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To pATE, the digital computer has been used in genetics primarily as a device
for the solution of analytically intractable equations and the analysis of
large volumes of data. Occasionally, however, it has been the means for
the development of genetically testable population models, particularly those
of a multilocus nature. The use of the computer in this latter, more funda-
mental manner has been referred to as “computer genetics” and briefly
involves the simulation of a system of interest using Monte Carlo tech-
niques and a large digital machine. The investigator, through the use of
input parameters, asks the system appropriate questions to determine how it
will behave under particular conditions. The approach is in many respects
analogous to that used by the laboratory experimentalist, and, like the latter,
the computer geneticist is also subject to surprises by his results, especially
if the model is sufficiently complex.

It is the purpose of this presentation to describe both a deterministic
and a stochastic model of a particular genetic system, namely, the Rh locus
in man, and more particularly the maintenance of the Rh polymorphism.
Here, unlike most of the other polymorphic systems, there is some indication
that selection may be operating through the heterozygous offspring of Rh-
negative mothers who die due to hemolytic disease of the newborn. This
leads to a system of selection against the heterozygote, which, according to
the generally accepted theory, presents an unstable situation wherein the
allele in lowest frequency must be ultimately eliminated, barring of course
recurrent mutation or counter selection. The implication of this latter point
is that the Rh polymorphism is at best transitory. It is, however, with us and
does not appear to be heading toward fixation.

A number of mechanisms have been advanced to account for the main-
tenance of the polymorphism at this locus. Among these is reproductive com-
pensation. That is to say, it has been suggested that familial replacement of
offspring who have died due to hemolytic disease of the newborn may stabilize
the gene frequency. This effect has been considered at the theoretical level
by Spencer (1947) and Li (1953), and Glass (1950) has presented evidence
which he believed supported this point of view. Reproductive compensation,
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as indicated by this work, can lead to a situation wherein the Rh negative
alleles have a selective advantage, even when these alleles are in lower
frequency than their Rh-positive counterparts.

In this discussion, an alternate form of the compensation equatxon will
be presented and employed in both the deterministic and stochastic models.
Input parameters will then be chosen to facilitate a test of the effect of
compensation on the long term maintenance of the Rh polymorphism. The
deterministic model has been programed in 1130 FORTRAN and the stochastic
model in 7090 MAD. “Hard copy” of both programs is available upon request
from the author.

THE DETERMINISTIC MODEL

Consider only the major Rh alleles, D and d. Selection through maternal-
fetal incompatibility will operate only on the Dd offspring of dd mothers;
the value of the selection coefficient will be a function of the probability
of prior immunization and of the probability of the death of an offspring
given that immunization has occurred. Since the probability of immunization
of a dd mother is dependent upon the genotype of the father, the selection
coefficients associated with the two matings in which selection occurs are
not equivalent. Let us suppose that s, is the probability of the death of
a heterozygous offspring born to the mating of a DD father and a dd mother,
and that s, is the probability of the death of a Dd offspring in a Dd X dd
mating. Since the probability of immunization of the mother is somewhat
greater in the DD X dd mating than in the Dd X dd mating, because all
offspring in the former mating are incompatible, s; will be greater than s,.
A more complete discussion of the relation between s; and s, is presented in
the appendix. If ¢, the compensation coefficient, is defined as the probability
of the replacement of a dead offspring, then the fitness of the Dd offspring
of the DD X dd mating is given by

WDdlz1—31+31t—812t+812t2—..-+31ntn’—'31"+ltn+--o

where s;"" is the replacement term and s;* *+ 1t" the loss term for the replace-
ment offspring. The above fitness can be expressed as the geometric pro-
gressiona + ar +ar> + ...+ ar" + ..., whereais 1 — s; and r is s;t. As n
approaches infinity, this progression approaches a/(1 — r); hence the fitness
of the Dd offspring in this mating tends to Wps, = (1 — 51)/(1 — sit). In
the Dd X dd mating, the effect of compensation is somewhat more complex,
for the replacement offspring may be of either the Dd or dd genotype with
equal probability. This implies that the replacement term for this mating,
s2"t", must be continually divided among the two possible offspring. Thus
the fitness of the Dd offspring of this mating is

