison between SSc cases (N = 9) versus female controls
(N = 4) that could be deemed consequential for SSc. Within
a window of ±5 kb around each CpG-based DMR (inclu-
sive), we extracted all SNPs as candidates for cis-interaction
with the methylation pattern of the DMR. Simultaneously,
within each CpG-based DMR, we first regressed out the ef-
fect of age and obtained residual methylation level on each
CpG dinucleotide. We then used a multivariate method
(PCEV [24]) to test associations between residual methyla-
tion levels and the binary disease status. We followed this
by examining the PCEV-derived variable importance mea-
sures to identify the dinucleotide most strongly associated
with disease status in the DMR. We extracted the residual
methylation level on this specific CpG dinucleotide as a
representative of the DMR and performed linear regression
with all candidate SNPs of the corresponding DMR. In
total, linear associations between 599 DMR and 36,838 can-
didate SNPs were tested. Unadjusted p values were re-
ported with adjusted R2 for each of the 36,838 SNP-CpG
pairs. To adjust for multiple testing on this analysis would
require appropriate adjustments for linkage disequilibrium
and were not undertaken here.

Results
Clinical characteristics
We recruited nine SSc patients and nine controls. The char-
acteristics of the cases and controls are presented in Table 1.
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All cases and 4/9 controls were female. SSc disease duration
was 10.4 ± 7.0 years, 6 SSc patients had diffuse and 3 had
limited cutaneous skin involvement. None of the SSc pa-
tients were on immunosuppressive treatment at the time of
sampling.

Widespread DNA methylation differences
Our WGBS captured methylation levels at 3,690,885 CpG
dinucleotides with high coverage (Additional file 17:
Figure S1), which largely exceeds studies using targeted
sequencing technologies or BeadChip arrays. We were
also able to extensively profile methylation patterns at
8,047,371 CHG and 17,331,920 CHH sites.

Our first (and primary) analyses compared methylation
patterns between SSc patients and female controls while
adjusting for the effect of age. We identified 599 regions
genome-wide that exhibited differential CpG methyla-
tion under our criteria of a mean methylation β value
difference greater than 0.2 and a bumphunter adjusted
p-value < 0.05. These differentially methylated regions
(DMRs) exhibited high specificity as none of them was
identified as DMR in more than six out of 40 permuta-
tion tests, i.e. all DMRs had an empirical p value ≤0.15
(Additional file 17: Fig. S2). Nevertheless, given the small
sample size of this pilot study, results must be inter-
preted cautiously. Additional file 17: Figure S3 shows

Table 1 Clinical characteristics

SSc (N = 9) Controls (N = 9)

Mean or % SD or N Mean or % SD or N

Age, years 52.8 16.2 45.2 20.0

Female, % 100% 9 44.4% 4

Ethnicity, %

Caucasian 77.8% 7 66.7% 6

Asian 22.2% 2 22.2% 2

Other – 0 11.1% 1

Smoking, %

Current 11.1% 1 – 0

Past 22.2% 2 22.2% 2

Never 55.6% 5 77.8% 7

Unknown 11.1% 1 – 0

Disease duration, years 10.4 7.0

Interstitial lung disease, % 11.1% 1

Arthritis, % 11.1% 1

Myositis, % 22.2% 2

Raynaud’s, % 100% 9

Anti-nuclear antibodies

Titer ≥1:80, % 100% 9

Titer ≥1:160, % 66.7% 6

Titer ≥1:640, % 55.6% 5

Blood biochemical indices

C-reactive protein (CRP), mg/L 29.5 65.3¶

Erythrocyte sedimentation rate, mm/hr 23.7 14.1

Abs. whole blood cell (WBC), K/ μ L 8.2 4.6

Abs. lymphocytes, K/ μ L 1.6 0.7

Abs. monocytes, K/ μ L 0.7 0.7¶

Disease-specific variables

Limited skin disease 33.3% 3

Diffuse skin disease 66.7% 6

Immunosuppressive medication§, % 33.3% 3
¶ Over-dispersion due to extreme values
§ Methotrexate and/or Mycophenolate
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that the number of DMRs identified on each chromo-
some varied across permutations, and that the number
identified in the primary analysis tended to be higher
than most of the permutations.
These 599 DMR regions overlapped with 340 genes [differ-

