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Abstract

Background: In 2012, Venet et al. proposed that at least in the case of breast cancer, most published signatures are
not significantly more associated with outcome than randomly generated signatures. They suggested that nominal
p-value is not a good estimator to show the significance of a signature. Therefore, one can reasonably postulate that
some information might be present in such significant random signatures.

Methods: In this research, first we show that, using an empirical p-value, these published signatures are more
significant than their nominal p-values. In other words, the proposed empirical p-value can be considered as a
complimentary criterion for nominal p-value to distinguish random signatures from significant ones. Secondly, we
develop a novel computational method to extract information that are embedded within significant random
signatures. In our method, a score is assigned to each gene based on the number of times it appears in significant
random signatures. Then, these scores are diffused through a protein-protein interaction network and a permutation
procedure is used to determine the genes with significant scores. The genes with significant scores are considered as
the set of significant genes.

Results: First, we applied our method on the breast cancer dataset NKI to achieve a set of significant genes in breast
cancer considering significant random signatures. Secondly, prognostic performance of the computed set of
significant genes is evaluated using DMFS and RFS datasets. We have observed that the top ranked genes from this
set can successfully separate patients with poor prognosis from those with good prognosis. Finally, we investigated
the expression pattern of TAT, the first gene reported in our set, in malignant breast cancer vs. adjacent normal tissue
and mammospheres.

Conclusion: Applying the method, we found a set of significant genes in breast cancer, including TAT, a gene that
has never been reported as an important gene in breast cancer. Our results show that the expression of TAT is
repressed in tumors suggesting that this gene could act as a tumor suppressor in breast cancer and could be used as
a new biomarker.
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Background

Cancer is a complex disease caused by uncontrolled divi-
sion of abnormal cells in the body. This uncontrolled
division is usually due to one or several mutations on
so-called cancer driver genes, that will increase survival
and proliferation of the cells under the good microenvi-
ronmental conditions. Breast cancer is a major leading
cause of death among women [1]. Some evidence show
that a rare population of the cells inside tumor are respon-
sible for growth, development, invasion and metastasis
[2, 3]. Therefore, discovering and controlling the mecha-
nisms that regulate self-renewal and metastasis in tumors
before they reach the late stage is essential for person-
alized patient care [4, 5]. Different cancer driver genes
have been described in breast cancer, including TP53,
BRCAI1 and PALB2 [6]. Cancer genes do not act sepa-
rately and deregulation of various genes from different
pathways can lead to cancer initiation or progression
[7, 8]. These genes give selective advantages to the cells,
leading to profound changes in the cellular and also
molecular phenotype of the cancer cells as compare to
their normal counterparts. Many transcriptomic studies
have shown that cancer cells exhibit specific expression
profiles and these profiles can be used to separate nor-
mal from cancer cells but also to classify tumor samples
with different clinico-pathological features [9]. Classical
methods aiming to find cancer driver genes by looking
to mutations can failed to discover important prognostic
or therapeutic targets that exhibit differential expression
but without carrying mutations. For this reason substan-
tial efforts have been made to predict gene signatures
related to human cancer [10-17] and also cancer stem
cells. Some methods are based on considering single
gene features while others taking into account the func-
tional relationships between genes by considering a prede-
fined biological network such as a co-expression network
[12, 16] or a protein—protein interaction (PPI) network
[15, 17].

Recent studies report that the performance of many
network-based methods is comparable to methods
based on single genes, and they have limited improve-
ment in gene signature stability over different datasets
[12, 13]. However, some approaches that produce infor-
mative genes or sub-networks by considering functionally
related genes have more success in overcoming this prob-
lem [14, 15]. An important task is the evaluation of the
significance of a cancer signature. On the other hand, it
is possible that many of the randomly created gene signa-
ture groups, similar to already known or predicted groups,
be able to separate normal from cancer cells. This is
very complicated to interpret the effectiveness of random
genes in classifying samples. Many kinds of possibility
should be checked before we set up a general finding about
why these randomly selected genes contain the differential
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information in controls and diseases and generic causal
disease genes are very important for discovering the true
signatures.

