2703-630

÷

Synergism and Antagonism in Chemotherapy

Edited by

TING-CHAO CHOU

Memorial Sloan-Kettering Cancer Center New York, New York

DARRYL C. RIDEOUT

The Research Institute of Scripps Clinic La Jolla, California

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers San Diego New York Boston London Sydney Tokyo Toronto

Contents

Contributo	Drs	xiii
	\mathcal{F}	
Preface .		xv

PART I

Reviews and Methods of Quantitation

CHAPTER 1	
Synergism, Antagonism, and Potentiation in Chemotherapy: An Overview	3
DARRYL C. RIDEOUT AND TING-CHAO CHOU	
I. Drug Combinations in Chemotherapy	6
II. Mechanisms of Interaction	25
III. Condition-Related Aspects of Synergism,	
Antagonism, and Potentiation	51
References	53
CHAPTER 2	
The Median-Effect Principle and the Combination Index	
for Quantitation of Synergism and Antagonism	61
TING-CHAO CHOU	
I. Introduction	62
II. Dose-Effect Analysis with Physicochemical Approach	

	as Opposed to Empirical Approach	62
III.	The Median-Effect Principle of the Mass-Action Law	65
IV.	Dose-Effect Analysis of Combined Drug Effects	69

V. Su	ummary				•••••		88
Re	eferences						101
CHAPTER 3	í.						
Clinical Stu	dies of Co	mbination C	hemotherd	py for Canc	er	•••••	103
EMIL FREI	Ш						
Re	eferences						107

Combine	ed Chemotherapeutic Modalities for Viral Infections:	
Rational	e and Clinical Potential	109
RAYMO	ND F. SCHINAZI	
I.	Introduction	110
II.	Current Status of Research	111
IIL	Rationale for Combined Therapy with Antiviral Drugs	136
IV.	Criteria for Usefulness of Combination Chemotherapy	
	with Antiviral Agents	139
V.	Methods of Analysis of Drug Interactions	139
VI.	Mechanisms of Interaction	140
VII.	Pharmacological Principles	143
VIII.	Treatment of HIV, Opportunistic Infections, And Malignancies	146
IX.	Drug Combinations as a Challenge for Drug-Resistant Viruses	148
X.	Combination Chemotherapy and Combined Modalities for Viruses:	
	Results and Proposed Mechanisms of Interaction	150
XI.	Prospects	158
	References	160

СНАРТЕ	R 5	
Antimala	rial Synergism and Antagonism	183
J. L. VEN	INERSTROM, W. Y. ELLIS, W. K. MILHOUS, and J. W. EATON	
I.	Introduction	183
II.	Antifols	184
III.	Combinations of Antifols with Other Antimalarial Drugs	190
IV.	Quinolines	192
V.	Quinoline/Antibiotic Combinations	195
VI.	Artemisinin Combinations	196
VII.	Oxidants/Oxidant Drugs and Other Factors in Combination	197
VIII.	Nutritional Synergism and Antagonism	201
IX.	Chelators as Potential Antimalarials	201

١,

Х.	Miscellaneous Combinations	207
XI.	Resistance Modulators as Adjunct Antimalarial Chemotherapy	209
	References	211

Quantitation of Synergism and Antagonism of Two or More Drugs by Computerized Analysis	223
JOSEPH H. CHOU	
I. Theory and Equations	224
II. Computerized Simulation and Automation	225
III. Illustration of Analysis with Examples	230
IV. Other Applications and Future Developments	237
References	241

PART II

Mechanisms of Interaction

CHAPTER 7

Inhibition of Metabolic Drug Inactivation: Modulation of	
Drug Activity and Toxicity by Perturbation of Glutathione Me	tabolism 245
OWEN W. GRIFFITH and HENRY S. FRIEDMAN	
I. Introduction	246
II. Glutathione Metabolism and Turnover	247
III. Glutathione as a Cellular Protectant	255
IV. Pharmacological Control of Glutathione Levels and	Metabolism 259
V. Therapeutic Applications of Pharmacologic Manipul	ations of
Glutathione Levels or Metabolism	271
VI. Glutathione Modulation: Perspective on Further App	lications 277
References	279

CHAPTER 8

Synergy and Antagonism in Polymerase-Targeted Antiviral Therapy:	Effects
of Deoxynucleoside Triphosphate Pool Modulation on Prodrug Active	ation 285
THOMAS SPECTOR and JAMES A. FYFE	
I. Synergistic Antiherpetic Chemotherapy by Acyclovir (ACV)
and an Inhibitor of Herpes Virus Ribonucleotide Reductase	286
II. Antagonism of 3'-Azido-3'-deoxythymidine (AZT) Antiviral	1
Action by Ribavirin (RBV)	297

3

III.	Summary	 305

Reversal of Multidrug Resistance in Tumor Cells	
CP. HUANG YANG, L. M. GREENBERGER, and S. B. HORWIT	Z
I. Introduction	311
II. Review of the Multidrug Resistance Phenotype	
III. Reversal of Multidrug Resistance Phenotype	
IV. Mechanisms Involved in Reversion of Multidrug Res	sistance 328
V. Clinical Implications	
VI. Summary	
References	

CHAPTER 10

Biochem	ical Mechanisms of the Synergistic Interaction of Antifolates 🖉	
Acting of	n Different Enzymes of Folate Metabolic Pathways	339
JOHN GA	ALIVAN	
I.	Introduction	339
II.	Rationale	343
III.	The Effects of Combined Antifolates	348
IV.	Discussion, Conclusions, and Prospects	355
	References	357