entially methylated genes (DMGs)], among which 169 showed
hypermethylation and 163 showed hypomethylation in SSc
(Additional file 1: Table S1). In addition, eight genes were
identified as containing both hypermethylated and hypo-
methylated DMRs. Likewise, we also identified 79 CHG-based
DMRs annotated to 39 genes (19 hypermethylated and 20

hypomethylated in SSc; Additional file 2: Table S2), as well as
129 CHH-based DMR annotated to 69 genes (28 hyper-
methylated and 41 hypomethylated in SSc; Additional file 3:
Table S3). These three groups of CpG-, CHG- and CHH-
based DMGs barely overlapped with each other (Additional
file 17: Figure S4). We further inspected the genomic distribu-
tion of DMR and found that they were predominantly in
intergenic and intronic regions, and relatively sparse in coding
and regulatory regions (Fig. 1).
In contrast to most published work on WGBS, we were

also able to examine the methylation on the X chromosome
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Fig. 1 Genomic distribution of DMRs. DMRs based on (a) CpG, (b) CHG and (c) CHH were annotated to the up-to-date human genome
separately. The heights of the bars in the graph indicate numbers of DMRs identified with a given genomic annotation configuration. The x-axis
displays different annotation configurations. The dots under the bar graph together with the adjacent horizontal histogram display the
configurations and their frequency. FiveUTR: 5′ UTR; ThreeUTR: 3′ UTR; Promoter: < 1 kb upstream of the transcription start site (TSS);
Upstream_1to5kb: 1-5 kb upstream of the TSS; Intergenic_Region: > 5 kb upstream of the TSS. For example, in (a), the rightmost element in the
display shows that 1 DMR was identified spanning at least one of each of these elements: 1-5 kb upstream region, exon, intron-exon boundary,
and intron
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since this comparison involved only female participants.
We identified 12 DMGs on the X chromosome, each of
which contained one DMR (Table 2).
In supplementary tables (Additional file 4: Tables S4,

Additional file 5: Tables S5, Additional file 6: Tables S6),
we also report the DMG identified using the analysis that
included the male controls while adjusting for gender. Of
note, including the male subjects gave slightly different
DMG results from those presented using only females;
however, the enriched pathways led to generally consistent
interpretations (data not shown). We also investigated the
difference between SSc subtypes. The supplement also
provides the estimated DMG for diffuse SSc cases vs. con-
trols, limited SSc cases vs. controls, and diffuse SSc cases
vs. limited SSc cases (Additional file 7: Tables Tables S7,
Additional file 8: Tables S8, Additional file 9: Tables S9,
Additional file 10: Tables S10, Additional file 11:
Tables S11, Additional file 12: Tables S12, Additional
file 13: Tables S13, Additional file 14: Tables S14 and
Additional file 15: Tables S15). Here, we observed
that differential methylation might contribute to dif-
fuse SSc and limited SSc in different ways since the
DMGs identified in these three comparisons showed
little overlap (Additional file 17: Fig. S5).

Functional analysis
By functional enrichment analysis, we found that the
340 CpG-based DMGs were significantly associated with
various signaling pathways, including HIPPO, Wnt/ β-
catenin, RhoGDI, Netrin and Ephrin Receptor signaling
(Fig. 2a). We also found CpG-based DMGs were associ-
ated with a wide variety of biological functions and
multi-system diseases, including connective tissue disor-
ders (Table 3). “Skin lesions” was significantly enriched
in “diseases and biological functions” (p = 1.2 × 10−13).

To illustrate the richness of this preliminary data, we
highlighted the 10 most significantly differentially meth-
ylated genes associated with “skin lesions” in Fig. 2b.
The top five diseases and biological functions influenced

by CHG differential methylation included projection of
axons, similar to CpG-based DMGs, and formation of
tight junctions (Additional file 17: Fig. S6). CHH-based
DMGs were associated with cancer, as well the skeletal
system and connective tissue disorders (Table 4).

