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Abstract

Due to its complete addition law, the Edwards form for elliptic curves is in
some applications a more convenient form than the well-known Weierstrass
form. In this thesis, the difference between both forms is described and spe-
cial properties of the Edwards curves are treated. A rational map between
both forms is constructed in order to show Edwards curves are birationally
equivalent to Weierstrass curves if and only if the Weierstrass curve has a
point of order 4. Using this map, it can be shown that an Edwards curve is
supersingular if and only if the corresponding Legendre form is supersingu-
lar.
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Chapter 1

Introduction

An elliptic curve is a curve that can be written in the Weierstrass form. It is
also naturally a group with a special addition defined on it. Recently H.M.
Edwards introduced a new form to represent a class of elliptic curves, called
the Edwards curves. Elliptic curves are often used in cryptography, and this
is where Edwards elliptic curves have their advantages: addition, doubling
and tripling can be done faster on Edwards curves than on curves given
by a Weierstrass equation. This is because the addition law on Edwards
curves does not have exceptions, while the addition on Weierstrass curves
distinguishes several special cases.

This thesis will focus on Edwards curves, the group law and special cases
for which an Edwards curve has special properties, in particular when an
Edwards curve is supersingular. Although the main goal is to understand
Edwards curves, the Weierstrass form will always be close for comparison.

The second chapter treats the basics of elliptic curves in Weierstrass
form. In the third chapter, Edwards curves and the addition on them will
be introduced. The goal of the fourth chapter is to find the relation between
Weierstrass and Edwards curves. The fifth chapter treats supersingular
Edwards curves.
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Chapter 2

Elliptic curves

2.1 Definition

For elliptic curves, different definitions are given in different books. To
prevent having to treat all theory behind elliptic curves, this thesis will use
the following definition of elliptic curves:

Definition 2.1. An elliptic curve over a field K is a non-singular curve
which can be written in Weierstrass form1:

v2 + a1uv + a3v = u3 + a2u
2 + a4u+ a6 (2.1)

where a1, a2, a3, a4, a6 ∈ K.

If char(K) is not 2, the Weierstrass equation can be simplified to:

E : v2 = u3 + au2 + bu+ c (2.2)

where a, b, c ∈ K. This is done by replacing ṽ = v + 1
2u+ 1

2a3.
Curves of the form 2.2 will be called Weierstrass curves from here on, or

just elliptic curves when there is no confusion whether a Weierstrass or an
Edwards curve is meant. Also, a curve will always denote an elliptic curve,
unless explicitly stated otherwise.

For a curve to be non-singular, it is necessary and sufficient that the
discriminant D of a curve is nonzero. Recall that the discriminant is a
function of its coefficients that gives information about its roots. For a
curve of the form (2.2), the discriminant is given by D = 16(a2b2 − 4b3 −
4a3c+ 18abc− 27c2). If the discriminant is zero, then the curve has a node
or a cusp, so it has a singularity.

Another important quantity of an elliptic curve is the j-invariant. This is
an invariant of the isomorphism class of the curve: two curves are isomorphic

1More generally, a curve is an elliptic curve if it is birationally equivalent to an elliptic
curve in Weierstrass form. However, since birational equivalence will be introduced in
chapter 4, until then an elliptic curve is assumed to have the Weierstrass form.
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Figure 2.1: Addition of two points on a Weierstrass curve: P1 + P2 = P3.

if and only if they have the same j-invariant. For the curve of 2.2, the j-
invariant is j = (16a2 − 48b)3/D, where D is the discriminant.

To a Weierstrass curve also belongs a point O at infinity. The purpose
of this point will be explained in the next section. The set E(K) denotes
all points (u, v) with u, v ∈ K that satisfy the equation of the elliptic curve
E, together with the point O. So, when E is written as in (2.2):

E(K) = {(u, v) : u, v ∈ K and v2 = u3 + au2 + bu+ c} ∪ {O}.

The set E(K) is a subgroup of E. The elliptic curve E is said to be defined
over K, written E/K, if E is defined over K as a curve and O ∈ E(K).

2.2 The group law on Weierstrass curves

Elliptic curves are naturally an abelian group, since there can be a group law
defined on it. This is defined geometrically. The idea is that any straight
line through two points on a cubic curve intersects the curve in a third point.

A point P on a Weierstrass curve E is represented by P = (u, v), and
−P = (u,−v). Now, choose two points on E, say P1 = (u1, v1) and P2 =
(u2, v2). Addition of P1 and P2 with P1 6= P2 and P1 6= −P2, on a curve is
done by connecting those points by a straight line. This line will intersect
the curve at another point P ′3. Drawing the vertical line through P ′3 gives
another intersection with the curve, P3. See figure 2.1. This point is the
sum of P1 and P2 on E, denoted by P1 +P2, the special meaning of + here
being understood.

Some modifications in this method are needed when P1 = P2 or P1 =
−P2. In the first case, P1 = P2, assume for now that the tangent line is
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not vertical. Then addition can be seen as adding a point P2 to P1 which
lies infinitely close to P1 itself. This means that the tangent line is drawn
through P1, which will again intersect the curve E in a point P ′3. Then the
vertical line through P ′3 can be drawn. The new intersection with this line
and E is the point 2P1.

The only remaining case is the case where P1 = −P2 or the tangent line
is vertical. The tangent line now does not seem to intersect E in a third
point. Hence, it is defined as the point O. So, O is a point at infinity, but it
is defined to be a point at infinity on every vertical line. It is the direction
of all vertical lines of P2, the projective plane2.

Recall that for a group law, the properties of the following definition
need to hold.

Definition 2.2. A group is a triple (E,+, O), where E is a set, O ∈ E, and
+ : E × E −→ E such that (P,Q) 7−→ P +Q, for which:

1. P +O = O + P = P for all P ∈ E

2. P +−P = O for all P ∈ E

3. P + (Q+R) = (P +Q) +R for all P,Q,R ∈ E

The group is an abelian group if in addition the following holds:

4. P +Q = Q+ P for all P,Q ∈ E.

For the addition law on Weierstrass curves, all properties are easy to check,
except the third one. This associative law can be checked with a long com-
putation of the formulas for this addition. Then it follows that a Weierstrass
curve with the above described group law defines an abelian group on E with
O as its identity element.

2.2.1 Formulas for addition

As seen in the previous chapter, addition is defined geometrically. It is
shown how to draw the sum of two point on an elliptic curve E. It is
useful to represent this addition in formulas, so the sum can be calculated
explicitly. The following algorithm gives the formulas for addition on a
Weierstrass curve:

Group law algorithm 2.3. Let E be a curve given by

E : v2 = u3 + au2 + bu+ c.

• Let P0 = (u0, v0) ∈ E, then −P0 = (u0,−v0).

Now, let P1 + P2 = P3 with Pi = (ui, vi) ∈ E for i = 1, 2, 3.

2An explanation of P2 can be found in appendix A.
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• If u1 = u2 and v1 + v2 = 0, then P1 + P2 = O.