Statistical tests are usually applied to identify the associ-
ation between a signature and outcome [18-20]. In 2011,
Venet et al. [21] reported that gene signatures unrelated
to cancer are significantly associated with breast cancer
outcome. They compared 48 published breast cancer out-
come signatures to random signatures of identical size
and showed that the generated random signatures could
separate good and poor patients significantly, even with
nominal p-values less than the nominal p-values of pub-
lished signatures. They suggested that nominal p-value
is not a good estimator to show the significance of a
signature and further hypothesized that such significant
random signatures contain genes associated with prolif-
eration and to a lesser extent cell cycle. In this research,
we show that by using an empirical p-value, the published
cancer-related signatures are more significant than ran-
dom signatures and most of the random signatures are
not significant with respect to empirical p-value. We show
that random signatures with significant both nominal and
empirical p-value are informative and can be used to pre-
dict genes that are highly associated to cancer (in our
case breast cancer). To identify information in such ran-
dom signatures, we introduce a novel method. Briefly, a
score is assigned to each gene representing the frequency
of its presence in the significant random signatures. The
scores are then diffused through a PPI network and a per-
mutation procedure is used to determine the genes with
significant scores. The subset of genes whose scores are
significant is considered as the set of significant genes.
This computational methodology is applied to NKI cohort
[10] that is a breast cancer dataset studied by Venet et al.
to compute a set of significant genes. The disease asso-
ciation of this set is investigated using the GAD tool in
David Functional Annotation server [22]. It is shown that
this set is significantly related to breast cancer. To eval-
uate the prognostic performance of the computed set of
significant genes, we use Distant Metastasis-Fee Survival
(DMEFS) and Recurrence-Free Survival (RFS) datasets [12]
organized by Amsterdam Classification Evaluation Suite
(ACES) by compiling a large cohort of breast cancer sam-
ples from the National Center for Biotechnology Infor-
mation’s (NCBI's) Gene Expression Omnibus (GEO). The
results show that the top ranked genes from the set of sig-
nificant genes set can successfully separate patients with
poor and good prognosis in these datasets. To further
investigate the function of the set of significant genes,
pathway enrichment analysis is performed. Interestingly,
the enriched significant pathways are highly related to
cancer specially breast cancer and can separate patients
with poor prognosis from those with good prognosis.
Finally, we investigated the association of the top 10
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genes with breast cancer. Among them, only Tyrosine
aminotransferase (TAT) which is the first rank genes
is not reported as a significant gene in cancer and we
showed that this gene is frequently down regulated in
tumor samples of breast cancer. Therefore, we suggest
TAT as a novel biomarker in breast cancer tumor and
its potential as tumor-suppressor gene should be further
investigated.

Methods

Computing the empirical p-value for a signature

To compute the nominal p-value for a signature (or ran-
dom signature), similar to Venet et al. [21], the 295
patients of the NKI cohort [10] and the overall survival
end-points are considered and the same outcome asso-
ciation estimation procedure is used. First, the cohort
is split based on the median of the first principal com-
ponent (PC1) of a signature. Then, given this binary
stratification of the cohort, the (observed) nominal p-
value of this signature is computed using the standard
Cox procedure (R package) [23]. Then the empirical p-
value is computed based on permutation procedure [14].
Permutation test is a statistical tool for constructing sam-
pling distributions. Similar to bootstrapping, permuta-
tion test builds sampling distribution by resampling the
observed data points. Under the null hypothesis in per-
mutation test, the sample labels are exchangeable i.e.
the outcome is independent from the observed variables
[14, 24]. By permuting the outcome values during the test,
we observe many possible alternative outcomes and eval-
uate the significance of the true labels using calculated
nominal p-values. In NKI cohort, we randomly shuffle
the labels (N or ~ N) and compare the nominal p-values
for each of the 48 breast cancer signature groups to 1000
nominal p-value which are obtained by permutation pro-
cess. For k-th breast cancer signature group with pZ"”’i"“l
and 1000 nominal p-value p(1),p(2),...,p(1000) which
are resulted by permutation process, the Benjamini-
Hochberg (BH) procedure controls the False Discovery
Rate (FDR) in multiple testing experiments [25]. Indeed,
for a given o and ordered sequence of 1001 nominal p-
values, the adjusted p-values based on BH methods are
calculated as:

BH . m  BH
p; =min (p(i)T’p(Hl)) . 1)

For k-th breast cancer signature group, the p-value of
the permutation test, called empirical p-value, is equal to
the fraction of the 1000 adjusted nominal p-values that
are equal or less than the adjusted nominal p-value of k-th
group ],fH), as shown in Eq. 2.

ety ="}

1000

emprical __

) 1 <i<1000, (2)

Page 3 of 14

where pgg'l is the adjusted nominal p-value of i-th permu-
tation test. The discoveries, i.e. the significant tests, are
those with an empirical p-value less than « = 0.05. The
values of the adjusted nominal p-value and adjusted nomi-
nal p-values for 1000 permutations related to the 48 breast
cancer signature groups are shown in Fig. 1.

The red dots indicate adjusted nominal p-values of 48
breast cancer signature groups and the grey lines are
the range of adjusted nominal p-values for permutations.
From this figure, we can see that the adjusted nominal
p-values of the signatures are less than the adjusted nomi-
nal p-values of the permuted samples, which indicates the
ability of empirical p-value in distinguishing normal and
cancer groups. The blue dots show the empirical p-value
of 48 breast cancer signature groups. In eight signatures
out of 48, the adjusted nominal p-values are in the range
of adjusted nominal p-values for 1000 permutation, so
these eight signatures can not separate normal and cancer
groups significantly.