WDd2 =1- Sz + S2t/2 - 822t/2 + 822t2/4 — .
whereas the fitness of the dd offspring is
de =1+ Szt/z + 822t2/4 + ...
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TaBLE 1. FREQUENCIES AND FITNESS VALUES FOR OFFSPRING IN THE RH SYSTEM

Mating Frequency and fitness of offspring
Female Male Frequency DD Dd dd
DD X DD p* pt
DD X Dd 2p3q p3q p3q
DD X dd p2q2 p2q2
Dd X DD 2p3q Pr3q p3q
Dd X Dd 4p2q2 p2q2 2p2q2 p?qh
Dd X dd 2pq3 pq3 rqd
1-—
dd X DD p2q2 p2q2 (_l)
1—st
1-s 1
dd X Dd 2pq3 3 (—L 3 (————-)
pa 1 — st/ 2) pa 1 —s,t/2
dd x dd qt
q4

From the geometric progression, the fitnesses of these individuals will approach

1—82
Wie, = —— 2
P27 st/
and
1
W, = —————
2T st/

It should be pointed out that we have assumed that, although s, and s,
are difterent, the probability of replacement of a dead offspring, ¢, is equal
for both matings. This assumption seems justified on the basis of the relatively
low values of s; and s, and the general nature of reproductive compensation
in human populations, but one can, needless to say, consider two compensa-
tion coefficients, #; and #,, corresponding to the two selection coefficients.

The frequencies and fitnesses of the offspring from the matings in this
system are presented in Table 1. One is able to obtain from the sum of
products of the fitnesses and frequencies the distribution of offspring in the
succeeding generation. From the latter, the new frequencies of the alleles
can be computed. Since we have chosen to use a computer to solve suc-
cessively the equations for the gene frequency, it is unnecessary to make
the Hardy-Weinberg assumption (see Edwards, 1961). The offspring fre-
quencies of one generation serve, of course, as the parental frequencies of
the next. A diagrammatic representation of the steps used in the construction
of this computer program is presented as a logical flow chart in Fig. 1.

THE STOCHASTIC MODEL

The stochastic model has been designed to obtain some insight into
the stability of the system in finite populations and involves the Monte
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Input P, S5, Sy 1, gen
Initialize genotypic frequencies
q=1-0p
D = p2
H = 2pq
R = q2
G =0
Start iterations
G =G + 1
a
Dx = D2 + DH + H2/4
Hx = DH + H2/2 + HR/2 + DR(1 — s;)/(1 — s;t) + HR(1 — s5)/

2(1 — s,t/2) + DR
Rt = H2/4 + HR/2 + HR/2(1 — sg/2) + R?

Tot Dx + Hx + Rx
_ Hx 4 2Rx
2Tot
D = Dx/Tot
H = Hx/Tot
R = Rx/Tot
Print out G, ¢

Go to o until G > gen

Fic. 1. Logical flow diagram of a deterministic model for selection and reproductive
compensation in the Rh system.

Carlo simulation of the mating and selection processes that comprise the
model previously outlined. The simulation used, although it is specific in
the sense of being primarily for a system of selection due to maternal-fetal
incompatibility, is also representative of a simulation of a monogamous
mating system with discrete generations. The program under discussion here
is similar in many respects to that used earlier by Schull and Levin (1964).