• Otherwise:

If u1 6= u2, let

λ =
v2 − v1

u2 − u1
ν =

v1u2 − v2u1

u2 − u1

If u1 = u2 (but v1 6= −v2), let

λ =
3u2

1 + 2au1 + b

2v1
ν =

−u3
1 + bu1 + 2c

2v1

Then P3 = P1 + P2, with P3 = (u3, v3) is given by:

u3 = λ2 − a− u1 − u2

v3 = −λu3 − ν.
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Chapter 3

Edwards curves

In 2007, Harold M. Edwards introduced a new form for elliptic curves over
fields of characteristic 6= 2 (see [Edw07]), and showed that this form simpli-
fies formulas for curves, especially the addition law. He proved that every
elliptic curve over a field K, if K is algebraically closed (i.e. it contains a
root for every non-constant polynomial in K[x]), can be expressed as:

x2 + y2 = c2(1 + x2y2).

However, over a finite field, there are only a few curves that can be expressed
in this form.

These curves were then studied by Daniel J. Bernstein and Tanja Lange.
They found that for finite fields there are considerably more elliptic curves
when curves of the following form are used:

x2 + y2 = c2(1 + dx2y2).

Then, they proved that all curves of that form are isomorphic to curves of
the form(see [BL07]):

x2 + y2 = 1 + dx2y2. (3.1)

Curves of this form are called Edwards curves. The addition law Edwards
introduced for his form is adapted to suit this form. In this chapter, the
Edwards curve will be introduced. The definition, addition law and some
special properties are studied.

3.1 Definition

Definition 3.1. An Edwards curve over K, with char(K) 6= 2 is a curve
given by:

x2 + y2 = 1 + dx2y2 (3.2)

where d ∈ K\{0, 1}.
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Figure 3.1: Edwards curves for d = −16 and d = 4.

Figure 3.1 shows two examples of Edwards curves over R for d = −16 and
d = 4. If d = 0, equation 3.2 describes the unit circle, and for d = 1 it
describes four lines at x = ±1 and y = ±1. In both cases, it is not an
elliptic curve (see also remark 4.2).

3.2 The group law on Edwards curves

On Edwards curves also an addition law can be defined, but this differs from
the law on Weierstrass curves. This addition law also can be interpreted
geometrically. To do this, look at the unit circle and add angles on it as
if it were a clock. Then, the identity element is (0, 1) (while usually on a
unit circle, one starts in (1, 0)), so use xi = sin(αi), y1 = cos(αi). With the
regular addition of angles on a circle it follows:

x3 = sin(α1 + α2)

= sin(α1) cos(α2) + cos(α1) sin(α2)

= x1y2 + x2y1

y3 = cos(α1 + α2)

= cos(α1) cos(α2) + sin(α1) sin(α2)

= y1y2 − x1x2

This is illustrated in figure 3.2. This does define a group, called the clock
group, but the unit circle is not an elliptic curve. Hence, a term dx2y2 is
added. This makes it elliptic, as will be shown in chapter 4 (remark 4.2).
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Figure 3.2: Addition on a clock, P1 + P2 = P3.

3.2.1 A formula for addition

As introduced in the previous section, when dx1x2y1y2 6= ±1, the group law
on Edwards curves is given in the next algorithm:

Group law algorithm 3.2. Let Ed be an Edwards curve given by:

Ed : x2 + y2 = 1 + dx2y2

Let P0 = (x0, y0) ∈ Ed, then −P0 = (−x0, y0). Now, let P1 + P2 = P3 with
Pi = (xi, yi) ∈ Ed for i = 1, 2, 3. Then:

(x1, y1) + (x2, y2) = (x3, y3) =
( x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

Here, the point (0, 1) is the identity element and −(x1, y1) = (−x1, y1),
note that this differs from the identity element and inverse of the Weier-
strass form. For all (x1, y1) and (x2, y2) in Ed(K), this law is complete and
strongly unified when dx1x2y1y2 6= ±1: the denominators are never zero and
it has no exceptions for doublings, inverses, etc. whereas the addition on the
Weierstrass form distinguished four different cases. For example, doubling
a point on an Edwards curve is given simply by:

2(x1, y1) =
( 2x1y1

1 + dx2
1y

2
1

,
y2

1 − x2
1

1− dx2
1y

2
1

)
.

To see that this addition law indeed defines a group law, one has to check
that the sum of any two points is a point that lies on the curve itself:

Theorem 3.3. Let K be a field with char(K) 6= 2 and let d ∈ K\{0, 1}. Let
x1, y1, x2, y2 be elements of K such that x2

1 + y2
1 = 1 + dx2

1y
2
1 and x2

2 + y2
2 =

1 + dx2
2y

2
2. Assume dx1x2y1y2 /∈ {−1, 1} Define x3 = (x1y2 + x2y1)/(1 +

dx1x2y1y2), y3 = (y1y2 − x1x2)/(1− dx1x2y1y2). Then x2
3 + y2

3 = 1 + dx2
3y

2
3.
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Proof. Define a polynomial T = (x1y2 + y1x2)2(1 − dx1x2y1y2)2 + (y1y2 −
x1x2)2(1 + dx1x2y1y2)2 − d(x1y2 + y1x2)2(y1y2 − x1x2)2, which equals:

T = (x2
1 + y2

1 − (x2
2 + y2

2)dx2
1y

2
1)(x2

2 + y2
2 − (x2

1 + y2
1)dx2

2y
2
2).

Now, use the hypotheses for (x1, y1) and (x2, y2). Subtract (x2
2 +y2

2)dx2
1y

2
1 =

(1 + dx2
2y

2
2)dx2

1y
2
1 from x2

1 + y2
1 = 1 + dx2

1y
2
1 to see that

x2
1 + y2

1 − (x2
2 + y2

2)dx2
1y

2
1 = 1− d2x2

1y
2
1x

2
2y

2
2.

Similarly,
x2

2 + y2
2 − (x2

1 + y2
1)dx2

2y
2
2 = 1− d2x2

1y
2
1x

2
2y

2
2.

Hence, T = 1− d2x2
1x

2
2y

2
1y

2
2.

Now the addition law is used: (x3, y3) is expressed in terms of x1, y1, x2

and y2. It gives:

x2
3 + y2

3 − dx2
3y

2
3 =

(x1y2 + x2y1)2

(1 + dx1x2y1y2)2
+

(y1y2 − x1x2)2

(1− dx1x2y1y2)2

− d(x1y2 + x2y1)2(y1y2 − x1x2)2

(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

=
T

(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

=
T

1− d2x2
1x

2
2y

2
1y

2
2

= 1.

Thus it follows that x2
3 + y2

3 = 1 + dx2
3y

2
3.

Also, the properties of a group law (see definition 2.2) need to hold, but
these properties can easily be verified.