Meta-analysis and diffusion kernel approach to extract the
information embedded in significant random signatures

In a complex disease like cancer, genes do not act in
isolation and the interactions between them play a signif-
icant role [7, 8]. To take these interactions into account,
the corresponding protein of each gene is considered and
a PPI network is inferred using STRING database [26].
All the Entrez ID from the expression dataset and the
Ensembl protein ID from STRING database are mapped
to their gene name (HUGO symbol). The interactions
between proteins in STRING database include physi-
cal and functional associations. In our algorithm, the
evidence of conserved neighbors, co-occurrence, fusion
co-expression and experiments are used to derive the
interactions. Considering the significant random signa-
tures, a score is assigned to each gene based on the
number of times it is observed in these signatures. For
example, a gene that occurs in 20 significant random sig-
natures will get a score of 20. Let n be the number of genes
and S = (51,89, ...,Sy) be the score of the genes. In this
step, we construct a weighted graph G with nodes corre-
sponding to the genes. Each node of G gets the score of its
corresponding gene and the weights of the edges of G are
the interaction scores between proteins coded by genes,
which are obtained from STRING. The score of an inter-
action shows the confidence prediction of that interaction.
The gene scores are diffused through G using the diffusion
kernel of Kondor and Lafferty [15, 27], as described below:
Laplacian matrix for simple graphs is defined as H = D —
A, where D is the degree matrix and A is the graph’s adja-
cency matrix. For simple graph G, A is a zero-one matrix
which all its diagonal entries are zero. Also, the ith diag-
onal entry of matrix D is the sum of the entries in the ith
row of A. A similar approach can be used for constructing
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Fig. 1 Adjusted nominal and range of adjusted nominal p-values related to 1000 permutation tests of the 48 breast cancer signatures. Red dots
indicate adjusted nominal p-values and the grey lines are the range of adjusted nominal p-values from 1000 permutations. Blue dots show empirical
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the laplacian matrix for weighted graph G. In this case, the
ijth entry of the matrix A is the weight of the edge between
the genes i and j. Similarly, the ith diagonal entry of matrix
D will be the sum of the entries in ith row of A. In this
case, the Laplacian matrix is also defined as H = D — A.
Considering w;; as the weight of the edge between genes
i and j in graph G, the Laplacian matrix H for graph G is
defined as H = [Hij], where:

—Wy  ifi#)
Hy = / A 3
SR ©
The diffusion kernel with generator H and bandwidth 8 is
defined as:

kg = ePH, (4)

where B shows the diffusion strength. For low diffu-
sion strength kernels, scores are diffused only to a few
well-connected neighbors but for high diffusion strength
kernels, scores are diffused to distant nodes through the
network. In this work, B is considered to be 0.3 since in
[27] it is reported to achieve the least error rate in the
breast cancer dataset. Using the matrix kg the new scores,
diffusion scores, for the genes are computed as follows:

Sg =kg.S. (5)

In fact, the diffusion score of one gene is based on its
score, its neighbors scores and the score of its distant
nodes.

Identifying significant genes by permutation procedure
To determine the significance of diffusion scores of
genes, the following random permutation procedure is
used. Let S5 = (Sg(1),S8(2),...,Sp(n)) where Sg(i)
denotes the diffusion score of gene i and ¢1, ¢2, ..., 1000
be 1000 random permutation on ({1,2,.,n}. Sg’ =
(Sp(er(1)),Sp(@r(2)),...,Sp(pr(n))) is constructed 1000
random permutation of Sg according to ¢1, @2, ..., ¥1000-
We constructed 1000 random diffusion scores S/’3 , as
follows:
b =kgSY, for 1 < r < 1000. (6)

Let S (/) be the random diffusion score of gene j in
vector Sz . The null set {SZz (HI1 < r < 1000} is consid-
ered for this gene. Then, the permutation score of Sg (j) is
computed by:

1SEDISH = SpDH

1000 @)
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The genes, which have permutation score less than 0.05
are considered as the set of significant genes. The set
of significant gens are first sorted with respect to their
permutation score and then based on their scores.

Computing a pathway-score

Let SG be the set of significant genes computed by the
method. For the pathway D, let the set Psg = {g1,£2, ..., gk}
be the genes in SG which are presented in pathway P. Each
gene g; in Psg is given two values, and is computed using
the following equations:

un (@)=

pieN

€gipj N
|N| » H”\'N (gl) - Z

pje~N

€gi.pj )
| ~ N|

where p; ranges over the patients of phenotype N or ~
N and eg,p, denotes the gene expression value of gene g;
in patient p;. Similar to the procedure mentioned in Lim
et. al. [14], considering each patient py in phenotype ~ N,
we define two new scores for pathway P:

SCOW% (P) = Z eqipi  (equpr — UN (gi))z' ©)

gi€Psg

scorepwkN (P) = Z €eipr (egi’Pk — HU~N (gi))z' (10)

8iePsg

scorefi; (P) and scoreikN(P) are obtained based on a
weighted mean approach. For instance, scoreﬁ}‘ (P) is a
weighted mean of values (eg; p, — un)?, with correspond-
ing non-negative weights as ey 5. In this formula, the
weights are the gene expression values for genes in SG
presented in pathway P. We use the non-negative terms
(g px —un)?and (eg;,px —i~n)? as a measure of the differ-
ence in the gene expressions of normal and cancer groups,
respectively.

