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ABSTRACT

Robust Estimation of Scatter Matrix, Random Matrix Theory and

Applications to Spectrum Sensing

Zhedong Liu

The covariance estimation is one of the most critical tasks in multivariate statisti-

cal analysis. In many applications, reliable estimation of the covariance matrix, or

scatter matrix in general, is required. The performance of the classical maximum

likelihood method relies a great deal on the validity of the model assumption. Since

the assumptions are often approximately correct, many robust statistical methods

have been proposed to be robust against the deviation from the model assumptions.

M-estimator is an important class of robust estimator of the scatter matrix. The

properties of these robust estimators under high dimensional setting, which means

the number of dimensions has the same order of magnitude as the number of obser-

vations, is desirable. To study these, random matrix theory is a very important tool.

With high dimensional properties of robust estimators, we introduced a new method

for blind spectrum sensing in cognitive radio networks.
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Chapter 1

Introduction

The covariance estimation is one of the central parts in multivariate statistical analy-

sis. In many applications, estimation of the covariance matrix, or the scatter matrix

in general, is required, such as signal processing, wireless communication system,

biology, and financial engineering.[1, 2, 3, 4]

When there is a large data set, it is desired to assume the data set is generated by

a Gaussian distribution. With the normality condition, the covariance matrix is often

estimated using the classical method of Maximum Likelihood Estimation (MLE), and

the resulting estimator is the Sample Covariance Matrix (SCM). Many techniques in

engineering field rely on the Gaussian assumption which can be justified in many sit-

uations. With Gaussian assumption, it is easy to have SCM as the optimal estimator.

However, this optimality does not hold if the estimator was derived under Gaussian

distribution and the data set is not Gaussian in reality. Also, many data sets are

generated by an unknown or unclear model. Thus MLE is not always applicable.

Nevertheless, SCM is always applied to those data sets due to invalid Gaussian as-

sumption. It is well known that even a slight deviation from the assumed distribution

could distort the performance of SCM which makes the estimator far from optimal.

[5]. Many fields of studies show that the distribution of data set is non-Gaussian and

is often heavy-tailed. [6, 7, 8, 9] These situations require robust estimation of the

scatter matrix, which should be almost optimal under Gaussian case and also per-

form well when assumptions are only approximately valid since the data generation

process is not always clear. [5]
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A frequent way to robustify the SCM is detecting and rejecting suspicious ob-

servations or outliers. Outliers are usually observations that exceed a few standard

deviations which should also be estimated robustly in the one-dimensional case. In

multidimensional case, outliers are sought to be detected by either distribution- [10]

or distance-based methods [11]. The first approach consists of learning the probability

distributions of the data by modeling the data as a mixture of outliers and clean data

from the assumed distribution. The second approach is based on a measurement of

similarity for each data point to all the other data points and outliers are those data

points with the lowest similarity score. All those methods are used to detect outliers

which might be treated as erroneous data or identified as the most informative data.

An important class of robust estimation is M-estimation[5]. This method is un-

derstood well in terms of statistical properties, and it can resist outliers without

preprocessing the data. M-estimation is a generalization of MLE. The M-estimator

of scatter matrix is obtained by minimizing a loss function or equivalently solving

a fixed point of a function. It should be noted that many of these estimators are

MLEs for scatter matrices of certain distributions, such as the family of elliptical

distributions[1] but it is not always the case.

Another part of this thesis relates to random matrix theory. Many scientific stud-

ies deal with sets of high dimensional data samples, and therefore it is common to

have data samples with dimension having the same order of magnitude as the num-

ber of observations. Under this high dimensional setting, the asymptotic eigenvalue

behaviors, including the spectral distribution and behavior of largest eigenvalue with

a certain population covariance matrix, of SCM at the limit of infinite number of

samples and dimensions with fixed ratio have been studied well [12, 13, 14]. The

asymptotic properties of M-estimator under the high dimensional setting have been

analyzed in [15, 16], which obtained convergence results for a scaled M-estimator.

Tyler’s M-estimator is a special case of M-estimator, which has been showed that the



10

spectral distribution of a scaled Tyler’s M-estimator converges weakly to a determin-

istic distribution when data samples are i.i.d drawn from elliptical distributions.

With robust estimation and its asymptotic properties in high dimensional setting,

we introduced a new method for blind spectrum sensing in cognitive radio networks.

Cognitive networks [17] have been proposed as a promising solution to solve the

problem of spectrum scarcity by making full use of the free spectrum. The users

of Cognitive networks, or secondary users (SUs), have to be able to sense the free

spectrum in which no signal of the licensed users, or primary users (PUs), exists.

This process is called cooperative spectrum sensing when SUs combine their infor-

mation to sense the signal. There are several techniques for the spectrum sensing,

such as eigenvalue based spectrum sensing [18, 19, 20], energy detection, the matched

filter, the cyclostationary feature detection, and self-correlated detection. Unfortu-

nately, most of these techniques require knowledge of signal feature of PUs or noise

information. Among these techniques, eigenvalue based spectrum sensing requires no

information of signal nor noise, which is lacked in cognitive radio networks, and only

a small sample size [20].

Most of the sensing techniques are designed for Gaussian noise. The Gaussian

assumption is always justified by central limit theorem, but it is also very often

to deal with the non-Gaussian (impulsive or heavy-tailed) noise environment. In

practical wireless communication system, the impulsive noise occurs due to many

reasons such as vehicle ignition or switching a transient in power line [21], working

electrical appliance such as microwave ovens, light switch and so on[6]. Under those

circumstances, sensing techniques designed for Gaussian noise are highly susceptible

to have severe degradation of performance including conventional eigenvalue based

spectrum sensing which uses eigenvalues of SCM.

In this thesis, to deal with the non-Gaussian noise environment, we propose a

new spectrum sensing method. The new method applies robust estimators [5] of the
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scatter matrix to eigenvalue based spectrum sensing. Since the robust estimators can

successfully mitigate the effects of impulsive noise, the new method is robust in the

sense of insensitive to noise environment. The new method is also blind in the sense

of requiring no information of signals and noise.

The remainder of the article is structured as follows. Chapter 2 provides an intro-

duction to maximum likelihood estimation of the scatter matrix and M-estimation of

the scatter matrix. Chapter 3 introduces some random matrix theory results associ-

ated with those scatter matrix estimators. Chapter 4 introduced the new spectrum

sensing method in cognitive radio networks. Chapter 5 concludes this thesis.
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Chapter 2

Estimation of Scatter Matrix

The usual parameter estimation focuses on the development of efficient estimators

depending on a given model, where the efficiency is measured by the number of

observations needed to achieve a given performance. The standard procedure of

estimation is to construct the likelihood function according to the proposed model.