Exploratory analysis of SNP-CpG associations
We explored potential associations between SNPs and
CpG-based DMR. Though we noticed a point of inflexion
around a p value of 0.1 in the QQ-plot (Additional file 17:
Fig. S7), we were aware that the small sample size and
strong linkage disequilibrium could result in inflation of
significant p values. Thus, we imposed a more stringent
threshold requiring significant SNP-CpG pair to show a p
value less than 5 10−5 and an adjusted R2 higher than
0.7. We identified 238 significant SNP-CpG associations,
where the involved CpG-based DMRs were distributed
across 54 genes (Additional file 16: Table S16). To illus-
trate typical associations arising from this analysis, Fig. 3
shows methylation, genotype and phenotype at two multi-
CpG DMRs in genic regions, namely FBN3 and CDCA8.
These analyses can generate hypotheses for how genetic,
epigenetic and phenotype data may interact. However, our
sample size was not sufficiently large to formally test 3-
way interactions.

Viewer of DMR results
Results at each DMR have been deposited online in Supple-
mentary Tables, and we also provide a script (available at
https://github.com/tianyuan-lu/SclerodermaMethylation/)
to facilitate viewing of CpG methylation patterns.

Table 2 DMG on X chromosome

Gene Coordinates of DMR (GRCh37) FDR Averaged difference Annotation

FTSJ1 [48,334,723, 48,334,739] 0.014 −0.23¶ 5’UTR; Exon

MIR4770 [6,303,169, 6,303,169] § 0.015 −0.37 Upstream 1-5 kb

PQBP1 [48,755,311, 48,755,329] 0.016 0.23 Promoter; 5’UTR; Exon; Intron

FIRRE [130,880,912, 130,880,927] 0.021 −0.25 Intron

PCDH19 [99,663,316, 99,663,316] § 0.027 −0.34 Exon

MECP2 [153,362,114, 153,362,135] 0.027 0.23 Intron

MIR363 [133,306,880, 133,306,910] 0.028 0.23 Upstream 1-5 kb

H2BFWT [103,267,866, 103,267,866] § 0.029 0.34 Exon

TIMM8A [100,603,892, 100,603,909] 0.030 0.23 5’UTR; Exon; Intron-Exon Boundary

HTR2C [113,818,760, 113,818,778] 0.035 0.21 5’UTR; Exon

TENM1 [123,994,369, 123,994,369] § 0.044 −0.32 Intron

DCAF12L2 [125,300,434, 125,300,434] § 0.046 −0.32 Promoter
¶ Negative value indicates hypomethylation in SSc
§ Single-dinucleotide DMRs were labelled by coordinates of the first C/G sites
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Discussion
In this pilot study, we identified DMRs and DMGs in
each cytosine context (CpG, CHG and CHH) in SSc. We
characterized the widespread functional impacts of dif-
ferential methylation and potential genetic controls
through SNP-CpG interactions.
Our findings regarding CpG-based differential methy-

lation highlighted the role of signaling pathways impli-
cated in the pathogenesis of SSc, including HIPPO [25],
Wnt/ β-catenin [26–28], RhoGDI [29], Netrin [30] and

Ephrin Receptor signaling [31]. Our findings were also
consistent with the expected direction of effect. For ex-
ample, hypomethylation of COL23A1, which codes for
collagen XXIII and is expressed across different tissues
including the skin and lungs [32], may be relevant to the
excessive accumulation of collagen in this disease.
COL23A1 has been previously reported to be hypo-
methylated in dermal fibroblasts of patients with SSc
[33]. On the other hand, contrary to previous reports
of over-expression of WNT9A in an animal model of

Fig. 2 Biological impacts of differential methylation. (a) Significantly enriched canonical pathways (p < 0.05) based on CpG-DMRs. Pathways are
sorted by p values. Percentage (indicated by bars) represents the proportion of significantly hypermethylated (red) and hypomethylated (green)
genes among all genes in the corresponding pathway. Log-transformed p values are denoted by the orange line. (b) Top 10 differentially
methylated genes with largest averaged difference in methylation levels in CpG-DMRs related to skin lesions. Five most hypermethylated genes
(red) and five most hypomethylated genes (green) in SSc are illustrated
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SSc [34], we found that it was hypermethylated. Other
genes illustrated in Fig. 2b could provide important novel
targets of interest.
Abnormal expression of transforming growth factor

beta (TGF-β) in SSc fibroblasts is central to disease
pathogenesis [35, 36]. In our study of CD4+ T cells, we
did not find significant changes in DNA methylation or
in pathway analysis of TGF-β genes. However, we identi-
fied significant hypomethylation of SMAD3, which is a
key signal transducer in the TGF-β signaling pathway
and is responsible for maintaining CD4+ T cell homeo-
stasis, particularly by inhibiting T cell receptor-induced

