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Preface 

The next several pages describe the goals and the main topics of this book. 
Questions in discrete geometry typically involve finite sets of points, lines, 

circles, planes, or other simple geometric objects. For example, one can ask, 
what is the largest number of regions into which n lines can partition the 
plane, or what is the minimum possible number of distinct distances occur
ring among n points in the plane? (The former question is easy, the latter 
one is hard.) More complicated objects are investigated, too, such as convex 
polytopes or finite families of convex sets. The emphasis is on "combinato
rial" properties: Which of the given objects intersect, or how many points 
are needed to intersect all of them, and so on. 

Many questions in discrete geometry are very natural and worth studying 
for their own sake. Some of them, such as the structure of 3-dimensional 
convex polytopes, go back to the antiquity, and many of them are motivated 
by other areas of mathematics. To a working mathematician or computer 
scientist, contemporary discrete geometry offers results and techniques of 
great diversity, a useful enhancement of the "bag of tricks" for attacking 
problems in her or his field. My experience in this respect comes mainly 
from combinatorics and the design of efficient algorithms, where, as time 
progresses, more and more of the first-rate results are proved by methods 
drawn from seemingly distant areas of mathematics and where geometric 
methods are among the most prominent. 

The development of computational geometry and of geometric methods in 
combinatorial optimization in the last 20-30 years has stimulated research in 
discrete geometry a great deal and contributed new problems and motivation. 
Parts of discrete geometry are indispensable as a foundation for any serious 
study of these fields. I personally became involved in discrete geometry while 
working on geometric algorithms, and the present book gradually grew out of 
lecture notes initially focused on computational geometry. (In the meantime, 
several books on computational geometry have appeared, and so I decided to 
concentrate on the nonalgorithmic part.) 

In order to explain the path chosen in this book for exploring its subject, 
let me compare discrete geometry to an Alpine mountain range. Mountains 
can be explored by bus tours, by walking, by serious climbing, by playing 
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in the local casino, and in many other ways. The book should provide safe 
trails to a few peaks and lookout points (key results from various subfields 
of discrete geometry) . To some of them, convenient paths have been marked 
in the literature, but for others, where only climbers' routes exist in research 
papers, I tried to add some handrails, steps, and ropes at the critical places, 
in the form of intuitive explanations, pictures, and concrete and elementary 
proofs. 1 However, I do not know how to build cable cars in this landscape: 
Reaching the higher peaks, the results traditionally considered difficult, still 
needs substantial effort. I wish everyone a clear view of the beautiful ideas in 
the area, and I hope that the trails of this book will help some readers climb 
yet unconquered summits by their own research. (Here the shortcomings of 
the Alpine analogy become clear: The range of discrete geometry is infinite 
and no doubt, many discoveries lie ahead, while the Alps are a small spot on 
the all too finite Earth. ) 

This book is primarily an introductory textbook. It does not require any 
special background besides the usual undergraduate mathematics (linear al
gebra, calculus, and a little of combinatorics, graph theory, and probability) . 
It should be accessible to early graduate students, although mastering the 
more advanced proofs probably needs some mathematical maturity. The first 
and main part of each section is intended for teaching in class. I have actually 
taught most of the material, mainly in an advanced course in Prague whose 
contents varied over the years, and a large part has also been presented by 
students, based on my writing, in lectures at special seminars (Spring Schools 
of Combinatorics) . A short summary at the end of the book can be useful for 
reviewing the covered material. 

The book can also serve as a collection of surveys in several narrower 
subfields of discrete geometry, where, as far as I know, no adequate recent 
treatment is available. The sections are accompanied by remarks and biblio
graphic notes. For well-established material, such as convex polytopes, these 
parts usually refer to the original sources, point to modern treatments and 
surveys, and present a sample of key results in the area. For the less well cov
ered topics, I have aimed at surveying most of the important recent results. 
For some of them, proof outlines are provided, which should convey the main 
ideas and make it easy to fill in the details from the original source. 

Topics. The material in the book can be divided into several groups: 

• Foundations (Sections 1 . 1-1 .3, 2 . 1 ,  5. 1-5 .4, 5.7, 6 . 1 ) .  Here truly basic 
things are covered, suitable for any introductory course: linear and affine 
subspaces, fundamentals of convex sets, Minkowski's theorem on lattice 
points in convex bodies, duality, and the first steps in convex polytopes, 
Voronoi diagrams, and hyperplane arrangements. The remaining sections 
of Chapters 1 ,  2, and 5 go a little further in these topics. 

1 I also wanted to invent fitting names for the important theorems, in order to 
make them easier to remember. Only few of these names are in standard usage. 
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• Combinatorial cornplexity of geornetric configurations (Chapters 4, 6, 7, 
and 1 1 ) .  The problems studied here include line-point incidences, com
plexity of arrangements and lower envelopes, Davenport-Schinzel se
quences, and the k-set problem. Powerful methods, mainly probabilistic, 
developed in this area are explained step by step on concrete nontriv
ial examples. Many of the questions were motivated by the analysis of 
algorithms in computational geometry. 

• Intersection patterns and transversals of convex sets. Chapters 8-10 con
tain, among others, a proof of the celebrated (p, q)-theorem of Alon and 
Kleitman, including all the tools used in it . This theorem gives a suffi
cient condition guaranteeing that all sets in a given family of convex sets 
can be intersected by a bounded (small) number of points. Such results 
can be seen as far-reaching generalizations of the well-known Helly's the
orem. Some of the finest pieces of the weaponry of contemporary discrete 
and computational geometry, such as the theory of the VC-dimension or 
the regularity lemma, appear in these chapters. 

• Geometric Ramsey theory (Chapters 3 and 9) .  Ramsey-type theorems 
guarantee the existence of a certain "regular" subconfiguration in every 
sufficiently large configuration; in our case we deal with geometric ob
jects. One of the historically first results here is the theorem of Erdos 
and Szekeres on convex independent subsets in every sufficiently large 
point set. 

• Polyhedral combinatorics and high-dimensional convexity (Chapters 12-
14) . Two famous results are proved as a sample of polyhedral combina
torics, one in graph theory (the weak perfect graph conjecture) and one in 
theoretical computer science (on sorting with partial information) . Then 
the behavior of convex bodies in high dimensions is explored; the high
lights include a theorem on the volume of an N-vertex convex polytope 
in the unit ball (related to algorithmic hardness of volume approxima
tion) , measure concentration on the sphere, and Dvoretzky's theorem on 
almost-spherical sections of convex bodies. 

• Representing finite metric spaces by coordinates (Chapter 15) .  Given an 
n-point metric space, we would like to visualize it or at least make it com
putationally more tractable by placing the points in a Euclidean space, 
in such a way that the Euclidean distances approximate the given dis
tances in the finite metric space. We investigate the necessary error of 
such approximation. Such results are of great interest in several areas; 
for example, recently they have been used in approximation algorithms 
in combinatorial optimization (multicommodity flows, VLSI layout, and 
others) .  

These topics surely do not cover all of discrete geometry, which is a rather 
vague term anyway. The selection is (necessarily) subjective, and naturally 
I preferred areas that I knew better and/or had been working in. (Unfortu
nately, I have had no access to supernatural opinions on proofs as a more 
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reliable guide. )  Many interesting topics are neglected completely, such as the 
wide area of packing and covering, where very accessible treatments exist, 
or the celebrated negative solution by Kahn and Kalai of the Borsuk conjec
ture, which I consider sufficiently popularized by now. Many more chapters 
analogous to the fifteen of this book could be added, and each of the fifteen 
chapters could be expanded into a thick volume. But the extent of the book, 
as well as the time for its writing, are limited. 

Exercises. The sections are complemented by exercises. The little framed 
numbers indicate their difficulty: ITI is routine, 0 may need quite a bright 
idea. Some of the exercises used to be a part of homework assignments in my 
courses and the classification is based on some experience, but for others it 
is just an unreliable subjective guess. Some of the exercises, especially those 
conveying important results, are accompanied by hints given at the end of 
the book. 

Additional results that did not fit into the main text are often included as 
exercises, which saves much space. However, this greatly enlarges the danger 
of making false claims, so the reader who wants to use such information 1nay 
want to check it carefully. 

Sources and further reading. A great inspiration for this book project 
and the source of much material was the book Combinatorial Geometry of 
Pach and Agarwal [PA95]. Too late did I become aware of the lecture notes by 
Ball [Bal97] on modern convex geometry; had I known these earlier I would 
probably have hesitated to write Chapters 13 and 14 on high-dimensional 
convexity, as I would not dare to compete with this masterpiece of mathe
matical exposition. Ziegler's book [Zie94] can be recommended for studying 
convex polytopes. Many other sources are mentioned in the notes in each 
chapter. For looking up information in discrete geometry, a good starting 
point can be one of the several handbooks pertaining to the area: Handbook 
of Convex Geometry [GW93], Handbook of Discrete and Computational Ge
ometry [G097] , Handbook of Computational Geometry [SUOO], and (to some 
extent) Handbook of Combinatorics [GGL95] , with numerous valuable sur
veys. Many of the important new results in the field keep appearing in the 
journal Discrete and Computational Geometry. 

Acknowledgments. For invaluable advice and/or very helpful comments on 
preliminary versions of this book I would like to thank Micha Sharir, Gunter 
M. Ziegler, Yuri Rabinovich, Pankaj K. Agarwal, Pavel Valtr, Martin Klazar, 
Nati Linial, Gunter Rote, Janos Pach, Keith Ball, Uli Wagner, Imre Barany, 
Eli Goodman, Gyorgy Elekes, Johannes Blamer, Eva Matouskova, Gil Kalai, 
Joram Lindenstrauss, Emo Welzl, Komei Fukuda, Rephael Wenger, Piotr In
dyk, Sariel Har-Peled, Vojtech Rodl, Geza T6th, Karoly Boroczky Jr. ,  Rados 
Radoicic, Helena Nyklova, Vojtech Franek, Jakub Simek, Avner Magen, Gre
gor Baudis, and Andreas Marwinski (I apologize if I forgot someone; my notes 
are not perfect, not to speak of my memory). Their remarks and suggestions 
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allowed me to improve the manuscript considerably and to eliminate many of 
the embarrassing mistakes. I thank David Kramer for a careful copy-editing 
and finding many more mistakes (as well as offering me a glimpse into the 
exotic realm of English punctuation) .  I also wish to thank everyone who par
ticipated in creating the friendly and supportive environments in which I 
have been working on the book. 
Errors. If you find errors in the book, especially serious ones, I would 
appreciate it if you would let me know (email: matousek@kam. mff. cuni. cz). 
I plan to post a list of errors at http: I /www .ms .mff. cuni. cz/-matousek. 

