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Abstract

risk associations in Han Chinese populations.

regulatory variant in causing hypospadias.

Background: Hypospadias risk-associated gene variants have been reported in populations of European descent
using genome-wide association studies (GWASs). There is little known at present about any possible hypospadias

Methods: To systematically investigate hypospadias risk—associated gene variants in Chinese patients, we
performed the first GWAS in a Han Chinese cohort consisting of 197 moderate-severe hypospadias cases and 933
unaffected controls. Suggestive loci (p < 1 x 10~ % were replicated in 118 cases and 383 controls, as well as in a
second independent validation population of 137 cases and 190 controls. Regulatory and protein-protein
interactions (PPIs) were then conducted for the functional analyses of candidate variants.

Results: We identified rs11170516 with the risk allele G within the SP1/SP7 region that was independently
associated with moderate-severe hypospadias [SP1/SP7, rs11170516, Peompine = 3.5 X 10~ %, odds ratio (OR) = 1.96
(1.59-244)]. Results also suggested that rs11170516 is associated with the expression of SPT as a cis-expression
quantitative trait locus (cis-eQTL). Protein SP1 could affect the risk of hypospadias via PPIs.

Conclusions: We performed the first GWAS of moderate-severe hypospadias in a Han Chinese cohort, and
identified one novel susceptibility cis-acting regulatory locus at 12q13.13, which may regulate a variety of
hypospadias-related pathways by affecting proximal SPT gene expression and subsequent PPIs. This study
complements known common hypospadias risk-associated variants and provides the possible role of cis-acting
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Background

Hypospadias, arising during weeks of 8-16 of gestation
[1], is among the most common congenital diseases of the
male uro-genital system. Hypospadias occurs in approxi-
mately 1 per 1000 births in China [2], and the prevalence
is suggested to be increasing here [3]. In addition, the
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incidence seems to vary by urban-rural classification and
geographical location [2]. Hypospadias severity is classified
into mild (in glandular), moderate (in penile) and severe
(in scrotum or perineum) according to the abnormal loca-
tion of the urethral opening [4—6]. Many hypospadias pa-
tients have concurrent complications, and children with
hypospadias repaired in childhood usually reemerge in
adulthood that making the patient feel traumatized [7].
Hypospadias is considered to be a complex congenital
disorder stemming from multiple genetic and environ-
mental interacting factors [8]. Investigation of the famil-
ial aggregation of hypospadias cases suggested that
genetic, rather than intrauterine environmental factors,
play a principal role in the etiology of hypospadias [9].
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The heritability of hypospadias is between 57 and 77%
[9, 10]. Hypotheses about the multifactorial (polygenic)
inheritance of hypospadias indicated that small effects of
multiple genes and/or environmental factors might in-
fluence an individual’s hypospadias risk. The current lit-
eratures is replete with a number of genes and pathways
that are known to contribute to the etiology of hypospa-
dias, includingg HH (Hedgehog) signaling pathway,
WNT signaling pathway, FGF signaling pathway, BMP
signaling pathway, Homeobox genes and others [11]. As-
sociated polymorphisms with hypospadias were found in
DGKK, SRD5A2, ESR1, ESR2, FGF8, FGFR2, HSD17B3,
MIDI1, CYPIAI, ATF3, MAMLDI, GSTMI1, GSTT1 and
AR [12]. Despite the large number of genes contributing
to the etiology of hypospadias, the majority of genetic
risk factors remain largely unknown. A genome-wide as-
sociation study (GWAS) is an effective way to identify
genetic variants associated with different human disor-
ders while providing valuable insights into their genomic
architecture. To date, GWASs for hypospadias have
identified approximately 24 susceptibility loci, capable of
explaining no more than 9.4% of the variance in liability
to hypospadias [13, 14]. Recently, SNPs in HAAO and
IRX6 genes were found to be associated with hypospa-
dias in Japanese population [15]. However, these
GWASs or association analysis were performed in indi-
viduals of European descent or Japanese population, no
GWAS analysis of hypospadias has yet been conducted
in Chinese populations.