naïve CD4+ T cell proliferation [37]. We posit this sug-
gests linked yet different roles of TGF-beta dysregulation
in SSc-CD4+ T cells and fibroblasts.
Several type I interferon (IFN) signaling pathway-

associated genes were previously found to be hypomethy-
lated in CD4+ and CD8+ T cells in SSc patients [38].
Although IFN-related pathways were not enriched in our
pathway analyses, possibly due to the abundance of target
genes in other pathways, our results still confirmed the
importance of IFN signaling in the pathogenesis of SSc.
For instance, we found that MX1 was hypomethylated in
diffuse SSc patients (Additional file 7: Table S7) compared

Table 3 Top five networks influenced by CpG differential methylation

Network Molecules in Network Score Focus
Molecules

Embryonic Development, Organismal Development,
Reproductive System Development and Function

AGO2, AP2A2, BOP1, CACHD1, CENPS/CENPS-CORT, CEP120, Ck2, CSNK1D,
CSNK1E, ESR1, FAAP20, FAM83D, FAN1, FBXW11, FGFR1OP, HPCAL1, Hsp70,
INPP5B, KTN1, MAP3K9, mir-363, NIN, phosphatase, PPFIBP1, PSD4, RAPGEF5,
RBM19, RNF166, Rnr, SAMD11, Smad2/3, Ubiquitin, UMODL1, USP2, WRAP73

52 29

Cancer, Connective Tissue Disorders, Organismal
Injury and Abnormalities

Akt, ANKRD11, CEACAM3, CHIA, COL23A1, COL4A1, COL5A1, collagen,
Dynamin, Eph Receptor, EPHA1, EPHA10, GNB1L, GTPase, HOOK2, JINK1/2,
KIAA1217, KIF26B, KSR1, Laminin (family), LIMS1, MAGI1, MTORC2, NAV1,
NCK, NCK2, PARVB, PBXIP1, PI3K p85, PRDM16, PTPRN2, RPTOR, SH3BP4,
SH3PXD2B, SH3RF3

42 25

Cell Morphology, Cellular Assembly and
Organization, Cellular Development

BCAR3, CK1, CLEC4C, DNAJC2, ERK1/2, Fgf, FXN, GALNT2, GSPT1, Hdac, HSP,
HSPA12B, KCNN2, KCNN3, KCNQ3, LIN54, MARCH1, MHC Class II (complex),
MYL12A, Ngf, NTF3, PLC gamma, potassium channel, Ral, RALGDS, ROBO1,
ROR2, SH3BP2, SLC7A8, TFDP1, TUSC3, Vla-4, Wnt, WNT9A, histone
deacetylase

35 22

Gene Expression, Connective Tissue Disorders,
Immunological Disease

CBS/CBSL, Ctbp, CTBP2, ETV6, GATAD2B, GPC6, Growth hormone, HDAC4,
HDL-cholesterol, hemoglobin, HIPK2, HISTONE, Histone h4, Immunoglobulin,
Jnk, KCNJ6, LDL, LDL-cholesterol, MECP2, MTHFD1L, N-cor, NCOR2, NFATC1,
NPC2, Nr1h, NTM, PF4, Pias, PON1, POU2F1, SBNO2, STAT5a/b, TTC39B, VSX1,
ZBTB16

33 21

Developmental Disorder, Hereditary Disorder,
Organismal Injury and Abnormalities

Alpha tubulin, ANO1, ATP11A, ATP5MC2, BETA TUBULIN, caspase, Cyclin E,
DLGAP1, DLGAP2, DYSF, ERK, FMN1, FTSJ1, Hsp27, Hsp90, Insulin, KCNG2,
MAP3K20, Mek, NLRP12, NNAT, p70 S6k, PACRG, PARP, Pde, PDE9A, PIWIL1,
Ppp2c, PRKN, Proinsulin, RGPD4 (includes others), Sos, TRPV2, XAF1, ZBTB17