As said, the group law is complete when dx1x2y1y2 6= ±1. This is the
case when d is not a square in K, as stated in the next theorem:

Theorem 3.4. Let Ed be an Edwards curve over a field K with char(K) 6= 2,
with the corresponding addition law. Then, the addition law is complete if d
is not a square in K.

Proof. Let (x1, y1) and (x2, y2) be on the curve, i.e.: x2
i + y2

i = 1 + dx2
i y

2
i

for i = 1, 2. Define ε = dx1x2y1y2 and suppose ε ∈ {−1, 1}. Then
x1, x2, y1, y2 6= 0 and

dx2
1y

2
1(x2

2 + y2
2) = dx2

1y
2
1(1 + dx2

2y
2
2)

= dx2
1y

2
1 + d2x2

1y
2
1x

2
2y

2
2

= dx2
1y

2
1 + ε2

= 1 + dx2
1y

2
1 because ε = ±1

= x2
1 + y2

1
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Thus, it follows: (∗) dx2
1y

2
1(x2

2 + y2
2) = x2

1 + y2
1. Now,

(x1 + εy1)2 = x2
1 + y2

1 + 2εx1y1

= dx2
1y

2
1(x2

2 + y2
2) + 2x1y1dx1y1x2y2 using (∗)

= dx2
1y

2
1(x2

2 + 2x2y2 + y2
2)

= dx2
1y

2
1(x2 + y2)2

Now it can be seen:

• If x2 + y2 6= 0 then it follows: d = ((x1 + εy1)/x1y1(x2 + y2))2, so d is
a square in K.

• Likewise, if x2−y2 6= 0 then d = ((x1−εy1)/x1y1(x2−y2))2, and again
d is a square in K.

• If x2 + y2 = 0 and x2 − y2 = 0, then it follows that x2 = y2 = 0, but
this is a contradiction to the assumption that ε ∈ {−1, 1}.

This proves that ε = dx1x2y1y2 = ±1 implies that d is a square. So, the
denominators are never zero if d is not a square in K and hence the addition
law is complete.

So, an Edwards curve together with the group law algorithm (3.2) defines
an abelian group when d is not a square in K.

3.3 Four special points

Looking at the equation of an Edwards curve, it is seen that it is symmetric
in the sense that the roles of x and y can be interchanged. If one has a
solution (x, y), it will follow that (±x,±y) and (±y,±x) are solutions as
well. Four solutions of the equation are easily found to be (0, 1), (0,−1),
(1, 0) and (−1, 0). With these four points, a D4-group of automorphisms
can be made, given by:

S : P 7−→ ±P +Q, where Q ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)}.

This group consists of reflections in the lines through (0, 0) and the points
of Q and the lines x = y and x = −y, and rotations over an angle of kπ

2 for
0 ≤ k < 4. So, D4 consists of 8 elements.

The operations of S can be seen as the two operations changing the
roles of x and y & changing the signs of x and/or y. The eight outcomes for
S(x, y) are:

• (x, y) + (0, 1) = (x, y) and (−x, y) + (0, 1) = (−x, y)

• (x, y) + (0,−1) = (−x,−y) and (−x, y) + (0,−1) = (x,−y)

13



Figure 3.3: The Edwards curve for d = −16 with the 8 points resulting from
rotation of (x, y) over an angle of kπ

2 for 0 ≤ k < 4 and reflections of (x, y)
in the y− and x−axis and the lines y = x, y = −x.

• (x, y) + (1, 0) = (y,−x) and (−x, y) + (1, 0) = (y, x)

• (x, y) + (−1, 0) = (−y, x) and (−x, y) + (−1, 0) = (−y,−x)

See also figure 3.3, where all the points are drawn. So S consists of reflections
in the lines through (0, 0) and the points of Q and the lines x = y and
x = −y, and rotations over an angle of kπ

2 for 0 ≤ k < 4, hence it is a
D4-group of automorphisms.

In the previous chapter, (0, 1) was said to be the identity element with
the addition law 3.2. However, one can choose any of the four points of Q
as identity element. By adding the new identity element to each point on
the curve, the addition law will change slightly, but the curve is an abelian
group again.

In particular, the points

{(0, 1), (0,−1), (1, 0), (−1, 0)} ⊂ {Edwards curve}

form a cyclic group of order 4, the generator of the group being (−1, 0) or
(1, 0). This is shown for (1, 0), but works the same way for (−1, 0):

2(1, 0) = (1, 0) + (1, 0) = (0,−1)

3(1, 0) = (1, 0) + (0,−1) = (−1, 0)

4(1, 0) = (1, 0) + (−1, 0) = (0, 1)

5(1, 0) = (1, 0) + (0, 1) = (1, 0).
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Chapter 4

Constructing a map from
Edwards to Weierstrass
curves

At the end of the previous chapter, it is shown that an Edwards curve has
points of order 4. This is the essential key to construct a map that maps
points on an Edwards curve to points on a Weierstrass curve (or vice versa).
This is the main goal in this chapter, and will be done in the following way:
first, Weierstrass curves with a point of order 4 are constructed. Then it
will be checked that having a point of order four means that the curve is
birationally equivalent to an Edwards curve. While doing this, an explicit
map between the curves is found. Using this it will be shown that the
Edwards addition law corresponds to the addition law on a birationally
equivalent Weierstrass curve.

From here on, to avoid confusions, a Weierstrass curve will be denoted
by coordinates (u, v) and corresponding addition ⊕, while an Edwards curve
will be denoted by (x, y) and addition +.

4.1 Points of order 4 on Weierstrass curves

In this section, a Weierstrass curve with a point of order 4 on it will be
constructed. Suppose a Weierstrass curve is given together with a point of
order 4 on it. This point is denoted by (α, β). Then the curve can be shifted
such that (0, β) is the point of order 4. So, the equation was:

v2 = u3 + au2 + bu+ c,

and after the shift, using the coordinates (w, v) with w = u−α, this becomes:

v2 = w3 + āw2 + b̄w + β2. (4.1)

15



With this equation, restrictions can be found on ā, b̄ and β, following from
the assumption that (0, β) has order 4, such that the Weierstrass curve has
a point of order 4 on it.

Since the point P = (0, β) has order 4, it follows that β 6= 0 and
v(−2P ) = 0. The next step is to calculate the v-coordinate of −2P . By a
straightforward computation we get the formula for the tangent line at the
point (0, β):

v = λw + ν

where:

λ =
dv

dw

∣∣∣∣(0,β) =
3w2 + 2āx+ b̄

2v

∣∣∣∣(0,β) =
b̄

2β
.

Since the line passes through (0, β) it follows ν = β. Now, the tangent line
is given by:

v =
b

2β
w + β.

Putting this in the original equation 4.1 gives:

b̄w +
b̄2

4β2
w2 + β2 = w3 + āw2 + b̄w + β2,

(
b̄2

4β2
− ā
)
w2 = w3.

Here, w = 0 (this was the point that was already known) or w = ( b̄2

4β2 − ā).