In the present study, we performed a GWAS based on
197 moderate-severe hypospadias cases and 933 controls
in a cohort of male Han Chinese using the Illumina Omni
chips, followed by two additional independent confirm-
ation studies of males at differing life stages that included
255 cases and 573 controls. Regulatory and protein-
protein interactions (PPIs) were then conducted for the
functional analysis of candidate non-coding variants.

Methods

Study cohorts and design

We conducted a three-stage case—control study design
in a male Han Chinese population. The three stages con-
sisted of a discovery and two replication stages (Add-
itional file 1: Table S1). Subjects of the discovery GWAS
stage included 200 hypospadias cases and 1008 healthy
controls, followed by replication in two independent
sample sets. Subjects for the first replication stage in-
cluded 118 cases and 383 controls. Subjects for the sec-
ond replication stage were comprised of 137 cases and
190 controls. And the subjects in the discovery GWAS
stage, replication 1 and replication 2 were recruited in
three different periods. Cases were pathologically diag-
nosed hypospadias recruited from the Department of
Urology at Shanghai Children’s Hospital. According to
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the abnormal location of the urethral opening, the pa-
tients were divided into three categories: mild (glandu-
lar), moderate (penile), or severe (in the scrotum or
perineum). Only patients with moderate-severe hypospa-
dias without other system abnormalities were included
in our analysis. Of the 455 patients ultimately enrolled
(3.2 £ 2.7 years), there were 34.9% moderate cases and
65.1% severe cases. Among the 1581 healthy controls,
1008 healthy controls (62.1 + 10 years) were cancer-free
at the time of enrollment and were recruited from the
Chinese Consortium for Prostate Cancer Genetics (Chi-
naPCa) [16, 17] and 573 hypospadias-free controls
(5.7 £ 3.3 years) were collected from subjects receiving
routine physical examination in Shanghai Children’s
Hospital. All these 573 healthy controls were confirmed
to have a normal position of the external urethral orifice,
noncleaved prepuce and intrascrotal testis.

Protocols were reviewed and approved by the Ethics
Committee of the Shanghai Children’s Hospital in China
(2014R022-F01). All of the samples were obtained from
all participants or their parent/legal guardian with the
written informed consent.

Genotyping and quality control of discovery GWAS

In the discovery phase study, genotyping was conducted
using the Illumina Human OmniExpress BeadChips. A
total of 887,270 SNPs were genotyped in 200 cases and
1008 controls. A series of quality control (QC) filtering
steps were applied to select samples and SNPs for fur-
ther analyses. We removed samples according to four
QC criteria: (1) overall missing genotype data that ex-
ceed >5%; (2) discordant sex information; (3) duplicated
or questionable familial relationships [Identity-by-state
(IBS) similarity score >0.99]; (4) individuals with scores
at least six standard deviations of principal components
from the sample mean score. After sample quality con-
trol analysis, a total of 197 cases and 933 controls with
530,907 SNPs remained. Genotypes in the GWAS were
imputed for ~ 3.5 million SNPs using the 1000 Genomes
Project Han Chinese in Beijing (CHB) population as a
reference.

SNPs were excluded using the following 4 QC criteria:
(1) average call rate in cases and controls and overall call
rate < 95%; (2) MAF (minor allele frequency) in controls
is < 5%; (3) Hardy-Weinberg Equilibrium (HWE) p-value
in controls is < 0.001; (4) SNPs with ambiguous calls (A/
T or C/@G). After SNP quality control analysis, ~ 3.0 mil-
lion SNPs were available for further analysis.