Then maximize the likelihood function to get the maximum likelihood estimators

(MLE), which have been proven to be asymptotically optimal in the sense of maximum

likelihood principle given a correct model. In this thesis we are talking about the

scatter matrix, which is a fraction of a covariance matrix if it exists. Under the

Gaussian distribution, the famous sample covariance matrix (SCM) is the MLE and

thus has the smallest asymptotic variance. The optimality of the SCM, however, can

be only achieved if the underlying distribution is Gaussian and the performance of the

estimator deteriorates significantly, even for minor departure from the assumed model,

e.g., a small portion of data points are drawn from a non-Gaussian distribution. This

motivates the search for robust alternatives of SCM.

Robust estimators tradeoff some efficiency under the assumed model to obtain

reliability when the assumed model is not exact. In another word, in conventional

estimation, the purpose is to find estimators possessing desirable properties at an

exact model, while the purpose is loosely speaking to find estimators with desired

behavior in an approximate model, for example, elliptical symmetric distributions

[1, 22], skew-elliptical distributions [23], contamination model[5], etc. Generally, the

robust estimator should be robust against any departure from the assumed model.
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For example, the model assumes the underlying distribution is Gaussian while the

real data follows an asymmetric and heavy-tailed distribution. In this thesis, we only

discuss estimators robust against the heavy-tailedness.

2.1 Maximum Likelihood Estimator of Scatter Matrix

Maximum likelihood estimation (MLE) is very popular in statistical analysis. The

intuition behind the MLE is that a good estimate of the unknown parameter vec-

tor θ would be the value of θ that maximizes the likelihood of getting the data we

observed. The following is the definition of MLE. Let x = {x1, . . . , xn} be an i.i.d

sample from a p-dimensional distribution with probability density function f(x; θ)

and the unknown parameter vector θ ∈ Θ, then the likelihood function is defined as

L(θ|x) =
∏n

i=1 f(xi; θ). Note that the likelihood function is a function of parameter

vector θ given all the observations. Then the MLE is the maximizer of the likeli-

hood function L(θ|x) or equivalently the maximizer of the log likelihood function

l(θ|x) =
∑n

i=1 log f(xi; θ).

Lets show that the SCM is the MLE of the multivariate Gaussian distribution

given mean µ and covariance Cp. The log likelihood function given a Gaussian data

set is

l(µ,Cp|x) = const− n

2
log |Cp| −

1

2

n∑
i=1

(xi − µ)TC−1p (xi − µ)

= const +
n

2
log |C−1p | −

1

2

n∑
i=1

(xi − µ)TC−1p (xi − µ).

Take derivative with respect to C−1p on the log likelihood function (applying

∂bTAb
∂A

= bbT and ∂|A|
∂

= |A|A−1),

∂l

∂C−1p
=
n

2
Cp −

1

2

n∑
i=1

(xi − µ)(xi − µ)T .
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Clearly the critical point of Cp is C∗p = 1
n

∑n
i=1(xi − µ)(xi − µ)T with the same

procedure we can find the critical point of µ is µ∗ = 1
n

∑n
i=1 xi. It can be argued

that (x̄ = 1
n

∑n
i=1 xi, CSCM = 1

n

∑n
i=1(xi − x̄)(xi − x̄)T ) is the MLE of multivariate

Gaussian distribution and CSCM is the sample covariance matrix.

Given a probability model with fixed dimension, as n grows, CMLE is consistent,

i.e., CMLE → Cp in probability. Also, MLE processes the asymptotic normality, i.e.,

n → ∞,
√
n(vecCMLE − vecCp) → N(0, I−1(θ)) in distribution, where I(θ) is the

fisher information defined by, I(θ) = Eθ(l
′(x|θ)2) = −Eθ(l′′(x|θ)). The most cele-

brated result is that I−1(θ) reaches the Cramer-Rao lower bound which is the lower

bound on the variance of unbiased estimators. Hence in the sense of minimum asymp-

totic variance, the MLE is the best asymptotic unbiased estimator. In practice, there

are various popular statistical software packages that provide tools for computing

MLE for many of the broadly used probability models.

The problem is that it is not always possible to have an exact model. In this

case, the MLE is impossible to be implemented. Also, in many practical problems,

researchers tend to use SCM due to Gaussian assumptions justified the central limit

theorem. However, if the asymptotic normality of the data set does not hold or the

exact distribution of the data set is far away from the asymptotic distribution, the

performance of the SCM may not be optimal or even not be acceptable. Thus it is

important to find estimators insensitive to the model assumption with ”good” perfor-

mance under a large range of model assumptions. M-estimator is a good candidate.

2.2 M-estimator of Scatter Matrix

The robustness we consider in this thesis includes only robustness to heavy-tailedness.

Thus the underlying class of distributions we are interested in is elliptically symmetric

(ES) families (real or complex). Elliptical symmetric distributions encompass mul-

tivariate normal distribution, multivariate t-distribution, K-distribution, generalized
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Gaussian distribution, etc. as special cases. The probability density function of an

elliptical distribution is in the form of,

f(x;µ,Cp) = |Cp|−
1
2 g{(x− µ)TC−1p (x− µ)}, (2.1)

where g is a positive valued function such that f integrates to one; µ is a p-dimensional

location parameter, and Cp is a positive definite symmetric (PDS) matrix of dimension

p × p. If X is ES distributed, we can decompose this random variable by X =

√
τ × C

1
2
p × z

||z|| , where z is standard Gaussian distributed, τ is a random scalar

independent of z and Cp is the scatter matrix. To remove the ambiguity, the scatter

matrix is selected such that trCp = p. In the case of complex elliptically symmetric

(CES) distribution [1], z is standard complex Gaussian distributed.

Here are some examples of ES distributions. In Gaussian case, g(d) = c exp(−d/2)

with c = (2π)−p/2. An important example of a non-Gaussian elliptical distribution is

the p-variate Student-t distribution with ν degree of freedom by choosing

g(d) =
c

(d+ ν)(p+ν)/2
.

The Generalized Gaussian distribution with shape parameter s is generated by the

choice of density generator function,

g(d) = c exp(− ds

2ms
),

where m and s are the scale, shape parameter and c is a normalizing constant. It

is interesting to know that with s = 1, the distribution corresponds to the multi-

variate Gaussian distribution and with s = 0.5, the distribution corresponds to the

multivariate Laplace distribution.

In this thesis, we assume the location parameter µ is known to be a zero vector.



16

Thus the model reduced to the form of,

f(x;Cp) = |Cp|−
1
2 g{xTC−1p x}.

Our objective is to estimate robustly the parameter Cp. For the whole class of elliptical

distribution, Cp is generally the scatter matrix but not necessarily the covariance

matrix. If the covariance matrix of a ES distribution exists, Cp is proportional to it.

