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INTRODUCMION

ACCEPTANCE OF the theory of evolution as the means of explaining observed
similarities and differences among organisms invites the construction of trees
of descent purporting to show evolutionary relationships. Whether such trees
are based on fossil or living specimens, they may often be criticized for having
a subjective element. The purpose of this paper is to show how suitable
evolutionary models can be constructed and applied objectively. In it we ampli-
fy and extend the methods we have given in previous communications (Ed-
wards and Cavalli-Sforza, 1963a, b, 1964, 1965; Cavalli-Sforza and Edwards,
1964, 1966; Cavalli-Sforza et al., 1964; Cavalli-Sforza, 1966).

Considering the great variety of information provided by living organisms,
it is clear that the type of data will affect both the method of treatment and
the validity of the results: the higher the correlation of data and genotype,
the greater the validity is likely to be. Information on nucleic acid and pro-
tein structure comes first in the scale of relevance and that on phenotype mea-
surements last; discrete and continuous variation demand different treatments,
and evolutionary models appropriate to both cases will therefore be required
for estimation purposes. Differences which are the result of mutation are
formally discrete, and evolution at the molecular level thus needs discontinu-
ous treatment; but even in this case the limit of observation may turn the data
into the continuous type, as happens, for instance, when the similarity in
nucleotide sequences in the nucleic acids of two organisms is measured by
hybridization techniques or when differences between closely related orga-
nisms are examined. In the latter case, the differences may be sufficiently small
to suggest that the analysis be carried out at the level of gene frequencies-
semicontinuous variables which may be treated as continuous. We shall be
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especially concerned to develop the continuous treatment, the discontinuous
one being more easily obtained, in a parallel manner.

In addition to the relevance of the data, the validity of the derived evolution-
ary tree will be strongly dependent on the correctness of the evolutionary
model used as the basis for estimation, and this will be limited, first, because
the dynamics of evolution is not fully understood; secondly, because the values
of some parameters (such as selective coefficients) are unknown, or known
with low accuracy; and, thirdly, because there are mathematical and techni-
cal limitations as to how complex the model can be.
Although data suitable for our type of evolutionary study may seem to be

largely taxonomic, it should be noted that the aim of this work is not the same
as that of taxonomy, as the word is normally understood (see Edwards and
Cavalli-Sforza, 1964); in particular, "numerical taxonomy" (Sokal and Sneath,
1963) is not primarily concerned with phylogeny, and the fact that the tech-
niques to be described here and those of numerical taxonomy both involve
the treatment of "taxonomic" data should not be allowed to mask the dif-
ferences between them, either at the logical or methodological levels.

EVOLUTION AS A BRANCHING PROCESS

Evolution can only be described in terms of the characters that are chang-
ing, and it is convenient to represent such changes in a multidimensional
character-space in which each population occupies a position determined by the
values of the characters it exhibits. In this paper, the word "population" will
be used to denote one of the group whose diversity is under study; it might
refer to a species, a race, or even a single organism.

If a time dimension, everywhere normal to the character-space, is added,
the course of evolution (were it but known) could be seen as a tree, whose
branches split as populations diverge, unite as they hybridize, and end as
they become extinct. Living populations would be represented by the inter-
cept of the tree and the "now" plane (Fig. 1). In the case of discontinuous
characters, the character-space would consist of a lattice of points, but to regard
it as continuous will often be a good enough approximation, as indicated
earlier. Data, such as gene frequencies or other measurements, will be repre-
sented by points in the space-time of Fig. 1, and the problem of tracing
evolutionary history will be that of fitting a suitable tree to these points.

It may be noted, however, that information from the past is in practice
available only for data which in other respects are less satisfactory than gene
frequencies since their genetic basis is very imperfectly known, as is the case
with osteometric data. But with gene frequencies, data are only available, in
general, for presently living populations, so that points will be restricted to
the "now" plane. With such data we may only be able to reconstruct a
projection of the tree onto the "now" plane (Fig. 1), in which case complete
information on the position of the first split will not be preserved. Reconstruc-
tion of the tree in space and time will be possible, however, if we are willing
to make hypotheses about the mode and speed of evolution.
Our genetic reasoning will be almost entirely confined to the analysis of
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FIG. 1. An evolutionary tree and its projection onto the "now" plane.

gene frequencies among present-day populations, although it is clearly pos-
sible to extend it to other cases. In particular, once methods have been set
up for estimating the course of evolution from present-day data, they can
be extended without difficulty to include data from the past. Such an ex-
tension involves no logical jump and little increase in mathematical complexity.
The proper basis for the study of evolutionary divergence will be provided

by the transformation of the space-time which makes a unit vector, in whatever
direction (normal to time) and in that part of the space which corresponds to
the amount of evolutionary change expected in unit time. Such a transformed
space-time will be homogeneous and isotropic with respect to evolutionary
progress; in some problems it may not be Euclidean, or it may not even be
possible to formulate the problem in geometrical terms, but the Euclidean
representation is the simplest possible and will suffice for the development
of the argument. The correct transformation will, of course, depend on the
evolutionary model and the type of data available, and in the case of gene
frequencies will be treated below.

THE GENETIC BASIS

Of the major evolutionary forces-mutation, migration, selection, and drift
-we shall not incorporate the first two into our model. Mutation pressure
is known to be usually very small compared with other pressures, so that its
neglect, or its confounding with the other pressures, is reasonable: We are
not here concerned with mutation in its role as the source of variation.
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Migration need not be considered at all if the evolving populations have
differentiated past the specific stage; but this will not be true in most of the
cases in which gene frequencies are useful, and its omission may be a source
of error. We can, however, justify this practice: On the one hand, small mi-
gration rates will act essentially as almost-random disturbances partially buf-
fering the variation due to random drift, so that the omission of migration of
this magnitude is only apparent; on the other hand, large migration rates
must appear only as rare accidents in a given evolutionary tree, and a "mi-
grational accident," such as the fusion, partial or whole, of two populations,
would give rise to a loop in Fig. 1. The major difficulty in extending the analy-
sis to include such loops is that they bring about an enormous increase in the
number of possible trees to be examined. If, however, one or two loops are
known, or assumed, to have taken place at given times and between given
populations, their consideration may be practicable, although it will not be
attempted in this paper.
Random genetic drift is the name given to the variation in gene frequencies

which inevitably accompanies the formation of the next generation, depending,
as it does, on a sample of genes from the former generation. Ignoring other
sources of variation, in statistical terms this corresponds to a random walk
of the gene frequencies in time. Whenever a population splits, the two branches
will independently undergo random walks which will give rise to divergence
between them, generally increasing with increasing time since branching.
The rate of the random walk will depend on the size of the population in
question (Wright's "effective breeding size") and the mating structure. The
smaller the population, the greater the random variation, and thus the faster
the random walk.
Under a suitable transformation this rate will be independent of the par-

ticular gene considered: The variance of a gene frequency p due to drift is
approximately p(1-p) (1-e-t/2N), where N is the effective size of the popu-
lation and t the time elapsed in generations (Kimura, 1955). For estimation
purposes, this can be made nearly independent of p by means of the "square
root transfonnation" p = sin20, the variance of 0 -then being approximately
(1-e-t/2Y) /4 (see Fisher, 1958). When 2N is large compared with t, this
variance reduces to ti8N nearly.