SNP selection and genotyping in replication studies

We attempted to follow the general steps for selecting
susceptibility SNPs identified in the GWAS discovery
stage for the further confirmation (replication 1 and rep-
lication 2). We selected a subset of independently
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hypospadias risk-associated SNPs for replication on the
basis of the following three criteria: (i) P<1x10™* in
the association test (370 SNPs met this criterion), (ii)
linkage disequilibrium (LD) r> below 0.5 between
markers (62 SNPs met both of these criteria) and (iii)
SNPs with an allele frequency difference of <0.02 be-
tween control subjects from the GWAS stage and sub-
jects from 1000 Genomes Project CHB population (22
SNPs met all three criteria). Finally, genotyping of the 22
significantly associated SNPs (Additional file 2: Table
S2) in the initial GWAS stage was conducted using the
MassARRAY iPLEX (Sequenom) in independent replica-
tion 1 (118 cases and 383 controls) and 2 (137 cases and
190 controls). Among these 22 SNPs, three SNPs
[rs6685335 (Chr 1), rs34709644 (Chr 4) and rs7805909
(Chr 7)] failed genotyping in over 5% of the samples.
Therefore, a total of 19 SNPs were genotyped in replica-
tion 1 and 2 (Additional file 3: Table S3). In the current
study, the associations of previous reported SNPs identi-
fied in European GWAS [13] were evaluated. We also
tested associations of identified SNP separately for the
moderate and the severe hypospadias patients.

Regulatory and protein-protein network analysis

The correlations between the candidate SNP genotype
and gene expression and protein binding were examined
using data available from the RegulomeDB database [18]
and UCSC Genome Browser database [19]. We also in-
vestigated the impact of non-coding variants using Hap-
loReg that integrated LD information [20]. LD structure
in the vicinity of the risk loci was also inferred by the
Ensembl database [21]. The protein-protein network
visualization was further used to better understand the
biological processes mediated by the hypospadias associ-
ated risk genes based on STRING [22] and GeneSense
[23]. Only those PPI pairs with a STRING combined
score > 700 were selected for the network analysis.

Statistical analyses

Logistic regression analyses under log-additive model
were applied to test for associations between hypospa-
dias and controls. Population stratification and sample
quality control were accounted for by principal com-
ponent analysis (PCA) using the PLINK software
package (http://pngu.mgh.harvard.edu/~purcell/plink/)
[24]. Principal component plots were conducted using
the R statistical program (http://cran.r-project.org/).
Cochran’s Q statistic and the I index were accom-
plished to assess the heterogeneity of the SNP associ-
ations across studies. Regional plots were performed
using LocusZoom [25]. Statistical analyses were per-
formed using R and PLINK [24].
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Results
GWAS analysis
In the first discovery stage, 887,270 SNPs were genotyped
in 200 cases and 1008 Han Chinese controls using the
Nlumina Human OmniExpress BeadChips. Genotypes in
the GWAS were imputed using the 1000 Genomes Project
Han Chinese in Beijing (CHB) population as a reference
population. After quality control filtering, 3,015,028 SNPs
in 197 cases and 933 controls qualified for subsequent
analysis. We conducted association analysis for each SNP
under a log-additive model and identified multiple hypo-
spadias risk-associated regions (Fig. 1). Association ana-
lysis of ~ 3.0 million genetic variants with hypospadias in
the discovery stage in the Han Chinese population dem-
onstrated little evidence of global test statistic inflation
(inflation factor = 1.03) caused by population stratification
(Fig. 2). This result was further supported by principal
component analysis (PCA) (Additional file 7: Figure S1).
We first tested for association at known GWAS loci
identified by a European GWAS. Among the 18 previ-
ously described hypospadias-associated SNPs, 16 SNPs
passed the quality controls. Among these 16 SNPs exam-
ined, we identified 1 SNP (rs4554617) in DGKK with sig-
nificant association (P=1.4x10"%) through logistic
regression (additive model) (Additional file 4: Table S4).
To evaluate additional susceptibility genetic loci, we selected
22 SNPs representing the top associated loci for replication/
validation studies (Additional file 2: Table S2). From these
loci, only 1 SNP (rs11170516) with a risk allele (G allele)
showed significant association at each stage [discovery stage:
odds ratio (OR)=227, P=16x10"% replication 1: OR =
1.69, P=1.3 x 10~ % replication 2: OR = 1.79, P= 8.0 x 10™?]
(Table 1). After combining the results from all three stages
using a meta-analysis assuming a fixed effect, association of
rs11170516 at 12q13.13 exceeded genome-wide significance
[OR =196, 95% confidence interval (CI)=1.59-2.44; P=
3.5 x 10™°]. There was no evidence for heterogeneity across
the three stages at rs11170516 (Pye=0.52, I*=0). In
addition, the rs11170516 is significantly associated with
moderate hypospadias (OR=1.83, P=4.9x10"* and
severe hypospadias (OR =2.03, P=1.64x10"7) separ-
ately (Additional file 5: Table S5). In the present study,
the rs11170516 risk allele frequencies (RAF) were
77.9% in control of discovery stage, 79.8% in control of
replication 1, and 78.3% in control of replication 2, re-
spectively. These frequencies are very similar to
HAPMAP-CHB, which reported RAF value is 80.5%.