The M-estimator of the scatter matrix is a generalization of the MLE for the

scatter matrix of ES distributions, 2.1, introduced by Maronna [24].

Let x = {x1, . . . , xn} be an i.i.d sample from an p-dimensional ES distribution.

The maximum likelihood estimator of Cp depending on the sample x, denoted by

C(x), maximizes the likelihood function,

L(Cp) =
1

|Cp|n/2
n∏
i=1

g{xTi C−1p xi},

and is equivalent to the minimizer of

2 logL(Cp) = n log |Cp|+
n∑
i=1

ρ(xTi C
−1
p xi), (2.2)

where ρ(d) = −2 log g(d). Critical points are then solutions to the fixed point equation

C(x) =
1

n

n∑
i=1

u(xTi C(x)−1xi)xix
T
i . (2.3)

M-estimators of the scatter matrix can be defined by allowing a general u function

in (2.3), not necessarily derived from any g function in ES distribution. In the follow-

ing, we use both C(x) and C to denote estimator of the scatter matrix. When we need

not emphasize the estimator is a function of data x, we use C. We may interpret C(x)

as a weighted SCM with weights depending on a distance measure di = xTi C
−1xi. di is
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square of estimated Mahalanobis distance which is a measure of the distance between

a point P and its center (0 here). The weight function u is chosen to be non-negative,

continuous and non-increasing. Some examples of M-estimators are given below.

SCM. In the Gaussian case, g(d) = c exp(−d/2), ρ(d) = d and u(d) = ρ′(d) = 1,

so (2.3) becomes

CSCM = C =
1

n

n∑
i=1

xix
T
i .

Tyler’s M-estimator [25, 1, 26] is derived by choosing

ρ(d) = d ln d and u(d) = ρ′(d) =
p

d
.

This weight function is not related to any ES distribution and can be computed via

simple fixed point-iterations. Tyler’s M-estimator is the ”most robust” estimator of

the scatter matrix for elliptical distributions with the minimized maximum asymptotic

variance. [25] In practice, it has also been shown to outperform the SCM in many

applications.

The existence and uniqueness of the estimator is guaranteed by x1...xn ∈ Cp×1

such that n > p and span(xi) = Cp. Tyler’s M-estimator gives the ”shape” or

relative magnitudes of the scatter matrix but is missing its magnitude. However, for

some applications, such as spectrum sensing, the ”shape” of the covariance suffices.

Compared to SCM, Tyler’s M estimator is more robust to heavy-tailed data as shown

in the Example latter. This estimator does not have a closed form and has to be

iteratively computed by using fixed-point iteration. The following algorithm converges

to a unique solution for the equation (2.3) with u(d) = p
d
.
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Algorithm 1 Algorithm for Tyler’s M-estimator

1: Initialize C0 as an arbitrary positive definite matrix.
2: Iterate

C̃t+1 =
p

n

n∑
i=1

xix
T
i

xTi C̃
−1
t xi

.

Ct+1 =
C̃t+1

Tr C̃t+1

until convergence.

A special case of Maronna’s M-estimator is derived from real multivariate student-

t distribution,

u(d) =
p+ k

d+ k
,

where k is a tuning constant that controls the balance of robustness and efficiency

under Gaussian distribution of the estimator. Note that for k → ∞, this estimator

approaches the SCM, and for k → 0, the estimator approaches Tyler’s M-estimator.

The existence and uniqueness of the solution is guaranteed by x1, . . . , xn ∈ Cp×1 such

that n > p, span(xi) = Cp and k > p2 − p. Similar to Tyler’s M estimator, this

estimator misses its magnitude but only gives the relative magnitude.

Algorithm 2 Algorithm for Maronna’s M-estimator

1: Initialize C0 as an arbitrary positive definite matrix. Determine the value of k.
2: Iterate

Ct+1 =
k + p

n

n∑
i=1

xix
T
i

xTi C
−1
t xi + k

.

until convergence.

2.3 Measurement of Robustness

There are some metrics of robustness for an estimator [5], θ̂n depending on an i.i.d

sample x = {x1, ...xn} of size n with distribution F . Before introducing those metrics,

we clarify some notations. For θ̂n, there is a value, θ̂∞ = θ̂∞(F ) depending on F ,
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such that

θ̂n
p→θ̂∞(F ),

with dimension of the data p fixed and the sample size n → ∞. θ̂∞(F ) is the

asymptotic value of the estimate at F. We define the contamination neighborhoods :

F(F, ε) = {(1− ε)F + εG : G ∈ G},

where G is a suitable set of all possible distributions and 0 ≤ ε ≤ 1 is the portion of

contamination. In some case, G is the set of point mass distributions, where the point

mass distribution δx0 is the distribution such that P (x = x0) = 1. The first metrics

is the influence function (IF) defined as

IFθ̂(x0, F ) = lim
ε→0+

θ̂∞((1− ε)F + εδx0)− θ̂∞(F )

ε

=
∂

∂ε
θ̂∞((1− ε)F + εδx0),

where limε→0+ stands for limit from the right. If θ̂∞ is an estimator for p-dimensional

parameter, IF is a p-dimensional vector. The IF may be considered as an asymptotic

version of the standardized sensitivity curve,

θn+1(x1..., xn, x0)− θn(x1..., xn)

1/(n+ 1)
,

which is a function of x0. The standardized sensitivity curve is the difference made

by a single additional observation standardized by the portion of contamination ε =

1/(n+ 1) similar in IF.

Another measure of robustness is the breakdown point (BP) of an estimator, which

is the largest proportion of atypical points that the data may contain such that θ̂

still conveys some information about the distribution of the ”typical” data. The
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definition of asymptotic contamination BP will be defined by the largest portion of

contamination ε∗ ∈ (0, 1) such that for ε < ε∗, θ̂∞((1− ε)F + εG) as a function of G

remains bounded and also bounded away from the boundary of parameter space.

There are also many other measurements for robustness, such as Finite-sample

breakdown point and maximum asymptotic bias. Further detail can be found in [5].

For robust estimator of covariance matrix or scatter matrix generally, there are

some desirable properties[27]. We require the estimator to be affine equivariant. A

PDS scatter matrix estimate C(Xn) is affine equivariant if

C(AXn + b) = AC(Xn)AT ,

where Xn is a p-dimensional data set with n observations, A is a non-singular p× p

matrix, b is a p-dimensional shift vector and AX+ b = {Ax1 + b, Ax2 + b, ..., Axn+ b}.

This property is useful in the operation related to rotation and scaling of the axis

such as principle component analysis.

We also require the estimator to be consistent. A scatter matrix estimate C(Xn)

is consistent if

C(Xn)
p→Cp,

where
p→ indicates convergence in probability.