Patients and cell line selection

The ethics committee at the Royan Institute approved
this study, and all the patients gave written informed con-
sent on the use of clinical specimens for medical research.
Ten breast cancer patients undergoing curative resection
are included in this study. The median age of patients
is 50 years (range 37-58 years). All patients are diag-
nosed with invasive ductal carcinoma; four of them are
also metastatic. All patients underwent curative surgery,
however three of them experienced neo-adjuvant therapy
pre surgery. Both tumor and adjacent non-tumor tissue
(the adjacent non-tumor tissue is defined as at least 1-cm
distance from the tumor edge) are processed immedi-
ately after operation. The expression of TAT is evalu-
ated by quantitative real-time polymerase chain reaction
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(RT-PCR) in all ten paired specimens. Among breast can-
cer cell lines MCF7 (is characterized as metastatic, ER+,
PR+/-, HER2- and Luminal A type) and MDA-MB231 (is
characterized as metastatic, ER-, PR-, HER2-, Claudin-low
type and highly invasive) are selected and subjected to
mammospheres formation and further analysis for TAT
expression.

RNA extraction and quantitative real-time polymerase
chain reaction (QRT-PCR)

The expression of TAT (Tyrosine aminotransferase) is
assessed by specific primer (F: SATGCTGATCTCTGT-
TATGGG3, R: 5 CACATCGTTCTCAAATTCTGG3’) in
tumor, normal and cell lines, respectively. Briefly, all spec-
imens are preserved at -80°C until RNA extraction. Total
RNA is isolated using Trizol reagent (Qiagen, USA) and
treated with DNAse I (Fermentas, USA) for 30 min-
utes in order to digest the genomic DNA. The quality of
RNA samples is monitored by agarose gel electrophore-
sis and a spectrophotometer (Biowave II, UK). A total of
2 ng of RNA is reverse transcribed with a cDNA synthe-
sis kit (Fermentas, USA) and random hexamer primers
according to the manufacturer’s instructions. Transcript
levels are determined using the SYBR Green master mix
(Takara, Japan) and a Rotorgene 6000. Expression of
genes is normalized to the GAPDH housekeeping gene
(F: ’5CTCATTTCCTGGTATGACAACGA3; R: 5CTTC-
CTCTTGTGCTCTTGCT3’). Relative quantification of
gene expression is calculated using the AACt method.

Monolayer and mammosphere culture

MCEF-7, MDA-MB231 cell lines are purchased from Ira-
nian Biological Resource Center, Tehran, Iran. The cell
lines are cultured in DMEM-Dulbecco’s Modified Eagle
Medium (GIBCO, USA) supplemented with 10% heat
inactivated fetal bovine serum, (FBS; Invitrogen), 1% non-
essential amino acid, 2 mM L-glutamine and 1% peni-
cillin/streptomycin at 437°C using a 5% CO2 standard cell
culture incubator. For the mammospheres experiments,
tissue culture plates are coated with poly hydroxyethyl
methacrylate (pHEMA) to prevent cell attachment. Then
2 x 10e4 cells of each cell lines are cultured in poly
hema coated flask and in serum-free medium consisted
of DMEM medium supplemented with 20 ng/mL epi-
dermal growth factor (Royan Institute, Iran), 20 ng/mL
basic fibroblast growth factor (Royan Institute, Iran), 2%
B27 (GIBCO, USA) and 2 mM L-Glutamine. All flask
are incubated at 37 °C under a 5% humidified CO2
atmosphere for 10 days. Sphere structures are counted
using an Olympus-IX71 fluorescent microscope. When
the spheroids, reached to about 50um diameter, are col-
lected and pooled by gentle centrifugation, they are enzy-
matically dissociated with trypsin (GIBCO, USA) and
subjected for RNA extraction.
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Statistical analysis

mRNA transcriptional levels in the tumor and matched
non-tumor tissue are compared. Since the sample size is
small (10 patients), we use the non-parametric Wilcoxon
Rank Sum Test with the null hypothesis that both nor-
mal and cancer populations have same distributions.
The alternative hypothesis is that the gene expression
distribution for tumor group is shifted to the left. With
Wilcoxon statistic as W = 75, the resulted p-value is cal-
culated as 0.03191, which rejects the Hy with @ = 0.05. For
further validation, we also used bootstrap method for test-
ing the differences in two populations. The test is repeated
1000 times and the p-value of Wilcoxon test are calcu-
lated. The median of the p-values of 1000 Wilcoxon test
is calculated. The point estimate of the bootstrap method
is 0.05158232, which is consistent with the results from
Wilcoxon test.

Results

Computing empirical p-value for published breast cancer
signatures

In [21], Venet et al. showed from the 48 published breast
cancer outcome signatures that statistically significant
nominal p-values are not better than randomly gener-
ated signatures of identical size and hence the nominal
p-values are not reliable. Thus, we use an empirical p-
value (see “Methods”) to test the significance of nominal
p-values by establishing whether the nominal p-value of
a signature is lower than expected by chance. Figure 2
shows the nominal p-values of the 48 published breast
cancer signatures and the empirical p-value achieved
by permutation procedure (see “Methods”). The asso-
ciated empirical p-values of the published breast can-
cer signatures are mostly less than 1071°. As depicted
in this figure, the empirical p-values of the 48 pub-
lished breast cancer signatures are mostly significant
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while the corresponding nominal p-values may not be
significant.