In recent papers (Cavalli-Sforza et al., 1964; Cavalli-Sforza, 1966), we have
given some reasons why we believe that random drift is likely to be more im-
portant than formerly believed in determining the variation in gene frequencies
in man, and similar considerations may be applied to other organisms.

Selection may be constant in space and time or may vary in one or the other
or both. If selection is constant in space, it gives rise to a shift in the gene fre-
quencies of all the populations studied (directional selection, Fig. 2). It
would be detected as a trend in the gene frequencies if data from the past
were available, but it is not, by definition, a cause of differentiation between
populations, and is not detectable in data solely from present-day populations.

Variable selection, however, is probably a major factor in causing divergence.
If the variation is sufficiently rapid and haphazard, Kimura's (1954) model
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FIG. 2. The same tree as in Fig. 1, but with the addition of directional selection constant
in space but not time.

of "selective drift" will be appropriate. This model gives rise to a variation
in gene frequencies which is almost indistinguishable from the effects of
random genetic drift, apart from the behavior at extreme gene frequencies
(O or 1). Thus the consequence of "selective drift" will also be a fluctuation
of gene frequencies akin to a random walk, with rate depending on the vari-
ability of the selective coefficients. The intensity of this variation will be a
property of the gene concerned. If selection is of the stabilizing kind, such as in
heterozygotic advantage, it will cause a reduction in the variance of gene
frequencies, and its effect will be more or less inextricably confounded with
that of random drift.

Prolonged periods of selection peculiar to individual populations will not
be detectable without data from the past, and no method of phylogenetic
analysis can alter the fact that any observed diversity can be explained by any
evolutionary tree, provided we are willing to postulate the necessary selection.
Our methods invoke no such specific postulates, although if other evidence
on selection in a particular population is available it should of course be taken
into account. As we shall see, there are not enough degrees of freedom to
estimate selection specific to individual populations.
To sum up, selective trends will be detectable only if data from the past

are available. Random drift will create a random walk of the gene frequencies,
to which selective drift will add, and stabilizing selection subtract, speed. If
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major and sudden shifts in gene frequency have occurred due to large selective
accidents or other bottlenecks in population development, they will be a source
of inaccuracy in the analysis, although their presence may be detectable as de-
partures from expectation indicated by the goodness of fit of the models
we have developed. The whole problem of the robustness of our methods with
respect to varying forms of selection, migration, and other departures from the
simple model, may best be studied by Monte Carlo methods, trees being gen-
erated according to specific hypotheses, and the estimated forms compared with
the known ones.

THE STATISTICAL BASIS

We have given reasons above why the variation in gene frequencies of each
population may be represented by a random walk. To keep the model as simple
as possible, it will be supposed that no population becomes extinct, that at
each split the daughter populations are both identical with their parent, and
that each population is independent of every other one. We shall now examine
the statistical assumptions underlying the methods of analysis.
We need hypotheses on the mode of splitting of populations and on the

properties of the random walks in the individual branches of the evolutionary
tree. The first type of hypothesis will affect only the form of the tree, while the
second will affect its dimensions as well, both form and dimensions requiring
to be estimated. As we shall see, the number of forms increases very fast
with the number of populations. Depending on this number, we shall either
test all possible forms or limit our analysis to a group of promising ones.
Given a particular form, the optimum tree may perhaps be estimated by

maximum likelihood, or some other method of estimation, and the choice
between forms will then depend on a comparison of their likelihood or other
appropriate criteria. The simplest model for splitting, and one which we shall
use exclusively, is that in which it occurs at random, as in a Yule process (Yule,
1924): When there are n populations each is assumed to have equal probabil-
ity, in a given time interval, of generating the (n + 1)th. On this basis the
probabilities of the different forms may be written down explicitly when n
is fairly small, and such probabilities will be used, where possible, as prior
probabilities in the estimation procedure.
The technique for enumeration is to generate the possible "topologies"

(that is, tree forms irrespective of the placings of the populations on the ter-
minal branches) for n populations from those for n - 1 by allowing each termi-
nal branch to split in turn, keeping track of the probabilities. The labeled
populations are then distributed on the terminal branches in all possible
distinct ways for each topology, each arrangement having equal probability
for a given topology, and the final probability of each form thus calculated.
This procedure will be clarified in the example to be given below. The cal-
vulation of the probabilities for large n has been considered by Harding (1967).
The properties to be assumed for the random walk depend directly on the

biological assumptions. Using the transformation of the gene frequencies given
above (which will later be generalized to the multiallelic case), we find that
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the distribution of the transformed variates will be approximately Gaussian
with variance proportional to the time elapsed, while the mean will be con-
stant in the absence of directional selection. We have already decided not to
consider individual directional selection of a prolonged nature, and directional
selection which is the same for all populations at any given time will not affect
their relative movements, as has been indicated above, and therefore need
not be considered, although it must be remembered that any inference about
the gene frequencies in an earlier population will be based on its presumed
absence. Thus the random walk of the gene frequencies may be regarded as a
Brownian-motion or Wiener process in the transformed space.

Various models of increasing complexity can be imagined which could,
under ideal conditions, be fitted in succession to the data, stopping at the low-
est level necessary for a good fit:

(1) The simplest model is one in which the Brownian motion has a con-
stant rate which is the same for all characters at all times. This represents the
case in which random drift alone determines the variation in gene frequencies,
and population size and structure are taken to be constant.