2.4 A Toy Example

Let {x1, . . . , x100} be an i.i.d sample from a multivariate student-t distribution with

location parameter µ = (0, 0)T , the covariance matrix Cp =

 1 0.5

0.5 1

 , and degree

of freedom ν = 3. We have no information about the underlying distribution of the

data set and it is not possible to learn it with a limited sample size. Let’s compare

the performance of SCM and Tyler’s M-estimator under this circumstance. This ex-
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ample shows that SCM has very low efficiency. Figure 2.1 is the empirical probability

density function for each component of SCM and Figure 2.2 is the empirical prob-

ability density function for each component of Tyler’s M-estimator. The empirical

density function of the sample covariance matrix has a large range of estimate and

high variance. We conclude that the SCM breaks down in this case in the sense of

variance and it always produces unreasonable estimation. Since the SCM fails in this

case, we may conclude that the data distribution is not Gaussian and we need other

estimators. Although the SCM is centered at the true value, i.e., unbiased, the vari-

ance is too high compared to Tyler’s M-estimator. If we apply SCM in this case, with

low probability, we can have a reasonable estimation of the covariance matrix. The

Tyler’s M-estimator varies in a reasonable range around the true parameter, i.e., 1 for

diagonal entries and 0.5 for off-diagonal entries. If we apply Tyler’s M-estimator in

this case, with high probability, we can have a reasonable estimation of the covariance

matrix.
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Figure 2.1: Empirical Probability Density of the Sample Covariance Matrix
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Figure 2.2: Empirical Probability Density of the Tyler Estimator of the Covariance
Matrix
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Chapter 3

Random Matrix Theory and Estimators of the Scatter

Matrix

In this chapter, we mainly focus on several important results of random matrix the-

orem (RMT) related to the SCM and M-estimators. The topics in RMT that have a

close relationship to spectrum sensing are the behavior of the eigenvalues of estimated

scatter matrices, specifically the empirical spectral distribution and the maximum

eigenvalue. Suppose that X is an positive definite N × N matrix with eigenvalues

λ1, . . . , λN ∈ R. The empirical distribution of the eigenvalues of X, called empirical

spectral distribution (ESD) of X, is the function,

FX(x) =
1

N

N∑
i=1

1{λi≤x}, (3.1)

for x ∈ R.

Suppose x = {x1, . . . , xn} are generated independently by a p-dimensional prob-

ability distribution, a scatter matrix estimator, C(x), calculated according to these

data is a random matrix and its ESD and maximum eigenvalue are also random

function and random variable. It is often very difficult or impossible to study those

random objects directly in the finite case. Thus, we turned to study them in an

asymptotic framework to have some useful asymptotic properties. It is often much

easier to study a complex statistics in an asymptotic framework than it in finite case.

Asymptotic properties are also relatively independent of the data distribution. Thus,

we may always apply asymptotic results on a large class of data. The asymptotic
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framework is usually assuming that the sample size n grows to infinity with fixed

dimension p, while in RMT, we require not only n → ∞ but also p(n) → ∞ with

condition,

lim
n→∞

p

n
→ α ∈ (0,∞). (3.2)

An application of the asymptotic trick is in the hypothesis test. To perform a

hypothesis test, we need to know the distribution of the test statistic given the null

or alternative hypothesis is true such that we can control probability of errors. In

most of the case, it cannot be figured out exactly, because the distribution of the

statistics is often analytically intractable or we only have partial information of the

statistical model. Hence, an approximation of the distribution is required. Usually,

we use the asymptotic distribution of the statistics as the approximation.

Before getting into the RMT asymptotic framework, let’s take an example in

the ordinary asymptotic framework. Suppose we have a sample of independent ob-

servations x = {x1, . . . , xn} from an unknown distribution and all the elements are

scalar, we wish to test on the null hypothesis H0 : µ = µ0 and alternative hypothesis

Ha : µ 6= µ0. The famous t-test is based on the statistics,

T =

√
n(x̄− µ0)

σ̂
, (3.3)

where x̄ = 1
n

∑n
i=1 xi and σ̂ = 1

n

∑n
i=1(xi − x̄)2. If the sample is generated by the

Gaussian distribution, the distribution of T is t-distribution with n − 1 degrees of

freedom exactly. However, if the data is not generated by the Gaussian distribution,

the exact distribution of T is unknown. It can be proved that T is standard Gaussian

distributed as n → ∞ if the random samples have a finite second moment. Thus

when n is fairly large, we can treat T as Gaussian distributed. The performance of

the test will depend on both sample size n and the real distribution generating the

data set. In the point of robustness, this statistic is not quite robust to skewness and
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heavy-tailedness. When the data is generated by skewed or heavy-tailed distribution,

T may need larger sample size to have approximately Gaussian distribution.

We will introduce some asymptotic results regarding ESD and maximum eigen-

value of the estimated scatter matrix in this chapter. Under certain condition and

(3.2), the ESD of estimated scatter matrix converges to a deterministic distribution,

and the maximum eigenvalue of the estimated scatter matrix has an asymptotic dis-

tribution. The asymptotic results are quite reliable even with very small sample size

and only moments conditions are required.

3.1 Sample Covariance Matrix

Suppose x = {x1, . . . , xn} are generated independently by a p-dimensional probability

distribution. Now we stack all the observation horizontally to make X, a p× n data

matrix. Then the p× p matrix

CSCM =
1

n
XXT (3.4)

is the (uncentered) SCM defined in the previous lecture. The distribution of unnor-

malized version nS = XXT is the Wishart distribution Wp(n,Cp) if each xi with

i = 1, ..., n is independently distributed by Np(0, Cp). Detailed study on this distri-

bution can be found in [28].

3.1.1 Asymptotic Empirical Spectral Distribution

It has been showed that the ESD of the SCM has a nonrandom limit depending on

the limiting ratio α = limn→∞
p
n
. This result was derived by Marc̆enko and Pastur[29]

assuming that the fourth moments of the entries of X are finite. After development

by [30, 31] and [32], the conditions on the matrix entries for which the ESD has

a deterministic limit has been weakened. The following theorem has the minimal
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moment conditions.

Theorem 1. Consider a p × n matrix X whose entries are independently drawn

from a zero-mean real(or complex) distribution with variance σ2. As p, n → ∞ with

p
n
→ α, the empirical distribution of 1

n
XXT converges almost surely to a deterministic

distribution, known as Marc̆enko-Pastur law, with density

f(x) = (1− 1

α
)+δ(x) +

√
(x− a)+(b− x)+

2παx

where a = σ2(1−
√
α)2 and b = σ2(1 +

√
α)2.

