Too cold to fracture

Finding structural materials that have good fracture properties at very low temperatures is challenging but is important for fields such as space exploration. Liu et al. discovered a high-entropy chromium-cobalt-nickel alloy that has an incredibly high fracture toughness at 20 kelvin (see the Perspective by Zhang and Zhang). This behavior is caused by an unexpected phase transformation that, when combined with other microstructures, prevents crack formation and propagation. The fracture toughness of this alloy makes it potentially useful for a range of cryogenic applications. —BG

Abstract

CrCoNi-based medium- and high-entropy alloys display outstanding damage tolerance, especially at cryogenic temperatures. In this study, we examined the fracture toughness values of the equiatomic CrCoNi and CrMnFeCoNi alloys at 20 kelvin (K). We found exceptionally high crack-initiation fracture toughnesses of 262 and 459 megapascal-meters½ (MPa·m½) for CrMnFeCoNi and CrCoNi, respectively; CrCoNi displayed a crack-growth toughness exceeding 540 MPa·m½ after 2.25 millimeters of stable cracking. Crack-tip deformation structures at 20 K are quite distinct from those at higher temperatures. They involve nucleation and restricted growth of stacking faults, fine nanotwins, and transformed epsilon martensite, with coherent interfaces that can promote both arrest and transmission of dislocations to generate strength and ductility. We believe that these alloys develop fracture resistance through a progressive synergy of deformation mechanisms, dislocation glide, stacking-fault formation, nanotwinning, and phase transformation, which act in concert to prolong strain hardening that simultaneously elevates strength and ductility, leading to exceptional toughness.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Materials and Methods
Figs. S1 to S7
References (5263)