Extracting significant genes embedded in empirically
significant random signatures

Like Venet et al. [21], we also hypothesize that significant
random signatures contain information. We introduce a
novel method to extract the biologically relevant informa-
tion in significant random signatures (see “Methods”). To
achieve a set of significant genes in breast cancer con-
sidering significant random signatures, we use the NKI
cohort, which is a breast cancer dataset studied by Venet
et al. [21]. To this end, a set of 1000 random signa-
tures of identical size is generated for each of the 48
published breast cancer signatures. The random signa-
tures are considered significant if they are associated with
breast cancer outcome with both nominal and empirical
p-values. To demonstrate this, we consider one of the 48
signature groups with 106 genes as an example. Firstly,
we select 106 random genes from the set of all human
genes. We then repeat this process 1000 times and con-
struct 1000 random signatures of identical size. By using
the same procedure for each 48 group of signatures, we
obtain 48,000 random signatures. Parts (a) and (b) of
Fig. 3 show the boxplots of the nominal and empirical p-
values resulted by 48,000 random signatures, respectively.
The obtained nominal p-values, shown in part (a), sup-
port the results in Venet et.al. [21]. Part (c) contains the
scatter plot of the 48,000 random signatures. Each dot
in this figure shows the empirical p-value versus nominal
p-value for one random signatures. For selecting the sig-
nificant random signatures, we used the thresholds of 0
and -10 for empirical and log nominal p-values, respec-
tively. Using the mentioned thresholds, 937 signatures
are selected which is nearly two percent of all the signa-
tures. By applying the method described in “Identifying
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significant genes by permutation procedure” subsection,
we are able to obtain a set of 840 significant genes
(See Additional file 1).

Disease association of significant genes

To investigate the association of the top ranked genes
with disease, the Genetic Association Database (GAD)
tool in David Functional Annotation server [22] is used.
GAD is an archive of published genetic association stud-
ies, which allows analysis of complex common human
genetic disease [28]. The top-level disease and dis-
ease class assigned by GAD, given the 840 top ranked
genes, is breast cancer and cancer with p-value= 0.0007
and p-value= 0.00098, respectively. Table 1 shows the
enriched disease and disease class achieved from dif-
ferent set of genes. It can be seen from this table that
the disease classes of the other sets of genes other
than the first 840 top ranked ones is not related to
cancer. This clearly highlights how our method can
extract meaningful information from significant random
signature.

Association of top 20 genes with DMFS and RFS datasets
To further investigate the importance of genes extracted
with our method, the prognostic performance of the
top significant genes is computed using DMFS and RFS
datasets. These two data sets, introduced by Staiger
et al. [12], are two cohorts of breast cancer samples in
NCBIs GEO.

DMES dataset is collected from six studies (Ivshina,
Hatzis-Pusztai, Desmedt-June07, Miller, Schmidt, Loi)
with 190 and 433 samples for poor and good progno-
sis, respectively. The RFS dataset contains 12 studies
(Ivshina, Hatzis-Pusztai, Desmedt-June07, Minn, Miller,
WangY-ErasmusMC, Schmidt, Pawitan, Symmans, Loi,
Zhang, WangY) with 455 and 1161 samples for poor
and good prognosis, respectively. The DMEFS data set
is a subset of the RFS data set. Their difference, how-
ever, is that in RFS data set, the patients are labeled
according to recurrence-free survival whereas in DMFS
data set, they are labeled according to distant metastasis-
free survival. Among the top twenty significant genes
computed previously, sixteen genes have gene expression
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Table 1 Enriched disease and disease class achieved from different set of genes by GAD
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Genes DISEASE p-value DISEASE-CLASS p-value

1000 1st Genes Breast Cancer 7.00E-04 CANCER 9.80E-05
1000 2nd Genes Oral Premalignant Lesions 5.10E-03 DEVELOPMENTAL 1.20E-01
1000 3rd Genes Neural Tube Defects 2.50E-02 REPRODUCTION 2.50E-01
1000 6th Genes Bone density; Pregnancy loss 6.90E-03 AGING 1.50E-01
1000 9th Genes Height 2.50E-03 NORMAL VARIATION 7.00E-03
1000 12th Genes Inflammatory Bowel Disease 2.30E-05 CHEMDEPENDENCY 7.50E-05

information for studies in both DMFS and RFS datasets
and 4 genes are eliminated in these studies since the
gene expression values are not recorded for them. Expres-
sion of these sixteen genes for DMFS dataset is shown in
Fig. 4. In both DMFS and RFS datasets, gene expression

data for all studies are considered. Therefore, large num-
ber of samples with continuous gene expression values
are available for analysis. By using t-test method, we
confirmed that these genes can significantly separate the
poor prognosis from good prognosis samples in DMFS

BIRC5
SHCBP1
PKMYT1
TK1
ELOVL1

Il poor prognosis

Patients' population

I good prognosis

0
Row Z-Score
Patients_population

Fig. 4 Expression of sixteen top-ranked genes in DMFS dataset
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and RFS datasets with p-values of 0.0017 and 0.0019,
respectively.