Theorem 1 gives an approximation of ESD of SCM given the entries of the data

matrix have zero mean and finite variance in closed form. We are also interested in

how well this approximation is when the sample size n is finite especially when the

entries of the data matrix is heavy-tailed distributed. Figure 3.1 shows the influence

of heavy-tailedness on the performance of the approximation by simulation. In the

most extreme case that the distribution of data matrix entries has an infinite variance

or no defined variance, Theorem 1 does not hold as shown in Figure 3.1d. When the

data distribution has finite variance and it is also heavy-tailed, the support of the

Marc̆enko-Pastur law no longer bounds all the eigenvalues as shown in Figure 3.1b

and Figure 3.1c.

3.1.2 Asymptotic Distribution of the Largest Eigenvalue

Although we know the maximum eigenvalue of the SCM converges to the right edge of

the Marc̆enko-Pastur law[13], we do not have the distribution of the largest eigenvalue.

Tracy and Widom [33, 14] derived an equation which can be used to describe the

asymptotic distribution of the largest eigenvalue of SCM. The c.d.f of the so called
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(a) The appriximation is very good. (b) The appriximation is not that good.

(c) The appriximation is bad. (d) The eigenvalues are unbounded.

Figure 3.1: ESD of SCM under different distributions

The data matrix is of size 10000× 5000; data of (a) is generated by a Gaussian
distribution with zero mean and unit variance; data of (b) is generated by a student t

distribution with zero mean, unit variance and degree of freedom 30; (c)is generated by a
student t distribution with zero mean and degree of freedom 3; data of (d) is generated by

a standard Cauchy distribution with mean and variance undefined.
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Tracy-Widom laws denoted by F1 and F2 is,

F1(s) = exp(−1

2

∫ ∞
s

(q(x) + (x− s)q2(x))dx), s ∈ R (3.5)

and

F2(s) = exp(−
∫ ∞
s

(x− s)q2(x)dx), s ∈ R (3.6)

where F1 is corresponding to real entries, F2 is corresponding to complex entries, q(x)

satisfies the Painlevé II differential equation q′′(x) = xq(x) + 2q3(x) with the feature

that q(x)−A(x)→ 0 as x→∞, where A(x) is the Airy function with details in [34].

Here is the result in terms of these distributions [12],

Theorem 2. Consider an p × n matrix X whose entries are independently sampled

from a real Gaussian distribution with zero mean and variance one. Let λ1 denote

the largest eigenvalue of XXT . If p, n→∞ with p
n
→ α ∈ (0, 1], then

λ1 − µ
σ

d→ W1

where µ = (
√
n− 1 +

√
p)2,σ = (

√
n− 1 +

√
p)( 1√

n−1 + 1√
p
)1/3.

If the entries of X is complex Gaussian distributed with zero mean and variance

one and λ1 denotes the largest eigenvalue of XXH , then

λ1 − µ′

σ′
d→ W2

where µ′ = (
√
n +
√
p)2 and σ′ = (

√
n +
√
p)( 1√

n
+ 1√

p
)1/3, here the random variable

W1 and W2 have distributions with c.d.f. F1 and F2 respectively.

Theorem 2 gives the asymptotic distribution for the scaled largest eigenvalue of

the SCM. This theorem requires the entries are Gaussian distributed which is not as

universal as Theorem 1. Figure 3.2 depicts the Tracy-Widom density function for
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Figure 3.2: Tracy-Widom density functions for β = 1, 2.

β = 1, 2. [35] has a similar result for non-Gaussian distributed data entries.

3.2 Tyler’s M-estimator and Maronna’s M-estimator

Suppose x = {x1, . . . , xn} are generated independently by a p-dimensional probability

distribution. Now we stack all the observation horizontally to make X, a p× n data

matrix. Then the p× p matrix ,CTY , defined by the following equation

CTY =
1

n

n∑
i=1

xix
T
i

xTi C
−1
TY xi

. (3.7)

CTY is Tyler’s M-estimator defined in Chapter 2. It has been proved in [36] that

when the data entries are identically Gaussian distributed with mean zero and unit

variance, the operator norm of the difference between a scaled Tyler’s converges to

zero. As a result, the ESD of Tyler’s M-estimators converges to Marc̆enko-Pastur law

in distribution. This result can also be extended to the case that data is generated

by a symmetric elliptical distribution.

Figure 3.3 shows the influence of the heavy-tailedness on the performance of the

approximation by simulation. In all cases, the Marc̆enko-Pastur law fits well to the

ESD of Tyler’s M-estimator. If we apply Tyler’s M-estimator to this case, with high
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(a) The appriximation is very good. (b) The appriximation is very good.

(c) The appriximation is very good. (d) The appriximation is very good.

Figure 3.3: ESD of Tyler’s M-estimator under different distributions

The dataset is generated in the same way as Figure 3.1

probability, we can have a reasonable estimation of the scatter matrix. Tyler’s M-

estimator is robust when data are elliptical symmetric distributed since the texture

parameter will be canceled during the calculation.

There is no published result regarding Marc̆enko-Pastur law for Maronna’s M-

estimators. In the preprint [37], the researchers claimed the ESD of Maronna’s M-

estimators converges to Marc̆enko-Pastur law, but they deleted the result in the pub-

lished version. Even though the result has not been proved rigorously, the result

seems to be correct in the case of u(d) = p+k
d+k

.
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3.3 Spike Model

All the theory above are based on the assumption that all the columns of the data

matrix are i.i.d, which means each column is drawn from a multivariate distribution

with the identity matrix as the covariance matrix. It is also interesting to know

the case that the data is generated by a distribution with non-identity population

covariance matrix. One of the simplest non-identity matrices is the matrix with a

finite rank perturbation of the identity matrix, which is called the ”spiked population

model”[38]. Let’s take the population covariance matrix with one rank perturbation

as an example. Suppose the non-unit eigenvalue of the population matrix is σ1. As

the dimension p becomes large, one would expect that if σ1 is around 1, σ1 would

have an ignorable effect on the sample covariance matrix. If σ1 is much greater than

1, then even if p becomes large, σ1 might pull one eigenvalue of SCM out of the bulk.

It has been proven that if σ1 > 1 +
√
α, one eigenvalue of the SCM will be pulled out

of the bulk and converges to σ1 + ασ1
σ1−1 .

The spike model is specified in detail. Let C be a fixed p × p semi-definite sym-

metric(hermitian) matrix. Let W be a p × n data matrix, whose entries are i.i.d

real(complex) random variables with

E(Wij) = 0, E(|Wij|2) = 1 and E(|Wij|4) <∞,

and let Wj be jth column of W . Note that X = C
1
2Wj will be a p-dimensional

random vector with covariance matrix C, where C
1
2 is a Hermitian square root of C.