Since this presentation is primarily concerned with methodology, a re-
iteration of the basic technique seems appropriate. In order to make a de-
cision with respect to a particular event in a Monte Carlo simulation, a
pseudo random number x is generated (0 = x = 1) and compared to the
probabilities of the various outcomes of the event. In the simplest case,
that of a binomial decision, only one comparison has to be made. As an
illustration, consider the determination of the sex of an offspring. If the
random number is less than or equal to the probability of the offspring being
a male, the offspring will be considered a male; if the random number is
greater than this probability, the offspring will be considered to be a female.
When decision-making involves a choice among three possibilities, only two
comparisons need be made. As an illustration of this, consider the assignment
of a genotype to an individual randomly drawn from a parental pool. If
P(DD), P(Dd) and P(dd) are the frequencies of the DD, Dd, and dd males,
respectively, and P(DD) + P(Dd) + P(dd) = 1, then the male parent is
chosen in the following manner: If the random number x is less than or equal
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to P(DD), the male parent will be DD. If x is greater than P(DD) but less
than or equal to the sum P(DD) + P(Dd), then the male parent will be Dd.
If x is greater than P(DD) + P(Dd), the male parent will be dd. If sampling
without replacement is desired, at this point the total number of males of
the genotype just chosen is diminished by one and the male parental fre-
quencies recomputed.

In general, the choice of outcome of a series of mutually exclusive and
exhaustive events can be viewed as determining the position of a random
point on a line of unit dimension which is divided into segments such that
the size of the ith segment is relative to the probability of the ith outcome
for every i. As an example of this general case, consider the determination
of offspring number for each mating pair. The possible outcomes of this event
are 0, 1, 2, . . . max offspring, which occur with probability P(0), P(1), P(2),
. . ., P(max), respectively. If x is less than or equal to P(0), the mating pair
will have no children. If P(0) < x = P(0) + P(1), they will have one child.
If P(0) + P(1) < x= P(0) + P(1) + P(2), they will have 2 children. In
general, they will have n children if

n—1 n
3 P(i) <x=32 P(i)
=0 i=0
We have assumed the distribution of offspring number to be Poisson with
parameter A. To maintain a stable population, A was set equal to the desired
population size divided by the number of mating pairs, which in a monog-
amous system is the minimum number of parents available in either the
male or female parental pool. The maximum number of offspring possible,
max, was arbitrarily assumed to be 2\ + 8; this truncation of the distribution
obviously introduces an element of approximation albeit a negligible one.

Once a decision is made, it can be implemented in a number of ways. If
it is a matter of storage, as in the case of a surviving offspring, a storage
indicator, initially set equal to zero at the start of the generation, is in-
cremented by 1. This storage indicator must, of course, be specific for each
sex and genotype. If the decision involves the determination of a control
value, e.g., the offspring number, a variable will be set equal to a previously
specified number. If the outcome of one event is to be used in a decision with
respect to another, for example, in the determination of the occurrence of
prior immunization, an indicator will be set equal to 0 or 1 depending upon
whether immunization has occurred or not.

A logical flow diagram of the complete stochastic program is presented in
Fig. 2, and two flow charts of specific segments of the program are presented
in Figs. 3 and 4. These latter two represent the actual programing steps used.

The population size, probability of immunization, probability of death
after prior immunization, probability of compensation, and the initial gene
frequencies are specified and entered into the computer. In addition, control
parameters such as the desired number of generations, the number of replicas,
and an initializing number for the random number generator are entered.
The output of the program is the gene frequency and population size of each



LEVIN 293

Male Female
Input p, n, s, ¢, gen, rpl
Initialize all values and indicators 88 89 99 88
1. Parental pool

(1) Choose parents

(2) Determine number of offspring
1I. Generate offspring

(1) Gamete determination

(2) Fertilization

(3) (Sex determination) ) !
III. Selection \

(1) Store 8 8 99

(2) Do not store
(a) compensate
(3) (Sex determination)

IV. Continuation decisions
(1) Return to I
(2) Return to II
(3) Start next generation

G =12 ... Gen
(4) Start next run
R =12 ... Rpl

{5) Finish—Print desired output
88 89 929 88 89 99

Fic. 2. Logical flow diagram for a Monte Carlo simulation of a single human breeding
unit.

generation and each run. After the desired number of runs is completed,
the mean and variance of each gene frequency and population size is printed
for each generation.