Prague, July 2001 Jiri Matousek 
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Notation and Terminology 

This section summarizes rather standard things, and it is mainly for reference. 
More special notions are introduced gradually throughout the book. In order 
to facilitate independent reading of various parts, some of the definitions are 
even repeated several times. 

If X is a set , I X I denotes the number of elements (cardinality) of X. If X 
is a multiset, in which some elements may be repeated, then lX I  counts each 
element with its multiplicity. 

The very slowly growing function log* x is defined by log* x = 0 for x < 1 
and log* x = 1 + log* (log2 x) for x > 1 .  

For a real number x, l x J denotes the largest integer less than or equal 
to x, and r X l means the smallest integer greater than or equal to x. The 
boldface letters R and Z stand for the real numbers and for the integers, 
respectively, while Rd denotes the d-dimensional Euclidean space. For a point 
x = (xi , x2 , . . .  , xd ) E Rd, llxl l = Jxi + x� + · · · + x� is the Euclidean norm 
of x, and for x, y E Rd, (x, y) = XIYI + x2y2 + · · · + XdYd is the scalar product. 
Points of Rd are usually considered as column vectors. 

The symbol B(x, r) denotes the closed ball of radius r centered at x in 
some metric space (usually in R d with the Euclidean distance) ,  i.e. , the set 
of all points with distance at most r from x. We write Bn for the unit ball 
B(O, 1 )  in Rn . The symbol 8A denotes the boundary of a set A C Rd, that 
is, the set of points at zero distance from both A and its complement. 

For a measurable set A C Rd, vol(A) is the d-dimensional Lebesgue mea
sure of A (in most cases the usual volume). 

Let f and g be real functions (of one or several variables) . The notation 
f = O(g) means that there exists a number C such that 1!1 < Clg l  for all 
values of the variables. Normally, C should he an absolute constant, but if 
f and g depend on some parameter(s) that we explicitly declare to be fixed 
(such as the space dimension d) , then C may depend on these parameters 
as well. The notation f = O(g) is equivalent to g = O(J), f(n) = o(g(n)) 
to limn--?<X)(f(n)jg(n)) = 0, and f = 8(g) means that both f = O(g) and 
f == O(g) . 

For a random variable X, the symbol E[X] denotes the expectation of X, 
and Prob [A] stands for the probability of an event A. 
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Graphs are considered simple and undirected in this book unless stated 
otherwise, so a graph G is a pair (V, E), where V is a set (the verte.rc set) and 
E C (�) is the edge set. Here (r) denotes the set of all k-element subsets 
of V. For a multigraph, the edges form a multiset , so two vertices can be 
connected by several edges. For a given (multi)graph G, we write V(G) for 
the vertex set and E(G) for the edge set. A complete graph has all possible 
edges; that is, it is of the form ( V, (�)). A complete graph on n vertices is 
denoted by Kn . A graph G is bipartite if the vertex set can be partitioned 
into two subsets vl and v2, the (color} classes, in such a way that each edge 
connects a vertex of V1 to a vertex of V2• A graph G' = (V', E') is a subgraph 
of a graph G = (V, E) if V' C V and E' C E. We also say that G contains 
a copy of H if there is a subgraph G' of G isomorphic to H, where G' and 
H are isomorphic if there is a bijective map <p: V(G') � V(H) such that 
{u, v }  E E(G') if and only if {<p(u) , <p(v)} E E(H) for all u, v E V(G') .  The 
degree of a vertex v in a graph G is the number of edges of G containing v. 
An r-regular graph has all degrees equal to r. Paths and cycles are graphs as 
in the following picture, 

I/N � ooo 
paths cycles 

and a path or cycle in G is a subgraph isomorphic to a path or cycle, respec
tively. A graph G is connected if every two vertices can be connected by a 
path in G. 

We recall that a set X C Rd is compact if and only if it is closed and 
bounded, and that a continuous function f: X � R defined on a compact X 
attains its minimum (there exists xo E X  with f(x0) < f(x) for all x E X) .  

The Cauchy-Schwarz inequality is perhaps best remembered in the form 
(x, Y) < l lx l l  · I IY I I  for all x, y E Rn. 

A real function f defined on an interval A C R (or, more generally, on a 
convex set A C Rd) is convex if f(tx + ( 1-t)y) < tf(x) + ( 1-t)f(y) for all 
x, y E A and t E [0, 1 ] .  Geometrically, the graph of f on [x, y] lies below the 
segment connecting the points (x, f(x) ) and (y, j(y_)) .  If the second derivative 
satisfies f"(x) > 0 for all x in an (open) interval A C R, then f is convex 
on A. Jensen's inequality is a straightforward generalization of the definition 
of convexity: j(t1x1 + t2x2 + · · · + tnxn) < t1J (x1 ) + t2J(x2 ) + · · · + tnf(xn) 
for all choices of nonnegative ti summing to 1 and all x1 , . . .  , Xn E A. Or in 
integral form, if J1 is a probability measure on A and f is convex on A,  we have 
f (fA x dp,(x)) < fA f(x) dp,(x) . In the language of probability theory, if X 
is a real random variable and f: R � R is convex, then /(E[X] ) < E[f(X)] ; 
for example, (E[XJ)2 < E[X2). 
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Convexity 

We begin with a review of basic geo1netric notions such as hyperplanes and 
affine subspaces in Rd, and we spend some time by discussing the notion 
of general position. Then we consider fundamental properties of convex sets 
in Rd, such as a theorem about the separation of disjoint convex sets by a 
hyperplane and Helly's theorem. 

1.1  Linear and Affine Subspaces, General Position 

Linear subspaces. Let R d denote the d-dimensional Euclidean space. The 
points are d-tuples of real numbers, x = (x1, x2, . . .  , xd ) · 

The space Rd is a vector space, and so we may speak of linear subspaccs, 
linear dependence of points, linear span of a set, and so on. A linear subspace 
of Rd is a subset closed under addition of vectors and under multiplication 
by real numbers. What is the geometric meaning? For instance, the linear 
subspaces of R 2 are the origin itself, all lines passing through the origin, 
and the whole of R 2• In R 3, we have the origin, all lines and planes passing 
through the origin, and R 3. 

Affine notions. An arbitrary line in R 2, say, is not a linear subspace unless 
it passes through 0. General lines are what arc called affine subspaces. An 
affine subspace of Rd has the form x + L, where x E R d is some vector and L 
is a linear subspace of Rd. Having defined affine subs paces, the other "affine" 
notions can be constructed by imitating the "linear" notions. 

What is the affine hull of a set X C Rd? It is the intersection of all affine 
subspaces of R d containing X .  As is well known, the linear span of a set X 
can be described as the set of all linear combinations of points of X.  What 
is an affine combination of points a1, a2, ... , an E R d that would play an 
analogous role? To see this, we translate the whole set by -an, so that an 
becomes the origin, we make a linear combination, and we translate back by 
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+an. This yields an expression of the form f3t (at - an) + {32 (a2 - an) + · · · +  
fJn(an - an) + an == f3tal + tJ2a2 + · · · + fJn-lan-1 + ( 1- f3t- f32 - · · · - f3n-t)an, 
where f3t, . . .  , f3n are arbitrary real numbers. Thus, an affine combination of 
points a 1 , ... , an E R d is an expression of the forrn 

Then indeed, it is not hard to check that the affine hull of X is the set of all 
affine combinations of points of X .  

The affine dependence of points a1, . . .  , an means that one of them can 
be written as an affine combination of the others. This is the sarne as the 
existence of real numbers a1, a2 , . . .  an, at least one of them nonzero, such 
that both 

(Note the difference: In an affine combination, the ai sum to 1 ,  while in an 
affine dependence, they sum to 0.) 

Affine dependence of a1 , . . •  , an is equivalent to linear dependence of the 
n-1 vectors a1 - an, a2 - an, . . .  , an-1 - an· Therefore, the maximum possible 
number of affinely independent points in Rd is d+1. 

Another way of expressing affine dependence uses "lifting" one dimension 
higher. Let bi == ( ai, 1 ) be the vector in R d+ 1 obtained by appending a new 
coordinate equal to 1 to ai; then a 1, . . .  , an are affinely dependent if and only 
if b1 , ... , bn are linearly dependent . This correspondence of affine notions in 
Rd with linear notions in Rd+l is quite general. For example, if we identify 
R 2 with the plane x3 == 1 in R 3 as in the picture, 

then we obtain a bijective correspondence of the k-dimensional linear sub
spaces of R3 that do not lie in the plane x3 == 0 with (k-1 )-dimensional affine 
subs paces of R 2 • The drawing shows a 2-diinensional linear subspace of R 3 
and the corresponding line in the plane x3 = 1 .  (The satne works for affine 
subspaces of Rd and linear subspaces of Rd+t not contained in the subspace 
Xd+l = 0.) 

This correspondence also leads directly to extending the affine plane R2 
into the projective plane: To the points of R 2 corresponding to nonhorizontal 
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lines through 0 in R 3 we add points "at infinity," that correspond to hori
zontal lines through 0 in R 3. But in this book we remain in the affine space 
most of the time, and we do not use the projective notions. 

Let a1 ,  a2 , . . .  , ad+l  be points in Rd, and let A be the d x d rnatrix with 
ai- ad+ I as the ith column, i = 1 ,  2, . . . , d. Then a1 ,  . . .  , ad+I are affi.nely 
independent if and only if A has d linearly independent columns, and this is 
equivalent to det(A) -# 0. We have a useful criterion of affine independence 
using a determinant. 