Then, C is the population covariance matrix of the data vector. When Wij is i.i.d

Gaussian distributed, the sample vector becomes multivariate Gaussian distributed

with population covariance matrix C. Except for Gaussian distribution, this model

can produce many random vectors with desired population covariance matrix. Now
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SCM of X becomes

CSCM =
1

n
C

1
2XXHC

1
2 . (3.8)

Let the ordered eigenvalue of CSCM be λ1 ≥ λ2... ≥ λp ≥ 0. Let σ1 > .. > σM > 0

be fixed real numbers for a fixed M ≥ 0. Let k1...kM ≥ 0 be fixed integers and

set r = k1 + ...kM . The spiked model will be defined by assuming that the first r

eigenvalues of C are equal to σ1..σM with multiplication k1...kM , respectively and the

rest of eigenvalues are 1. Then

eig(C) = (σ1, . . . , σ1︸ ︷︷ ︸
k1

, σ2, . . . , σ2︸ ︷︷ ︸
k2

, ..., σM , . . . , σM︸ ︷︷ ︸
kM

, 1, . . . , 1︸ ︷︷ ︸
p−r

),

where eig(∗) is the operator to compute eigenvalues. Set k0 = 0.

Theorem 3. (Case α = p
n
< 1) Assume that n→∞ and p→∞ such that

p

n
→ α.

Let M0 be the number of j’s such that σj > 1 +
√
α, and let M1 be the number of j’s

such that σj > 1−
√
α. Then the following holds:

1. For each 1 ≤ j ≤M0,

λk1+...+kj−1+i → σj +
ασj
σj − 1

, 1 ≤ i ≤ kj

almost surely.

2.

λk1+...+kM0
+1 → (1 +

√
α)2

almost surely.
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3.

λp−r+k1+...kM1
→ (1−

√
α)2

almost surely.

4. For each M1 + 1 ≤ j ≤M ,

λk1+...+kj−1+i → σj +
ασj
σj − 1

, 1 ≤ i ≤ kj

almost surely.

In this case, the eigenvalues of SCM are split into three groups according to

the eigenvalues of the population covariance matrix. The number of eigenvalues of

SCM outside the support [(1 −
√
α)2, (1 +

√
α)2] of the Marc̆enko-Pastur law equal

to the number of eigenvalues of population covariance matrix out side the boundary

[1−
√
α, 1 +

√
α]. What’s more, those outliers converge to σ + ασ

σ−1 . The rest of the

eigenvalues of SCM will be bounded by the support of Marc̆enko-Pastur law in the

limit.

For instance, when r=1 and the only non-unit eigenvalues of population covariance

matrix is σ1, the largest sample eigenvalues λ1 satisfies

λ1 →


(1 +

√
α)2 σ1 ≤ 1 +

√
α

σ1 + ασ1
σ1−1 σ1 > 1 +

√
α

almost surely.

Theorem 4. (Case α = p
n
> 1) Assume that n→∞ and p→∞ such that

p

n
→ α

. Let M0 be the number of j’s such that σj > 1 +
√
α. Then the following holds:
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1. For each 1 ≤ j ≤M0,

λk1+...+kj−1+i → σj +
ασj
σj − 1

, 1 ≤ i ≤ kj

almost surely.

2.

λk1+...+kM0+1 → (1 +
√
α)2

almost surely.

3.

λn → (1−
√
α)2

almost surely.

4. For all p, λn+1 = ... = λp = 0.

In this case, small eigenvalues of C have no influence on the eigenvalues of SCM.

Theorem 5. (Case α = 1)Assume that n→∞ and p→∞ such that

p

n
→ 1

. Let M0 be the number of j’s such that σj > 2. Then the following holds:

1. For each 1 ≤ j ≤M0,

λk1+...+kj−1+i → σj +
σj

σj − 1
, 1 ≤ i ≤ kj

almost surely.

2.

λk1+...+kM0+1 → 4
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almost surely.

3.

λmin{p,n} → 0

almost surely.

We include some plots for the case when α = 0.5 and there is only one non-unit

eigenvalue in population covariance matrix given by 2. In this case, the critical value

of the eigenvalues are 1 +
√

0.5 and 1 −
√

0.5. We will expect that the maximum

eigenvalue of the SCM 4 + 2
3
≈ 4.6667 is outside of the interval [(1 −

√
0.5)2, (1 +

√
0.5)2] ≈ [0.08578, 2.91422]. The histogram of Figure 3.4a is from the Gaussian

samples when p = 5000 and n = 10000. We are also interested in the case when the

distribution of samples having heavy tails. Figure 3.4b is from student’s t distribution

with degree of freedom 10 and Figure 3.4c is the same realization with the identity

covariance matrix when p = 5000 and n = 10000. We can found there is no obvious

difference between the two cases. However, if we replace SCM by tyler’s M estimator,

we can have the only one eigenvalue far away from the bulk, which is depicted in

Figure 3.4d.
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(a) SCM under Gaussian noise

(b) SCM under Student’s t distribu-
tion(Spike model)

(c) SCM under Student’s t distribu-
tion(Identity covariance)

(d) Tyler’s M-estimator under Student’s t
distribution

Figure 3.4: Spike Model
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Chapter 4

Application on Spectrum Sensing in Cognitive Radio

Networks

The simplest version of the spectrum sensing is detection of a signal from a noisy

environment. This task can be formulated by a hypothesis test, whose null hypothesis

is that a signal does not exist and the alternative hypothesis is that a signal exists.

The received signal samples under two hypothesis are formulated as,

x(i) =

 z(i) H0 : signal does not exist

hs(i) + z(i) H1 : signal exists,
(4.1)

where x(i) is the received sample vector at instant i, h represents the fading compo-

nent including the effects of path loss and multipath fading, s(i) is the transmitted

symbol which we want to detect, and z(i) is the received noise vector which is as-

sumed to be i.i.d in time, with mean zero and variance σ2 not necessarily Gaussian

distributed. We assume channel h being constant during i = 1..n transmissions.

The system [20] is depicted in Figure 4.1, in which primary users (in white)

communicate to their dedicated (primary) base station. Secondary base stations,

BS1, BS2, BS3, ..., BSp, are cooperatively sensing the channel to identify a free spec-

trum and exploit it. There are some assumptions on this system:

1. The p secondary base stations are communicated by high speed and low noise

medium.

2. The stations are analyzing the same portion of the spectrum.
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3. Channels from each base station to the primary station are independent.

The received sample matrix generated by the system is a p× n matrix consisting

of all the sample vectors from p secondary base stations:

X =



x1(1) x1(2) x1(3) . . . x1(n)

x2(1) x2(2) x2(3) . . . x2(n)

...
...