References and Notes

1
B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A375–377, 213–218 (2004).
2
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater.6, 299–303 (2004).
3
E. P. George, W. A. Curtin, C. C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater.188, 435–474 (2020).
4
E. J. Pickering, N. G. Jones, High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev.61, 183–202 (2016).
5
D. B. Miracle, O. N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater.122, 448–511 (2017).
6
Z. Li, S. Zhao, R. O. Ritchie, M. A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci.102, 296–345 (2019).
7
E. P. George, D. Raabe, R. O. Ritchie, High-entropy alloys. Nat. Rev. Mater.4, 515–534 (2019).
8
A. Gali, E. P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics39, 74–78 (2013).
9
F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E. P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater.61, 5743–5755 (2013).
10
B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science345, 1153–1158 (2014).
11
S. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D. E. J. Armstrong, P. S. Grant, R. O. Ritchie, M. A. Meyers, Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci. Adv.7, eabb3108 (2021).
12
Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, C. C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature534, 227–230 (2016).
13
F. Da Costa Garcia Filho, R. O. Ritchie, M. A. Meyers, S. Neves Monteiro, Cantor-derived medium-entropy alloys: Bridging the gap between traditional metallic and high-entropy alloys. J. Mater. Res. Technol.17, 1868–1895 (2022).
14
Z. Wu, H. Bei, G. M. Pharr, E. P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater.81, 428–441 (2014).
15
B. Gludovatz, A. Hohenwarter, K. V. S. Thurston, H. Bei, Z. Wu, E. P. George, R. O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun.7, 10602 (2016).
16
R. O. Ritchie, The conflicts between strength and toughness. Nat. Mater.10, 817–822 (2011).
17
E08 Committee, ASTM E1820-17a Standard Test Method for Measurement of Fracture Toughness (ASTM International, 2017).
18
M. Yang, L. Zhou, C. Wang, P. Jiang, F. Yuan, E. Ma, X. Wu, High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature. Scr. Mater.172, 66–71 (2019).
19
A. S. Tirunilai, J. Sas, K.-P. Weiss, H. Chen, D. V. Szabó, S. Schlabach, S. Haas, D. Geissler, J. Freudenberger, M. Heilmaier, A. Kauffmann, Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J. Mater. Res.33, 3287–3300 (2018).
20
J. Liu, X. Guo, Q. Lin, Zh. He, X. An, L. Li, P. K. Liaw, X. Liao, L. Yu, J. Lin, L. Xie, J. Ren, Y. Zhang, Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci. China Mater.62, 853–863 (2019).
21
A. S. Tirunilai, T. Hanemann, K.-P. Weiss, J. Freudenberger, M. Heilmaier, A. Kauffmann, Dislocation-based serrated plastic flow of high entropy alloys at cryogenic temperatures. Acta Mater.200, 980–991 (2020).
22
J. Moon, E. Tabachnikova, S. Shumilin, T. Hryhorova, Y. Estrin, J. Brechtl, P. K. Liaw, W. Wang, K. A. Dahmen, A. Zargaran, J. W. Bae, H.-S. Do, B.-J. Lee, H. S. Kim, Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Mater. Today50, 55–68 (2021).
23
Z. Zhang, M. M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S. X. Mao, E. P. George, Q. Yu, R. O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun.6, 10143 (2015).
24
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E. P. George, Q. Yu, S. X. Mao, R. O. Ritchie, Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun.8, 14390 (2017).
25
M. Naeem, H. He, F. Zhang, H. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. Wu, F. Wang, Y. Wu, Z. Lu, Z. Zhang, C. T. Liu, X.-L. Wang, Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci. Adv.6, eaax4002 (2020).
26
M. Kawamura, M. Asakura, N. L. Okamoto, K. Kishida, H. Inui, E. P. George, Plastic deformation of single crystals of the equiatomic Cr−Mn−Fe−Co−Ni high-entropy alloy in tension and compression from 10 K to 1273 K. Acta Mater.203, 116454 (2021).
27
L. Li, Z. Chen, S. Kuroiwa, M. Ito, K. Kishida, H. Inui, E. P. George, Tensile and compressive plastic deformation behavior of medium-entropy Cr-Co-Ni single crystals from cryogenic to elevated temperatures. Int. J. Plast.148, 103144 (2022).
28
L. Tang, K. Yan, B. Cai, Y. Q. Wang, B. Liu, S. Kabra, M. M. Attallah, Y. Liu, Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K. Scr. Mater.178, 166–170 (2020).
29
M. Shih, J. Miao, M. Mills, M. Ghazisaeidi, Stacking fault energy in concentrated alloys. Nat. Commun.12, 3590 (2021).
30
X. Sun, S. Lu, R. Xie, X. An, W. Li, T. Zhang, C. Liang, X. Ding, Y. Wang, H. Zhang, L. Vitos, Can experiment determine the stacking fault energy of metastable alloys?Mater. Des.199, 109396 (2021).
31
K. V. Werner, F. Niessen, M. Villa, M. A. J. Somers, Experimental validation of negative stacking fault energies in metastable face-centered cubic materials. Appl. Phys. Lett.119, 141902 (2021).
32
E. P. George, R. O. Ritchie, High-entropy materials. MRS Bull.47, 145–150 (2022).
33
G. Laplanche, A. Kostka, O. M. Horst, G. Eggeler, E. P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater.118, 152–163 (2016).