Affine subspaces of R d of certain diinensions have special names. A ( d-1 )
dimensional affine subspace of R d is called a hyperplane (while the word plane 
usually means a 2-dimensional subspace of R d for any d) . One-dimensional 
subs paces are lines, and a k-dimensional affine subspace is often called a k
fiat. 

A hyperplane is usually specified by a single linear equation of the forrn 
a1x1 + a2x2 + · · · + adxd =b. We usually write the left-hand side as the scalar 
product {a, x). So a hyperplane can be expressed as the set {x E Rd: (a, x) = 
b} where a E Rd \ {0} and b E R. A (closed) half-space in Rd is a set 
of the form {x E Rd: (a, x) > b} for some a E Rd \ {0}; the hyperplane 
{ x E Rd: (a, x) = b} is its boundary. 

General k-flats can be given either as intersections of hyperplanes or as 
affine images of R k (parametric expression) . In the first case, an intersection 
of k hyperplanes can also be viewed as a solution to a system Ax == b of linear 
equations, where x E Rd is regarded as a column vector, A is a k x d matrix, 
and b E R k. (As a rule, in forrnulas involving matrices, we interpret points 
of Rd as column vectors. )  

An affine mapping I: R k ---t R d has the form I: y H By + c for some d x k 
matrix B and some c E Rd, so it is a composition of a linear map with a 
translation. The image of f is a k'-flat for some k' < min(k, d) .  This k' equals 
the rank of the matrix B. 

General position. "We assume that the points (lines, hyperplanes, . . .  ) are 
in general position." This magical phrase appears in many proofs. Intuitively, 
general position means that no "unlikely coincidences" happen in the consid
ered configuration. For example, if 3 points are chosen in the plane without 
any special intention, "randomly," they are unlikely to lie on a common line. 
For a planar point set in general position, we always require that no three 
of its points be collinear. For points in Rd in general position, we assume 
similarly that no unnecessary affine dependencies exist : No k < d+l points 
lie in a common (k-2)-ftat. For lines in the plane in general position, we 
postulate that no 3 lines have a common point and no 2 are parallel. 

The precise meaning of general position is not fully standard: It may 
depend on the particular context , and to the usual conditions mentioned 
above we sometimes add others where convenient. For example, for a planar 
point set in general position we can also suppose that no two points have the 
same x-coordinate. 
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What conditions are suitable for including into a "general position" as
sumption? In other words, what can be considered as an unlikely coincidence? 
For example, let X be an n-point set in the plane, and let the coordinates of 
the ith point be (xi , Yi ) · Then the vector v(X) = (xi, x2 , . . .  , Xn , YI ,  Y2 , . . .  , Yn) 
can be regarded as a point of R2n .  For a configuration X in which x1 = x2 , 
i.e. , the first and second points have the same x-coordinate, the point v (X) 
lies on the hyperplane {XI = x2} in R 2n .  The configurations X where .'jome 
two points share the x-coordinate thus correspond to the union of (�) hy
perplanes in R 2n .  Since a hyperplane in R 2n has ( 2n-dimensional) measure 
zero, almost all points of R 2n correspond to planar configurations X with all 
the points having distinct x-coordinates. In particular, if X is any n-point 
planar configuration and c > 0 is any given real number, then there is a con
figuration X', obtained from X by moving each point by distance at most c, 
such that all points of X' have distinct x-coordinates. Not only that: Almost 
all small movements (perturbations) of X result in X' with this property. 

This is the key property of general position: Configurations in general 
position lie arbitrarily close to any given configuration (and they abound 
in any small neighborhood of any given configuration). Here is a fairly gen
eral type of condition with this property. Suppose that a configuration X 
is specified by a vector t = ( t I ,  t2 , . • .  , tm) of m real numbers (coordinates) .  
The objects of X can be points in Rd, in which case m = dn and the tj 
are the coordinates of the points, but they can also be circles in the plane, 
with m = 3n and the tj expressing the center and the radius of each circle, 
and so on. The general position condition we can put on the configuration 
X is p( t) = p( ti, t2 , • • .  , tm) f= 0, where p is some nonzero polynomial in m 
variables. Here we use the following well-known fact (a consequence of Sard's 
theorem; see, e.g. , Bred on [Bre93] , Appendix C) : For any nonzero m-variate 
polynomial p(t1 , • • •  , tm) ,  the zero set {t  E Rm: p(t) = 0} has measure 0 in 
Rm . 

Therefore, almost all configurations X satisfy p(t) f= 0. So any condition 
that can be expressed as p(t) f= 0 for a certain polynomial p in m real 
variables, or, more generally, as PI ( t) =f. 0 or P2 ( t) =f. 0 or . . .  , for finitely or 
countably many polynomials PI , P2 , . . .  , can be included in a general position 
assumption. 

For example, let X be an n-point set in Rd, and let us consider the con
dition "no d+ 1 points of X lie in a comrnon hyperplane." In other words, no 
d+1 points should be affinely dependent. As we know, the affine dependence 
of d+ 1 points means that a suitable d x d determinant equals 0. This deter
minant is a polynomial (of degree d) in the coordinates of these d+ 1 points. 
Introducing one polynomial for every (d+1)-tuple of the points, we obtain 
(d�1 ) polynomials such that at least one of them is 0 for any configuration X 
with d+ 1 points in a common hyperplane. Other usual conditions for general 
position can be expressed similarly. 
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In many proofs, assuming general position simplifies matters consider
ably. But what do we do with configurations Xo that are not in general 
position? We have to argue, somehow, that if the statement being proved is 
valid for configurations X arbitrarily close to our X0 , then it must be valid 
for X0 itself, too. Such proofs, usually called perturbation arguments, are of
ten rather simple, and almost always somewhat boring. But sometimes they 
can be tricky, and one should not underestimate them, no matter how tempt
ing this may be. A nontrivial example will be demonstrated in Section 5.5 
(Lemma 5.5.4) . 

Exercises 

1 .  Verify that the affine hull of a set X C R d equals the set of all affine 
combinations of points of X.  121 

2. Let A be a 2 x 3 matrix and let b E R 2 • Interpret the solution of the 
system Ax = b geometrically (in most cases, as an intersection of two 
planes) and discuss the possible cases in algebraic and geometric terms. 
[I] 

3. (a) What are the possible intersections of two ( 2-dimensional) planes 
in R4? What is the "typical" case (general position)? What about two 
hyperplanes in R4? 0 
(b) Objects in R4 can sometimes be "visualized" as objects in R3 moving 
in time (so time is interpreted as the fourth coordinate) . Try to visualize 
the intersection of two planes in R 4 discussed (a) in this way. 

1.2 Convex Sets, Convex Combinations, Separation 

Intuitively, a set is convex if its surface has no "dips" : 

� not allowed in a convex set 

1.2.1 Definition (Convex set) .  A set C C Rd is convex if for every two 
points x, y E C the whole segment xy is also contained in C. In other words, 
for every t E (0, 1], the point tx + ( 1  - t )y belongs to C. 

The intersection of an arbitrary family of convex sets is obviously convex. 
So we can define the convex hull o£ a set X C R d , denoted by conv( X) ,  as the 
intersection of all convex sets in R d containing X. Here is a planar example 
with a finite X:  

X • 

• • • 
• 

• 
• 

• 

• •  conv(X) 
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An alternative description of the convex hull can be given using convex 
combinations. 

1.2.2 Claim. A point x belongs to conv(X) if and only if there exist points 
Xt, x2 , . . •  Xn E X and nonnegative real numbers t1., t2 , ... , tn with 2:� 1 ti = 

1 such that x == I:� 1 tixi. 

The expression L� 1 tixi as in the claiin is called a convex cornbinat'ion 
of the points x1, x2 , . . . , Xn. (Compare this with the definitions of linear and 
affine combinations. )  

Sketch of proof. Each convex combination of points of X must lie in 
conv( X) :  For n = 2 this is by definition, and for larger n by induction. 
Conversely, the set of all convex combinations obviously contains X,  and it 
is convex. D 

In R d, it is sufficient to consider convex combinations involving at most 
d+l points: 

1.2.3 Theorem (Caratheodory's theorem) . Let X c Rd . Then each 
point of conv(X) is a convex combination of at most d+ 1 points of X. 

For example, in the plane, conv(X) is the union of all triangles with 
vertices at points of X.  The proof of the theorem is left as an exercise to the 
subsequent section. 

A basic result about convex sets is the separability of disjoint convex sets 
by a hyperplane. 

1.2.4 Theorem (Separation theorem) . Let C, D C Rd be convex sets 
with C n D = 0. Then there exists a hyperplane h such that C lies in one 
of the closed half-spaces determined by h, and D lies in the opposite closed 
half-space. In other words, there exist a unit vector a E Rd and a number 
b E R such that for all x E C we have (a, x) > b, and for all x E D we have 
(a, x) < b .  

If C and D are closed and at least one of them is bounded, they can be 
separated strictly; in such a way that C n h = D n h = 0. 

In particular, a closed convex set can be strictly separated from a point. 
This implies that the convex hull of a closed set X equals the intersection of 
all closed half-spaces containing X.  

Sketch of proof. First assume that C and D are compact (i.e. , closed and 
bounded) .  Then the Cartesian product C x D is a compact space, too, and 
the distance function (x, y) M l l x - Y l l  attains its minimum on C x D. That 
is, there exist points p E C and q E D such that the distance of C and D 
equals the distance of p and q. 

The desired separating hyperplane h can be taken as the one perpendic
ular to the segment pq and passing through its midpoint: 
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It is easy to check that h indeed avoids both C and D. 
If D is cornpact and C closed, we can intersect C with a large ball and 

get a compact set C'. If the ball is sufficiently large, then C and C' have the 
same distance to D. So the distance of C and D is attained at some p E C' 
and q E D, and we can use the previous argument. 