...
. . .

...

xp(1) xp(2) xp(3) . . . xp(n)


.

Figure 4.1: System Setting

Based on the data matrix, BSs decide on whether a portion of the spectrum is

occupied or not. Now we can view each column of the data matrix as a random vector

sampled from a p-dimensional distribution. If the distribution is Gaussian, under H0

the components of a sample vector are independent whereas if the distribution is non-

Gaussian, the components of a sample vector may be dependent. However, they are

uncorrelated under both cases. Under H1, both cased are correlated. If the cognitive

radio network is in the environment with impulsive noise, we can model the impulsive

noise by Complex Elliptically Symmetric (CES) distribution. The texture parameter

τ is used to model the impulsive behavior of the noise. And each random vector shares

one texture parameter, which makes components of the random vector dependent.
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In the case of no presence of signal, the received samples have identity popula-

tion covariance matrix whereas in the case of presence of signal the samples have

identity population covariance with one entry perturbation. Here are the population

covariance matrices Cp,

Cp = E[X(j)X(j)H ] = σ2I (under H0)

Cp = hhH + σ2I (under H1),

where X(j) is the jth column of X and h is the channel form primary base station

to BSs.

We note that under H1, Cp has one eigenvalue equal to σ2 + hHh and all the rest

σ2. The behavior of SCM of data generated by this population covariance matrix is

studied by the spiked model introduced in the chapter 3. If the quantity hHh > σ2
√
α

and α < 1, where α = p
n
, we have the maximum eigenvalue of SCM, λmax, converges

almost surely to

b′ = (hHh+ σ2)(1 +
α

ρ
),

where ρ = hHh
σ2 is the defined signal to noise ratio (SNR). Due to b′ > b, where b =

σ2(1+
√
α) is the right edge of the support of the Marc̆enko-Pastur law, the maximum

eigenvalue under the null hypothesis should be less than it under the alternative

hypothesis in limit and also in finite case. Let λmax be the maximum eigenvalue

of scatter estimator, λmin be the minimum eigenvalue of scatter estimator. Under

the case of noise variance unknown, the ratio a
b

= (1+
√
α)2

(1−
√
α)2

does not depend on the

noise variance. Thus we choose the test statistics as λmax

λmin
which converges to a

b
under

H0. If we can derive the asymptotic distribution of this statistics, the asymptotic

distribution should be independent of the noise power, hence we can have a test

without knowledge of the noise power.

However, when the noise is impulsive, the statistics derived from SCM has no
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difference under H0 and H1 even when the sample size is huge (Figure 3.4b and Figure

3.4c). The robust estimator will be a better choice since the maximum eigenvalue of

robust estimator will be pulled out under H1. Tyler’s M-estimator and Maronna’s M-

estimator associated with real student’s t distribution reserves the Marc̆enko-Pastur

Law under both impulsive noise and Gaussian noise.

The performance of spectrum sensing can be primarily determined based on two

metrics: the probability of detection (POD) and the probability of false alarm (POF).

POD is the probability that secondary users claim that the spectrum is occupied when

the spectrum is indeed occupied. POF is the probability that secondary users claim

that the spectrum is occupied when the spectrum is free. POD is closely related to

quality-of-service (QoS) of PUs since low POD means the communication of PUs will

be interfered often by SUs. POF is closely associated with the QoS of SUs since a false

alarm will reduce the spectral usage efficiency. The optimal detector for spectrum

sensing usually has the maximized POD given the constraint of the POF.

In our case, we assume there is no information on neither signal nor noise available.

It is impossible to derive the expression of POD or POF analytically. To characterize

the performance and control either POD or POF, the nonparametric scheme is used.

First, we compute the empirical cumulative distribution function (ECDF) of the

statistics based on data. The ECDF is computed by, F̂N(t) = 1
N

∑N
i=1 1{Ti≤t}, where

Ti is the statistics computed based on data generated in null hypothesis. With F̂N(t)

we can easily approximate the POF.

Simulations were carried out to establish the performance of the detectors using

robust estimators in comparison to the detectors using SCM in different noise envi-

ronment with a different degree of impulsiveness. To measure impulsiveness of the

noise, we may refer to its kurtosis which is the scaled version of the fourth central

moment and excess kurtosis which is defined as kurtosis minus kurtosis of Gaussian

distribution, 3. The higher the excess kurtosis is for a noise distribution, the more
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impulsive will the noise be. Five secondary users, i.e., p = 5 were simulated along

with n = 100 for each secondary users. SNR in this simulation was chosen to be

ρ = 0 dB and the noise power σ2 = 1. The noise was chosen to be Gaussian, Laplace

and Generalized Gaussian with parameter s = 0.1 and s = 0.2 which are more impul-

sive than Laplace. The excess kurtosis of the Laplace distribution is 3, and it of the

Generalized Gaussian distribution with s = 0.1 is around 1956.30 and it with s = 0.2

is around 48.95. We use the Laplace noise to show that Maronna’s M-estimator of

our choice may be adapted to have optimal performance among all three estimators.

Figure 4.2 is the receiver operating characteristic (ROC) curve for the test described

above using three different scatter estimators, among them Maronna’s M estimator

is computed with parameter t = 21 in all four cases and t = 0.7 which is the optimal

setting in the Laplace Noise. The way we optimize the parameter is by fix the POF

in different t and search for the t gives the highest POD.

From the simulation, we can found that the SCM works well only when the noise

is not much impulsive. When the degree of impulsiveness of noise goes to high, the

SCM breaks down which performs even worse than random guess if the impulsiveness

is extremely high(see Figure 4.2d and Figure 4.2c,). Tyler’s M-estimator performs

well in all the four cases, especially in the case of high degree of impulsiveness. We

can conclude that Tyler’s M-estimator is quite robust in either impulsive or non-

impulsive noise environment. The Maronna’s M-estimator has a free parameter to

adjust. By arbitrarily choose t = 21, it is outperformed by Tyler’s M-estimator. In

the case of the Laplace Noise, the optimized Maronna’s M-estimator outperforms

Tyler’s M-estimator(see Figure 4.2b).
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Figure 4.2: ROC curves
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Chapter 5

Conclusion

In this thesis, we investigated estimation of the scatter matrix. The SCM is the stan-

dard estimator of the population covariance matrix: it is simple, fast and converges

to the population matrix in the limit of infinitely many observations in many cases.

The disadvantage of this estimator is that it is vulnerable to extreme observations

which are common when the data set is generated by heavy-tailed distributions. The

extreme value will cause the variation of this estimator to be extremely high. This

estimator is also sensitive to non-Gaussian data. The estimator becomes inefficient

when a small portion of the data set generated by non-Gaussian distributions. The

so-called robust estimation is proposed to handle the drawbacks of the SCM. We

focus on M-estimation which is a generalization of MLE. This estimator can resist

extreme observations without preprocessing the data set and is easy to be derived.