31 20

Table 4 Top five diseases influenced by CHH differential methylation

Disease Molecules related to Disease FDR Molecules

Familial skeletal
dysplasia

ADAMTS2, DDR2, FAM20C, FDFT1, MYO18B, PDE4D, ROR2, TNFRSF11A 3.06E-07 8

Large intestine
adenocarcinoma

ADAMTS2, AGT, ATXN3L, BAIAP2L1, CCDC155, CCDC85C, CFAP299, CMIP, CNNM2, CTDP1,
DDR2, DNAJB13, FAM20C, FDFT1, FPR3, GAS7, GCM1, GRID2, IL13, IL27, IQCE, ITPK1, KCNJ12,
KRT38, MCEE, MYO18B, NAV2, NDUFA10, NPHP4, PCSK6, PDE4D, PGS1, PITPNC1, PLEKHF1,
PLEKHM3, PRKCA, PTPRN2, RALGPS2, RASA3, RIMBP2, RIN2, ROR2, RPS19, SLC30A1, SLC6A12,
SPATS2L, SPG7, SV2C, TDRD5, TMEM92, TNFRSF11A, ZFYVE28

2.34E-06 52

Hereditary connective
tissue disorder

ADAMTS2, AGT, CTDP1, DDR2, FAM20C, FDFT1, JDP2, MYO18B, PDE4D, RIN2, ROR2, TNFRSF11A 2.76E-06 12

Abdominal
adenocarcinoma

ADAMTS2, AGT, ATXN3L, BAIAP2L1, CCDC155, CCDC85C, CFAP299, CMIP, CNNM2, CPNE6,
CTDP1, DDR2, DNAJB13, FAM20C, FDFT1, FPR3, GAS7, GCM1, GRID2, IL13, IL27, IQCE, ITPK1,
KCNJ12, KRT38, MCEE, MYO18B, NAV2, NDUFA10, NPHP4, PCSK6, PDE4D, PGS1, PITPNC1,
PLEKHF1, PLEKHM3, PRKCA, PTPRN2, RALGPS2, RASA3, RIMBP2, RIN2, ROR2, RPS19, SLC30A1,
SLC6A12, SPATS2L, SPG7, SSR1, SV2C, TDRD5, TMEM92, TNFRSF11A, ZFYVE28

8.89E-05 54

Liver carcinoma ADAMTS2, AGT, CNNM2, CTDP1, DDR2, DNAJB13, FAM20C, FPR3, GAS7, GRID2, IL27, IQCE,
JDP2, KCNJ12, MYO18B, NAV2, NDUFA10, NPHP4, PDE4D, PGS1, PITPNC1, PTPRN2, RALGPS2,
RASA3, RIMBP2, RIN2, SLC30A1, SLC6A12, TDRD5, TNFRSF11A, ZFYVE28

2.32E-04 31
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to healthy controls and that PARP11 was hypomethylated
in limited SSc patients (Additional file 8: Table S8). Since
hypomethylation of some of these IFN-related genes has
been verified to have a strong impact on gene expression
[38], it may be promising to further develop efficient bio-
markers associated with this pathway.
In previous studies of SSc, the X chromosome has

been mostly overlooked. Since our study consisted of
mostly female subjects, we had an opportunity to inves-
tigate DMG on the X chromosome. Interestingly, we
identified three significant DMG that were closely re-
lated to epigenetic modification, namely FTSJ1, coding
for 2′-O-methyltransferase [39], FIRRE, a long non-
coding RNA shown to be associated with histone H3

lysine 27 trimethylation [40], and MECP2, coding for
methyl CpG binding protein 2 and regulating gene ex-
pression by modifying chromatin [41]. Interestingly,
MECP2 has been reported to be involved in SSc skin
fibrosis [42]. Aberrant methylation patterns in these
epigenetic regulators suggests that the epigenetic
regulatory mechanism in SSc is more complex and
hierarchical than previously appreciated. Our findings
regarding DNA methylation on the X chromosome
were different from those of an earlier study [43]. How-
ever, in that study, methylation levels were assessed
using peripheral blood mononuclear cells. We posit
that our study reduced the confounding effect arising
from cell mixtures.
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Fig. 3 Illustration of SNP-CpG associations. (a) Methylation pattern of a nine-CpG DMR in FBN3. One SSc case was removed due to missing data.
Methylation patterns exhibited a three-level stratification in this DMR where SSc cases were more prone to be hypomethylated. (b) Association
between a C-to-A/G SNP at chr19:8138054 and significant loss of methylation in the DMR displayed in (a). (c) Methylation pattern of a three-CpG
DMR in CDCA8. Methylation patterns exhibited a two-level stratification where SSc cases were more prone to be hypomethylated in this DMR. (d)
Association between a G-to-A SNP at chr1:38156902 and significant increase in methylation in the DMR displayed in (c). Two SSc cases and one
control with top three highest levels of methylation carried the A allele