Functional analysis

The most significant SNP in this study, was determined
to be rs11170516 at 12q13.13, located in the intergenic
region ~ 23 kbp 5 of the SP7 (Sp7 transcription factor)
gene and at ~21 kbp 5 of the SPI (Spl transcription
factor) gene (Fig. 3a). Further analysis showed that a
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Fig. 1 Manhattan plot of the genetic evidence of association for hypospadias in a Chinese population using log-additive model. The x-axis shows
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Fig. 2 The quantile-quantile (Q-Q) plot of expected P values versus observed P values in hypaspadias. The red line shows the distribution under
the null hypothesis while the shaded band represents 95% Cl values
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Table 1 Association results for the three stages and the meta-analysis at the 12g13.13 locus

SNP Risk Location Attributed Study RAF? OR(95% CI)® P value® Phet*
Allele genes Cases Controls
rs11170516 G 12:53752692 SP1, SP7 Discovery stage 0.888 0.779 227(1.64-3.23) 16x107° 0.52
Replication 1 0.871 0.798 1.69(1.14-2.63) 13%107°
Replication 2 0.865 0.783 1.79(1.16-2.63) 80x107°
Meta-analysis 0.877 0.784 1.96(1.59-2.44) 35%107°

“Risk allele frequency (RAF)
PORs, 95% Cls and corresponding P values in additive model were estimated using a logistic regression model
P value of Cochran’s Q-test for the heterogeneity
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Fig. 3 Regional association results (top), LD plots (middle and bottom) and functional annotation for new hypospadias susceptibility region at
12913.13. (a) For regional plots, genomic coordinates are shown on the x axis (hg19/GRCh37), P values for the association analysis are plotted as
—logyoP against chromosomal position on the left y axis. P value of rs11170516 was calculated based on the combined three stage results. Both
genotyped and imputed SNPs are shown. The right y axis represents the recombination rate estimated from 1000 Genomes Project ASN data. (b)
LD heat maps based on D' values using CHB genotypes from the 1000 Genomes Project (Phase 3) according to Ensembl annotations. (c)
rs11170516 affected SP1 expression by the UCSC browser
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linkage  disequilibrium  (LD) block containing
rs11170516 overlaps with SPI (Fig. 3b) based on the
Ensembl database [21]. Further, 22 SNPs of SPI were
found to be in strong LD (r*>0.8) with rs11170516
using HaploReg database (Additional file 6: Table S6).
A bioinformatics analysis of this region, based on
Genotype-Tissue Expression (GTEx) data annotated
by the UCSC browser [19], revealed that the genetic
variant rs11170516 is likely affecting proximal SPI
gene expression (Fig. 3c). The variant is significantly
associated with the expression of SPI mRNA level in
multiple tissues including testis, uterus and vagina
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(Fig. 4a), and the risk allele of rs11170516 is associ-
ated with low expression of SPI (Fig. 4b). We also in-
vestigated cis-eQTL effects and the regulatory protein
binding of rs11170516 (Table 2) using RegulomeDB
annotation [18]. Again, SNP rs11170516 was identi-
fied as a cis-eQTL and it is associated with SPI ex-
pression in monocytes [27] (Table 2). Furthermore,
the expression of SPI1 was relatively higher in skin
based on data from the NCBI browser (Additional file
8: Figure S2). The regulatory protein binding informa-
tion in the RegulomeDB annotation [18] showed that
rs11170516 is bound by the regulatory protein ESR1