Prognosis value of the pathways associated with
significant genes

To investigate the functions of the set of significant genes,
hereinafter referred to as SG, pathways enrichment anal-
ysis is performed using ConsensusPathDB [29]. Only the
pathways enriched with p-value less than 10~ are consid-
ered (Table 2). Table 2 shows 22 enriched pathways from
KEGG, Wikipathways, SMPDB and PID databases. Asso-
ciation of these pathways with cancer is surveyed through
an extensive literature search. Among the 22 founded
pathways, 14 of them are directly involved in cancer devel-
opment and mostly contributed to cell cycle, proliferation
and self-renewal ability. However, the remaining pathways
indirectly affect tumor progression. The significance of
these pathways is then evaluated using the DMFS and
RFS datasets. To find the prognosis value of suggested
pathways, a defined pathway-score is assigned to each
patient and a statistical test is applied to distinguish the
population of scores for phenotype N (good) and ~ N
(poor). Considering pathway P, for each patient pi in

Table 2 Enriched pathways using ConsensusPathDB
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phenotype N, two scores, scorei;( (P) and score’il;[(P), are
defined (see “Methods” for more details). The population

of pathway-scores, scoreff (P) and score‘il;v(P), are sup-
posed to vary for a pathway P that performs differently
between the two phenotypes N and ~ N. Statistical t-test
is applied for testing Hy (there is no important difference
between pathway-scores) versus H; (there is difference
between pathway-scores). Most of the selected pathways
can significantly separate the poor and good samples with
significant p-values p — value < o (¢ = 0.05).

Association of top 10 genes with cancer

To get a better insight in the importance of the signif-
icant genes extracted from empirically significant ran-
dom signature, we investigated the role of the 10 most
significant genes. Through extensive literature search, it
is shown that most of the top 10 genes are reported
to be associated with breast cancer or cancer in gen-
eral. Table 3 presents a summary about the function of
these genes. Among the listed genes, BIRC5, SEC14L2,
Thymidine kinase (TK1), ZNF385B, CLIC6, ELOVLI,
CHAF1B and TFF1 have been reported to have a role
in early detection of cancers, tumor progression and

Pathway Name Pathway Source Pathway Number of Enriched p-value p-value in
Size Genes in  DMFS RFS Dataset
Dataset
Oocyte meiosis - Homo sapiens KEGG 113 30 0.008 0.005
HTLV-I infection - Homo sapiens KEGG 259 32 0.012 0.006
FoxO signaling pathway - Homo sapiens KEGG 134 13 0.075 0.040
Cell cycle - Homo sapiens KEGG 124 51 0.008 0.007
MAPK signaling pathway - Homo sapiens KEGG 257 1 0.020 0.062
p53 signaling pathway - Homo sapiens KEGG 68 13 0.010 0.004
Pathways in cancer - Homo sapiens KEGG 398 32 0.319 0463
DNA replication - Homo sapiens KEGG 36 19 0.130 0.087
miR-targeted genes in lymphocytes - TarBase Wikipathways 31 0.019 0.071
miR-targeted genes in epithelium - TarBase Wikipathways 327 25 0.003 0.068
Gastric cancer network 2 Wikipathways 32 9 0.021 0.014
Mitotic G2-G2-M phases Wikipathways 5 5 0.002 0.001
DNA Damage Response Wikipathways 68 21 0.025 0.015
Cell Cycle Wikipathways 103 39 0.029 0.051
Gastric Cancer Network 1 Wikipathways 29 10 0.010 0.007
Pyrimidine Metabolism SMPDB 23 6 0.049 0.015
Validated targets of C-MYC transcriptional activation PID 89 12 0.129 0.044
FOXMT1 transcription factor network PID 42 13 0.004 0.002
E2F transcription factor network PID 75 23 0.051 0.029
Aurora B signaling PID 41 18 0.013 0.012
Aurora A signaling PID 31 8 0.003 0.015
PLK1 signaling events PID 44 20 0.010 0.011
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Gene Name Main functions Included related pathway Cancer type Citations
TAT Transaminase involved in tyrosine breakdown. Metabolism and carbon Hepatocellular carcinomas [41]
Converts tyrosine to p-hydroxyphenylpyruvate. metabolism pathways in (HCQ), small cell carcinoma
Pro-apoptotic effect through the mitochondrial Mitochondria
pathway
BIRC5 Dual roles in promoting cell proliferation and Apoptosis, cell cycle, Breast, prostate, bladder, [42]
preventing apoptosis. Essential for chromosome Immune system modulation lung, colorectal, ovarian,
alignment and segregation during mitosis and cervical cancer and others
cytokinesis. Participates in the organization of the
center spindle by associating with polymerized
microtubules.
PHYHD1 Alpha-ketoglutarate-dependent dioxygenase activity Peroxisomal phytanic acid Prostate cancer [43]
alpha-oxidation pathway
SEC14L2 Carrier protein. May have a transcriptional activator Transcription Breast and prostate cancer [44-46]
activity via its association with alpha-tocopherol. May
regulate cholesterol biosynthesis.
TK1 Catalyzes the addition of a gamma-phosphate group Cell Cycle, Mitotic and Breast and prostate cancer [30]
to thymidine. Biosyntehsis of dTTP, required for DNA Metabolism
replication.
ZNF3858 Role in p53/TP53-mediated apoptosis. Apoptotis Breast and ovarian cancer [35]
CLIC6 May insert into membranes and form chloride ion Activation of Breast cancer [47]
channels. May play a critical role in water-secreting cAMP-Dependent PKA,
cells, possibly through the regulation of chloride ion Hepatic ABC Transporters
transport
TCIM Involved in the regulation of cell growth and Apoptosis Thyroid, breast, gastric, [43, 48, 49]
differentiation. Involved in the regulation of heat liver and lung cancer
shock response. Plays a role in the regulation of
hematopoiesis even if the mechanisms are unknown
(By similarity).
ELOVLI Fatty acids elongation Metabolism and Regulation Cancers [31]
of lipid metabolism
TFF1 Stabilizer of the mucous gel overlying the Estrogen signaling pathway, Breast and gastric cancer [50,51]

