Progress and challenges for electrolytes

Compared with the development of new cathodes and anodes, there has been less of a focus on the development of electrolytes. However, it is the electrolyte that controls the flow of ions and charges, and it is the only component in intimate contact with all the others. With the push toward higher energy and power densities, electrolytes are also involved in kinetically formed interphases that aid in the stability of a battery but can also hamper its operation. In a review, Meng et al. captures a number of trends that have emerged in the development of advanced battery electrolytes. —MSL

Structured Abstract

BACKGROUND

The electrolyte is an indispensable component in every electrochemical device, including lithium-ion batteries (LIBs). It physically segregates two electrodes from direct electron transfer while allowing working ions to transport both charges and masses across the cell so that the cell reactions can proceed sustainably. Whether powering our phones, driving our vehicles, or harvesting the intermittent energy from solar and wind farms, electrolytes in these LIBs determine how fast and how many times our devices can be recharged or how efficiently energy can be captured and stored over the grid. Occasionally, when an LIB is pushed away from the designed electrochemistry pathways by various factors such as excessive heat, mechanical mutilation, or internal short circuits induced under extreme charging conditions, electrolytes are also responsible for the fire and explosion accidents that we read about in the news.
The electrolyte is the most unique component in a battery. Because it must physically interface with every other component, it is obligated to satisfy numerous constraints simultaneously, including rapidly transporting ions and masses, effectively insulating electrons, and maintaining stability toward the strongly oxidative cathode and strongly reductive anode. Historically, the electrolyte-anode interfacing was the last piece of the puzzle to complete modern LIB chemistry.

ADVANCES

The commercial success of LIBs has attracted intense interest and investments in electrolyte research, which led to the identification of interphases as the key component responsible for the stable and reversible operations of cathode and anode materials far beyond the thermodynamic stability limits of any known electrolyte. These interphases, often with nanometer thickness, are formed by electrolytes in a self-limiting decomposition process, and they ensure fast rates of charging and discharging, maximum voltage, and reversibility of LIBs. In the past three decades, the chemistry, morphology, and formation mechanisms of interphases have been thoroughly investigated. Researchers have learned how such interphases are structured and what key ingredients they comprise and, most importantly, how to tailor them using electrolyte engineering. Today, it is widely accepted that designing better electrolytes also implies designing the associated interphases for the electrode materials. Although the accurate prediction of interphasial chemistry remains difficult, and key fundamental properties of interphases such as the rate and mechanism of ion transport across interphases are still unknown, the structure of the ion solvation sheath has been identified as an effective tool that directs the formation process of interphases. Such knowledge has been driving a series of new electrolyte concepts for emerging battery chemistries.

OUTLOOK

Efforts are being made to develop battery chemistries that promise high energy density, rapid charging, low cost, high sustainability, and independence from elements or materials of high geopolitical or ethical risks. Each individual chemistry may demand a unique electrolyte and corresponding interphase, but a few universal trends emerge: (i) a super-concentration of salts is used to leverage unusual properties arising from the altered ion-solvation structures; (ii) both polymeric and inorganic materials are used to solidify electrolytes so that the aggressive lithium-metal anode can be harnessed with higher safety; (iii) efforts are made to identify the most effective interphasial ingredients so that an interphase of singular composition can be designed and artificially applied; (iv) liquefied gaseous components are used to expand the low-temperature limits of conventional electrolytes; and (v) unusual electrochemical behaviors are explored by confining ion-solvation sheaths in nano- or sub-nano environments.
Electrolytes and the associated interphases play the central role in supporting diversified battery chemistries.
On the anode side (left), the electrolyte must form an interphase that prevents graphitic anode from exfoliation, tolerates the drastic volume changes of a silicon electrode, and suppresses the growth of a dendritic form of lithium metal. On the cathode side (right), an interphase is critical in preventing the irreversible reactions with electrolytes, maintaining the lattice structure of transition metal oxides, suppressing the cross-cell shuttling of polysulfide species, and assisting the complicated triphasial reactions of an air-cathode. In all of these scenarios, interphases must enable ionic transport while insulating electronic transport.