Fig. 4 eQTL analysis for rs11170516. (@) Association of rs11170516 with SP1 expression in multi tissues. (b) Association of rs11170516 with SP1

A Tissue Samples NES pvalue  m-value
[ ] Esophagus - Mucosa 358 0.693 1.2e-58 1.00
Nerve - Tibial 361 0.630 1.4e-39 1.00
® Adrenal Gland 175 0.606 1.8e-16  1.00
© Breast - Mammary Tissue 251 0.468 22e-12  1.00
® Adipose - Subcutaneous 385 0.459 27e-23 1.00
® spleen 146 0.438 7.6e-8 1.00
[ ] Vagina 106 0.426 1.6e-6 1.00
Adipose - Visceral (Omentum) 313 0.411 22e-12 1.00
Brain - Cerebellum 154 0.382 5.7e-8 1.00
Minor Salivary Gland 85 0.381 2.4e-3 1.00
Brain - Cerebellar Hemisphere 125 0.373 8.8e-5 1.00
® Artery - Aorta 267 0.367 1.0e-15  1.00
@ Heart - Atrial Appendage 264 0.353 15e-13  1.00
Artery - Coronary 152 0.344 1.6e-7 1.00
Uterus 101 0.339 3.8e-3 1.00
@ Skin - Not Sun Exposed (Suprapubic) 335 0.332 4.3e-14  1.00
) Esophagus - Muscularis 335 0.332 2.9e-17  1.00
Testis 225 0.319 4.9e-9 1.00
[ ] Thyroid 399 0.315 3.2e-11 1.00
® skin - Sun Exposed (Lower leg) 414 0.314 16e21  1.00
Lung 383 0.309 2.3e-11 1.00
Brain - Hypothalamus 108 0.306 1.6e-3 1.00
Liver 153 0.304 6.0e-4 1.00
Brain - Substantia nigra 80 0.281 1.2e-3 1.00
Cells - Transformed fibroblasts 300 0.277 6.6e-15  1.00
Stomach 237 0.270 2.6e-6 1.00
Brain - Caudate (basal ganglia) 144 0.267 14e-5  1.00
Ovary 122 0.264 3.1e-3 1.00
Pituitary 157 0.262 8.5e-4 1.00
Brain - Cortex 136 0.254 5.0e-4 1.00
® Colon - Transverse 246 0.249 1.2e-4 1.00
[ ) Esophagus - Gastroesophageal Junction 213 0.241 2.6e-5 1.00
Prostate 132 0.237 0.01 1.00
@ Artery - Tibial 388 0.236 6.0e-12  1.00
Brain - Putamen (basal ganglia) AL 0.233 42e-4  1.00
@ Heart - Left Ventricle 272 0.227 2.3e-5 1.00
@ Pancreas 220 0.212 1.7e-3 1.00
Brain - Amygdala 88 0.203 0.01 1.00
Brain - Hippocampus 11 0.191 24e-3  1.00
Muscle - Skeletal 491 0.189 1.2e-10  1.00
Colon - Sigmoid 203 0.181 0.01 0.992
Brain - Nucleus accumbens (basal ganglia) 130 0.181 0.02 1.00
® Cells - EBV-transformed lymphocytes 17 0.176 0009  0.966
Brain - Spinal cord (cervical ¢-1) 83 0162 02 0.981
@ Small Intestine - Terminal lleum 122 0.161 0.1 0.948
Brain - Anterior cingulate cortex (BA24) 109 0.142 0.03 0.816
@ Whole Blood 369 0.121 1.6e-8 0.00
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Table 2 SNP rs11170516 is likely to affect protein binding of ESR1 and interact with gene SPT based on RegulomeDB annotation

Method Location Bound protein/affected gene Cell type Additional info Reference
ChlIP-seq chr12:53752659..53752963 ESR1 ECCA1 estradiol_10nm ENCODE®
eQTL chr12:53752691.53752692 SP1 Monocytes cis 20,502,693