(2) The Brownian motion does not have the same rate for all characters.
A simple transformation of the scale of each character to standardize the vari-
ances will allow us to include selective drift among the evolutionary forces
considered, in addition to random drift, since selective drift causes the vari-
ances of characters to differ one from another. Stabilizing selection will be
confounded with selective drift and thus also included. As an improvement on
simply transforming the scales, the variances can themselves be estimated
simultaneously with the estimation of the tree.

(3) The Brownian motion is not constant in time. If it varied randomly,
owing to random fluctuations in population size, this could be taken into ac-
count.

(4) If nothing is known about the probability distributions of selective co-
efficients or population sizes, we may restrict the assumptions to that of the
independence of events in individual populations, thus retaining the idea of
Brownian motion due to the combined effect of random and selective drift,
but with no knowledge of local variations in its rate.
We have worked out three essentially different methods. The first is esti-

mation based on the method of maximum likelihood applied to specific models;
we have fully developed this approach for model (1) and in outline for model
(2), although, of the two, only the former will be described in this paper.
Model (3) awaits treatment by maximum likelihood, but model (4) cannot be
handled in this way owing to the lack of information on the probability dis-
tributions of selective coefficients and population sizes. Indeed, as has been
mentioned above, model (4) cannot be treated rigorously by any method.
The second method is the "method of minimum evolution" (Edwards and

Cavalli-Sforza, 1963a), which uses the intuitive idea that a plausible estimate
of the projection of the evolutionary tree onto the "now" plane is given by
that tree which invokes the minimum total amount of evolution (see Fig. 1).
The assumptions underlying this method are not too clear; it may go some
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FIG. 3. Model for the "additive" tree, showing expected branch lengths.

way toward handling model (4), but its success is probably due to the close-
ness of the solution it gives to the projection of the "maximum-likelihood"
tree. The extent of the similarity merits further investigation, and experience
with simulated trees should clarify its logical status. It certainly cannot be
justified on the grounds that evolution proceeds according to some minimum
principle, as recently suggested by Camin and Sokal (1965) when they applied
it to the discrete case. Its success with discrete data (see also Zuckerkandl,
1965) must also be attributed to its closeness to the solution which a proper
probability model would give.
Our third method may be called that of the "additive tree" (Cavalli-Sforza

and Edwards, 1964). It assumes that distances along the tree are additive,
thus implying independence of evolution in all the branches. For example,
in Fig. 3, the evolutionary distance between population A and the last common
ancestor of populations A and B is called x, and that between population B
and the same ancestor, y; it is then assumed that the observed distance between
A and B, dAB, is an estimate of x+y. For this tree we can thus set up six
equations:

dAB =x + y + "error"
dAC= x + z + v + "error"
dAD = x + z + w + "error"
dBC = y + z + v + "error"
dBD= y + z + w + "error"

and dCD = v + w + "error"

The "error" terms represent the departures of the observed from the expected
distances, and a method of estimation of v, w, x, y, and z is to minimize the
sum of the squared errors-the method of least squares.
There is no trunk to the tree of Fig. 3 because it is impossible to obtain

information on the first split, as in the method of minimum evolution, and the
branch corresponding to z is therefore represented by a rounded line. The
tree obtained in this way cannot be represented in the character space, as
may be seen by considering the case of three populations, each a distance d
from the other. The three-branched least-squares tree (which has zero residual
sum of squares) has branches each of length d/2, which do not meet if they
are supposed to extend inward from the vertices of an equilateral triangle of
side d. They could be made to meet by imposing the appropriate restriction,
but this would upset the simplicity of the estimation procedure and has not
been tried. The method does not, therefore, estimate the positions of nodes,
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either in time or space; but it has the advantage that it can be applied to dis-
tances which cannot be represented in a metric space. Apart from the assump-
tion of independence in the separate branches, the justification of this method
seems to be much the same as that of the method of minimum evolution, con-
sidered above.

DETAILS OF THE METHODOLOGY

Number of Tree Forms

It has been noted above that the number of tree forms increases very rap-
idly with increasing n, the number of populations. The number of forms is in
fact 357*. .(2n-3) = (2n-3)!/[2n-2(n-2)!] when the first split can be
recognized, because such a tree has 2n-1 branches (including the trunk) so
that, in progressing from a tree with n-1 populations to one with n, the new
branch may be inserted in any one of 2(n-1)-1 = 2n-3 places. At n = 10
this number is 34,459,425. When there is no information about the first split,
there is no trunk, and the number of forms is reduced to 357 * (2n -5),
giving 2,027,025 for n = 10.

It is interesting to note, in passing, that the number of "topologies" (tree
forms irrespective of the placings of the populations on the terminal branches)
is given, for trees with trunks, by a., where

an= alan 1+ a2an 2+ + a(n -l1)a/2 + 1 /2 (n odd)
and an = alan 1+ a2an 2 + +1/½an/2(an/2 + 1) (n even)
This solution is derived by considering the number of ways a tree can be
constructed by uniting smaller trees at their trunks, and follows Polya (1937);
similar problems had been considered by Cayley (1857, 1859) in connection
with the number of ways brackets can be inserted in an algebraic expression.
We find a1o = 98.
With such large numbers, it is thus important, when there are more than

7 or 8 populations, to have methods of generating promising forms for esti-
mation. We use several somewhat intuitive methods (in the hope that they
corroborate each other), and then use the forms so found, and similar ones,
as a basis for metric estimation, the final choice being according to whatever
criterion, such as likelihood, is appropriate.

Choice of Promising Forms
Intuitively it is reasonable to suppose that present-day populations near to

each other in the character space should be clustered together on the same
part of the evolutionary tree, so that methods of clustering points should give
some insight into the most promising form. Among the methods used, one
(Edwards and Cavalli-Sforza, 1963b, 1965; see also Ward, 1963) divides the
populations into the two clusters for which the between-clusters sum of squares
is a maximum, and each cluster is then similarly treated, and so on until a
complete breakdown of the original cluster has been made.
Apart from this method, we have used two others especially well-suited to

the application of the method of minimum evolution. The first is based on a
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theorem due to Prim (1957), who showed that when branches are constrained
to meet only at populations, the net of shortest length may be found by listing
all the pairwise distances between populations in order of ascending magni-
tude and allocating branches successively to these distances, omitting any
branch which completes a loop. The resulting net is the shortest net con-
ditional on each node coinciding with one of the populations; removing the
constraint, the net may be shortened step by step, as described below. The
second method uses the same iterative procedure but starting from the case
in which all the nodes coincide at a single point so chosen that the total length
is then a minimum.