Abstract

Electrolytes and the associated interphases constitute the critical components to support the emerging battery chemistries that promise tantalizing energy but involve drastic phase and structure complications. Designing better electrolytes and interphases holds the key to the success of these batteries. As the only component that interfaces with every other component in the device, an electrolyte must satisfy multiple criteria simultaneously. These include transporting ions while insulating electrons between the electrodes and maintaining stability against electrodes of extreme chemical natures: the strongly oxidative cathode and the strongly reductive anode. In most advanced batteries, the two electrodes operate at potentials far beyond the thermodynamic stability limits of electrolytes, so the stability therein has to be realized kinetically through an interphase formed from the sacrificial reactions between electrolyte and electrodes.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
J. O.’M. Bockris, A. K. N. Reddy, Modern Electrochemistry 1: Ionics, ed. 2. (Plenum Press, 1998).
2
M. Winter, B. Barnett, K. Xu, Before Li ion batteries. Chem. Rev.118, 11433–11456 (2018).
3
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev.104, 4303–4418 (2004).
4
E. A. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: The solid electrolyte interphase model. J. Electrochem. Soc.126, 2047–2051 (1979).
5
D. R. Gallus, R. Wagner, S. Wiemers-Meyer, M. Winter, I. Cekic-Laskovic, New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value. Electrochim. Acta184, 410–416 (2015).
6
M. Winter, The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem.223, 1395–1406 (2009).
7
J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater.22, 587–603 (2010).
8
K. Xu, Li ion battery electrolytes. Nat. Energy6, 763 (2021).
9
K. Xu, Y. Lam, S. S. Zhang, T. R. Jow, T. B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C111, 7411–7421 (2007).
10
M. Onuki, S. Kinoshita, Y. Sakata, M. Yanagidate, Y. Otake, M. Ue, M. Deguchi, Identification of the source of evolved gas in Li-ion batteries using 13C-labeled solvents. J. Electrochem. Soc.155, A794–A797 (2008).
11
G. V. Zhuang, K. Xu, H. Yang, T. R. Jow, P. N. RossJr., Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte. J. Phys. Chem. B109, 17567–17573 (2005).
12
A. von Cresce, K. Xu, Preferential solvation of Li+ directs formation of interphase on graphitic anode. Electrochem. Solid-State Lett.14, A154–A156 (2011).
13
X. Bogle, R. Vazquez, S. Greenbaum, A. W. Cresce, K. Xu, Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett.4, 1664–1668 (2013).
14
T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, K. Xu, F. Pan, In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol.14, 50–56 (2019).
15
L. Wang, A. Menakath, F. Han, Y. Wang, P. Y. Zavalij, K. J. Gaskell, O. Borodin, D. Iuga, S. P. Brown, C. Wang, K. Xu, B. W. Eichhorn, Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat. Chem.11, 789–796 (2019).
16
L. Ma, S. L. Glazier, R. Petibon, J. Xia, J. M. Peters, Q. Liu, J. Allen, R. N. C. Doig, J. R. Dahn, A guide to ethylene carbonate-free electrolyte making for Li-ion cells. J. Electrochem. Soc.164, A5008–A5018 (2017).
17
S. Klein, S. van Wickeren, S. Röser, P. Bärmann, K. Borzutzki, B. Heidrich, M. Börner, M. Winter, T. Placke, J. Kasnatscheew, Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy Mater.11, 2003738 (2021).
18
A. Würsig, H. Buqa, M. Holzapfel, F. Krueich, P. Novák, Film formation at positive electrodes in lithium-ion batteries. Electrochem. Solid-State Lett.8, A34–A37 (2005).
19
B. Streipert, L. Stolz, G. Homann, P. Janßen, I. Cekic-Laskovic, M. Winter, J. Kasnatscheew, Conventional electrolyte and inactive electrode materials in lithium-ion batteries: Determining cumulative impact of oxidative decomposition at high voltage. ChemSusChem13, 5301–5307 (2020).
20
N. Dupré, J.-F. Martin, J. Oliveri, P. Soudan, D. Guyomard, A. Yamada, R. Kanno, Aging of the LiNi1/2Mn1/2O1/2 positive electrode interface in electrolyte. J. Electrochem. Soc.156, C180–C185 (2009).
21
A. von Cresce, K. Xu, Electrolyte additive in support of 5 V Li ion chemistry. J. Electrochem. Soc.158, A337–A342 (2011).
22
L. Trahey, F. R. Brushett, N. P. Balsara, G. Ceder, L. Cheng, Y.-M. Chiang, N. T. Hahn, B. J. Ingram, S. D. Minteer, J. S. Moore, K. T. Mueller, L. F. Nazar, K. A. Persson, D. J. Siegel, K. Xu, K. R. Zavadil, V. Srinivasan, G. W. Crabtree, Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proc. Natl. Acad. Sci. U.S.A.117, 12550–12557 (2020).