Now use v(−2P ) = 0, so set v = 0 in equation 4.1 and substitute w =(
b̄2

4β2 − ā
)

. This gives:(
b̄2

4β2
− ā
)3

+ ā

(
b̄2

4β2
− ā
)2

+ b̄

(
b̄2

4β2
− ā
)

+ β2 = 0.

The expression simplifies to:

−b̄3 + 4b̄āβ2 − 8β4 = 0.

We know that β 6= 0 because (0, β) was the point of order 4. The case b̄ = 0
cannot happen, because then the above equation reads −8β4 = 0, implying
that β = 0, which is a contradiction. So, it follows that:

ā =
8β4 + b̄3

4b̄β2
.

Substituting this into equation 4.1 and multiplying both sides by (4b̄β2)6

gives: (
(4b̄β2)3v

)2
=

(
(4b̄β2)2w

)3
+ (8β4 + b̄3)(4b̄β2)

(
(4b̄β2)2w

)2
+b̄(4b̄β2)4

(
(4b̄β2)2w

)
+ β2(4b̄β2)6.
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Using new coordinates (g, h) = ((4b̄β2)2w, (4b̄β2)3v) gives:

h2 = g3 + (8β4 + b̄3)(4b̄β2)g2 + b̄(4b̄β2)4g + β2(4b̄β2)6. (4.2)

Setting g = 0 shows that the point (0, β(4b̄β2)3) lies on this curve. This is
again a point of order 4, as will be checked below. Applying the same change
of coordinates to the previously found tangent line gives a new tangent line
at the point (0, β(4b̄β2)3):

h = 2b̄2βg + β(4b̄β2)3.

Using the same steps as before, this can be substituted in equation 4.2, and
so one can find g = −32b̄β6. Substituting g in equation 4.2 gives:

(−32b̄β6)3 + (8β4 + b̄3)(4b̄β2)(−32b̄β6)2 + b̄(4b̄β2)4(−32b̄β6) + β2(4b̄β2)6

= −32768β18b̄3 − 4096β14b̄6 + 4096β14b̄3(8β4 + b̄3)

= 0.

Since the h-coordinate of 2(0, β(4b̄β2)3) is 0, it follows that the curve of the
form 4.2 is indeed a curve with a point of order 4.

In conclusion, a Weierstrass curve with a point of order 4 on it is con-
structed. A curve of the form of 4.2 will do, where (0, β(4b̄β2)3) is a point
of order 4. But what are the restrictions on β and b̄? The cases β = 0, b̄ = 0
were already excluded. In addition, the discriminant of a curve may not be
zero. The discriminant D of 4.2 is:

D = −224β28b̄9(32β4 − b̄3) 6= 0.

From this, it follows β 6= 0, b̄ 6= 0 (but this was already known), 224 6= 0 (but
the curve lies in a field with char(K)> 2, so this is indeed the case), and β
and b̄ must satisfy 32β4 6= b̄9.

So, a curve contains points of order 4 if it is of the following form:

h2 = g3 + (8β4 + b̄3)(4b̄β2)g2 + b̄(4b̄β2)4g + β2(4b̄β2)6.

where β, b̄ ∈ K\{0}, and b̄3 6= 32β4. The curve can be shifted to make
the β2(4b̄β2)6-term disappear. This is done by using the transformation
u = g − 32β6b̄, and gives (also renaming h = v for notational convenience):

v2 = u3 + (4β2b̄4 − 64β6b̄)u2 + 1024β12b̄2u.

The point of order 4 is now (32β6b̄, β(4b̄β2)3) = (u4, v4). The curve can be
rewritten in terms of (u4, v4) and gives the form of a curve with a point of
order 4:

v2 = u3 + (v2
4/u

2
4 − 2u4)u2 + u2

4u. (4.3)
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4.2 From Weierstrass to Edwards curves

With equation 4.3, the next question can be investigated: if a curve has a
point of order 4 on it, is it birationally equivalent to an Edwards curve?

Definition 4.1. Two elliptic curves E1 and E2 are called birational equiva-
lent if there exist rational maps ψ : E1 −→ E2 and π : E2 −→ E1 such that
ψ ◦ π is the identity on E2 for all, but finitely many points and π ◦ ψ is the
identity on E1 for all, but finitely many points.

A rational map between a Weierstrass curve E of the form 4.3 and an Ed-
wards curve Ed can be constructed. This is done in [BL08], and gives the
following birational equivalence from E to Ed (with d = 1− 4u3

4/v
2
4).

ψ : (u, v) 7−→ (x, y) =
(v4u

u4v
,
u− u4

u+ u4

)
π : (x, y) 7−→ (u, v) =

(u4(1 + y)

1− y
,
v4(1 + y)

(1− y)x

)
It can be checked that ψ ◦ π(x, y) = (x, y) for almost all (x, y) ∈ Ed(K)
and π ◦ ψ(u, v) = (u, v) for almost all (u, v) ∈ E(K). The rational maps
are undefined for only finitely many points and those points can easily be
found.

4.3 From Edwards to Weierstrass curves

Now, starting with an Edwards curve, the goal of this section is to find the
Weierstrass curve birational equivalent to it. The map from the previous
section cannot be used, since this makes use of the known point of order
4 on the Weierstrass curve. The idea is to write the Edwards curve as a
Weierstrass curve with coefficients expressed in d. This can be done using
the recipe from [Cas91, Chapter 8], which works for quartic curves in x with
a rational point on it (so, for an Edwards curve).

The first step is to rewrite the equation for an Edwards curve:

x2 + y2 = 1 + dx2y2

(dx2 − 1)y2 = x2 − 1.

Multiplying both sides by (dx2− 1) gives ((dx2− 1)y)2 = (dx2− 1)(x2− 1).
Set z = (dx2 − 1)y, then:

z2 = dx4 − (d+ 1)x2 + 1.

18



Now, replace η = 1
x and ζ = z

x2
(note that this is a rational map). This can

be seen as ”writing the polynomal backwards”, making it a monic polyno-
mial:

ζ2 = η4 − (d+ 1)η2 + d

=
(
η2 − d+ 1

2

)2
+ d−

(d+ 1

2

)2

= G(η)2 +H(η).

Here, G(η) =
(
η2− d+1

2

)
and H(η) = d−

(
d+1

2

)2
. The equation of the curve

is now:
(ζ +G(η))(ζ −G(η)) = H(η).

Set ζ +G(η) = τ , then it follows:

ζ −G(η) =
H(η)

τ

2G(η) = τ − H(η)

τ
.

Multiply by τ2 and put τη = σ. Then:

2σ2 = τ3 + (d+ 1)τ2 −
(
d−

(d+ 1

2

)2)
τ.

This is almost in Weierstrass form. When both sides are multiplied by 8,
the term 2σ2 will disappear:

16σ2 = 8τ3 + 8(d+ 1)τ2 − 8
(
d−

(d+ 1

2

)2)
τ

(4σ)2 = (2τ)3 + 2(d+ 1)(2τ)2 − (4d− (d+ 1)2)(2τ).