CHAPTER 11

Synergis	tic and Antagonistic Drug Interactions Resulting from	
Multiple	Inhibition of Metabolic Pathways	363
ROBERT	C. JACKSON	
I.	Introduction: Simultaneous Inhibition Effects as a	
	Determinant of the Efficacy of Drug Combinations	364
II.	Sequential Inhibition: A Historical Perspective	368
III.	The Cell as an Open System in a Steady State	374
IV.	The Main Patterns of Multiple Inhibitor Use	378
V.	Multiple Inhibition in Highly Regulated Systems	388
VI.	Approaches to a General Theory of Multiple Inhibition	394
VII.	Conclusions: Combining Inhibitors to Optimize Selectivity	398
	Appendix: A BASIC Program to Illustrate the Conclusions	403
	References	407

1

Enhanced Effects of Drugs That Bind Simultaneously to the	
Same Macromolecular Target	409
LUCJAN STREKOWSKI and W. DAVID WILSON	
I. Introduction	409
II. Interactions with Nucleic Acids	410
III. Interactions with Protein Targets	436
References	438

CHAPTER 13

Biochem	ical Modulation of 5-Fluorouracil by Metabolites and Antimetabolites	449
ENRICO	MINI and JOSEPH R. BERTINO	
I.	Introduction	449
II.	Mechanism of Action of FUra	451
III.	Sequential Methotrexate-FUra	452
IV.	Leucovorin-FUra	464
V.	Sequential MTX-LV-FUra	475
VI.	6-Methylmercaptopurine Ribonucleoside-FUra	477
VII.	Phosphonacetyl-L-Aspartic Acid and/or Thymidine–FUra	477
VIII.	Hydroxyurea-FUra	482
	Dipyridamol–FUra	
Χ.	Purines-FUra	483
XI.	Allopurinol-FUra	484
XII.	Uridine-FUra	485
XIII.	Conclusions	487
	References	488

CHAPTER 14

Synergism and Antagonism through Direct Bond Formation between Two Agents in Situ	507
DARRYL C. RIDEOUT and THEODORA CALOGEROPOULOU	
I. Introduction	508
II. Nonbiochemical Condensation Reactions Occuring in Vivo or	
Under Near-Physiological Conditions	508
III. Enhanced Cytotoxic and Antimicrobial Bioactivity of	
Polyfunctional versus Monofunctional Molecules	512

IV.	Synergism Involving Covalent Self-Assembly of Cytotoxic and		
	Antimicrobial Agents from Less Bioactive Precursors	520	
V.	Antagonism Involving Covalent Self-Assembly	528	
	References	534	

Chemotherapeutic Potentiation through Interaction at the Level of DNA 54	1
BEVERLY A. TEICHER, TERENCE S. HERMAN, and J. PAUL EDER	
I. Isobologram Methodology 54	2
II. Combinations of Alkylating Agents and Repair Inhibitors 54	5
III. Combined Alkylating Agent Studies 56	2
IV. Nitroimidazole and Perfluorochemical Emulsion/O ₂	
Chemotherapy Combinations 57	0
References 57	6
· ·	

CHAPTER 16	э́.
Drug Synergism, Antagonism, and Col	lateral Sensitivity
Involving Genetic Changes	
VASSILIOS I. AVRAMIS, SHENG-HE H	UANG, and JOHN S. HOLCENBERG
I. Introduction	
II. Over-Expression of Genes	
III. Under-Expression of Genes	
References	616

PART III

Condition-Selective Synergism and Antagonism

CHAPTER 17

Schedule-Dependent Effects in Antineoplastic Synergism and Antagonism	. 623
BARBARA K. CHANG	
I. Introduction	. 623
II. Schedule-Dependent Interactions Based upon	
Cell Cycle Considerations	. 626
III. Schedule-Dependent Interactions Based Primarily upon Biochemical	
Considerations: Combinations (Largely of Antimetabolites)	
Affecting the Enzymes Involved in DNA Synthesis	. 638
IV. Interactions Based upon Altered Drug Transport	. 643

V.	Miscellaneo	us	646
VI.	Summary		647
	References		648

Effects of Drug Distribution and Cellular Microenvironment on the Interaction	
of Cancer Chemotherapeutic Agents 6	i 5 9
RALPH E. DURAND	
I. Overview	i 5 9
II. Introduction6	660
III. Quantitative Techniques for Heterogeneous Systems	64
IV. Interaction of Chemotherapeutic Agents	572
V. Additional Considerations	581
References 6	684

CHAPTER 19

.¥

Synergistic Interactions at the Solid Tumor Level through Targeting of	
Therapies against Two or More Different Tumor Cell Subpopulations	,
DIETMAR W. SIEMANN and PETER C. KENG	
I. Introduction)
II. Background on Cell Subpopulations 690)
III. Characterization of Tumor Cell Subpopulations	L
IV. Cell Subpopulations Influencing the	
Overall Tumor Response to Therapy 693	6
V. Improving the Therapeutic Interaction through Therapy	
Combinations Directed against Specific Turnor Cell Subpopulations 702	
VI. Conclusions	,
References)

CHAPTER 20

Selective Synergism against the Target versus	
Host Bone Marrow Progenitor Cells	715
ELLIN BERMAN and TAI-TSUNG CHANG	
I. Introduction	715
II. Azidothymidine and Recombinant Interferon Alpha: Synergistic	
Effects Against the Human Immunodeficiency Virus versus Normal	
Human Bone Marrow Progenitor Cells	716
III. Cancer Cell Purging in Autologous Bone Marrow Transplantation	726

IV.	Selective Synergism: The Role for Data Analysis Using the	
	Median-Effect Equation in the Design of Clinical Drug Trials	733
V.	Conclusion	734
	References	734
Index		739

i

, Y