34
K. V. S. Thurston, A. Hohenwarter, G. Laplanche, E. P. George, B. Gludovatz, R. O. Ritchie, On the onset of deformation twinning in the CrFeMnCoNi high-entropy alloy using a novel tensile specimen geometry. Intermetallics110, 106469 (2019).
35
A. C. Mackenzie, J. W. Hancock, D. K. Brown, On the influence of state of stress on ductile failure initiation in high strength steels. Eng. Fract. Mech.9, 167–188 (1977).
36
R. O. Ritchie, A. W. Thompson, On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys. Metall. Mater. Trans. A16, 233–248 (1985).
37
J. Miao, C. E. Slone, T. M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. M. Pharr, M. J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater.132, 35–48 (2017).
38
B. Schuh, B. Völker, J. Todt, K. S. Kormout, N. Schell, A. Hohenwarter, Influence of annealing on microstructure and mechanical properties of a nanocrystalline CrCoNi medium-entropy alloy. Materials11, 662 (2018).
39
S. Chen, H. S. Oh, B. Gludovatz, S. J. Kim, E. S. Park, Z. Zhang, R. O. Ritchie, Q. Yu, Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat. Commun.11, 826 (2020).
40
Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater. Res. Lett.6, 236–243 (2018).
41
C. Niu, C. R. LaRosa, J. Miao, M. J. Mills, M. Ghazisaeidi, Magnetically-driven phase transformation strengthening in high entropy alloys. Nat. Commun.9, 1363 (2018).
42
Z. Dong, S. Schönecker, W. Li, D. Chen, L. Vitos, Thermal spin fluctuations in CoCrFeMnNi high entropy alloy. Sci. Rep.8, 12211 (2018).
43
P.-A. Dubos, J. Fajoui, N. Iskounen, M. Coret, S. Kabra, J. Kelleher, B. Girault, D. Gloaguen, Temperature effect on strain-induced phase transformation of cobalt. Mater. Lett.281, 128812 (2020).
44
L. Rémy, A. Pineau, Twinning and strain-induced f.c.c.→h.c.p. transformation on the mechanical properties of Co–Ni–Cr–Mo alloys. Mater. Sci. Eng.26, 123–132 (1976).
45
H. He, M. Naeem, F. Zhang, Y. Zhao, S. Harjo, T. Kawasaki, B. Wang, X. Wu, S. Lan, Z. Wu, W. Yin, Y. Wu, Z. Lu, J.-J. Kai, C. T. Liu, X.-L. Wang, Stacking fault driven phase transformation in CrCoNi medium entropy alloy. Nano Lett.21, 1419–1426 (2021).
46
J. Ding, Q. Yu, M. Asta, R. O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. U.S.A.115, 8919–8924 (2018).
47
P. Yu, J.-P. Du, S. Shinzato, F.-S. Meng, S. Ogata, Theory of history-dependent multi-layer generalized stacking fault energy— A modeling of the micro-substructure evolution kinetics in chemically ordered medium-entropy alloys. Acta Mater.224, 117504 (2022).
48
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie, A. M. Minor, Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature581, 283–287 (2020).
49
H. S. Oh, K. Odbadrakh, Y. Ikeda, S. Mu, F. Körmann, C.-J. Sun, H. S. Ahn, K. N. Yoon, D. Ma, C. C. Tasan, T. Egami, E. S. Park, Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects. Acta Mater.216, 117135 (2021).
50
T. S. Byun, T. G. Lach, “Mechanical Properties of 304L and 316L Austenitic Stainless Steels after Thermal Aging for 1500 Hours,” Pacific Northwest National Laboratory Report, US Department of Energy, PNNL-25854, M3LW-16OR040215 (2016).
51
R. M. McClintock, H. P. Gibbons, Mechanical Properties of Structural Materials: A Compilation from the Literature, National Bureau of Standards Monograph 13 (US Department of Commerce, National Bureau of Standards, 1960).
52
B. Gludovatz, E. P. George, R. O. Ritchie, Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. J. Miner. Met. Mater. Soc.67, 2262–2270 (2015).
53
O. Kirichek, J. D. Timms, J. F. Kelleher, R. B. E. Down, C. D. Offer, S. Kabra, S. Y. Zhang, Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K. Rev. Sci. Instrum.88, 025103 (2017).
54
Y. Q. Wang, B. Liu, K. Yan, M. S. Wang, S. Kabra, Y. L. Chiu, D. Dye, P. D. Lee, Y. Liu, B. Cai, Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction. Acta Mater.163, 240–242 (2019).
55
A. Haglund, M. Koehler, D. Catoor, E. P. George, V. Keppens, Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics58, 62–64 (2015).
56
G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, E. P. George, Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. Alloys Compd.746, 244–255 (2018).
57
Y. P. Varshni, Temperature dependence of the elastic constants. Phys. Rev. B2, 3952–3958 (1970).
58
G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E. P. George, Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd.623, 348–353 (2015).
59
I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy. Mater. Sci. Eng. A701, 370–380 (2017).
60
F. X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J. Y. P. Ko, D. C. Pagan, J. C. Neuefeind, W. J. Weber, Y. Zhang, Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett.118, 205501 (2017).
61
B. Yin, S. Yoshida, N. Tsuji, W. A. Curtin, Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat. Commun.11, 2507 (2020).
62
D. Lee, M. P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy. J. Alloys Compd.800, 372–378 (2019).
63
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater.128, 292–303 (2017).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 378 | Issue 6623
2 December 2022