Using (u, v) = (2τ, 4σ) gives:

v2 = u3 + 2(d+ 1)u2 + (d− 1)2u. (4.4)

Remark 4.2. The discriminant of the elliptic curve (4.4) is D = 16(1− 2d+
d2)(d− 2d2 + d3). This is zero if and only if d = 0 or d = 1. Thus, the unit
circle is not an elliptic curve but, using definition 2.1, an Edwards curve
over a field K with char(K) 6= 2 is indeed an elliptic curve for d ∈ K\{0, 1},
since it is birationally equivalent to a Weierstrass curve.

By composing the (rational) maps we used above, a map from the Edwards
to the corresponding Weierstrass curve (4.4) is found:
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(x, y) 7−→ (x, z) = (x, (dx2 − 1)y)

(x, z) 7−→ (η, ζ) = (1/x, z/x2)

(η, ζ) 7−→ (η, τ) = (η, ζ + η2 − (d+ 1)/2)

(η, τ) 7−→ (τ, σ) = (τ, ητ)

(τ, σ) 7−→ (u, v) = (2τ, 4σ)

In addition, the curve also has to be translated. For all (x, y) on the Edwards
curve, the translation (x, y) 7−→ (x, y) + (0,−1) = (−x,−y) is used. This
must be done to make sure that the identity element of a curve is mapped
properly onto the identity element of the other. All together, this gives the
map:

(x, y) 7−→ (u, v) =
( A
x2
,
−2A

x3

)
where A = 2y − (2dy + d+ 1)x2 + 2

(u, v) 7−→ (x, y) =
(−2u

v
,
v2 − (2 + 2d)u2 − 2u3

4du2 − v2

)
Example 4.3. The point (x, y) = (1, 0) on an Edwards curve is mapped
to (u, v) = (1 − d, 2(d − 1)). If d = 4, this corresponds to (u, v) = (−3, 6)
and the corresponding Weierstrass curve is v2 = u3 + 10u2 + 9u. This is
plotted (in R) in figure 4.1. In this figure, the tangent line at this point
is drawn and it can be seen that this line intersects the curve in (0, 0), so
2(−3, 6) = (0, 0) (a point of order 2). This shows that (0, 1), a point of
order 4 on the Edwards curve, is mapped onto a point of order 4 on the
corresponding Weierstrass curve.

4.4 Addition on Edwards is addition on Weier-
strass curves

The question now arises whether the outcomes of the addition laws on the
two curves correspond. For the rational maps as given in section 4.2, this
proof is given in [BL07], but the same can be proven for the map of section
4.3.

It will be proven that it does not matter whether first (x1, y1)+(x2, y2) =
(x3, y3) is computed and then the outcome (x3, y3) is mapped onto the cor-
responding Weierstrass curve to a point (u3, v3), or first the points (x1, y1),
(x2, y2) are mapped onto the corresponding points (u1, v1), (u2, v2) and then
(u1, v1) ⊕ (u2, v2) = (u′3, v

′
3) is computed. It will follow that (u3, v3) =

(u′3, v
′
3). This is stated in the next theorem:
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Figure 4.1: For d = 4, the point (0, 1) on an Edwards curve is mapped onto
(−3, 6), a point of order 4 on the Weierstrass curve v2 = u3 + 10u2 + 9u.

Theorem 4.4. Set E : v2 = u3 + 2(d+ 1)u2 + (d− 1)2u. For each i ∈ 1, 2, 3
let:

Pi =


O if (xi, yi) = (0, 1)
(0, 0) if (xi, yi) = (0,−1)

(ui, vi) if xi 6= 0, where ui =
2yi−(2dyi+d+1)x2i +2

x2i
and vi = −2ui

xi
.

Then Pi ∈ E(K) and P1 ⊕ P2 = P3.

Proof. First it is shown that each Pi is in E(K). There are three cases: if
(xi, yi) = (0, 1), then Pi = O and O ∈ E(K). If (xi, yi) = (0,−1), then
Pi = (0, 0) ∈ E(K). Otherwise, it can be shown that Pi = (ui, vi) ∈ E(K)
using Magma (see Appendix B).

Now, all that remains is to show that P1 + P2 = P3 in any case. There
are seven steps distinguished:

• If (x1, y1) = (0, 1), then (x2, y2) = (x3, y3) and P1 is the point at
infinity. It follows that P1 ⊕ P2 = O ⊕ P2 = P2 = P3, and similar
when (x2, y2) = (0, 1). Assume from now on that (x1, y1) 6= (0, 1),
(x2, y2) 6= (0, 1).

• If (x3, y3) = (0, 1), then (−x1, y1) = (x2, y2) and P3 = O. It should

follow that −P1 = P2. Since P2 =
(

2y2−(2dy2+d+1)x22+2

x22
, −2u2

x2

)
=
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(
2y1−(2dy1+d+1)x21+2

x21
, −2u1
−x1

)
= (u1,−v1), it follows that −P1 = P2.

From now on, assume (x3, y3) 6= (0, 1).

• If (x1, y1) = (0,−1), then (x3, y3) = (−x2,−y2). Now (x2, y2) 6=
(0,−1) since then (x3, y3) = (0, 1) and (x2, y2) 6= (0, 1), so x2 6= 0.

Also, P1 = (0, 0) and P2 = (u2, v2) =
(

2y2−(2dy2+d+1)x22+2

x22
, −2u2
−x2

)
.

The standard addition law says that (0, 0) ⊕ (u2, v2) = (r3, s3) with

r3 = 4
x22
− 2(d + 1) − 2y2−(2dy2+d+1)x22+2

x22
=
−2y2+(2dy2−d−1)x22−2

x22
=

2y3−(2dy3+d+1)x23−2

x23
= u3 and s3 = 2s3

x2
= −2u3

x3
= v3. Similar when

(x2, y2) = (0,−1). From now on, x1 6= 0 and x2 6= 0.

• If (x3, y3) = (0,−1), then (x1, y1) = (x2,−y2) so u1 =
2y1−(2dy1+d+1)x21+2

x21

=
−2y2−(−2dy2+d+1)x22+2

x22
and v1 = −2u1

x1
= −2u2

x2
. Since P3 = (0, 0),

the addition law states that −P3 ⊕ P2 = (0, 0) + P2 = −P1. Let
(0, 0)⊕P2 = (r1, s1). Now the standard addition law says that λ = −2

x2

and ν = 0, such that r1 = 4
x22
− 2(d + 1) − 2y2−(2dy2+d+1)x22+2

x22
=

−2y2+(2dy2−d−1)x22+2

x22
= u1 and s1 = 2r1

x2
= 2u1

x1
= −v2, so (r1, s1) =

−P1. Assume from now on that x3 6= 0.

• If P2 = −P1 then u2 = u1 and v2 = −v1, so x2 = −x1 and y2 =
v22−(2+2d)u22−2u32

4du22−v22
=

v21−(2+2d)u21−2u31
4du21−v21

= −y1, so (x3, y3) = (0, 1) which is

already handled above.