DISCUSSION OF THE RESULTS OF RUNS MADE WITH THESE PROGRAMS

For this presentation two levels of selection were considered, one relatively
high and the other in the general range of selection intensities considered
by Li (1953). The probability that an Rh-negative mother will be immunized
by her Rh-positive offspring, m, was set equal to 0.50 and 0.25, and the
probability of death of the offspring after prior immunization, S, was set equal
to 0.40 and 0.20 for the high and low selection systems, respectively. Following
the scheme presented in the appendix, and assuming a Poisson distribution
for offspring number with A = 2, the probabilities of death of offspring in
this system are as follows: In the high selection system s; = 0.1598 and s, =
0.0946. In the low selection system s; = 0.0473 and s; = 0.0259. As in-
dicated earlier, m and s serve as the input parameters for the stochastic model.

In the deterministic model, at both levels of selection (see Figs. 5 and 6)
an increase in the level of compensation increases the fitness of the Rh-
negative allele, as indicated by the direction of gene frequency change.
There is, however, an exception to this situation. In the portion of the graphs
above an Rh-negative frequency of 0.80, the increase in the rate of com-
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X = RANDOM. (RNO)

X < MD I MP = 88 ——‘ MPP = MPP - 1

MP = 89 MPN = MPN - 1

MP = 99 NM =NM -1

To Choice of
Female Parent

Fic. 3. Computer flow diagram for the choice of a male parent in a Monte Carlo
simulation of a single human breeding unit. Definitions: NM = total number of males;
MPP = number of DD males; MPN = number of Dd males; MD = MPP/NM = f(DD);
MH = MPN/NM = f(Dd).

pensation reduces the fitness of this allele. In order to see what is occurring
in this almost paradoxical situation, the contribution to the fitness of each
offspring must be considered for each mating in which selection occurs.
The fitness of each genotype is the sum of the fitness values of each offspring
of that genotype weighted by the frequency of that offspring and divided by
the frequency of that genotype in the absence of selection. Using the Hardy-
Weinberg values for this latter frequency, we have

Woa=a+ (pq/2) (%) +(q%/2) (11;:/2)
— o1 — 02

and

Wu=B+

w=B+pe (1—s2t/2)
where o and B are the contributions to the fitness of nonselected offspring.
As can be observed from the above, an increase in the value of g increases
the contribution of the ¢?/2 term. The contribution to the fitness of the
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FP = 99 F
2YG = 89

T

PAR = PAR + 1

PAR 3 2 E
T

X = RANDOM. (RNO)

‘ Store ’

X = RANDOM. (RNO)

X = RANDOM. (RNO)

<> —

OF = OF - 1 l
‘ To Recycle )

Fic. 4. Computer flow diagram for selection and compensation in the Rh system in a
Monte Carlo simulation of a single human breeding unit. Definitions: IM = prob. (of
immunization); S = prob. (death, prior immunization); T = prob. (compensation for a
dead offspring).

pq/2 and the pq terms is maximal when p = g. Thus at high values of g, the
heterozygote has a proportionally higher fitness. This fitness of the heterozygote
is enhanced by increasing ¢, and at a particular value of g, the gain in fitness
of the d allele due to the increased fitness of the dd individual is offset by
the gain in fitness of the Dd individual. This reverses the effect of ¢.
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S, =.15983
e =0 S, =.09456
........ t=Q50 P(Immunization)= 0.50
——1t= 1,00  P(Death|Immunization)=0.40
1.00F A =2, .

0.80

060

040

0.20

0.00 | ] ] I _J
o) 20 4Q 60 80 100

GENERATION

Fic. 5. High level of selection in the deterministic model.

As earlier work indicated, through reproductive compensation, the Rh-
negative allele can acquire a selective advantage at frequencies other than
q > p. As q increases, a smaller value of ¢ is required to give the Rh-negative
allele a selective advantage. At the intermediate value of g, initially equal
to 0.4 and ¢ = 0.5, there is virtually no change in the frequency of the Rh-
negative allele. At lower frequencies of this allele, the reduced selective
pressure resulting from the lower frequencies of the appropriate matings
reduces the rate of gene frequency change.