In the absence of a means of maximizing likelihood over different tree forms,
these methods have shown promise of leading to near-optimal forms. The last
two do not, however, give any indication of the position of the first split, so
that several positions must be tried.

Transformation of Data

We will concentrate on populations of nonhaploid organisms, whose evolu-
tion is suitably studied by way of continuous data, be they gene frequencies
or metrical characters.
We have mentioned the usefulness of the "square-root" transformation of

gene frequencies, whereby the variances are standardized irrespective of the
frequencies themselves (at least in the interval .05 to .95). It was pointed out
by Fisher (personal communication; see also Cavalli-Sforza and Conterio,
1960) that this transformation could be generalized to multiallelic loci, as
follows.

If each of m alleles at the locus is allotted a Cartesian axis in a Euclidean
space of m dimensions, and a population with gene frequencies PI, p2,
pm is represented by the vector (Vpl Vp2.... Vpm), then the space of possible
populations is the i/2mth part of the surface of the unit hypersphere in which
all the coordinates are non-negative, the population being represented by a
point unit distance from the origin with direction cosines given by the above
vector (Fig. 4). It follows that the angular distance between two populations
with gene frequencies pi, p2, .p.pm and pi', P2', ..., pm' is given by 0 where

m
CosO= E pip.'

Since 0 = 7r/2 corresponds to a complete gene substitution, it is convenient
to work in terms of 20/1, where 0 is in radians, for the unit distance is then
one gene substitution.

In this representation a population may be thought of as pursuing a ran-
dom walk in the curved space. Since this space is finite, with known bounds,
the Gaussian approximation to the gene frequency distribution will only hold if
the variance is sufficiently small and the population sufficiently far removed
from an edge of the space for edge effects to be neglected. The method of
maximum likelihood could ideally now be applied to a model based on this
transformation of the data, the log-likelihoods being summed over loci, but it
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Fic. 4. Representation of a population, with gene frequencies Pi, P2, P3 at a single tri-
allelic locus, on the octant of a sphere.

turns out to be intractable owing to the curved space and difficulties with the
coordinate system, so that it is necessary to approximate the curved space in
the region of the populations by a Euclidean space of (m-1) dimensions by
means of a projection of one onto the other. An orthogonal projection onto the
hyperplane tangent to the hypersphere at the centroid of the populations
should suffice, although in the present work we have simply used, as the
distance between two populations an arc 20/7r apart, the length of the chord
joining them, which is (2V-21-)/r)1-cos 0. Thus the m-dimensional Euclidean
space in which the hypersphere is embedded has itself been employed.
These Euclidean spaces for the separate loci (assumed unlinked) may then

be combined, distances being given by Pythagoras's theorem in many dimen-
sions, so that the square of the distance between two populations is given by
the sum of the squared distances for each locus. In this way the data are rep-
resented in a Euclidean space, the scale of which is one unit per gene sub-
stitution.
Another type of continuous data of some interest is that in which measure-

ments can only be made directly on the pairwise distances between populations.
Such is the case, for instance, when "immunological" distances between popu-
lations are investigated by serological methods or when differences in nucleo-
tide sequences are estimated using hybridization procedures with nucleic acids.
In these cases, data consist of a triangular matrix of the pairwise distances
between populations, which is also the form to which multilocus gene fre-
quency data have been reduced by the methods described above. But whereas
in the latter case the erection of a Cartesian coordinate system in Euclidean
space by repeated applications of Pythagoras's theorem is bound to succeed,
in the former case it will often fail, the method then generating com-

243



PHYLOGENETIC ANALYSIS

plex numbers. But even if a nonlinear scale transformation allowing Euclidean
representation cannot be found, the procedures for cluster analysis and for
finding an "additive tree" by least squares may still be applied.
One advantageous by-product of generating coordinates from the pairwise

distances is that the maximum number of dimensions required is one less than
the number of populations, however many characters (and hence dimensions)
there were originally.
The case of ordinary metrical characters has been treated only to a very

limited extent because of the difficulties in interpreting their genetic basis.
We considered them when analyzing anthropometric data in one of the earlier
papers (Cavalli-Sforza and Edwards, 1964), but the results were not very
encouraging. It seems that the best procedure is to transform the original
characters into a set of uncorrelated standardized variables, using the within-
populations dispersion matrix (see, for example, Rao, 1952). The lack of the
complete matrix for the data just mentioned must have contributed to the un-
satisfactory nature of the solution.

Estimation Based on Maximum Likelihood

In Euclidean space of p dimensions, the probability density a distance d from
an original population after a time t has elapsed is

(1/urV27rt)P exp( -d2/2ta2)

owing to the Gaussian nature of the random walk, where (r2 is the variance
per unit time. The log-likelihood of a branch of length d and interval t is
therefore

-(d2/2to2 + 32 p log 2ta2 +1 p log7r)

If we write T for 2to-2 (time and variance being confounded in their product,
as is to be expected), omit the constant, and change the sign, this becomes

d2fT + % p log T.

Let xir be the rth spatial coordinate of the ith node (or population) and t,
its time coordinate, measured backwards from the "now" plane. For the branch
joining nodes i and j (tj > ti) the above expression then becomes

-(Xjr Xir )2/ (tj-t) + 32p log (tj-ti) (1)

If we sum over all the branches [denoted by (ij)], the quantity to be mini-
mized is

L = X [S (Xjr-Xir)21(tti)] + % p X log(tj-ti) (2)
(ij) r (ij)

If /, k, and 1 are the three nodes (or, in the case of k and 1, possibly popula-
tions) connected by single branches to node i ( tj > t > tk,tl), then

1/2 0 L = (xir- Xj)/(tj -t) + (Xir - Xkr)/(ti - tk) +
0 Xir

(xi, - Xlr)/(tj - tl) = 0
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Each node yields a similar equation linear in the x.r, the net result being a
system of linear equations which enables the rth spatial coordinates of the
nodes to be expressed in terms of the rth spatial coordinates of the popu-
lations and the time coordinates of the nodes, by inverting a matrix
which is the same for each dimension. Assuming initial values for the time
coordinates, the numerical values thus found can be inserted in the first and
second partial derivatives of L with respect to the t's [these will not be quoted
explicitly, but may be immediately written down from (2) ], giving the scores
and the information matrix. Corrections to the t's are found in the usual way,
and the cycle is repeated. By means of this reduction of the likelihood equa-
tions the order of the information matrix shrinks from (n-i)(p+i) to (n-1).