• If u2 = u1 and v2 6= v1, the standard addition law says that (u1, v1)⊕
(u2, v2) = (s3, r3) where, λ =

3u21+4(d+1)u1−(d−1)2

2v1
, ν =

−u31−(d−1)2x1
2v1

,

r3 = λ2 − 2(d + 1) − 2u1, s3 = λu3 − ν. Using Magma, this case can
be checked (see appendix B).

• The only remaining case is when u2 6= u1. Now the standard addi-
tion law says that (u1, v1) ⊕ (u2, v2) = (s3, r3) where λ = v2−v1

u2−u1 , ν =
v1u2−v2u1
u2−u1 , r3 = λ2 − 2(d + 1) − u1 − u2, s3 = λu3 − ν . Again, using

Magma, this can be checked (see appendix B). So, P1 ⊕ P2 = P3 in
any case.

In conclusion, the following theorem was proved in this chapter:

Theorem 4.5. Fix a field K with char(K) 6= 2. Let E a Weierstrass curve
over K. The group E(K) has an element of order 4 if and only if E is
birationally equivalent over K to an Edwards curve.
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The proof consists of checking that the addition laws correspond (section
5), and noting that the Edwards curve hase a point of order 4 (for example
(1, 0)), so the Weierstrass curve has a point of order 4 as well. Conversely,
it must be checked that if E has a point of order 4, there is a rational
map between E and Ed with inverse, such that it is a birational equivalence
between the two curves (section 3 and 4).
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Chapter 5

Supersingular Edwards
curves

Supersingular elliptic curves arise naturally. They have certain properties
that other, so-called ordinary elliptic curves, do not have. Only finitely
many curves are supersingular, as will be shown later on. Note that be-
ing supersingular has nothing to do with being singular, since an elliptic
curve is by definition non-singular. In this chapter, supersingular curves
will be introduced and it will be investigated for which d an Edwards curve
is supersingular.

5.1 Definition

There are several equivalent conditions for a curve to be supersingular. Here,
the next definition is used:

Definition 5.1. Let E an elliptic curve over a field K with characteristic
p. Let [n] : E −→ E be the multiplication by n-map with kernel E[n], then:

E[pr] '
{

0 or
Z/prZ

for all r ≥ 1. If the first holds, E is called E supersingular. Otherwise, E
is ordinary.

The proof that either one of these properties is true, can be found in [Sil86].

5.2 The Legendre form

A Weierstrass equation over a field K is in Legendre form if it can be written
as:

Ẽλ : v2 = u(u− 1)(u− λ).
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Here, λ ∈ K\{0, 1}. In this section it is shown that the previously found
Weierstrass curve E corresponding to an Edwards curve Ed, is related to an
elliptic curve in Legendre form. The equation was:

E : v2 = u3 + 2(d+ 1)u2 + (d− 1)2u.

Now, use the homomorphism as described in [ST92, Chapter III.4]. This is
a homomorphism between E and Ē : v2 = u3 + āu2 + b̄u where ā = −2a =
−4(d+ 1) and b̄ = a2 − 4b = 4(d+ 1)2 + 4(d− 1)2. So:

Ē : v2 = u3 − 4(1 + d)u2 + (4(d+ 1)2 − 4(d− 1)2)u.

This homomorphism sends exactly O and (0, 0) on E to Ō, the identity
element of Ē. All other elements are mapped onto Ē\{Ō}. Factoring Ē
gives:

Ē : v2 = u(u− 4)(u− 4d).

Dividing both sides by 64 gives:(v
8

)2
=
u

4

(u
4
− 1
)(u

4
− d
)
.

Replacing ṽ = v/8 and ũ = u/8 gives an elliptic curve in the Legendre form:

Ẽd : ṽ2 = ũ(ũ− 1)(ũ− d).

To summarize, now an Edwards curve Ed is birationally equivalent to a
Weierstrass curve E. There is a non-constant homomorphism from E to a
curve in Legendre form Ẽd. So, there is a non-constant rational map from
Ed to Ẽd.

5.3 Supersingular Edwards curves

With the previously found Legendre form, the theory of supersingular Le-
gendre curves can be used to find supersingular Edwards curves. The next
theorem will be useful.

Theorem 5.2. Let E1 and E2 be elliptic curves over a finite field Fq, where
q = pn for some prime p.

• If φ : E1 → E2 is a non-constant rational map (defined over Fq), then:

#E1(Fq) = #E2(Fq)

• As a result, #E1(Fqn) = #E2(Fqn) for all n ≥ 1

• As a result, E1 supersingular if and only if E2 supersingular.
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The proof can be found in [Cas66, lemma 15.1]. Now, from theorem (5.2)
it follows that an Edwards curve Ed is supersingular if and only if the cor-
responding curve in Legendre form Ẽd is supersingular.

The next theorem gives conditions for Ẽλ to be supersingular.

Theorem 5.3. Let K be a finite field of characteristic p > 2.

1. Let m = (p − 1)/2. Define the polynomial Hp(t) =
∑m

i=0

(
m
i

)2
ti, let

λ ∈ K, λ 6= 0, 1. Then Ẽλ : v2 = u(u − 1)(u − λ) is supersingular if
and only if Hp(λ) = 0.

2. The polynomial Hp(λ) has distinct roots in K̄. Up to isomorphism,
there are exactly [p/12] + εp supersingular curves in characteristic p,
where ε3 = 1 and for p ≥ 5,

εp = 0, 1, 1, 2 if p ≡ 1, 5, 7, 11 mod 12.

The proof can be found in [Sil86].
It turns out that all zeros of the polynomial Hp(λ) ∈ Fp[λ] (these are

called the Legendre parameter) are in Fp2 , as is proven in [AT02, Prop 2.2].
Sometimes there are zeros of Hp(λ) in Fp. A condition for this is given in
the next theorem.

Theorem 5.4. Fix a finite field Fp with p > 3 prime. Then an elliptic curve
E/Fp is supersingular if and only if #E(Fp) = p+ 1.

Proof. From the Hasse inequality (see e.g. [Sil86, Chapter V.1]) it follows
that #E(Fp) = p + 1 − a with a ≤ 2

√
p. But since E is supersingular, it

follows that p|a as well (this follows from the proof of Thm. 4.1 in [Sil86,
Chapter V.4]). So a is an integer and can be written as a = pm for some
integer m. But then |pm| ≤ 2

√
p, and this is only true for m = 0 if p > 3,

so a = 0. Hence, it follows that #E(Fp) = p+ 1.

With this result, it can be shown that Hp(λ) ∈ Fp[λ] has roots in Fp if and
only if p ≡ 3 mod 4.

Theorem 5.5. Let Ẽλ be an elliptic curve in Legendre form over a finite
field Fp. The polynomial Hp(λ) has at least one zero in Fp if and only if
p ≡ 3 mod 4.