gastrointestinal mucosa that provides a physical
barrier against various noxious agents. May inhibit
the growth of calcium oxalate crystals in urine.

adhesion

metastasis in most of cancer types including breast can-
cer (see Table 3). PHYHD1 [30] is recently identified as a
predictor for progression-free survival and metastasis in
prostate cancers. Surprisingly, the most significant gene,
TAT (Tyrosine aminotransferase), has not been reported
to have a role in breast cancer. TAT encodes a mitochon-
drial enzyme mainly expressed in liver and contributes to
metabolism and carbon metabolism pathways [31]. TAT
gene is located on the chromosome 16 at position q22.2.
Intriguingly, this chromosome is frequently deleted in
many tumors including breast, liver, lung and gastric, sug-
gesting the existence of a tumor suppressor gene within
this region [31, 32]. Tumor suppressive mechanism of
TAT gene has been previously reported in hepatocellu-
lar carcinomas (HCC). Indeed, down regulation of TAT
is widely detected in primary HCC, which is significantly
associated with either the loss of TAT allele or hyper
methylation of TAT [32]. Induction of TAT into HCC cells
prevents their tumorigenicity. Also, it has pro-apoptotic
effect through the mitochondrial pathway [31]. Loss of

chromosome 16q is widely reported in low tumor grade
and luminal (ER+) breast cancer [31-35]. However, this
study is the first one to suggest a role for this gene in breast
cancer.

Expression pattern of TAT in malignant breast cancer vs.
adjacent normal tissue and mammospheres vs. parental
adherent cells

Based on our data, we hypothesized that TAT could play
an important role in breast cancer. Therefore, its expres-
sion is evaluated in breast tumor samples. All tumors in
the present study are classified as invasive ductal carci-
noma (IDC). Three samples are ER+, PR+ and HER2+.
Three patients have undergone neoadjuvant therapy prior
to surgery due to their histopathological characteristics
and tumor stage. As shown in Fig. 5, in most of cases, TAT
is under expressed as compared to adjacent normal tis-
sue. However, two of them had over-expressed TAT genes.
Surprisingly, the expression of TAT increased in mam-
mospheres derived from MCF-7 and MDA-MB-231 as
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Fig. 5 The expression of TAT gene in tumor vs. normal and spheres vs. parental cells. Left) Ten breast cancer patients enrolled in the present study
and the expression pattern of TAT is evaluated using real time RT-PCR in tumoral and adjacent normal tissues. Seven of ten patients had
down-regulation of TAT gene compared to normal tissues, but two of them over-expressed it. (Right) Both type of mammospheres derived from
MCF-7 and MDA-MB-231 revealed enhanced expression of TAT. The bars in MCF-7 and MDA-MB-231 indicated the Mean £SD of at least three
different experiments. ***: P < 0.001

compared to their adherent counterparts (about 3.2 fold, Discussion

p < 0.001). The decreased expression of TAT in tumor as  Nominal p-values are most commonly used to show the
compared to normal tissue is confirmed in TCGA BRCA  significance of the observations. In 2012, Venet et.al. [21]
dataset. Only the cases for which both tumor and adjacent ~ suggested that nominal p-values are not reliable measures
normal tissue RNA-seq data are available are considered  to show the significance of a human cancer signature and
for analysis. A massive and highly significant (p-value <  outcome. They showed that, at least in the case of breast
1071%) decrease of TAT expression is observed in tumors  cancer, signatures reported in the literature are no better
as compared to their adjacent tissue in most of the samples ~ than randomly generated signatures. To show this, they
(87/112, median decreased of 20 fold, Fig. 6). generated random signatures that could separate good
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Fig. 6 Expression of TAT in TCGA breast tumor and adjacent normal tissue. A. Primary tumor RNA-seq data and the associated normal tissue are
available for 112 patients from the TCGA BRCA project. a Comparison of TAT expression (log2 FPKM+1) in tumors vs. adjacent normal tissue. Student
t-test p-value is < 10~'°. b Ratio of TAT expression in normal tissue over expression in tumors for the 112 patients
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and poor patients with significant nominal p-values. They
further suggested that such significant random signatures
are due to genes associated with proliferation and cell
cycle.