In order to begin iteration, initial estimates of the t's are required, and these
may be found from cluster analysis. Considering two populations at time T=O
a distance d apart, the maximum-likelihood estimate of the time coordinate
of the subtending node is d2/2p, while the variance of the two-population
cluster is d2/4. Putting the time coordinate of the subtending node equal to
2/p times the variance of the cluster, of however many populations, thus pro-
vides a rough estimate.

It may be noted that of the n(p+l) original degrees of freedom
(n-1) (p +1-) are used in estimating the parameters, leaving (p + 1). If it is
not assumed that the variance of the random walks is the same in each direc-
tion, (p-1) relative variances must also be estimated, leaving two degrees of
freedom for a goodness-of-fit test. There are not sufficient degrees of freedom
to estimate covariances as well, although these will be small if the original data
have been transformed into uncorrelated variables using the between-popula-
tions dispersion matrix.

Unfortunately, except in the very simplest cases, this straightforward appli-
cation of the method of maximum likelihood leads into difficulties due to the
fact that the likelihood surface contains singularities, as may be seen from the
following example (Cavalli-Sforza and Edwards, 1966).

Since the log-likelihood of the tree is found by summing the log-likelihoods
of the individual branches, each node should, in the final solution, be in the
maximum-likelihood position with respect to the three adjacent nodes if these
are regarded as fixed. In particular, given the positions and times of the second
and third splits, those of the first should be determinable. Let us therefore
consider the simple case of the determination of the origin of a Brownian
motion process when we have observed just two different populations: at time
t1 population 1 was at x1, and at time to population 2 was at x2. Let the origin
of the process, which we are required to estimate, be at (X,T). The quantity
to be minimized is, from equation (2) above,

L= (X -x1)2/(T - t,) + (X - x2)2/(T -t2) +
l/21og(T - ti) + l/21og(T - t2,) (4)

This surface can be plotted for varying X and T, but it is already obvious that
it contains an unfortunate characteristic. Suppose t1 > t2 (so that it is earlier
in time, which, it may be remembered, is being measured backwards), and
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suppose that we trace the path X-xl = T-t1 along the surface toward
(x1,t1); then the first term in L will tend to zero, the second will tend to the
constant (xi-x2)2/(tl-t2), but the third will become indefinitely large and
negative as T approaches t1, although the fourth will tend to 1/2l0g(t1-t2).
Thus, provided the two observations were not made simultaneously, in which
case t1 = t2, the negative log-likelihood can be made as large and negative as
we please, and hence the log-likelihood as large as we please, simply by letting
the origin approach the first observation along a certain path; the surface con-
tains, in fact, a singularity at the point (x1, t1), and any iterative procedure,
unless it is started near a well-behaved peak elsewhere in the surface, will
lead to the coincidence of the origin with the first observation. It is conver-
gence to such singularities which has led to the trivial solutions obtained when
studying complete trees. Needless to say, such solutions are intuitively unac-
ceptable, although this is not the place to consider in detail the problems of
inference which they expose (see Edwards, 1966b). Short of portraying the
entire likelihood surface, which is impossible owing to the number of param-
eters involved, there is no fully satisfactory solution.

However, we have developed another approach which seems to us to be
moderately satisfactory. Recalling that, given the time coordinates, the spatial
coordinates of the nodes can be found by maximum likelihood without diffi-
culty, the problem can be solved by finding the time coordinates by another
method. One such method has already been given above, but it was intended
only as an initial approximation. We now propose to fit, according to the least-
squares criterion, the observed length squared of each branch to its expected
squared length derived from the interval between its ends. On the Gaussian
model, this expected squared length is easily seen to be the interval itself.
We therefore minimize, in the notation of equations (1) to (3),

S = E [E; (Xjr - X,,)2 - (tj - to)]2 (5)

with respect to the t., the time coordinates of the nodes. Differentiating with
respect to ti, we have

OS
1/2 = (xjr - Xjr)2 - (Xir - Xr)2

a tj r r

X (Xr- X1r)2 + 3 ti-tj - tk - tl = ° (6)

Each node yields a similar equation linear in the t., enabling them to be ex-
pressed in terms of the x.. by inverting a matrix. The values thus obtained are
used in the method of maximum likelihood to generate new spatial coordinates
for the nodes [equation (3) ], and the cycle repeated until convergence is
attained. The procedure amounts to the iterative solution of two sets of equa-
tions exemplified by (3) and (6) and is a generalization of that proposed by
Cavalli-Sforza and Edwards (1966) to solve the two-population example con-
sidered earlier.
Having had to invoke the method of least-squares for reasons of expediency,

it is necessary to defend the decision not to solve the problem entirely by this
method (maximizing S with respect to the spatial as well as the time coor-
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dinates of the nodes), but rather to rely on a hybrid between least-squares
and maximum-likelihood. We retain the method of maximum likelihood be-
cause:

(1) We prefer it as a method of estimation where it does not break down.
(2) It is more tractable in the present case, as may be seen by differenti-

ating equation (5) with respect to the x...
(3) Likelihood provides a more useful criterion of acceptability than the

residual sum of squares, as it may be directly compounded with prior proba-
bilities.

Although it is very probable, it remains to be shown formally that the least-
squares solution converges to the local maximum of the likelihood in well-
behaved examples where the singularities may be discarded, and it will be
worthwhile to try the full maximum-likelihood procedure using the estimates
obtained by the above procedure as starting values.

It has been pointed out to us by D. G. Kendall and D. F. Kerridge (separate
personal communications) that, in writing down the likelihood of a tree, we
have omitted the contribution due to the "Poisson" nature of the Yule process.
If we knew that n, and only n, populations could have been produced by the
process, then the likelihood surface for the times of the splits would indeed be
uniform, as we have supposed. But this is not really our model: in fact, by
using a Yule process, we admit the possibility that numbers other than n could
have been generated on the same model.
The likelihood surface, conditional on n, is then easily seen to be propor-

tional to e- 1", where Vti is the sum of the times of the nodes and X is the
rate of the process. The question arises, however, of whether even this is the
appropriate model, for we have not in fact observed a tree with exactly n
populations, but rather we have chosen to observe n from a tree which may
have had more. The likelihood surface for the nodes of a tree with n popula-
tions which have been chosen at random from a randomly generated tree
with m (m m- n) populations appears to be unknown. It may even be uniform.