For arbitrary disjoint convex sets C and D, we choose a sequence C1 C 
C2 c C3 c · · · of compact convex subsets of C with U� 1 Cn = C. For 
example, assuming that 0 E C, we can let Cn be the intersection of the 
closure of ( 1 - ! )C with the ball of radius n centered at 0. A similar sequence 
D1 C D2 C ·· · is chosen for D, and we let hn = {x E Rd : (an, x) = bn} be a 
hyperplane separating Cn from Dn, where an is a unit vector and bn E R. The 
sequence (bn)� 1 is bounded, and by compactness, the sequence of (d+l)
component vectors (an, bn) E R d+ 1 has a cluster point (a, b) . One can verify, 
by contradiction, that the hyperplane h = { x E R d : (a, x) = b} separates C 
and D ( nonstrictly) .  D 

The irnportance of the separation theorem is documented by its presence 
in several branches of mathematics in various disguises. Its home territory is 
probably functional analysis, where it is formulated and proved for infinite
dimensional spaces; essentially it is the so-called Hahn-Banach theorem. The 
usual functional-analytic proof is different from the one we gave, and in a 
way it is rnore elegant and conceptual. The proof sketched above uses more 
special properties of Rd, but it is quite short and intuitive in the case of 
compact C and D. 

Connection to linear programming. A basic result in the theory of 
linear programming is the Farkas lemma. It is a special case of the duality of 
linear programming (discussed in Section 10. 1) as well as the key step in its 
proof. 

1.2.5 Lemma (Farkas lemma, one of many versions) . For every d x n 
real matrix A, exactly one of the following cases occurs: 

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative 
solution x E Rn (all components of x are nonnegative and at least one 
of them is strictly positive). 
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(ii) There exists a y E Rd such that yT A is a vector with all entries strictly 
negative. Thus, if we multiply the jth equation in the system Ax= 0 by 
Yj and add these equations together, we obtain an equation that obviously 
has no nontrivial nonnegative solution, since all the coefficients on the 
left-hand sides are strictly negative, while the right-hand side is 0. 

Proof. Let us see why this is yet another version of the separation theorem. 
Let V c Rd be the set of n points given by the column vectors of the 
matrix A. We distinguish two cases: Either 0 E conv(V) or 0 ¢ conv(V) . 

In the former case, we know that 0 is a convex combination of the points 
of V, and the coefficients of this convex combination determine a nontrivial 
nonnegative solution to Ax = 0. 

In the latter case, there exists a hyperplane strictly separating V from 0, 
i.e., a unit vector y E Rd such that ( y, v) < (y, 0) = 0 for each v E V. This is 
just the y from the second alternative in the Farkas lemma. D 

Bibliography and remarks. Most of the n1aterial in this chapter is 
quite old and can be found in many surveys and textbooks. Providing 
historical accounts of such well-covered areas is not among the goals 
of this book, and so we mention only a few references for the specific 
results discussed in the text and add some remarks concerning related 
results. 

The concept of convexity and the rudiments of convex geometry 
have been around since antiquity. The initial chapter of the Handbook 
of Convex Geometry [GW93] succinctly describes the history, and the 
handbook can be recommended as the basic source on questions re
lated to convexity, although knowledge has progressed significantly 
since its publication. 

For an introduction to functional analysis, including the Hahn
Banach theorem, see Rudin [Rud91 ) ,  for example. The Farkas lemma 
originated in [Far94} (nineteenth century!) . More on the history of the 
duality of linear programming can be found, e.g. , in Schrijver's book 
[Sch86] . 

As for the origins, generalizations, and applications of Caratheo
dory's theorem, as well as of Radon's lemma and Helly's theorem dis
cussed in the subsequent sections, a recommendable survey is Eckhoff 
[Eck93] , and an older well-known source is Danzer, Griinbaum, and 
Klee [DGK63] . 

Caratheodory's theorem comes from the paper [Car07] , concerning 
power series and harmonic analysis. A somewhat similar theorem, due 
to Steinitz [Ste16] , asserts that if x lies in the interior of conv(X) 
for an X C Rd, then it also lies in the interior of conv(Y) for some 
Y C X with IYI < 2d. Bonnice and Klee (BK63] proved a common 
generalization of both these theorems: Any k-interior point of X is 
a k-interior point of Y for some Y C X with at most max(2k, d+l) 
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points, where x is called a k-interior point of X if it lies in the relative 
interior of the convex hull of some k+ 1 affinely independent points 
of X.  

Exercises 

1 .  Give a detailed proof of Claim 1 .2 .2. m 
2. Write down a detailed proof of the separation theorem. 0 

9 

3. Find an example of two disjoint closed convex sets in the plane that are 
not strictly separable. II1 

4. Let f: Rd ---+ Rk be an affine map. 
(a) Prove that if C C Rd is convex, then f(C) is convex as well. Is the 
preimage of a convex set always convex? m 
(b) For X C  Rd arbitrary, prove that conv{/(X)) = conv(f(X) ) .  CD 

5. Let X C  Rd. Prove that dian1(conv(X)) = diam(X) ,  where the dian1eter 
diam(Y) of a set Y is sup{ llx - y l l :  x, y E Y} .  0 

6. A set C C Rd is a convex cone if it is convex and for each x E C, the ray 
a± is fully contained in C. 
(a) Analogously to the convex and affine hulls, define the appropriate 
"conic hull" and the corresponding notion of "combination" (analogous 
to the convex and affine combinations) . 0 
(b) Let C be a convex cone in Rd and b fl. C a point. Prove that there 
exists a vector a with (a, x) > 0 for all X E C and (a, b) < 0. m 

7. (Variations on the Farkas lemma) Let A be a d  x n matrix and let b E  Rd. 
(a) Prove that the systen1 Ax = b has a nonnegative solution x E Rn if 
and only if every y E Rd satisfying yT A > 0 also satisfies yTb > 0. 0 
(b) Prove that the system of inequalities Ax < b has a nonnegative 
solution x if and only if every nonnegative y E Rd with y

T A > 0 also 
satisfies yTb > 0. 0 

8. (a) Let C C Rd be a compact convex set with a nonen1pty interior, and 
let p E C be an interior point. Show that there exists a line f passing 
through p such that the segment f n C is at least as long as any segment 
parallel to f and contained in c. m 
(b) Show that (a) may fail for C compact but not convex. III 

1.3 Radon's Lemma and Belly's Theorem 

Caratheodory's theorem from the previous section, together with Radon's 
lemma and Helly's theorem presented here, are three basic properties of con
vexity in Rd involving the dimension. We begin with Radon's len1n1a. 

1.3.1 Theorem (Radon's lemma) . Let A be a set of d+2 points in Rd. 
Then there exist two disjoint subsets A1 , A2 c A such that 

conv(At) n conv(A2 ) =/: 0. 
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A point x E conv(A1 ) nconv(A2) , where A1 and A2 are as in the theorem, 
is called a Radon point of A, and the pair (A 1 , A2) is called a Radon partition 
of A (it is easily seen that we can require A1 U A2 = A). 

Here are two possible cases in the plane: 

Proof. Let A ==  {at ,  a2 , . . .  , ad+2} ·  These d+2 points are necessarily affi.nely 
dependent. That is, there exist real numbers a1 , . . .  , ad+2, not all of them 0, 

""'d+2 d ""'d+2 
such that L...,i=l ai == 0 an L...,i=l aiai = 0. 

Set P = {i :  ai > 0} and N = {i: ai < 0}. Both P and N are nonempty. 
We claim that P and N determine the desired subsets. Let us put A1 = 
{ ai: i E P} and A2 = { ai : i E N}.  We are going to exhibit a point x that is 
contained in the convex hulls of both these sets. 

Put S =  LiEP ai ; we also have S = - LiEN ai. Then we define 

( 1 . 1 )  

( 1 .2) 

The coefficients of the ai in ( 1 . 1) are nonnegative and sum to 1 ,  so x is a 
convex combination of points of At .  Similarly, ( 1 .2) expresses X as a convex 
combination of points of A2• 0 

Helly's theorem is one of the most famous results of a combinatorial nature 
about convex sets. 

1.3.2 Theorem (Helly's theorem) . Let Ot , 02, . . . , On be convex sets in 
Rd, n > d+l .  Suppose that the intersection of every d+1 of these sets is 
nonempty. Then the intersection of all the Oi is nonempty. 

The first nontrivial case states that if every 3 among 4 convex sets in 
the plane intersect, then there is a point common to all 4 sets. This can be 
proved by an elementary geometric argument, perhaps distinguishing a few 
cases, and the reader may want to try to find a proof before reading further. 

In a contrapositive form, Helly's theorem guarantees that whenever 
01 , 02, . . . , On are convex sets with n� 1 Oi = 0, then this is witnessed by 
some at most d+l sets with empty intersection among the Oi. In this way, 
many proofs are greatly simplified, since in planar problems, say, one can deal 
with 3 convex sets instead of an arbitrary number, as is amply illustrated in 
the exercises below. 
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It is very tempting and quite usual to formulate Helly's theorem as fol
lows: "If every d+l among n convex sets in Rd intersect, then all the sets 
intersect." But, strictly speaking, this is false, for a trivial reason: For d >  2 ,  
the assumption as stated here is n1et by n = 2 disjoint convex sets. 

Proof of Helly's theorem. (Using Radon's lemma.) For a fixed d, we 
proceed by induction on n. The case n = d+l is clear, so we suppose that 
n > d+2 and that the statement of Helly's theorem holds for smaller n.  
Actually, n = d+2 is  the crucial case; the result for larger n follows at once 
by a simple induction. 