In addition to the two sets of input parameters described for the stochastic
model, a system of no selection was also used. This latter system is intended
to facilitate a comparison of the selection systems with a genetic drift situation.
The drift system is presented in Fig. 7; the high and low selection systems
are presented in Figs. 8 and 9, respectively. A desired population size of
N = 100 was used for all runs. In these figures, the mean gene frequency of
the indicated number of runs is plotted as a function of generation number.

Of primary importance is the similarity of behavior of the genetic drift
system in Fig. 7 and the low selection system in Fig. 9. The higher level
system, however, presents little similarity to the drift situation. The rate of
change in the Rh-negative frequency in this system is quite pronounced.
Further support for the minimal effect of the low level of selection on gene
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S =0.04728
————1=00 _
e 12050 $2=0.02585
1 =1.00 P(Immunization)=0.25
= P(Death | Inmunization)=0.20
100 A=20

0.801

0.60

0.401

O.ZO'W";u;”—';'i;‘;;;“'j ............ e e
0.00 I 1 ] | J
o 20 40 60 80 100
GENERATION

Fic. 6. Low level of selection in the deterministic model.

frequency change is indicated by a comparison with the deterministic model.
If one considers the mean Rh-negative level at the 100th generation, the
relation between the gene frequency and the level of compensation is not the
same in the stochastic model as in its deterministic counterpart. The directional
force of increasing compensation seems to be overridden by the stochastic
element, and the compensation effect appears to be less patterned. The
compensation relationship is, however, more generally met in the high
selection system. At low rates of selection, the deterministic drive through
selection is apparently offset by stochastic elements.

No doubt an increase in the population size or total number of runs would
make the outcome of selection in these systems more deterministic. In this
case, the stochastic model should approach the deterministic, but there is,
aside from the asymptotic approach of the former to the latter, a possible
qualitative difference between the models. As indicated earlier, the rate
and direction of selection in these systems is a function of the gene frequency.
The latter is, however, subject to random fluctuations in the stochastic model;
each change in gene frequency alters the intensity and even the direction
of the selective forces. Otherwise stated, there exists an asymmetry in the
directional forces, upon which is overlayed a symmetric stochastic element;
this leaves a net directional element. The general direction and magnitude
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N=100
10 Runs
No Selection

] e .

060 \/\/’\/
0‘40 W

0.00 ] l ! i J
(¢} 20 40 60 80 100

GENERATION

Fic. 7. No selection in the stochastic model.

of the asymmetric deterministic element is indicated by the deterministic
model. The importance of this effect is dependent upon the intensity of the
selective forces and magnitude of the stochastic element. A further under-
standing of this phenomenon would require much more extensive use of the
stochastic model than has been possible thus far.

CONCLUSIONS

Although the general compensation formulation has been altered, there
seems to be little or no qualitative difference in the general effect of re-
productive compensation from that presented by Li (1953). That is, it is
possible to obtain an equilibrium level for the Rh polymorphism at frequencies
other than p = g = 0.5, but this equilibrium is unstable. This statement
itself may not be sufficient to formulate a rigid hypothesis for the maintenance
of the Rh polymorphism or forecast its future, but if reproductive com-
pensation is incorporated into whatever schema is advanced, intensity of
selection can become a population controlled variable. Thus, if the rate of
reproductive compensation is varied, a population, even without the aid of
modern medicine, is able to alter the intensity of selection at this locus.