*The Encyclopedia of DNA Elements [26]

(estrogen receptor 1) based on the ENCODE database
[26] (Table 2). To further interpret the potential
mechanism regulated by SPI and SP7, we investigated
these two genes and previous reported hypospadias
risk associated genes [11] by PPIs analysis using Gen-
eSense [23] and STRING [22]. Our results demon-
strated that SP1 directly interacts with five proteins
encoded by hypospadias risk genes, involving four sig-
naling pathways, being AR (androgen receptor) in an-
drogen production and signaling, ESR1 and ESR2 in
estrogen production and signaling, MAP3K1 in go-
nadal development and signaling, and ATF3 in the es-
trogen pathway (Fig. 5). In total, 79% (22/28) of the
proteins encoded by previous reported hypospadias
risk associated genes [11] directly or indirectly inter-
acted with SP1 and SP7, whereas six proteins (DGKK,
SRD5A2, HOXA4, HOXB6, MAMLD1, BNC2) were
not found to be interacted with SP1 and SP7.

Discussion

To our knowledge, there is as yet no large-scale
genome-wide analysis on potential genetic associations
with hypospadias risk in a Han Chinese population. By
performing a GWAS analysis with 452 moderate-
severe hypospadias cases and 1581 controls, we identi-
fied a single locus at 12q13.13 that was associated with
moderate-severe hypospadias (Table 1). Although the
sample size at the initial GWAS discovery stage was
relatively small, our three-stage GWAS provided con-
vincing evidence that the 12q13.13 region is associated
with the development of moderate-severe hypospadias.
We identified the rs11170516 with risk allele G (the
major allele) as the most significantly moderate-severe
hypospadias associated SNP at this locus [Pcompine =
3.5x 1077, OR=1.96 (1.59-2.44)], and we believe that
this variant might affect the expression of the prox-
imal SPI1 gene and subsequently regulate a variety of

MAP3K1

Fig. 5 Protein-protein interactions (PPIs) network of SP1, SP7 proteins and proteins encoded by known hypospadias risk associated genes

in human
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hypospadias-related pathways. The rs11170516 RAF is
very similar between controls and the HAPMAP-CHB
cohort.

Previously performed GWAS involving Dutch and
Swedish populations proposed DGKK as a major risk
gene for hypospadias [14], while a GWAS dataset from
Denmark, Netherlands and Sweden identified several
significant loci within or close to genes (HOXA4, IRXS,
IRX6 and EYAI) with important roles in embryonic de-
velopment [13]. Among these associated genes, HOXA4
mutations have been found in cases of hypospadias and
showed a direct link to this malformation [28]. HOXA4,
part of the A cluster on chromosome 7, is spatially and
temporally regulated during embryonic development.
Other HOX family genes, affected by regulatory muta-
tion, also cause limb malformations [29]. Chromosome
12q13.13 deletions including the HOXC cluster were
found to result in developmental delay and skeletal
anomalies [30]. In addition, other genes in 12q13.13 re-
gion might also contribute to the genetic etiology of
mild bone-related dysmorphism [31]. Interstitial micro-
duplication 12q13.2-q13.3 were identified in a patient
with hypospadias, dysmorphism, developmental delay
and atypical seizures [32], indicating that the gene vari-
ants within 12q13 might play an important role in the
etiology of hypospadias. However, no SNPs in the 12q13
region have yet been associated with hypospadias in a
large cohort. Our GWAS dataset was the first to identify
a significant association between SNP rs11170516
mapped to the 12q13.13 region and hypospadias in a
Han Chinese population. Although we think that the as-
sociation between the variant and hypospadias is medi-
ated via SPI, it could also be another mechanism.
Interestingly, the 12q13.13 region also contains HOXC
cluster. This study provides new insights into the genetic
etiology of hypospadias, as well as provided potential
mechanisms underlying the development of this defect.