Consider sets C1 , C2 , . . .  , Cn satisfying the assumptions. If we leave out 
any one of these sets, the remaining sets have a nonempty intersection by 
the inductive assumption. Let us fix a point ai E ni#i Ci and consider the 
points a1 , a2 , . . .  , ad+2 . By Radon's lemma, there exist disjoint index sets 
I1 , I2 c { 1 ,  2, . . .  , d+2} such that 

We pick a point x in this intersection. The following picture illustrates the 
case d = 2 and n = 4: 

We claim that X lies in the intersection of all the ci . Consider some i E 
{ 1 ,  2, . . .  , n } ;  then i � 11 or i � I2 . In the former case, each aj with j E It lies 
in Ci, and so x E conv( { aj : j E 11 } ) C Ci. For i � /2 we similarly conclude 
that x E conv( { aj : j E /2 } )  C Ci. Therefore, x E n� 1 Ci . 0 

An infinite version of Helly's theorem. If we have an infinite collection 
of convex sets in Rd such that any d+1 of them have a common point, the 
entire collection still need not have a common point. Two examples in R 1 are 
the families of intervals { (0, 1/n) : n = 1 , 2, . . .  } and { [n, oo):  n = 1 , 2 ,  . . .  } .  
The sets in the first exan1ple are not closed, and the second example uses 
unbounded sets. For compact (i.e., closed and bounded) sets, the theorem 
holds: 

1.3.3 Theorem (Infinite version of Helly's theorem). Let C be an ar
bitrary infinite family of compact convex sets in R d such that any d+ 1 of the 
sets have a nonempty intersection. Then all the sets of C have a nonempty 
intersection. 
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Proof. By Helly's theorem, any finite subfamily of C has a nonempty inter
section. By a basic property of compactness, if we have an arbitrary family 
of compact sets such that each of its finite subfamilies has a nonempty inter
section, then the entire family has a nonen1pty intersection. D 

Several nice applications of Reily's theorem are indicated in the exercises 
below, and we will meet a few more later in this book. 

Bibliography and remarks. Helly proved Theorem 1 .3.2 in 1913 
and communicated it to Radon, who published a proof in [Rad21] . This 
proof uses Radon's lemma, although the statement wasn't explicitly 
formulated in Radon's paper. References to many other proofs and 
generalizations can be found in the already mentioned surveys [Eck93] 
and [DGK63] . 

Helly's theorem inspired a whole industry of Helly-type theorems. 
A family B of sets is said to have H elly number h if the following holds: 
Whenever a finite subfamily F C B is such that every h or fewer sets 
of F have a common point, then n F =/= 0. So Helly's theorem says 
that the family of all convex sets in Rd has Helly number d+l. More 
generally, let P be some property of families of sets that is hereditary, 
meaning that if :F has property P and F' C F, then F' has P as well. 
A family B is said to have Helly number h with respect to P if for 
every finite F C B, all subfamilies of F of size at most h having P 
implies :F having P. That is, the absence of P is always witnessed by 
some at most h sets, so it is a "local" property. 

Exercises 

1 .  Prove Caratheodory's theorem (you n1ay use Radon's lemma) . 8J 
2. Let K c Rd be a convex set and let C1 , . . •  , Cn c Rd, n > d+1 ,  be 

convex sets such that the intersection of every d+ 1 of them contains a 
translated copy of K. Prove that then the intersection of all the sets Ci 
also contains a translated copy of K. � 
This result was noted by Vincensini [Vin39) and by Klee [Kle53] . 

3. Find an example of 4 convex sets in the plane such that the intersection 
of each 3 of them contains a segment of length 1 ,  but the intersection of 
all 4 contains no segment of length 1 .  II1 

4. A strip of width w is a part of the plane bounded by two parallel lines at 
distance w. The width of a set X C R2 is the sn1allest width of a strip 
containing X. 
(a) Prove that a compact convex set of width 1 contains a segment of 
length 1 of every direction. @:1 
(b) Let { C 1 , C2 , . . .  , Cn} be closed convex sets in the plane, n > 3, such 
that the intersection of every 3 of them has width at least 1 .  Prove that 

n� 1 ci has width at least 1 .  � 
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The result as in (b) ,  for arbitrary dimension d,  was proved by Sallee 
(Sal75] , and a simple argument using Helly's theorem was noted by Buch
man and Valentine [BV82] . 

5. Statement: Each set X c R2 of diameter at most 1 (i.e. , any 2 points 
have distance at most 1 )  is contained in some disc of radius 1/-/3. 
(a) Prove the statement for 3-element sets X. [3] 
(b) Prove the statement for all finite sets X. E3J 
(c) Generalize the statement to R d: determine the smallest r = r (  d) such 
that every set of diameter 1 in Rd is contained in a ball of radius r (prove 
your claim) .  0 
The result as in (c) is due to Jung; see [DGK63) . 

6. Let C C Rd be a compact convex set. Prove that the mirror image of C 
can be covered by a suitable translate of C blown up by the factor of d; 
that is, there is an x E Rd with -C C x + dC. 0 

7. (a) Prove that if the intersection of each 4 or fewer among convex sets 
C1 , . . .  , Cn c R2 contains a ray then n� 1 Ci also contains a ray. 0 
(b) Show that the number 4 in (a) cannot be replaced by 3. E3J 
This result, and an analogous one in Rd with the Helly number 2d, are 
due to Katchalski [Kat78) . 

8. For a set X C  R2 and a point x E X, let us denote by V(x) the set of all 
points y E X that can "see" x, i.e. , points such that the segment xy is 
contained in X. The kernel of X is defined as the set of all points x E X 
such that V(x) = X. A set with a nonempty kernel is called star-shaped. 
(a) Prove that the kernel of any set is convex. li1 
(b) Prove that if V(x) n V(y) n V(z) =f. 0 for every x, y ,  z E X  and X is 
compact, then X is star-shaped. That is, if every 3 paintings in a (planar) 
art gallery can be seen at the same time from some location (possibly 
different for different triples of paintings) ,  then all paintings can be seen 
simultaneously from somewhere. If it helps, assume that X is a polygon. 
0 
(c) Construct a nonempty set X C  R2 such that each of its finite subsets 
can be seen from some point of X but X is not star-shaped. @] 
The result in (b) ,  as well as the d-dimensional generalization (with ev
ery d+ 1 regions V ( x) intersecting) , is called Krasnosel'skii's theorem; see 
[Eck93] for references and related results. 

9. In the situation of Radon's lemma (A is a (d+2)-point set in Rd) , call 
a point x E R d a Radon point of A if it is contained in convex hulls of 
two disjoint subsets of A. Prove that if A is in general position (no d+ 1 
points affinely dependent)

' 
then its Radon point is unique. m 

10. (a) Let X, Y C R2 be finite point sets, and suppose that for every subset 
S C X U Y of at most 4 points, S n X can be separated (strictly) by a 
line from S n Y. Prove that X and Y are line-separable. @J 
(b) Extend (a) to sets X, Y C Rd, with l S I < d+2. 0 
The result (b) is called Kirchberger's theorem [Kir03] . 
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1 .4 Centerpoint and Ham Sandwich 

We prove an interesting result as an application of Helly's theorem. 

1 .4. 1 Definition (Centerpoint) .  Let X be an n-point set in Rd. A point 
x E R d is called a centerpoint of X if each closed half-space containing x 
contains at least d�I points of X .  

Let us stress that one set may generally have n1any centerpoints, and a 
centerpoint need not belong to X. 

The notion of centerpoint can be viewed as a generalization of the me
dian of one-dimensional data. Suppose that x1 , . . .  , Xn E R are results of 
measurements of an unknown real parameter x. How do we estimate x from 
the Xi? We can use the arithmetic mean, but if one of the measurement5 is 
completely wrong (say, 100 times larger than the others) , we may get quite 
a bad estimate. A more "robust" estimate is a median, i .e . ,  a point x such 
that at least � of the xi lie in the interval (-oo, x] and at least � of them lie 
in [ x, oo) . The centerpoint can be regarded as a generalization of the median 
for higher-dimensional data. 

In the definition of centerpoint we could replace the fraction d! 1 by some 
other parameter a E (0, 1 ) .  For a > d!I ,  such an "a-centerpoint" need not 
always exist: Take d+l points in general position for X. With o: = d!l as in 
the definition above, a centerpoint always exists, as we prove next. 

Centerpoints are in1portant, for example, in son1e algorithn1s of divide
and-conquer type, where they help divide the considered problem into smaller 
subproblems. Since no really efficient algorithms are known for finding 
"exact" centerpoints, the algorithms often use o:-centerpoints with a suit
able a < d! 1 , which are easier to find. 

1 .4.2 Theorem (Centerpoint theorem) . Each finite point set in Rd has 
at least one centerpoint. 

Proof. First we note an equivalent definition of a centerpoint: x is a cen
terpoint of X if and only if it lies in each open half-space 'Y such that 
IX n 'YI > d!1 n. 

We would like to apply Helly's theorem to conclude that all these open 
half-spaces intersect. But we cannot proceed directly, since we have infinitely 
many half-spaces and they are open and unbounded. Instead of such an open 
half-space 'Y, we thus consider the compact convex set conv (X n 'Y) c 'Y . 

• 

'•,, .. ... 
� . ..  ' 

' •  ........ ......... 

conv(r n X) 
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Letting 'Y run through all open half-spaces 1 with IX n 'YI > d!l n, we obtain 

a family C of compact convex sets. Each of them contains more than d!t n 
points of X,  and so the intersection of any d+ 1 of them contains at least 
one point of X.  The family C consists of finitely many distinct sets (since X 
has finitely many distinct subsets) , and so n C =/= 0 by Reily's theorem. Each 
point in this intersection is a centerpoint. D 

In the definition of a centerpoint we can regard the finite set X as defining 
a distribution of mass in Rd. The centerpoint theorem asserts that for some 
point x, any half-space containing x encloses at least d.!.l of the total mass. 
It is not difficult to show that this remains valid for continuous mass distri
butions, or even for arbitrary Borel probability measures on Rd (Exercise 1 ) .  

Ham-sandwich theorem and its relatives. Here is another important 
result, not much related to convexity but with a flavor resembling the cen
terpoint theorem. 

1.4.3 Theorem (Ham-sandwich theorem}. Every d finite sets in R d can 
be simultaneously bisected by a hyperplane. A hyperplane h bisects a finite 
set A if each of the open half-spaces defined by h contains at most L IA I/2J 
points of A. 