The computation of this estimator is by solving a fixed point of a function, and the

computation is not complicated. We also introduced some high dimensional prop-

erties of SCM in the framework of random matrix theorem. Inspired by those high

dimensional properties, an eigenvalue-based spectrum sensing method in the cogni-

tive network is proposed, and by simulation, we found it outperforms the existing

method using SCM. By choosing M-estimator properly, we may have a spectrum

sensing method with the ability to adaptively fit the noise environment as shown in

chapter 4.

Regarding the proposed spectrum sensing method, there are two questions that

need to be further studied. The decision threshold controlling the POF is derived
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by numerical method in the thesis. Thus, the derivation of the analytical result of

the threshold is still an open question. Also how to choose an optimal estimator in

different noise environment needs to be investigated.



46

REFERENCES

[1] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex elliptically sym-

metric distributions: Survey, new results and applications,” IEEE Transactions

on signal processing, vol. 60, no. 11, pp. 5597–5625, 2012.

[2] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional co-

variance matrices,” Journal of multivariate analysis, vol. 88, no. 2, pp. 365–411,

2004.

[3] P. J. Bickel, E. Levina et al., “Regularized estimation of large covariance matri-

ces,” The Annals of Statistics, vol. 36, no. 1, pp. 199–227, 2008.

[4] T. Kubokawa and M. Srivastava, “Estimating the covariance matrix: a new

approach,” Journal of Multivariate Analysis, vol. 86, no. 1, pp. 28–47, 2003.

[5] R. A. Maronna, R. D. Martin, V. J. Yohai, and M. Salibián-Barrera, Robust

Statistics: Theory and Methods (with R). Wiley, 2018.

[6] T. K. Blankenship, D. Kriztman, and T. S. Rappaport, “Measurements and sim-

ulation of radio frequency impulsive noise in hospitals and clinics,” in Vehicular

Technology Conference, 1997, IEEE 47th, vol. 3. IEEE, 1997, pp. 1942–1946.

[7] E. Conte, M. Longo, and M. Lops, “Modelling and simulation of non-rayleigh

radar clutter,” in IEE Proceedings F (Radar and Signal Processing), vol. 138,

no. 2. IET, 1991, pp. 121–130.

[8] M. Sekine, S. Ohtani, T. Musha, T. Irabu, E. Kiuchi, T. Hagisawa,

and Y. Tomita, “Weibull-distributed ground clutter,” IEEE Transactions on

Aerospace and Electronic Systems, no. 4, pp. 596–598, 1981.

[9] M. Sekine, S. Ohatani, T. Musha, T. Irabu, E. Kiuchi, T. Hagisawa, and

Y. Tomita, “Mti processing and weibull-distributed ground clutter,” IEEE

Transactions on Aerospace and Electronic Systems, no. 6, pp. 729–730, 1982.

[10] E. Eskin, “Anomaly detection over noisy data using learned probability distribu-

tions,” in In Proceedings of the International Conference on Machine Learning.

Citeseer, 2000.



47

[11] S. Chawla, D. Hand, and V. Dhar, “Outlier detection special issue,” Data mining

and knowledge discovery, vol. 20, no. 2, pp. 189–190, 2010.

[12] I. M. Johnstone, “On the distribution of the largest eigenvalue in principal com-

ponents analysis,” Annals of statistics, pp. 295–327, 2001.

[13] Y.-Q. Yin, Z.-D. Bai, and P. R. Krishnaiah, “On the limit of the largest eigen-

value of the large dimensional sample covariance matrix,” Probability theory and

related fields, vol. 78, no. 4, pp. 509–521, 1988.

[14] C. A. Tracy and H. Widom, “On orthogonal and symplectic matrix ensembles,”

Communications in Mathematical Physics, vol. 177, no. 3, pp. 727–754, 1996.

[15] R. Couillet, F. Pascal, and J. W. Silverstein, “Robust estimates of covariance

matrices in the large dimensional regime.” IEEE Trans. Information Theory,

vol. 60, no. 11, pp. 7269–7278, 2014.

[16] ——, “The random matrix regime of maronnas m-estimator with elliptically

distributed samples,” Journal of Multivariate Analysis, vol. 139, pp. 56–78, 2015.

[17] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next genera-

tion/dynamic spectrum access/cognitive radio wireless networks: A survey,”

Computer Networks, vol. 50, no. 13, pp. 2127 – 2159, 2006. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128606001009

[18] P. Bianchi, J. Najim, G. Alfano, and M. Debbah, “Asymptotics of eigenbased

collaborative sensing,” in 2009 IEEE Information Theory Workshop, Oct 2009,

pp. 515–519.

[19] Y. Zeng and Y. . Liang, “Eigenvalue-based spectrum sensing algorithms for cog-

nitive radio,” IEEE Transactions on Communications, vol. 57, no. 6, pp. 1784–

1793, June 2009.

[20] L. S. Cardoso, M. Debbah, P. Bianchi, and J. Najim, “Cooperative spectrum

sensing using random matrix theory,” in 2008 3rd International Symposium on

Wireless Pervasive Computing, May 2008, pp. 334–338.

[21] D. Middleton, “Non-gaussian noise models in signal processing for telecommu-

nications: new methods an results for class a and class b noise models,” IEEE

Transactions on Information Theory, vol. 45, no. 4, pp. 1129–1149, 1999.

[22] G. Frahm, “Generalized elliptical distributions: theory and applications,” Ph.D.

dissertation, Universität zu Köln, 2004.

http://www.sciencedirect.com/science/article/pii/S1389128606001009


48

[23] M. G. Genton, Skew-elliptical distributions and their applications: a journey

beyond normality. CRC Press, 2004.

[24] R. A. Maronna, “Robust m-estimators of multivariate location and scatter,” The

annals of statistics, pp. 51–67, 1976.

[25] D. E. Tyler, “A distribution-free m-estimator of multivariate scatter,” The An-

nals of Statistics, pp. 234–251, 1987.

[26] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal, “Covariance

structure maximum-likelihood estimates in compound gaussian noise: Existence

and algorithm analysis,” IEEE Transactions on Signal Processing, vol. 56, no. 1,

pp. 34–48, 2008.

[27] D. D. Boos and L. A. Stefanski, Essential statistical inference: theory and meth-

ods. Springer Science & Business Media, 2013, vol. 120.

[28] T. W. Anderson, T. W. Anderson, T. W. Anderson, T. W. Anderson, and E.-U.

Mathématicien, An introduction to multivariate statistical analysis. Wiley New

York, 1958, vol. 2.
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