In this research, we first show that by using the empirical
p-values and considered it as a complimentary criterion
for nominal p-value, most of the random signatures are
not more significant than published signatures related to
breast cancer. Next, we focused on that subset of random
signatures with significant both empirical and nominal p-
value. This subset of random signatures may contain some
information that makes them be significant like published
ones. To show that the significant random signatures are
informative, we apply a computational method to extract
information embedded within them. To do this, we define
a novel scoring assignment method based on the number
of the significant signatures that contain a specific gene
to give a score to each gene. Since genes do not act in
isolation in a complex disease like cancer and the inter-
actions between them play a significant role, we consider
the relationship of the genes in PPI network. To this end,
a diffusion method on PPI network is used to smooth the
score of the genes. Using a permutation method, the genes
with significant score are selected as cancer-related genes.

We applied this method on the NKI cohort, which is
a breast cancer dataset studied by Venet et al. [21] to
achieve a set of significant genes in breast cancer. It is
shown that this predicted set of genes is related to breast
cancer. To evaluate the prognostic performance of the
computed set of significant genes, we used two data sets of
DMES and RES. They contain cohorts of 6 and 12 datasets
from GEO, introduced by Staiger et al. [12]. We show
that the set of significant genes can separate the poor and
good prognosis in these datasets. To show the accuracy
of this method, the following procedure is done. Firstly,
pathways enrichment analysis using ConsensusPathDB
is performed considering KEGG, Wikipathways, SMPDB
and PID databases on this set of genes. All enriched path-
ways, including cell cycle, p53 signaling pathway and DNA
Damage Response are associated with cancer develop-
ment. Secondly, for most of the significant genes obtained
by this method (all of the 10 most significant genes), a role
in cancer initiation or progression has been described in
multiple types of cancer. In fact, 8 out of these 10 genes
have been shown or suspected to play key roles in breast
cancer development (see Table 3), highlighting the effec-
tiveness of our method. In addition, our method could
effectively identify new important candidates for the can-
cer type being studied. It identified TAT which has not
so far been reported in cancer. In summary, the obtained
results demonstrate the accuracy of the proposed method
as it can effectively extract meaningful information from a
set of completely random signatures. This method allows
the identification of genes with expressions that contain
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predictive values and are associated with cancer-related
pathways. Finally, we checked the expression of TAT in
human breast cancer tissues as well as mammospheres as
a model of breast cancer stem cells. TAT is down regu-
lated in most of the invasive ductal carcinoma patients
(71%) used in this study and in TCGA patients from
BRCA projects. Interestingly, a previous study reported
that TAT, which is located on chromosome 16q, has
a tumor suppressive role in hepatocellular carcinomas
(HCCQ) [31]. Indeed, down regulation of TAT expression
is widely detected in primary HCC, which is significantly
associated with either the loss of TAT allele or hyper
methylation of TAT. Induction of TAT into HCC cells pre-
vents their tumorigenicity. TAT has been shown to exhibit
pro-apoptotic effect through the mitochondrial pathway
[31]. Although the role of TAT in breast cancer is unclear,
the loss of chromosome 16q has been widely reported
in low tumor grade and luminal (ER+) breast cancer
[31-35]. The expression pattern of TAT is down regulated
in seven of ten patients in the present study suggesting
that loss or low expression of TAT could contribute to
initiation or/and progression of breast cancer. However,
TAT is up regulated in two patients as well as mam-
mospheres derived from malignant breast cancer lines.
Mammospheres is a model for enriching the breast can-
cer stem cells [36, 37]. There are several studies indicating
that breast cancer stem cells are responsible to resistance
to chemotherapy [38, 39] and induction of metastasis [40].
Therefore, the similarity of TAT expression in both mam-
mospheres and the two of our patients can lead to the
hypothesis that over expression of TAT may be associated
with the resistance of tumor to therapy. This hypothesis
can be the subject of study for future research.

Conclusion

As a conclusion, random signatures can contain signif-
icant information to discover new cancer genes. The
method we developed can be used to rank the genes
extracted from significant random signatures and predict
important signatures in cancer. In addition, this study is
the first one to suggest a role of TAT in breast cancer.
However, further investigations should be conducted to
elucidate the putative tumor suppressor properties of TAT
in breast cancer as well as its potential importance in stem
cells, metastasis and resistance to drugs.
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