However, even the use of the likelihood e-XTti would not affect our argu-
ment, for it would weight the likelihood in favor of still shorter times for the
branch lengths, thus aggravating rather than alleviating the problem of the
singularities. Recourse to the least-squares modification would still be neces-
sary, and, since the likelihood is only used to derive the spatial coordinates for
given times, the addition of the quantity -Xlti to the log-likelihood would not
affect the estimates. It would, of course, affect the likelihood comparisons of
different tree forms, but since we do not know X, and cannot estimate it
by maximum likelihood, and since we are in any case not certain of the model,
we have omitted it in the following example.

It should be noted that, in the foregoing argument, if the ti are in the units
of 2or2 according to our standard notation, X is in units of 1/2o-2, so that it is
the expression X/2o-2 that is really relevant.

Estimation by the Method of Minimum Evolution
The method of minimum evolution (Edwards and Cavalli-Sforza, 1963a)

uses the intuitive idea that a plausible estimate of the projection of the evolu-
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tionary tree onto the "now" plane is given by that tree uniting all the popula-
tions which invokes the minimum total amount of evolution. With suitably
transformed scales, a unit quantity of evolution is a unit vector in this space,
and therefore the required tree is that with the minimum total length possible.
As has been mentioned, the position of the first split is undefined in the pro-
jection, and, of course, the method of minimum evolution gives no information
on the time coordinates of the nodes.
The problem of finding the minimum-length tree may be referred to as the

Steiner problem in p dimensions (see Courant and Robbins, 1960), and no
algorithm for its general solution is available, although various things are
known; for example, it may be proved that, in any number of dimensions, each
node must be the junction of just three branches mutually inclined at 1200,
unless the node coincides with a population. It follows that, for a given tree
form, a computer program may be written which will converge to the Steiner
tree for that form, because if any two intersecting branches meet at an angle
of less than 1200 they may be replaced by a Y-shaped "Steiner triplet" whose
interbranch angles are 120°, the total length thus being shortened. Unless the
tree form is close to the optimum, however, many branches will converge to
zero length, but this fact may be used to give an indication of how the form can
be improved. A Steiner tree with no branches of zero length (except those
generated by nodes coinciding with populations) may be called "stable," but
there will usually be many stable nets for a given configuration of populations,
so that stability itself is no guarantee that the minimum net has been found,
and, as with other methods, many different forms must be investigated.
As indicated earlier, we can try the form derived from Prim's network

by calculating all the interbranch angles and replacing the two branches sub-
tending the smallest angle by the Steiner triplet, and so on, treating the angles
in order of increasing size. Alternatively, we can proceed in the same way
starting with all the nodes coinciding at a central point so chosen that the total
length is then a minimum.

Since the method seeks the tree of minimum length, this length is the cri-
terion of acceptability, akin to likelihood on the full model, but the relation
between these two quantities needs further study. A more detailed account of
these methods for solving Steiner's problem in p dimensions is given by
Edwards (1967).
Estimation on the Additive Tree Model

If D is the column vector of the 1/2n(n-1) pairwise distances between popu-
lations, W the column vector of the 2n-2 branch lengths to be estimated, and
B the 1/2n(n-1) x (2n-2) matrix specifying the form of the tree, in which the
element in the rth row and cth column is 1 if the path uniting the rth pair of
populations includes the cth branch, and 0 otherwise, then the least-squares

A

estimate of W is given by W= (B*B)-lB*D, where B* is the transpose of B.
A A

Thus the corresponding expected value of D is D = BW, the residual sum
A

of squares is D* (D- D), and it follows that the variance-covariance matrix
of W is
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A
D* (D - D) (B*B) -l/[½/2(n - 1) (n -4)]

If the errors in the observed pairwise distances are not independently dis-
tributed or have unequal variances, the corresponding variance-covariance ma-
trix should be incorporated in the estimation procedure, as described in
Kendall and Stuart (1961), but this improvement has not been used in the
present work.

Corresponding to a branch of zero length in the method of minimum evo-
lution, a branch of negative length in the least-squares method (there is no
restriction against negative branches appearing) indicates the need to change
the tree form. Indeed, it is not clear that a tree with no negative branches may
always be found. The residual sum of squares is the criterion for choosing be-
tween trees of different form, although the introduction of prior probabilities
seems to be impossible.

In comparing branch lengths found by the "additive-tree" and "minimum-
evolution" methods, it should be noted that not only does the former method
give trees unrepresentable in the character space, as mentioned earlier, but
also that the longer branches are likely to be considerably shorter than their
"minimum-evolution" counterparts.

AN EXAMPLE WITH FOUR POPULATIONS

In order to illustrate the use of our methods in detail, in this section we pre-
sent an exhaustive treatment of a case with four populations.
The data consist of the gene frequencies for the five blood-group systems

A1A2BO, Rh (four sera), MNSs, Fy, and Di, for samples from four human
populations: Eskimo, Bantu, English, and Korean. These data, which are given
in Table 1, are part of a larger collection that we have used in previous com-
munications and are drawn from the following sources: Eskimo, Chown and
Lewis (1959); Bantu, quoted by Zoutendyk et al. (1955), with the subdivision
of group A provided by A. E. Mourant (personal communication) and Dia
presumed absent; English, Race and Sanger (1959); Korean, Won et al.
(1960), with subdivision of MN by S and s according to the Japanese pro-
portions reported by Lewis et al. (1957). No special significance should be at-
tached to this choice of samples, which was made largely for convenience.
From these data, the values of 20/r for the pairwise distances are calcu-

lated for each locus and are given in Table 2. Thence the pairwise chords are
found [(2V/2/r) \/1-cos 0 ], and the over-all pairwise distances computed by
taking the square root of the squared distances summed over loci, for each
pair (Table 2). Finally (as far as the preparation of the data is concerned) a
coordinate system, relative to arbitrary Cartesian axes, is erected for the four
points, the coordinates being given in Table 3. The consequent arrangement of
the points is shown in Fig. 5.