This now brings us to the question of the rate of reproductive compensation
in human populations. A more extensive discussion of this question is presented
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N=100

5 Runs
P(Immunization)=0.50
——1=1.00  p(peath| Immunization)=040
.00~

0.80 4=
060§

0.40

0.20
D
0.00 | l 1 R e |
0 20 40 60 80 100
GENERATION

Fic. 8. High level of selection in the stochastic model.

in Levin (1967), but in summary: Reproductive compensation in human
populations may be either volitional or nonvolitional. The former involves
a conscious decision on the part of parents to replace a dead offspring, for
whatever reason. The latter, the nonvolitional form, stems from the inability
of the family to support as many children as are born. In a situation of
limited resources, if a child dies for genetic reasons, its death enhances
the survival probability of its sibs, younger as well as older, and may thus
ultimately lead to ensuring that a more or less constant number of the sibs will
reach reproductive age. It is only in those situations where the death of
one offspring does not enhance the survival probability of its sibs that re-
productive compensation would not occur. The latter would hold true if
there is an abundance of resources and a need to produce as many children
as possible.

Both the volitional and nonvolitional forms of reproductive compensation
may reflect particular phases of human existence. The volitional form will
more often obtain, it would seem, in a modern society, where family size is
relatively small and primarily socially determined. The nonvolitional form
would appear more characteristic of a primitive hunting and gathering
society, where the resources are limited and the period of nursing is long.
Reproductive compensation would have been minimal, presumably, in an early
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N=100 10 Runs

-—— ::850 P (Immunization)=0.25
e 2 o0 P(Death| Immunization)= 0.20

0.80
060"
0.40

0.20

0.00

o) 20 40 60 80 100
GENERATION

F1c. 9. Low level of selection in the stochastic model.

agrarian society, where food was relatively abundant and large numbers of
children were an asset as a form of labor.

The general implication of the above is that in the course of human history,
as man went from hunter and gatherer to early farmer and to his present
state, with his social change went a change in the rate of reproductive com-
pensation. This change in the rate of reproductive compensation could result
in changes in both the level and direction of selection at the Rh locus. In
addition to this temporal variation in selective pressures, undoubtedly a
spatial one has also existed, for not all populations would have the same
frequencies of the Rh-negative alleles nor rates of reproductive compensation.
These factors, when taken in conjunction with migration between human
populations and the relatively low rates at which selection operates at this
locus, could account for both the large variation in Rh frequencies and the
long term maintenance of the polymorphism.

SUMMARY

A deterministic and stochastic model for selection and reproductive com-
pensation in the Rh system are presented. A detailed description of the
computer techniques required for the development and construction of these
models is given. The effects of compensation are considered for both a high
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and low level of selection. The occurrence of reproductive compensation and
its consequence in the maintenance of the Rh polymorphism are discussed.
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APPENDIX

Let S be the probability that a Dd offspring born to a dd mother who has
been previously Rh immunized will die. Assume that S is a mean value for a
given family size and accounts for the intensity of the immune response.
Let m be the probability of Rh immunization at a given birth and let A be
the mean number of offspring produced by a mating pair.

In the mating of a DD male with a dd female, the probability of im-
munization of the mother at any birth is m. In the mating of a Dd father with
a dd mother, the probability of Rh immunization at any birth is m/2, due to
the segregation in this mating. The probability of any given child dying is
the probability of prior immunization multiplied by the probability of death.
For the nth child of a DD X dd mating, the probability of death is

[1—(1—m)—1]S

where the (1 — m)" — ! represents the probability of no prior immunization.
For the nth child of the Dd X dd mating the probability of death is

[1—(1—m/2)—1]S

Given a Poisson distribution for the number of offspring produced by a
mating pair, the mean probabilities of an offspring dying in the DD X dd and
Dd X dd matings, say s, and s, respectively, are determined in the following
manner:

—A)2 —A\3
N - (1-m)ls + -

8§ =

[1— (L—m)2S +...

—X)\2 —M\3
So = ¢ 5 [1-(1-m/2)]S+ ¢A [1—(1—m/2)2]S+...
and the ratio of s,/s. is
0 A"
Se=> % ——[1—(1—m)»—1]
s n=2 pl
So ®© AP
Se— 3 0 [1—(1—=m/2)»~1]
n=2 nl
g [-(l-my-

n

2 [1-(1-m/2)"—1]
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