23
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science350, 938–943 (2015).
24
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu, C. Wang, Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed.55, 7136–7141 (2016).
25
Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy1, 16129 (2016).
26
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev.114, 11636–11682 (2014).
27
T. Hosaka, K. Kubota, A. S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev.120, 6358–6466 (2020).
28
J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci.5, 5941–5950 (2012).
29
M. E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M. R. Palacín, Achievements, challenges, and prospects of calcium batteries. Chem. Rev.120, 6331–6357 (2020).
30
M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery. Nature520, 325–328 (2015).
31
U. Kasavajjula, C. Wang, A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources163, 1003–1039 (2007).
32
C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.3, 31–35 (2008).
33
M. N. Obrovac, V. L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev.114, 11444–11502 (2014).
34
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci.7, 513–537 (2014).
35
C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Quantifying inactive lithium in lithium metal batteries. Nature572, 511–515 (2019).
36
A. J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, S. J. H. Cheng, J. R. Dahn, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy5, 693–702 (2020).
37
Y. Liang, H. Dong, D. Aurbach, Y. Yao, Current status and future directions of multivalent metal-ion batteries. Nat. Energy5, 646–656 (2020).
38
G. R. Pastel, Y. Chen, T. P. Pollard, M. A. Schroeder, M. E. Bowden, A. Zheng, N. T. Hahn, L. Ma, V. Murugesan, J. Ho, M. Garaga, O. Borodin, K. Mueller, S. Greenbaum, K. Xu, A sobering examination of the feasibility of aqueous aluminum batteries. Energy Environ. Sci.15, 2460–2469 (2022).
39
Z. Yu, T. R. Juran, X. Liu, K. S. Han, H. Wang, K. T. Mueller, L. Ma, K. Xu, T. Li, L. A. Curtiss, L. Cheng, Solvation structure and dynamics of Mg(TFSI)2 aqueous electrolyte. Energy Environ. Mater.5, 295–304 (2021).
40
S. B. Son, T. Gao, S. P. Harvey, K. X. Steirer, A. Stokes, A. Norman, C. Wang, A. Cresce, K. Xu, C. Ban, An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem.10, 532–539 (2018).
41
L. Ma, M. A. Schroeder, O. Borodin, T. P. Pollard, M. S. Ding, C. Wang, K. Xu, Realizing high zinc reversibility in rechargeable batteries. Nat. Energy5, 743–749 (2020).
42
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy3, 16–21 (2018).
43
W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, M. Winter, A rechargeable zinc-air battery based on zinc peroxide chemistry. Science371, 46–51 (2021).
44
L. Yin, J. Scharf, J. Ma, J.-M. Doux, C. Redquest, V. L. Le, Y. Yin, J. Ortega, X. Wei, J. Wang, Y. S. Meng, High performance printed AgO-Zn rechargeable battery for flexible electronics. Joule5, 228–248 (2021).
45
Y. K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater.11, 942–947 (2012).
46
N.-S. Choi, J.-G. Han, S.-Y. Ha, I. Pak, C.-K. Back, Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. RSC Advances5, 2732–2748 (2015).
47
D. H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem.8, 692–697 (2016).
48
F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci.10, 435–459 (2017).
49
X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S.-C. Liou, J. Bai, X.-Q. Yang, Y. Mo, K. Xu, D. Su, C. Wang, High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun.9, 2324 (2018).
50
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev.114, 11751–11787 (2014).
51
T. Liu, J. P. Vivek, E. W. Zhao, J. Lei, N. Garcia-Araez, C. P. Grey, Current challenges and routes forward for nonaqueous lithium–air batteries. Chem. Rev.120, 6558–6625 (2020).
52
M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, New concepts in electrolytes. Chem. Rev.120, 6783–6819 (2020).
53
O. Borodin, J. Self, K. A. Persson, C. Wang, K. Xu, Uncharted waters: Super-concentrated electrolytes. Joule4, 69–100 (2020).
54
S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater.30, e1706102 (2018).
55
Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y.-T. Cheng, Y. Qi, X. Xiao, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett.16, 2011–2016 (2016).
56