Submission history

Received: 27 February 2022
Accepted: 7 October 2022
Published in print: 2 December 2022

Permissions

Request permissions for this article.

Acknowledgments

We thank M. J. Paul for support in analyzing the tensile stress-strain data.
Funding: The research was primarily supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, through the Damage-Tolerance in Structural Materials program (KC13) at the Lawrence Berkeley National Laboratory (LBNL) under contract DE-AC02-CH11231, and the Multiscale Mechanical Properties and Alloy Design program (ERKCM06) at the Oak Ridge National Laboratory. The authors acknowledge the use of the ENGIN-X, ISIS Facility, at the Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK, for the mechanical testing in liquid helium environment, and the microscopy facilities in the National Center for Electron Microscopy, in the Molecular Foundry at LBNL, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract DE-AC02-05CH11231. D.L., M.J., and P.F.-K. acknowledge support from the UK Engineering and Physical Sciences Research Council (EP/N004493/2, EP/T000368/1). B.G. acknowledges support from the ARC Future Fellowship (project FT190100484) and the UNSW Scientia Fellowship schemes.
Author contributions: R.O.R., B.G., and E.P.G. formulated the original idea. E.P.G. supervised the synthesis and processing of alloys. D.L. identified the testing equipment and method, formulated the neutron beamline proposal, and conducted the in situ and ex situ fracture toughness experiments at ENGIN-X with S.K. and P.F.-K. The fracture toughness data were analyzed by Q.Y., B.G., and D.L. under the supervision of R.O.R. The neutron diffraction data were analyzed by M.J. under the supervision of D.L. S.K. performed the uniaxial tensile tests, with guidance from E.P.G. and B.G. The structural characterization was performed by Q.Y., M.J. and D.L (EBSD), and R.Z and M.P. (TEM), the latter under the supervision of A.M.M. Simulation studies were conducted by F.W. under the supervision of M.A. R.O.R. drafted the manuscript, with all authors contributing. R.O.R. supervised the project.
Competing interests: The authors declare no competing interests, financial or otherwise.
Data and materials availability: All data that support the findings of this study are reported in the main paper and supplementary materials.
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

School of Physics, University of Bristol, Bristol BS8 1TL, UK.
Roles: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Roles: Formal analysis, Investigation, Visualization, and Writing - review & editing.
ENGIN-X, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Oxon OX11 0QX, UK.
Roles: Investigation, Resources, and Validation.
School of Physics, University of Bristol, Bristol BS8 1TL, UK.
Roles: Formal analysis and Visualization.
School of Physics, University of Bristol, Bristol BS8 1TL, UK.
Role: Investigation.
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Roles: Conceptualization, Formal analysis, Investigation, Methodology, Software, and Writing - original draft.
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Roles: Formal analysis, Investigation, and Visualization.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
Roles: Conceptualization and Writing - review & editing.
School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
Roles: Conceptualization, Methodology, Validation, Visualization, and Writing - review & editing.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, and Writing - review & editing.
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Roles: Funding acquisition, Methodology, Project administration, Supervision, Validation, Visualization, and Writing - review & editing.
Easo P. George
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA.
Institute for Materials, Ruhr University Bochum, 44801 Bochum, Germany.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, and Writing - review & editing.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
Roles: Conceptualization, Formal analysis, Funding acquisition, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.

Funding Information

U.S. Department of Energy: DE-AC02-05CH11231.
ARC Future Fellowship: project FT190100484
U.K. Engineering and Physical Sciences Research Council: EP/N004493/2, EP/T000368/1

Notes

*
Corresponding author. Email: [email protected]
These authors contributed equally to this work.

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media