The genetic variant rs11170516 at 12q13.13 resides in
an intergenic region between the transcription factor gene
SP1 and SP7. The protein encoded by the SPI gene is in-
volved in multiple fundamental cellular processes, includ-
ing: cell growth, differentiation, immune responses,
apoptosis, response to DNA damage, and chromatin re-
modeling. The activity of this variant gene product could
be significantly altered by many post-translational modifi-
cations such as acetylation, phosphorylation, glycosylation,
and proteolytic processing (provided by RefSeq, Nov
2014). Osterix (Osx/Sp7), a member of the Sp family, is
required for bone formation during embryonic develop-
ment [33], as well as in growing and adults bones [34—
36]. Sp7 can bind canonical Spl cognate elements [37]
and its transcriptional activity requires the recruitment
of Sp1 [33]. Strong LD between rs11170516 and a var-
iety of loci in SPI (r*> > 0.8) was observed (Fig. 3b and
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Additional file 5: Table S5), as well as the cis-eQTL
effects of rs11170516 on SP1 expression (Fig. 3¢ and
Table 2). Although we did not include all possible pro-
teins encoded by hypospadias risk associated genes (for
example IRX5, IRX6, EYA1) for PPIs, our investigations
indicated that disruption of SP1 and SP7 activity is
associated with multiple known hypospadias risk asso-
ciated genes [11] in human via PPIs. Although it is in-
teresting that 79% of the proteins encoded by
hypospadias risk genes interact with SP1 or SP7, this is
not very surprising: many of the hypospadias risk genes
come from candidate gene studies, and the genes in
these studies were often selected based on their inter-
action with another known hypospadias risk gene. So if
SP1 or SP7 interacts with one of the proteins encoded
by a hypospadias risk gene, it is likely to interact (indir-
ectly) with many of the proteins encoded by hypospa-
dias risk genes. This can also be seen in Fig. 5; most
proteins are linked to SP1 or SP7 via other proteins.
SP1 interacts directly with five proteins, including: AR,
ESR1, ESR2, MAP3K1 and ATF3 (Fig. 5). AR mutations
were observed in 3.3% of the isolated hypospadias co-
hort, and play an important role in the cause of hypo-
spadias [38]. ESRI SNPs and haplotypes influence the
risk of hypospadias in nonHispanic white and Hispanic
population [39], while variants in ESR2 are associated
with hypospadias in the Swedish cohort [40]. Mutations
of MAP3K1 and ATF3 were also found to be associated
with an increased risk of hypospadias [41, 42]. Based
upon the above data, we hypothesize that SP1I is a can-
didate hypospadias associated gene. Considering that
SPI1 is likely to be dosage sensitive [43], rs11170516
may affect proximal SPI gene expression in a minor ef-
fect, which can disturb a variety of downstream path-
ways including: androgen production and signaling,
estrogen production and signaling, gonad development
and signaling and estrogen pathway. Additional genetic
and functional characterization of this SNP and other
loci are needed to further delineate the mechanism by
which the 12q13.13 locus contributes to the etiology
and expression of hypospadias.

There are three limitations to our study. First, our sam-
ple size is not sufficiently large at the initial GWAS dis-
covery stage to identify all of the possible genetic
susceptibility loci associated with hypospadias. Second, al-
though this is the first GWAS in a Han Chinese cohort to
assess hypospadias risk, the study cohort is limited to
moderate and severe hypospadias. Therefore, the current
study may miss potentially important SNPs that are asso-
ciated with mild hypospadias. Finally, rare variants, poorly
covered by GWAS technological approaches, may contrib-
ute to the “missing heritability” in hypospadias. Ongoing
efforts are underway to uncover all of the elements that
contribute to the genetic etiology of hypospadias.
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Conclusions

In summary, we conducted the first GWAS of moderate-
severe hypospadias in a Han Chinese cohort and identified
one new susceptibility locus (rs11170516) at 12q13.13,
which may regulate a variety of hypospadias-related path-
ways by affecting proximal SPI gene expression. These
findings complement known common hypospadias risk-
associated gene variants, and suggests the potential role of
a cis-acting regulatory variant in causing moderate-
severe hypospadias. Functional consequence of the
SNP rs11170516 needs further validation.
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