C. Wang, Y. S. Meng, K. Xu, Fluorinating interphases. J. Electrochem. Soc.166, A5184–A5186 (2018).
57
X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J.-G. Zhang, J. Liu, Y. S. Meng, New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett.17, 7606–7612 (2017).
58
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science358, 506–510 (2017).
59
R. Guo, B. Gallant, Li2O solid electrolyte interphase: Probing transport properties at the chemical potential of lithium. Chem. Mater.32, 5525–5533 (2020).
60
M. S. Kim, Z. Zhang, P. E. Rudnicki, Z. Yu, J. Wang, H. Wang, S. T. Oyakhire, Y. Chen, S. C. Kim, W. Zhang, D. T. Boyle, X. Kong, R. Xu, Z. Huang, W. Huang, S. F. Bent, L.-W. Wang, J. Qin, Z. Bao, Y. Cui, Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater.21, 445–454 (2022).
61
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater.2, 16103 (2017).
62
Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.-W. Nan, M. Armand, L. Chen, K. Xu, S. Shi, Mobile ions in composite solids. Chem. Rev.120, 4169–4221 (2020).
63
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev.114, 11503–11618 (2014).
64
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M. N. Garaga, B. H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y.-Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi, L. Hu, Copper-coordinated cellulose ion conductors for solid-state batteries. Nature598, 590–596 (2021).
65
Y. Zhu, X. He, Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A Mater. Energy Sustain.4, 3253–3266 (2016).
66
A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev.120, 6878–6933 (2020).
67
Y. Xiao, L. J. Miara, Y. Wang, G. Ceder, Computational screening of cathode coatings for solid-state batteries. Joule3, 1252–1275 (2019).
68
T. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, Toward a fundamental understanding of the lithium metal anode in solid-state batteries: An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces11, 14463–14477 (2019).
69
C. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng, S. Chen, M. Ceja, J.-M. Doux, H. Musrock, M. Cai, B. Liaw, Y. S. Meng, Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy6, 987–994 (2021).
70
Y. Wang, T. Liu, J. Kumar, Effect of pressure on lithium metal deposition and stripping against sulfide-based solid electrolytes. ACS Appl. Mater. Interfaces12, 34771–34776 (2020).
71
L. R. Mangani, C. Villevieille, Mechanical vs. chemical stability of sulphide-based solid-state batteries. Which one is the biggest challenge to tackle? Overview of solid-state batteries and hybrid solid state batteries. J. Mater. Chem. A Mater. Energy Sustain.8, 10150–10167 (2020).
72
D. H. S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen, Y. S. Meng, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science373, 1494–1499 (2021).
73
J. Gao, C. Wang, D.-W. Han, D.-M. Shin, Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci.12, 13248–13272 (2021).
74
C. S. Rustomji, Y. Yang, T. K. Kim, J. Mac, Y. J. Kim, E. Caldwell, H. Chung, Y. S. Meng, Liquefied gas electrolytes for electrochemical energy storage devices. Science356, eaal4263 (2017).
75
Y. Yang, D. M. Davies, Y. Yin, O. Borodin, J. Z. Lee, C. Fang, M. Olguin, Y. Zhang, E. S. Sablina, X. Wang, C. S. Rustomji, Y. S. Meng, High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule3, 1986 (2019).
76
D. M. Davies, Y. Yang, E. S. Sablina, Y. Yin, M. Mayer, Y. Zhang, M. Olguin, J. Z. Lee, B. Lu, D. Damien, O. Borodin, C. S. Rustomji, Y. S. Meng, A safer, wide-temperature liquefied gas electrolyte based on difluoromethane. J. Power Sources493, 229668 (2021).
77
L. Ma, J. Z. Lee, T. P. Pollard, M. A. Schroeder, M. A. Limpert, B. Craven, S. Fess, C. S. Rustomji, C. Wang, O. Borodin, K. Xu, High-efficiency zinc-metal anode enabled by liquefied gas electrolytes. ACS Energy Lett.6, 4426–4430 (2021).
78
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science313, 1760–1763 (2006).
79
Y. Lu, Z. Tu, L. A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater.13, 961–969 (2014).
80
Z. Chang, Y. Qiao, H. Deng, H. Yang, P. He, H. Zhou, A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule4, 1776–1789 (2020).
81
Z. Chang, Y. Qiao, H. Yang, H. Deng, X. Zhu, P. He, H. Zhou, Beyond the concentrated electrolyte: Further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy Environ. Sci.13, 4122–4131 (2020).
82
X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, K. Liu, Y. Xiang, Y. Cui, Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett.18, 3829–3838 (2018).