Proof. (⇒) First, it is proven that there exists a λ such that Ẽλ is super-
singular in Fp if p ≡ 3 mod 4. Since Ẽλ : v2 = u(u− 1)(u−λ), the following
is a subgroup of Ẽλ(Fq):

{O, (0, 0), (1, 0)(λ, 0)} ' Z/2Z× Z/2Z.

This is a subgroup, since all elements are in Ẽλ(Fq) and, using the standard
addition on elliptic curves, one can check that adding any two elements gives
an element of the subgroup again.
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Since this subgroup has four elements, it follows that 4 is a divisor of
#Ẽλ(Fp), so (using theorem 5.4), 4|p+ 1, and thus p ≡ 3 mod 4.

(⇐) Otherwise, it will be shown that if p ≡ 3 mod 4, then Hp(−1) = 0.
If p ≡ 3 mod 4, then m = p−1

2 is odd. Use(
m

i

)
=

(
m

m− i

)
,

and note that if i is odd, then m− i is even. Then:(
m

i

)2

(−1)i +

(
m

m− i

)2

(−1)m−i =

(
m

i

)2

(−1 + 1) = 0.

Hence:

Hp(−1) =
m∑
i=0

(
m

i

)2

(−1)i = 0.

So Hp(λ) has at least one zero in Fp if p ≡ 3 mod 4, namely λ = −1, which
completes the proof of the theorem.

This theorem states that if p ≡ 1 mod 4, then there are no λ ∈ Fp such
that Ẽλ is supersingular. If p ≡ 3 mod 4, then for λ = −1 the elliptic curve
Ẽλ is supersingular, so then there is at least one λ ∈ Fp such that Ẽλ is
supersingular. There can be more values for λ for which Ẽλ is supersingular
in Fp, as stated in the next theorem:

Theorem 5.6. The number of Legendre parameters λ in Fp satisfies:

#{λ ∈ Fp : Hp(λ) = 0} =


0 if and only if p = 1 mod 4
1 if p = 3
3h(−p) if p > 3 and p ≡ 3 mod 4,

where h(−p) is the class number of Q(
√
−p).1

The proof can be found in [AT02, Prop 3.2].
When Hp(d) is calculated, the polynomial has always (p− 1)/2 distinct

roots. However, the formula of theorem 5.3.2 states that up to isomorphism,
there are less than (p−1)/2 supersingular curves. This is due to the following
theorem:

Theorem 5.7. Let Eλ and Eµ be elliptic curves in Legendre form over a
field K with char(K) 6= 2, then Eµ and Eλ have the same j-invariant if and
only if

µ ∈
{
λ,

1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
.

1i.e. the number of elements of the class group of Z
[
1+
√
−p

2

]
.
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The proof can be found in [Sil86, Chapter III.1].

Example 5.8. If for example p = 13, then p ≡ 1 mod 4 and

H13(d) = (d2 + 4d+ 9)(d2 + 12d+ 3)(d2 + 7d+ 1).

This has no roots in F13, but it has roots in F132 .
On the other hand, if p = 11, then p ≡ 3 mod 4. When H11(d) is

calculated, this gives:

H11(d) = (d+ 1)(d+ 9)(d2 + 10d+ 1)(d+ 5).

The solutions are d = 2, 6, 10,−5 ± 2
√

6. It seems like there are five su-
persingular curves in F11, while theorem 5.3 states that up to isomorphism,
there are only two. This can be seen using theorem 5.7. Let λ = 10, then
1−λ = −9 ≡ 2 mod 11 and λ

λ−1 = 10
9 ≡ 6 mod 11.2 So these three solutions

for d give isomorphic curves. Also, when λ = −5+2
√

6, then 1
λ = −5−2

√
6,

so these are isomorphic as well.
Clearly, this polynomial has roots in F11, namely d = 2, 6, 10. It follows

that E : v2 = u3 +2(10+1)u2 +(10−1)2u defines a supersingular curve and
thus #E(F11) = 12. This can be checked by calculating u3 + 22u2 + 81u for
all elements of F11 and then checking if the outcome is a square in F11. For
example, u = 1 gives v2 = 5 and 5 is a square in F11 since (±4)2 ≡ 5 mod 11.
This gives two points on the curve: (1, 4) and (1, 7). Continuing this way
gives:

E(F11) = {O, (0, 0), (1, 4), (1, 7), (2, 4), (2, 7),

(4, 5), (4, 6), (6, 3), (6, 8), (8, 4), (8, 7)}.

So there are exactly 12 elements. This is a cyclic group of order 12: (6, 3),
(6, 8), (8, 4) and (8, 7) are the points of order 12. The corresponding Edwards
curve is E10 : x2 + y2 = 1 + 10x2y2. Mapping all points of E(F11) onto
E10(F11) (using the map of chapter 4) gives the elements:

E10(F11) = {(0, 1), (0, 10), (1, 0), (4, 5), (4, 6), (5, 4),

(5, 7), (6, 4), (6, 7), (8, 5), (8, 6), (10, 0)}.

It can easily be checked that these 12 elements are indeed all elements of
E10(F11). So, for d = 10, the Edwards curve is supersingular in F11. This is
again a cyclic group of order 12.

In conclusion, in this chapter it is shown that there is a non-constant rational
map from an Edwards curve to an elliptic curve in Legendre form Ẽd : v2 =
u(u− 1)(u− d), which means that an Edwards curve is supersingular if and
only if Ẽd is supersingular. Whether Ẽd is supersingular, can be checked
using theorem 5.3.

2Note that a
b
≡ c mod d means a ≡ bc mod d for integers a, b, c, d such that gcd(b, d) =

1.
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Chapter 6

Conclusion

Edwards curves are elliptic curves of the form Ed : x2 + y2 = 1 + dx2y2,
where d ∈ K\{0, 1}. The addition law is given by:

(x1, y1) + (x2, y2) = (x3, y3) =
( x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

The addition law is complete if d is not a square in K. It is also strongly
unified: the formulas work for all pairs of input on the curve, so also for
doublings etc. Edwards curves naturally have points of order 4, for instance
(1, 0).

If a Weierstrass curve has a point of order 4 on it, then it is birationally
equivalent to an Edwards curve, since rational maps between the curves can
be found. Using these maps, it follows that the addition laws on both curves
correspond. Since also every Edwards curve can be put in Weierstrass form,
an Edwards curve is birationally equivalent to a Weierstrass curve if and only
if the Weierstrass curve has a point of order 4 on it. The rational map with
inverse between Ed and a Weierstrass curve E : v2 = u3+2(d+1)u2+(d−1)2u
given by:

(x, y) 7−→ (u, v) =
( A
x2
,
−2A

x3

)
where A = 2y − (2dy + d+ 1)x2 + 2

(u, v) 7−→ (x, y) =
(−2u

v
,
v2 − (2 + 2d)u2 − 2u3

4du2 − v2

)
is a birational equivalence from Ed to E.