This theorem is usually proved via continuous mass distributions using 
a tool from algebraic topology: the Borsuk-Ulam theorem. Here we omit a 
proof. 

Note that if Ai has an odd number of points, then every h bisecting Ai 
passes through a point of Ai. Thus if A 1 ,  . . .  , Ad all have odd sizes and their 
union is in general position, then every hyperplane simultaneously bisecting 
them is determined by d points, one of each Ai . In particular, there are only 
finitely many such hyperplanes. 

Again, an analogous ham-sandwich theorem holds for arbitrary d Borel 
probability measures in Rd. 
Center transversal theorem. There can be beautiful new things to dis
cover even in well-studied areas of mathematics. A good exan1ple is the fol
lowing recent result, which "interpolates" between the centerpoint theorem 
and the ham-sandwich theorem. 

1 .4.4 Theorem (Center transversal theorem). Let 1 < k < d and let 
A1, A2 , . • .  , Ak be finite point sets in Rd. Then there exists a (k - 1 )-flat f 
such that for every hyperplane h containing f, both the closed half-spaces 
defined by h contain at least d-k+2 1Ai l  points of Ai, i = 1 ,  2 ,  . . . , k .  

The ham-sandwich theorem is obtained for k = d and the centerpoint 
theorem for k = 1 .  The proof, which we again have to omit, is based on a 
result of algebraic topology, too, but it uses a considerably more advanced 
machinery than the ham-sandwich theorem. However, the weaker result with 

d�l instead of d-k+2 is easy to prove; see Exercise 2. 
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Bibliography and remarks. The centerpoint theorem was es
tablished by Rado [Rad47] . According to Steinlein's survey [Ste85] , 
the ham-sandwich theorem was conjectured by Steinhaus (who also 
invented the popular 3-dimensional interpretation, namely, that the 
ham, the cheese, and the bread in any ham sandwich can be simulta
neously bisected by a single straight motion of the knife) and proved 
by Banach. The center transversal theorem was found by Dol'nikov 
[Dol'92] and, independently, by Zivaljevic and Vrecica [ZV90) . 

Significant effort has been devoted to efficient algorithn1s for find
ing (approximate) centerpoints and ham-sandwich cuts (i.e., hyper
planes as in the ham-sandwich theorem) . In the plane, a ham-sandwich 
cut for two n-point sets can be computed in linear time (Lo, Matousek, 
and Steiger [LMS94] ) .  In a higher but fixed dimension, the complexity 
of the best exact algorithms is currently slightly better than 0( nd-l ) .  
A centerpoint in the plane, too, can be found in linear time (Jadhav 
and Mukhopadhyay [JM94] ) .  Both approximate ham-sandwich cuts 
(in the ratio 1 : 1 +c- for a fixed c > 0) and approximate centerpoints 
( ( d!1 -c-)-centerpoints) can be computed in time O(n) for every fixed 
dimension d and every fixed c > 0, but the constant depends expo
nentially on d, and the algorithms are impractical if the dimension is 
not quite small. A practically efficient randomized algorithm for com
puting approximate centerpoints in high dimensions ( o:-centerpoints 
with a � 1 / d2) was given by Clarkson, Eppstein, Miller, Sturtivant, 
and Teng [CEM+96] . 

Exercises 

1 .  (Centerpoints for general mass distributions) 
(a) Let J-t be a Borel probability measure on Rd; that is, Jt(Rd) = 1 and 
each open set is measurable. Show that for each open half-space 'Y with 
JL( 'Y) > t there exists a compact set C c 'Y with J.L( C) > t. li1 
(b) Prove that each Borel probability measure in Rd has a centerpoint 
(use (a) and the infinite Helly's theorem) . li1 

2. Prove that for any k finite sets A1 , . . .  , Ak C Rd, where 1 < k < d, there 
exists a ( k-1  )-fiat such that every hyperplane containing it has at least 

d! 1 I Ai I points of Ai in both of its closed half-spaces for all i = 1 ,  2 ,  . . . , k. 
III 



2 

Lattices and Minkowski's 

Theorem 

This chapter is a quick excursion into the geometry of numbers, a field where 
number-theoretic results are proved by geometric arguments, often using 
properties of convex bodies in Rd. We formulate the simple but beautiful 
theorem of Minkowski on the existence of a nonzero lattice point in every 
symmetric convex body of sufficiently large volume. We derive several con
sequences, concluding with a geometric proof of the famous theorem of La
grange claiming that every natural number can be written as the sum of at 
most 4 squares. 

2.1  Minkowski's Theorem 

In this section we consider the integer lattice zd, and so a lattice point is a 
point in Rd with integer coordinates. The following theorem can be used in 
many interesting situations to establish the existence of lattice points with 
certain properties. 

2.1 .1  Theorem (Minkowski's theorem). Let C C Rd be symmetric 
(around the origin, i.e., C = -C), convex, bounded, and suppose that 
vol( C) > 2d . Then C contains at least one lattice point different from 0. 

Proof. We put C' = �C = { �x: x E C} . 

Claim: There exists a nonzero integer vector v E zd \ {0} such that C' n 
( C' + v )  i= 0; i.e., C' and a translate of C' by an integer vector intersect . 

Proof By contradiction; suppose the claim is false. Let R be a large 
integer number. Consider the family C of translates of C' by the 
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integer vectors in the cube [-R, R)d : C = {C' +v:  v E [-R, R]dnzd} ,  
as is indicated in the drawing ( C is painted in gray) . 

Each such translate is disjoint from C', and thus every two of these 
translates arc disjoint as well. They are all contained in the enlarged 
cube K = [-R - D, R + D]d, where D denotes the diameter of C'. 
Hence 

vol(K) = (2R + 2D)d > IC i vol(C') = (2R + 1 )d vol(C') , 

and 

vol(C') < ( 1 + ����) d
. 

The expression on the right-hand side is arbitrarily close to 1 for 
sufficiently large R. On the other hand, vol( C') = 2-d vol( C) > 1 is 
a fixed number exceeding 1 by a certain amount independent of R, 
a contradiction. The claim thus holds. D 

Now let us fix a v E zd as in the clairn and let us choose a point X E 
C' n ( C' + v) .  Then we have x - v E C', and since C' is symmetric, we obtain 
v - x E C'. Since C' is convex, the midpoint of the segment x( v - x) lies in 
C' too, and so we have �x  + � (v - x) = !v E C'. This means that v E C, 
which proves Minkowski's theorem. D 

2 .1 .2  Example (About a regular forest) .  Let K be a circle of diameter 
26 (meters, say) centered at the origin. Trees of diameter 0.16 grow at each 
lattice point within K except for the origin, which is where you are standing. 
Prove that you cannot see outside this miniforest. 
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Proof. Suppose than one could see outside along some line f passing through 
the origin. This means that the strip S of width 0.16 with R as the middle 
line contains no lattice point in K except for the origin. In other words, the 
symmetric convex set C = KnS contains no lattice points but the origin. But 
as is easy to calculate, vol( C) > 4, which contradicts Minkowski's theorem. 

0 

2.1.3 Proposition (Approximating an irrational number by a frac
tion) . Let a E (0, 1 )  be a real number and N a natural number. Then there 
exists a pair of natural numbers m, n such that n < N and 

m 1 a - - < - . 
n nN 

This proposition implies that there arc infinitely many pairs m, n such 
that Ia - : I  < 1 /n2 (Exercise 4) . This is a basic and well-known result 
in elementary number theory. It can also be proved using the pigeonhole 
principle. 

The proposition has an analogue concerning the approximation of several 
numbers a1 , . . .  , ak by fractions with a common denominator (see Exercise 5) , 
and there a proof via Minkowski's theorem seems to be the simplest. 

Proof of Proposition 2 .1 .3. Consider the set 

C = { (x, y) E R2 : -N - � < x < N + � ' lax - Yi < � } ·  

'i\i . 1 
IV -L -

•. ! 2 

y = ax 
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This is a symmetric convex set of area (2N + 1 )  � > 4, and therefore it con
tains some nonzero integer lattice point (n, m}.  By symmetry, we may assume 
n > 0. The definition of C gives n < N and I an - ml < k.  In other words, 
Ia - !!! I < _

1 . • D n nN 

Bibliography and remarks. The name "geometry of numbers" 
was coined by Minkowski, who initiated a systematic study of this 
field (although related ideas appeared in earlier works) .  He proved 
Theorem 2 . 1 . 1 ,  in a more general form mentioned later on, in 1891 
(see [Min96] ) .  His first application was a theorem on simultaneously 
making linear forms small (Exercise 2.2.4) . While geometry of numbers 
originated as a tool in number theory, for questions in Diophantine 
approximation and quadratic forms, today it also plays a significant 
role in several other diverse areas, such as coding theory, cryptography, 
the theory of uniform distribution, and numerical integration. 

Theorem 2 . 1 . 1  is often called Minkowski 's first theorem. What is, 
then, Minkowski's second theorem? We answer this natural question 
in the notes to Section 2.2, where we also review a few more of the 
basic results in the geometry of numbers and point to some interesting 
connections and directions of research. 

Most of our exposition in this chapter follows a similar chapter in 
Pach and Agarwal [PA95] .  Older books on the geometry of numbers 
are Cassels [Cas59] and Gruber and Lekkerkerker [GL87] . A pleasant 
but somewhat aged introduction is Siegel [Sie89] . The Gruber [Gru93] 
provides a concise recent overview. 