83
C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Quantifying inactive lithium in lithium metal batteries. Nature572, 511–515 (2019).
84
Z. Shadike, H. Lee, O. Borodin, X. Cao, X. Fan, X. Wang, R. Lin, S.-M. Bak, S. Ghose, K. Xu, C. Wang, J. Liu, J. Xiao, X.-Q. Yang, E. Hu, Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol.16, 549–554 (2021).
85
S. H. Lapidus, N. N. Rajput, X. Qu, K. W. Chapman, K. A. Persson, P. J. Chupas, Solvation structure and energetics of electrolytes for multivalent energy storage. Phys. Chem. Chem. Phys.16, 21941–21945 (2014).
86
M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, L. F. Kourkoutis, Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature560, 345–349 (2018).
87
L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput, K. Persson, L. A. Curtiss, Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett.6, 283–291 (2015).
88
A. M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule2, 2016–2046 (2018).
89
O. Borodin, X. Ren, J. Vatamanu, A. von Wald Cresce, J. Knap, K. Xu, Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc. Chem. Res.50, 2886–2894 (2017).
90
S. Hou, X. Ji, K. Gaskell, P. F. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science374, 172–178 (2021).
91
X. Qu, A. Jain, N. N. Rajput, L. Cheng, Y. Zhang, S. P. Ong, M. Brafman, E. Maginn, L. A. Curtiss, K. A. Persson, The Electrolyte Genome Project: A big data approach in battery materials discovery. Comput. Mater. Sci.103, 56–67 (2015).
92
A. Dave, J. Mitchell, K. Kandasamy, H. Wang, S. Burke, B. Paria, B. Póczos, J. Whitacre, V. Viswanathan, Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep. Phys. Sci.1, 100264 (2020).
93
L. Alzate-Vargas, S. M. Balu, E. W. C. Spotte-Smith, S. Allu, K. A. Persson, J.-L. Fattebert, Insight into SEI growth in Li-ion batteries using molecular dynamics and accelerated chemical reactions. J. Phys. Chem. C125, 18588–18596 (2021).
94
D. R. Wheeler, J. Newman, Molecular dynamics simulations of multicomponent diffusion. 1. Equilibrium method. J. Phys. Chem. B108, 18353–18361 (2004).
95
H.-G. Steinrück, C. J. Takacs, H.-K. Kim, D. G. Mackanic, B. Holladay, C. Cao, S. Narayanan, E. M. Dufresne, Y. Chushkin, B. Ruta, F. Zontone, J. Will, O. Borodin, S. K. Sinha, V. Srinivasan, M. F. Toney, Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy Environ. Sci.13, 4312–4321 (2020).
96
M. Chintapalli, K. Higa, X. C. Chen, V. Srinivasan, N. Balsara, Simulation of local ion transport in lamellar block copolymer electrolytes based on electron micrographs. J. Polym. Sci., B, Polym. Phys.55, 266–274 (2017).
97
Y.-K. Sun, An experimental checklist for reporting battery performances. ACS Energy Lett.6, 2187–2189 (2021).
98
A. K. Stephan, Standardized battery reporting guidelines. Joule5, 1–2 (2021).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 378 | Issue 6624
9 December 2022

Submission history

Received: 4 April 2022
Accepted: 28 October 2022
Published in print: 9 December 2022

Permissions

Request permissions for this article.

Acknowledgments

We thank D. Cheng, S. Parab, M. Shen, and M. Zhang for help with graphics.
Funding: K.X. and V.S. were supported by the Joint Center for Energy Storage Research (JCESR), an energy hub funded by US Department of Energy, Office of Science, Basic Energy Sciences (BES). Y.S.M. was also supported by JCESR under award number DE-SC0002357.
Competing interests: The authors declare no competing interests.
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
Argonne Collaborative Center for Energy Storage Science (ACCESS), Argonne National Laboratory, Lemont, IL 60439, USA.
Roles: Conceptualization, Supervision, Visualization, Writing - original draft, and Writing - review & editing.
Argonne Collaborative Center for Energy Storage Science (ACCESS), Argonne National Laboratory, Lemont, IL 60439, USA.
Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, IL 60439, USA.
Roles: Conceptualization and Writing - review & editing.
Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, IL 60439, USA.
Battery Science Branch, Energy Science Division, US Army Combat Capabilities Development Command (CCDC) Research Laboratory, Adelphi Laboratory Center, MD 20783, USA.
Roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.

Funding Information

US Department of Energy

Notes

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media