Applying the appropriate formulas, we find that there are 5 x 3 = 15 pos-
sible rooted tree forms, and 3 possible forms without a root; these are listed in
Table 4, together with their prior probabilities, which have been found by
direct enumeration. In order to demonstrate the normal course of the analysis,
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TABLE 1. BLOOD-GROUP GENE FREQUENCIES CHARACTERIZING FOUR
POPULATIONS

Populations

Alleles

A1
A2
B
0

CDE
CDe
cDE
cDe
Cde
cdE
cde
MS
Ms
NS
Ns
Fya

Fyb

Dia
Dib

Eskimo

.2914

.0

.0316

.6770

.0

.4985

.4906

.0109

.0

.0

.0

.1719

.6703

.0

.1578

.7500

.2500

.0
1.0

Bantu

.1034

.0866

.1200

.6900

.0

.1400

.0100

.6000

.0200

.0

.2300

.0900

.4800

.0400

.3900

.0600

.9400

.0
1.0

English

.2090

.0696

.0612

.6602

.0024

.4205

.1411

.0257

.0098

.0119

.3886

.2377

.3048

.0703

.3872

.4213

.5787

.0
1.0

Korean

.2208

.0

.2069

.5723

.0082

.6197

.3148

.0573

.0

.0

.0

.0245

.4615

.0646

.4494

.9950

.0050

.0313

.9687

TABLE 2. GENE SUBSTITUTIONS SEPARATING FOUR POPULATIONS, MEASURED
ALONG THE ARC (20/kn) AND ALONG THE CHORD

[(2V 2/i)V 1 - cos 0]
Loci

Populations Measure A1A2BO Rh MNSs Fy Di Combined

.2585

.2568
.7274
.6886

.2222

.2211
.5091
.4957

.0 -

.0 .9136

.1822 .4718 .2852 .2170 .0

.1816 .4611 .2828 .2159 .0 .6101

.1874 .1461 .3050 .2883 .1132

.1868 .1457 .3021 .2858 .1131

.1094 .4907 .1554 .2922 .0

.1092 .4787 .1549 .2896 .0

.4918

.5907

.2270 .6398 .1024 .7974 .1132 -

.22.58 .6132 .1023 .6871 .1131 1.0036

.2178 .4465 .2293 .5052 .1132 -

.2167 .4374 .2280 .4921 .1131 .7384

we first group the populations by cluster analysis (Table 5) and we also find
the Prim network (Fig. 5, in which the interbranch angles are also given).
Cluster analysis leads to form 15, in which the initial split is into Eskimo and
Korean on the one branch and Bantu and English on the other, while, on an

Eskimo/
Bantu

Eskimo/
English

Eskimo/
Korean

Bantu/
English

Bantu/
Korean

English/
Korean

arc
chord

arc
chord

arc
chord

arc
chord

arc
chord

arc
chord
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TABLE 3. COORDINATES OF THE FOUR POPULATIONS
Coordinates

Population x y z

Eskinmo .0 .0 .0
Bantu .9136 .0 .0
English .4695 .3895 .0
Korean .0379 .0428 .4885

Z

BANTU
ESKIMO

ENGLISH

FIG. 5. Representation of the four populations in Euclidean space, showing the Prim
network.

examination of the angles, the Prim network suggests the same form but un-
rooted (3'). The second best cluster analysis leads to form 6.
The "additive tree" and "minimum evolution" results for the three possible

unrooted forms are given in Table 6, from which it will be seen that form 3' is,
in both instances, again the best. Table 7 gives the dimensions of form 3' on the
two methods and on the maximum-likelihood method (see below); the other
two forms lead to zero (minimum evolution) or negative (additive tree) values
for the central branch, thus indicating the need for a change of form. The node
coordinates for the "minimum-evolution" solution will be found in parentheses
in Table 8.
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TABLE 4. POSSIBLE TREE FORMS WITH FOUR POPULATIONS

(a) Rooted

1 Esk Ban
2 Esk Ban
3 Esk Eng
4 Esk Eng
5 Esk Kor
6 Esk Kor
7 Ban Eng

8 Ban Eng
9 Ban Kor
10 Ban Kor
11 Eng Kor
12 Eng Kor

Eng
Kor
Ban
Kor
Ban
Eng
Esk
Kor
Esk
Eng
Esk
Ban

Kor
Eng
Kor
Ban
Eng
Ban
Kor
Esk
Eng
Esk
Ban
Esk

II

13 Esk Ban Eng Kor
14 Esk Eng Ban Kor
15 Esk Kor Ban Eng

(Each with probability 1/9)

(b) Unrooted

1' Esk Ban Eng Kor
2' Esk Eng Ban Kor
3' Esk Kor Ban Eng

(Each with probability 1/3)

(Each with probability 1/18)

TABLE 5. BEST TREE FOUND BY CLUSTER ANALYSIS, SHOWING SUMS OF
SQUARES REMOVED BY EACH SPLIT

[ Eskimo
.1210

.5421 { . Korean
.1745 { Bantu
.1745

English
Total sum of squares = .8375.

TABLE 6. "ADDiTIVE TREE" AND "MINIMUM EVOLUTION" RESULTS
FOR THE UNROOTED TREE FORMS

Residual sum of squares Total amount of evolution
Form ("additive tree") ("minimum evolution")

1 .07054 1.7998
2' .08105 1.7850
3' .00037 1.6173

If we apply the modified maximum-likelihood method, it transpires that only
two of the rooted tree forms, numbers 6 and 15, give convergent results, the
likelihood of 15 being 3.826 times that of 6. With the remaining thirteen forms,
branches of negative time interval are generated. Since form 15 has twice the
prior probability of form 6, the final likelihood ratio in its favor is 7.652. Its
node coordinates are given in Table 8, and its spatial dimensions in Table 7.
Figure 6 shows its projection in the "now" space, together with the "minimum-
evolution" tree. Table 9 gives the node coordinates of the second best "maxi-
mum-likelihood" tree, of form 6.
We thus find that all the methods tried lead us to form 15 (or its unrooted

equivalent, 3'), and the dimensions of this tree given by the modified method
of maximum likelihood represent, we believe, the best estimates of the evolu-
tionary paths on the given data.
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TABLE 7. DIMENSIONS OF THE BEST TREE (FORM 3') ACCORDING
TO THE THREE METHODS

Length in gene substitutions

Branch "Additive tree" "Minimum evolution" "Maximum likelihood"

Eskimo .1913 .1998 .2451
Korean .3005 .3605 .2946
Bantu .4375 .5169 .4895
English .1532 .1270 .2720
central .2752 .4132 .3588

TOTAL 1.6173 1.6600

"Central" refers to the branch uniting the two splits.
*In comparing these lengths it must be remembered that the "additive tree" cannot be

represented in the character space. The comparative shortness of the "central" branch
was anticipated in the text.

TABLE 8. NODE COORDINATES FOR THE "MAxIMuM-LIKELIHOOD" AND
"MINIMUM-EVOLUTION" TREES OF FORM 15 AND 3'
("Minimum-evolution" coordinates are in parentheses.)