Exercises 

1 .  Prove: If C C Rd is convex, symmetric around the origin, bounded, and 
such that vol( C) > k2d , then C contains at least 2k lattice points. � 

2. By the method of the proof of Minkowski's theorern, show the following 
result (Blichtfeld; Van der Corput) : If S C Rd is measurable and vol(S) > 
k, then there are points 8 1 ,  s2 , . . .  , Sk E S with all Si - Sj E zd, 1 < i ,  j < 
k. � 

3. Show that the boundedness of C in Minkowski's theorem is not really 
necessary. ITJ 

4. (a) Verify the claim made after Example 2 .1 .3, namely, that for any 
irrational a there are infinitely many pairs m, n such that Ia - m/nl < 
1/n2 . ITJ 
(b) Prove that for a = v'2 there are only finitely many pairs m, n with 
Ia - mfnl < 1/4n2 . � 
(c) Show that for any algebraic irrational number a (i .e. , a root of a 
univariate polynomial with integer coefficients) there exists a constant D 
such that I a - mfnl < 1/nD holds for finitely many pairs (m, n) only. 
Conclude that, for example, the number 2::� 1 2-ii is not algebraic. 0 
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5. (a) Let a1 , a2 E (0, 1 )  be real numbers. Prove that for a given N E N 
there exist m1 , m2 , n E N, n < N, such that lai - �i I < n�, i = 1 ,  2. 
8J 
(b) Formulate and prove an analogous result for the simultaneous ap
proximation of d real numbers by rationals with a common denominator. 
ill (This is a result of Dirichlet (Dir42] .) 

6. Let K c R 2 be a compact convex set of area a and let x be a point 
chosen uniformly at random in [0, 1 )2 • 
(a) Prove that the expected number of points of Z2 in the set K + X 
equals a. ill 
(b) Show that with probability at least 1 - a, K + x contains no point 
of Z2 . [I] 

2.2 General Lattices 

Let z1 , z2 , . . .  , Zd be a d-tuple of linearly independent vectors in Rd. We define 
the lattice with basis { Zt , zz , . . .  , Zd} as the set of all linear combinations of 
the Zi with integer coefficients; that is, 

Let us remark that this lattice has in general many different bases. For in
stance, the sets { (0, 1 ) ,  ( 1 , 0) }  and { ( 1 , 0) ,  (3, 1 ) }  are both bases of the "stan
dard" lattice Z2 • 

Let us form a d x d matrix Z with the vectors z1 , . . .  , zd as columns. We 
define the determinant of the lattice A =  A(zt , z2 , . . .  , zd) as det A =  I det Zl . 
Geometrically, det A is the volume of the parallelepiped { a1z1 + a2z2 + · · · + 
adzd : a1 , . . .  , ad E [0, 1 ] } :  

• • 

• 

• • 

• • 

(the proof is left to Exercise 1 ) .  The number det A is indeed a property of the 
lattice A (as a point set) ,  and it does not depend on the choice of the basis 
of A (Exercise 2) . It is not difficult to show that if Z is the matrix of some 
basis of A, then the matrix of every basis of A has the form BU, where U is 
an integer matrix with determinant ±1 .  
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2.2.1 Theorem (Minkowski's theorem for general lattices). Let A be 
a lattice in Rd, and let C C Rd be a symmetric convex set with vol(C) > 
2d det A. Then C contains a point of A different from 0. 

Proof. Let { z1 , . . .  , zd} be a basis of A. We define a linear mapping f: Rd --+ 
Rd by j(x1 , x2 , . . .  , xd) = x1 Z1 + X2Z2 + · · · + xdzd. Then f is a bijection and 
A = f(Zd) .  For any convex set X,  we have vol(f(X)) = det(A) vol(X) .  
(Sketch of proof: This holds if X is a cube, and a convex set can be ap
proximated by a disjoint union of sufficiently small cubes with arbitrary 
precision.)  Let us put C' = f-1 (0) . This is a symmetric convex set with 
vol( C') = vol( C)/ det A > 2d . Minkowski's theorem provides a nonzero vec
tor v E C' n zd, and f ( v) is the desired point as in the theorem. D 

A seemingly more general definition of a lattice. What if we consider 
integer linear combinations of more than d vectors in Rd? Some caution is 
necessary: If we take d = 1 and the vectors v1 = ( 1 ) ,  v2 = ( J2), then 
the integer linear combinations i1 v1 + i2v2 arc dense in the real line (by 
Example 2 . 1 .3) , and such a set is not what we would like to call a lattice. 

In order to exclude such pathology, we define a discrete subgroup of Rd 
as a set A c Rd such that whenever x, y E A, then also x - y E A, and such 
that the distance of any two distinct points of A is at least 8, for some fixed 
positive real number 8 > 0.  

It can be shown, for instance, that if v1 ,  v2 , . . .  , Vn E R d are vectors with 
rational coordinates, then the set A of all their integer linear combinations 
is a discrete subgroup of Rd (Exercise 3) .  As the following theorem shows, 
any discrete subgroup of Rd whose linear span is all of Rd is a lattice in the 
sense of the definition given at the beginning of this section. 

2.2.2 Theorem (Lattice basis theorem).  Let A c Rd be a discrete 
subgroup of Rd whose linear span is Rd. Then A has a basis; that is, 
there exist d linearly independent vectors z1 , z2 , . . .  , Zd E R d such that 
A = A ( z 1 ' Z2 ' . . .  ' Zd) .  

Proof. We proceed by induction. For some i , 1 < i < d+1 ,  suppose that 
linearly independent vectors z1 , z2 , . . .  , Zi-I E A with the following prop
erty have already been constructed. If Fi-1 denotes the ( i-1  )-dimensional 
subspace spanned by z1 , . . .  , Zi-I , then all points of A lying in Fi-l can be 
written as integer linear combinations of z1 , . . .  , Zi- l ·  For i = d+ 1 ,  this gives 
the statement of the theorem. 

So consider an i < d. Since A generates R d , there exists a vector w E A 
not lying in the subspace Fi-1 . Let P be the i-dimensional parallelepiped 
determined by z1 , z2 , . . .  , Zi-I and by w: P = {a1z1 +a2z2 + · · · +ai- IZi-I + 
aiw: a1 , . . .  , ai E [0, 1] } .  Among all the (finitely many) points of A lying in 
P but not in Fi-I ,  choose one nearest to Fi-I and call it zi , as in the picture: 
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• 

0 

• 

Note that if the points of A n  P are written in the form a1z1 + a2z2 + · · · + 
ai-lZi-1 + aiw, then Zi is one with the smallest ai . It remains to show that 
z1 , z2 , . . .  , Zi have the required property. 

So let v E A be a point lying in Fi (the linear span of z1 , . . . , Zi) .  We 
can write v = /31 z1 + f32z2 + · · · + f3izi for some real numbers f3t , . . .  , f3i · Let 
/j be the fractional part of /3j , j = 1 ,  2,  . . .  , i ;  that is, /j = /3j - l/3j J .  Put 
v' = 11z1 + 12z2 + · · · + /iZi · This point also lies in A (since v and v' differ 
by an integer linear combination of vectors of A) . We have 0 < /j < 1 ,  and 
hence v' lies in the parallelepiped P. Therefore, we must have /i = 0, for 
otherwise, v' would be nearer to Fi-1 than Zi . Hence v' E A n Fi- 1 , and by 
the inductive hypothesis, we also get that all the other /j are 0. So all the /3j 
are in fact integer coefficients, and the inductive step is finished. D 

Therefore, a lattice can also be defined as a full-dimensional discrete sub
group of Rd. 

Bibliography and remarks. First we mention several fundamental 
theorems in the "classical" geometry of numbers. 
Lattice packing and the Minkowski-Hlawka theorem. For a compact 
C c R d, the lattice constant � (C) is defined as min { det (A) : A n C = 

{0} } ,  where the minimum is over all lattices A in Rd (it can be shown 
by a suitable compactness argument , known as the compactness theo
rem of Mahler, that the minimum is attained) . The ratio vol(C)/ �(C) 
is the smallest number D = D(C) for which the Minkowski-like re
sult holds: Whenever det(A) > D, we have C n A -# {0}. It is also 
easy to check that 2-d D( C) equals the maximum density of a lattice 
packing of C; i.e. , the fraction of Rd that can be filled by the set 
C + A  for some lattice A such that all the translates C + v ,  v E A, 
have pairwise disjoint interiors. A basic result (obtained by an aver
aging argument) is the Minkowski-Hlau;ka theorem, which shows that 
D > 1 for all star-shaped compact sets C. If C is star-shaped and 
symmetric, then we have the improved lower bound (better packing) 
D > 2((d) = 2 L:� 1 n-d . This brings us to the fascinating field of 
lattice packings, which we do not pursue in this book; a nice geometric 
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introduction is in the first half of the book Pach and Agarwal [PA95] , 
and an authoritative reference is Conway and Sloane [CS99] . Let us 
remark that the lattice constant (and hence the maximum lattice pack
ing density) is not known in general even for Euclidean spheres, and 
many ingenious constructions and arguments have been developed for 
packing them efficiently. These problems also have close connections 
to error-correcting codes. 

Successive minima and Minkowski 's second theorem. Let C c Rd 

be a convex body containing 0 in the interior and let A C R d 

be a lattice. The i th successive minimum of C with respect to A, 
denoted by Ai = Ai ( C, A), is the infimum of the scaling factors 
A > 0 such that .XC contains at least i linearly independent vec
tors of A. In particular, .X1 is the smallest number for which .X1 C 
contains a nonzero lattice vector, and Minkowski's theorem guaran
tees that .xt < 2d det (A)/ vol(C) . Minkowski's second theorem asserts 
(2d /d! ) det (A) < .X1 A2 · · · Ad · vol( C) < 2d det(A). 
The flatness theorem. If a convex body K is not required to be sym
metric about 0, then it can have arbitrarily large volume without con
taining a lattice point. But any lattice-point free body has to be fiat: 
For every dimension d there exists c( d) such that any convex body 
K c Rd with K n zd = 0 has lattice width at Inost c(d) . The lat-
tice width of K is defined as min{maxxEK (x, y) - minxEK (x, y) :  y E 
zd \ { 0}} ;  geometrically, we essentially count the number of hyper
planes orthogonal to y,  spanned by points of zd, and intersecting K. 
Such a result was first proved by Khintchine in 1948, and the current 
best bound c(d) = O(d312 ) is due to Banaszczyk, Litvak, Pajor, and 
Szarek [BLPS99] ; we also refer to this paper for more references. 
Computing lattice points in convex bodies. Minkowski's theorem pro
vides the existence of nonzero lattice points in certain convex bodies. 
Given one of these bodies, how efficiently can one actually compute 
a nonzero lattice point in it? More generally, given a convex body in 
Rd , how difficult is it to decide whether it contains a lattice point, or 
to count all lattice points? For simplicity, we consider only the integer 
lattice zd here. 