Lu et al. BMC Medical Genomics          (2019) 12:144 Page 9 of 12



Apart from CpG-based differential methylation, our
study identified novel insights into the contribution of
CHG and CHH methylation in SSc. For example, CCR3
has been previously reported to be increased in SSc
monocytes [44]. We identified other genes with CHH-
based DMR that could contribute to fibrosis and angio-
genesis, including ADAMTS2 [45] and DDR2 [46–48].
All these findings suggest the role of non-CpG methyla-
tion that is worthy of further study.
Genome-epigenome interaction is a crucial component

of regulation of gene expression and its importance is
best established in the pathogenesis of cancer [49, 50]. A
previous study reported that the SNP rs17435 linked to
MECP2 (mentioned above) was related to the clinical
outcome of SSc [51]. This suggests that genome-
epigenome interaction could be a key to understand
aberrant gene regulation in SSc. Our study pinpointed
238 potential short-range SNP-CpG pairs where the
methylation levels were strongly associated with the
genotype. As illustrated in Fig. 3, differential methylation
in FBN3, a gene that codes for extracellular matrix mac-
romolecules responsible for architectural functions in
connective tissues [52, 53], was associated with a SNP at
chr19:8138054 (rs7257948). Similarly, differential methy-
lation in the cell division cycle associated 8 (CDCA8)
gene, which plays an important role in mitosis [54] and
has been implicated in SSc [55], was associated with a
SNP at chr1:38156902 (rs3762352). We suggest that dif-
ferential methylation in these genes may be controlled
by genetic mutations and may serve as a mediator to-
wards modulation of gene expression [56–58]. It is be-
yond the scope of this study to investigate these
functional effects, although these could be the subject of
future research.
We acknowledge that the small sample size and pos-

sible confounding due to differences in the characteris-
tics of the cases and controls (Table 1) are important
limitations of our study. For instance, in this study, we
did not identify significant differential methylation in the
HLA genes, where known genetic variants are associated
with the pathogenesis of SSc [59]. Regardless, this result
could not refute that differential epigenetic modifications
might be dependent on specific haplotypes, since the
small sample size is not able to support statistical tests
for differences at such a calibrated level. However, this
study was planned and executed as a pilot to explore the
potential of WGBS for assessing genome-wide methyla-
tion in SSc. Since adjusting for confounders could have
led to overfitting of our statistical models, we focused our
primary analyses on the SSc cases (who were all female)
and the female controls. Additional analyses including
male controls, while adjusting for the fixed effect of sex
(Additional file 4: Tables S4, Additional file 5: Table S5
and Additional file 6: Table S6) and comparisons between

different SSc subtypes (Additional file 7: Tables S7,
Additional file 8: Tables S8, Additional file 9: Tables S9,
Additional file 10: Tables S10, Additional file 11: Tables S11,
Additional file 12: Tables S12, Additional file 13: Tables S13,
Additional file 14: Tables S14 and Additional file 15:
Tables S15) are provided in the supplement. We have de-
liberately refrained from making further interpretations of
these additional comparisons to minimize overinterpreta-
tion of this analysis. Nonetheless, our study forms a foun-
dation for future studies with larger cohorts. Our results
and the scripts we have provided for browsing them can be
used to confirm previous or future findings, or to explore
how other risk factors interact with epigenetic modifica-
tions to promote pathogenesis in different subtypes of SSc.

Conclusion
By profiling genome-wide DNA cytosine methylation
landscape in SSc CD4+ T lymphocytes, we found wide-
spread differential methylation involving genes relevant to
disease pathogenesis. Some of the abnormal DNA methy-
lation patterns in SSc patients are also associated with
neighboring genetic variation. These findings can provide
a good source for identifying novel targets of interest in
SSc, developing well-profiled epigenetic biomarkers that
may supplement current diagnostic and prognostic tests,
as well as profoundly investigating genome-epigenome
interaction in SSc pathogenesis and progression.
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