Node x y z Time

Top .4238 .1258 .0972 .1698

Esk/Kor .1229 .0482 .2065 .0694
(.1221) (.0747) (.1394)

Ban/Eng .4506 .1327 .0875 .1609
(.4710) (.2656) (.0276)

For the present we are not prepared to quote standard deviations for our
estimates because of the complexity introduced by the number of possible
forms. The problem is probably best approached by a numerical examination
of the consequences of small displacements of the populations in the character
space.

DISCUSSION

The introduction of automatic computing methods in phylogenetic analysis
has the advantage of objectivity, but this is not the only, and probably not
even the greatest, advantage. An automatic procedure needs a clearly formu-
lated set of rules, and discussion of the acceptability of the rules requires a
knowledge of the aims. Clarification of thought is thus likely to result and may
be more important than the improvement in precision and speed brought
about by the automatic procedure. In particular, by the introduction of a spe-
cific model, the limitations of the method will be clear for all to see.
The reconstruction of evolutionary trees is a type of inductive inference

which is likely to be especially weak. Relevant evidence comes from many
sources and is often conflicting and difficult to weigh; the sheer mass of evi-
dence may be a bar to its interpretation. Under these conditions, an objective
method capable, in principle, of assaying the strength of the evidence, of
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Off ~~~ORIGIN BANTU
ESKIMO (a\

\ evolution M w

-0 ENGLISH

FIG. 6. The "minimum-evolution" tree compared with the projection of the "maximum-
likelihood" tree into the "now" space.

TABLE 9. NODE COORDINATES FOR THE SECOND BEST "MAxIMuM-LIKELMOOD"
TREE, OF FORM 6

Node x v z Time

Top (Ban) .4325 .0971 .1040 .2117
Eng .2940 .1251 .1339 .1508
Esk/Kor .2620 .1130 .1467 .1415

testing the goodness of fit of specific models, and of using various kinds of
data, should be considered a step forward.

Ideally, before the use of any such method can be recommended with com-
plete confidence, we would like to be able to state that it gives a satisfactory
answer in well-known test cases. The most hopeful sources of data at the mo-
ment are gene frequency data in cattle and man, and nucleic acid hybridization
and protein structure analyses. In this and previous publications we have used
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gene frequency data in man both on account of its suitability and its availa-
bility. Unfortunately, however, there is not much guidance from other sources
as to the recent evolutionary history of man, and the material is thus not very
suitable for testing our methods. But we have been encouraged by the reason-
ableness of results obtained on very modest amounts of data, as, for example,
the form of the tree found for fifteen human populations using the same type of
data as we have used in the present paper (Edwards and Cavalli-Sforza, 1964;
Cavalli-Sforza et al., 1964). In plotting the tree on a map of the world, the
actual branch lengths were unavoidably, and admittedly, distorted, and only
the form was undisturbed.

It is therefore clear that a criticism leveled against this map-that the Maoris
seem to "stem phylogenetically from the natives of Alaska" (Simpson, 1965)-
is not valid. The branch leading to the Maoris could equally well have been
drawn in many other ways without disturbing the basic form, and it should also
be remembered that other forms with somewhat similar branching sequences
were not much less likely than the one shown on the map: forms, as well as
dimensions, are subject to statistical error. But given that only a minute frac-
tion of the available data was used and that no geographical information was
incorporated in the estimation procedure, the result seems encouraging.
Among the limitations of our model that have been considered in previous

sections, inability to handle hybridization, convergence, and parallelism (that is,
the similar selective response to similar environmental stimuli in different popu-
lations) needs particular consideration. While hybridization gives rise to loops
in the tree, which might possibly be detected, convergence and parallelism
cause a breakdown of the assumption that evolution proceeds independently on
each branch of the tree, an assumption that is basic to our model (excepting
the case of directional selection constant in space: see Fig. 2), and probably
basic to any tractable model for evolutionary divergence. In the absence of
significant loops, the breakdown of this assumption is likely to be the major
cause of poor fits.

However, it seems unlikely that this breakdown can occur in such a way as
to cause extensive similarity at the genotypic level between organisms that
have diverged greatly in the past and have since evolved in a common environ-
ment. Some convergence may be detected at a few loci, in which case a choice
of loci might have to be exercised. Unfortunately, so little is known about
the selective pattern of most genes that such a choice will be difficult, if not
dangerous, most of the time. In man, the same or similar environments, like
malaria, can bring about different selective responses which depend on the
genetic background of the exposed population, on its history, and on other en-
vironmental factors. In the case of malaria quite a variety of genetic adapta-
tions have been observed, thalassemia, G6PD, and hemoglobins S and E being
the best known examples.
To sum up, we cannot do better than repeat an earlier warning, that "pro-

longed periods of selection peculiar to individual populations will not be
detectable without data from the past [or other information about the selec-
tive situation], and no method of phylogenetic analysis can alter the fact that
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any observed diversity can be explained by any evolutionary tree provided we
are willing to postulate the necessary selection." But there is reason to believe
that, where enough different genes are considered, the effects of truly con-
vergent genes will be swamped by the larger number of genes behaving in-
dependently in different populations.

In the example we have used, the best estimate for the time of the first
split was 0.17 units of 2to-2 ago, where t is the number of generations and cr2
the variance per generation. Putting 432 = 1/8N, the variance due solely to
drift in a population of effective size N, t = 0.68 N generations. Such estimates
should serve not only to increase our knowledge of evolutionary history, but
also to help us to understand the evolutionary process. For example, if inde-
pendent evidence corroborates an estimate of the time taken, the model is to
some extent vindicated, particularly if it can be shown that the assumed popu-
lation sizes are sufficient to have maintained the observed numbers of alleles.

SUMMARY

An attempt has been made to establish a procedure for estimating the course
taken by evolution. The model used is that of a branching random walk, which
is strictly valid only when the causes of divergence between populations are
random genetic drift and variable selection. With suitable transformations of
the data, evolution can then be considered as a branching Brownian-motion
process. To keep the model as simple as possible, it was supposed that no
population becomes extinct and that each population splits, at a random time,
into two daughter populations each identical to its parent. The problem was to
estimate the form and dimensions of the most probable tree uniting the pres-
ently living populations.
The ideal method of estimation, maximum likelihood, proved difficult and

had to be replaced in part by alternative procedures. In addition to describing
the available procedures in detail, a simple example is worked out fully, and
the logical content and limitations of the methods are considered in depth.
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