There is a rational map from an Edwards curve to an elliptic curve in
Legendre form Ẽd : v2 = u(u − 1)(u − d), which implies that an Edwards
curve is supersingular if and only if Ẽd is supersingular. The elliptic curve in
Legendre form Ẽd is supersingular if and only if d is a root of the polynomial
Hp(d) =

∑m
i=0

(
m
i

)2
di. For p > 2, this polynomial has all roots in Fp and

Fp2 if p ≡ 3 mod 4 and only has roots in Fp2 if p ≡ 1 mod 4.
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Appendix A

The projective plane

This appendix introduces the projective plane and shows where the point O
on a Weierstrass curve comes from.

Recall that the affine plane over a field K, denoted by A2, is given by:

A2 = {(x, y) : x, y ∈ K}.

The projective plane, denoted P2, can be seen as an extension of A2. If the
field R is taken, then in A2 two lines intersect in exactly one point, except
when they are parallel. In P2 every two lines intersect, even if they are
parallel. This can be explained from an algebraic or a geometric view.

At first, say we want to find the solutions of

xN + yN = 1 (A.1)

in rational numbers. It can be shown that any solution has the form
(a/c, b/c). This can be written in homogeneous coordinates by using x =
X/Z and y = Y/Z:

XN + Y N = ZN , (A.2)

which has solutions of the form (a, b, c). But now the problem arises that
for example the point (1,−1, 0) for N is odd, is a solution of equation A.2,
but not of equation A.1. But what happens if a sequence of solutions is
taken, such that (ai, bi, ci) → (1,−1, 0) for i = 1, 2, 3, . . . and ci 6= 0 for
all i? Then (ai/ci, bi/ci) goes to (∞,−∞). Somehow, the extra solution
(1,−1, 0) corresponds to a solution of equation A.1 ’at infinity’. This leads
to the definition of the projective plane P2 as the set of triples [a, b, c],
not all zero, where [a, b, c] ∼ [a′, b′, c′] if there is a t (not zero) such that
a = ta′, b = tb′, c = tc′. Or:

P2 = {[a, b, c] : a, b, c not all 0}/ ∼ .

The other way of looking at it, is geometrically. As said before, parallel lines
do not have an intersection in A2, but in P2 they do. This means that there
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are some ’points at infinity’ added to A2, points where two parallel lines
intersect. This cannot be just one point, because if two couples of parallel
lines P&P ′ and L&L′ are taken, where P and L are not parallel, then P&P ′

intersect at a point O1 and L&L′ intersect at a point O2. Because P and
L are not parallel, this means they intersect at some point {Q} = P ∩ L.
If O1 = O2, this would mean that P and L intersect again in O1, which
contradicts the fact that they can only intersect once. So, there are more
points at infinity. In fact, there is a point at infinity for every direction in
A2. Two point are said to have the same direction if and only if they are
parallel. So, a direction is a collection of all lines parallel to a given line.
The associated point at infinity is a point that is not in A2, so P2 can be
defined as:

P2 = A2 ∪ { set of all directions in A2}.

It can be shown that these definitions of P2 are equivalent, see [ST92].
Now, back to elliptic curves: every elliptic curve can be written as the

set of points in P2 that satisfies a cubic equation with only one point on the
line at∞. After scaling X and Y , it can be written in the Weierstrass form,
i.e.:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a5Z

3.

The basepoint is O = [0, 1, 0]. If non-homogeneous coordinates x = X/Z
and y = Y/Z are used, this becomes:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If all ai ∈ K for 1 ≤ i ≤ 6, E is said to be defined over K, written E/K.
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Appendix B

Checking the addition law

The next Magma-script checks that for u1 6= u2 and v1 6= v2 the addition
law holds:

{K<d,x1,x2>:=FieldOfFractions(PolynomialRing(Rationals(),3));

R<y1,y2>:=PolynomialRing(K,2);

S:=quo<R|x1^2+y1^2-(1+d*x1^2*y1^2),x2^2+y2^2-(1+d*x2^2*y2^2)>;

// the Edwards addition law:

x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2);

y3:=(y1*y2-x1*x2)/(1-d*x1*x2*y1*y2);

// map to the Weierstrass curve:

u1:=((-2*d*y1-d-1)*x1^2+2*y1+2)/(x1^2); v1:=-2*u1/x1;

S!(v1^2-u1^3-2*(d+1)*u1^2-(d-1)^2*u1);

u2:=((-2*d*y2-d-1)*x2^2+2*y2+2)/(x2^2); v2:=-2*u2/x2;

S!(v2^2-u2^3-2*(d+1)*u2^2-(d-1)^2*u2);

u3:=((-2*d*y3-d-1)*x3^2+2*y3+2)/(x3^2); v3:=-2*u3/x3;

S!(v3^2-u3^3-2*(d+1)*u3^2-(d-1)^2*u3);

// add on the Weierstrass curve:

lambda:=(v2-v1)/(u2-u1);

nu:= (v1*u2-v2*u1)/(u2-u1);

r3:=lambda^2-2*(d+1)-u1-u2; s3:=-lambda*r3-nu;

// check the answer:

S!(u3-r3); S!(v3-s3);

Here, the output will be five times a 0, implying that all (ui, vi) satisfy the
Weierstrass equation in S, and that the two different ways of computing
(u3, v3) coincide.

When u1 = u2 but v1 6= −v2, the next script checks the addition law
(note that this is in fact doubling):

K<d,x1>:=FieldOfFractions(PolynomialRing(Rationals(),2));

R<y1>:=PolynomialRing(K,1);
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S:=quo<R|x1^2+y1^2-(1+d*x1^2*y1^2)>;

x2:=x1; y2:=y1;

// the Edwards addition law:

x3:=(x1*y2+y1*x2)/((1+d*x1*x2*y1*y2));

y3:=(y1*y2-x1*x2)/((1-d*x1*x2*y1*y2));

// map to the Weierstrass curve:

u1:=((-2*d*y1-d-1)*x1^2+2*y1+2)/(x1^2); v1:=-2*u1/x1;

S!(v1^2-u1^3-2*(d+1)*u1^2-(d-1)^2*u1);

u2:=((-2*d*y2-d-1)*x2^2+2*y2+2)/(x2^2); v2:=-2*u2/x2;

S!(v2^2-u2^3-2*(d+1)*u2^2-(d-1)^2*u2);

u3:=((-2*d*y3-d-1)*x3^2+2*y3+2)/(x3^2); v3:=-2*u3/x3;

S!(v3^2-u3^3-2*(d+1)*u3^2-(d-1)^2*u3);

// double on the Edwards curve:

lambda:=(3*u1^2+2*(2*d+2)*u1+(d-1)^2)/(2*v1);

r3:=lambda^2-(2*d+2)-u1-u2; s3:=lambda*(u1-r3)-v1;

// check the answer:

S!(u3-r3); S!(v3-s3);

Again, the output will be five times a 0, implying the same thing as above.
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