First, if the dimension d is considered as a constant , such prob
lems can be solved efficiently, at least in theory. An algorithm due to 
Lenstra (Len83] finds in polynomial time an integer point, if one exists, 
in a given convex polytope in R d , d fixed. It is based on the flatness 
theorem mentioned above (the ideas are also explained in many other 
sources, e.g., [GLS88] , [Lov86] , [Sch86] , [Bar97] ) .  More recently, Barvi
nok [Bar93] (or see [Bar97] ) provided a polynomial-time algorithm for 
counting the integer points in a given fixed-dimensional convex poly
tope. Both algorithms are nice and certainly nontrivial, and especially 



2.2 General Lattices 

the latter can be recommended as a neat application of classical math
ematical results in a new context. 

On the other hand, if the dimension d is considered as a part of the 
input then (exact) calculations with lattices tend to be algorithmically 
difficult . Most of the difficult problems of combinatorial optimization 
can be formulated as instances of integer programming, where a given 
linear function should be minimized over the set of integer points in a 
given convex polytope. This problem is well known to be NP-hard, and 
so is the problem of deciding whether a given convex polytope contains 
an integer point (both problems are actually polynomially equivalent) .  
For an introduction to integer programming see, e.g . ,  Schrijver [Sch86] . 

Some much more special problems concerning lattices have also 
been shown to be algorithmically difficult. For example, finding a 
shortest (nonzero) vector in a given lattice A specified by a basis is 
NP-hard (with respect to randomized polynomial-time reductions) .  (In 
the notation introduced above, we are asking for A 1 ( Bd, A) ,  the first 
successive minimum of the ball. This took quite some time to prove 
(Micciancio [Mic98] has obtained the strongest result to date, inap
proximability up to the factor of J2, building on earlier work mainly 
of Ajtai) , although the analogous hardness result for the shortest vec
tor in the maximum norm (i.e., A 1 ( [- 1 ,  1 ] d ,  A)) has been known for a 
long time. 
Basis reduction and applications. Although finding the shortest vec
tor of a lattice A is algorithmically difficult, the shortest vector can 
be approximated in the following sense. For every c > 0 there is a 
polynomial-time algorithm that, given a basis of a lattice A in Rd, 
computes a nonzero vector of A whose length is at most ( 1  +c)d times 
the length of the shortest vector of A; this was proved by Schnorr 
[Sch87] . The first result of this type, with a worse bound on the approx
imation factor, was obtained in the seminal work of Lenstra, Lenstra, 
and Lovasz [LLL82] . The LLL algorithm, as it is called, computes not 
only a single short vector but a whole "short" basis of A. 

The key notion in the algorithm is that of a reduced basis of A; 
intuitively, this means a basis that cannot be much improved (made 
significantly shorter) by a simple local transformation. There are many 
technically different notions of reduced bases. Some of them are clas
sical and have been considered by mathematicians such as Gauss and 
Lagrange. The definition of the Lovasz-reduced basis used in the LLL 
algorithm is sufficiently relaxed so that a reduced basis can be com
puted from any initial basis by polynomially many local improvements, 
and, at the same time, is strong enough to guarantee that a reduced 
basis is relatively short. These results are covered in many sources; the 
thin book by Lovasz [Lov86] can still be recommended as a delightful 
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introduction. Numerous refinements of the LLL algorithm, as well as 
efficient implementations, are available. 

We sketch an ingenious application of the LLL algorithm for poly
nomial factorization (from Kannan, Lenstra, and Lovasz [KLL88] ; the 
original LLL technique is somewhat different) .  Assume for simplicity 
that we want to factor a monic polynomial p(x) E Z [x] (integer coeffi
cients, leading coefficient 1 )  into a product of factors irreducible over 
Z[x] . By numerical methods we can compute a root a of p(x) with 
very high precision. If we can find the minimal polynomial of a, i .e. , 
the lowest-degree monic polynomial q(x) E Z [x] with q(o:) = 0, then 
we are done, since q(x) is irreducible and divides p(x) . Let us write 
q(x) = xd + ad-lXd- l + · · · + ao . Let K be a large number and let us 
consider the d-dimensional lattice A in Rd+l with basis (K, 1 ,  0, . . .  , 0} ,  
(Ka, O, 1 , 0, . . .  , 0) ,  (Ka2 , 0, 0, 1 , 0, . . .  , 0) ,  . . .  , (Kad, O, . . .  , 0, 1 ) .  Corn
bining the basis vectors with the coefficients a0, a 1 ,  . . .  , ad-l , 1 ,  respec
tively, we obtain the vector vo � (O, a0, a1 , . . .  , ad-l , 1 ) E A. It turns 
out that if K is sufficiently large compared to the ai , then v0 is the 
shortest nonzero vector, and moreover, every vector not much longer 
than vo is a rnultiple of v0 . The LLL algorithm applied to A thus finds 
v0 , and this yields q(x) .  Of course, we do not know the degree of q(x), 
but we can test all possible degrees one by one, and the required mag
nitude of K can be estimated from the coefficients of p( x) .  

The LLL algorithm has been used for the knapsack problem and for 
the subset sum problem. Typically, the applications are problerns where 
one needs to express a given number (or vector) as a linear combina
tion of given numbers (or vectors) with small integer coefficients. For 
example, the subset sum problem asks, for given integers a1 , a2 , . . •  , an 
and b, for a subset I C { 1 ,  2,  . . .  , n }  with LiE I ai = b; i .e. , b should be 
expressed as a linear combination of the ai with 0/1 coefficients. These 
and many other significant applications can be found in Grotschel, 
Lovasz, and Schrijver [GLS88] . In cryptography, several cryptographic 
systems proposed in the literature were broken with the help of the 
LLL algorithm (references are listed, e.g., in [GLS88] , [Dwo97] ) .  On 
the other hand, lattices play a prorninent role in recent constructions, 
mainly due to Ajtai, of new cryptographic systems. While currently 
the security of every known efficient cryptographic system depends 
on an (unproven) assumption of hardness of a certain computational 
problem, Ajtai's methods suffice with a considerably weaker and more 
plausible assumption than those required by the previous systerns (see 
[Ajt98] or [Dwo97] for an introduction) . 

Exercises 

1 .  Let v1 , . . .  , vd be linearly independent vectors in Rd. Form a matrix A 
with Vt, . . .  , vd as rows. Prove that I det AI is equal to the volume of the 
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parallelepiped {a1v1 + a2v2 + · · ·  + advd : a1 , . . .  , ad E [0, 1 ] } .  (You may 
want to start with d :::::; 2.) 0 

2. Prove that if z1 , . . . , Zd and z� , . . .  , zd arc vectors in R d such that 
A(zt , . . .  , zd) = A(z� , . . .  , zd ) ,  then l det ZI = l det Z' I ,  where Z is the 
d x d matrix with the Zi as columns, and similarly for Z'. 0 

3. Prove that for n rational vectors Vt , . . .  , Vn , the set A = { i1 Vt + i2v2 + 
· · · + invn : i t ,  i2 , . . .  , in E Z} is a discrete subgroup of Rd. 0 

4. (Minkowski's theorem on linear forms) Prove the following from Min-
kowski's theorem: Let fi(x) = �� 1 aijXj be linear forms in d variables, 
i = 1 ,  2, . . .  , d, such that the d x d matrix ( aij )i ,j has determinant 1 .  
Let b1 , • • •  , bd be positive real numbers with b1 b2 · · · bd = 1 .  Then there 
exists a nonzero integer vector z E zd \ { 0} with lfi ( z) I < bi for all 
i = 1 ,  2, . . .  ' d. [I] 

2.3 An Application in N un1ber Theory 

We prove one nontrivial result of elementary number theory. The proof via 
Minkowski's theorem is one of several possible proofs. Another proof uses the 
pigeonhole principle in a clever way. 

2.3.1 Theorem (Two-square theorem) . Each prime p _ 1 (mod 4) can 
be written as a sum of two squares: p = a2 + b2 , a, b E Z. 

Let F = GF(p) stand for the field of residue classes modulo p ,  and let 
F* = F \ {0}. An element a E F* is called a quadratic residue modulo p 
if there exists an x E F* with x2 - a (modp) .  Otherwise, a is a quadratic 
non residue. 

2.3.2 Lemma. If p is a prime with p - 1 (mod 4) then -1  is a quadratic 
residue modulo p. 

Proof. The equation i2 = 1 has two solutions in the field F, namely i :::::; 1 
and i = -1 .  Hence for any i -=f. ±1  there exists exactly one j -=f. i with 
ij == 1 (namely, j == i- 1 , the inverse element in F), and all the elements of 
F* \ { - 1 , 1 }  can be divided into pairs such that the product of elements in 
each pair is 1 .  Therefore, (p-1 } !  = 1 · 2 · · · (p- 1 )  _ -1  (modp) . 

For a contradiction, suppose that the equation i2 = -1  has no solution 
in F. Then all the elements of F* can be divided into pairs such that the 
product of the elements in each pair is - 1. There are (p-1)/2 pairs, which 
is an even number. Hence (p-1) !  - (- 1 ) (p-l )/2 = 1 ,  a contradiction. D 

Proof of Theorem 2.3.1.  By the lemma, we can choose a number q such 
that q2 - -1  (modp) . Consider the lattice A = A(zt , z2) , where z1 = ( 1 ,  q) 
and z2 = (0, p) . We have dct A = p. We usc Minkowski's theorem for general 
lattices (Theorem 2.2 .1) for the disk C = { (x, y) E R2 : x2 + y2 < 2p} . The 
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area of C is 2trp > 4p = 4 det A, and so C contains a point (a, b) E A\  {0} . We 
have 0 < a2 + b2 < 2p. At the same time, (a, b) = iz1 + jz2 for some i, j E Z, 
which means that a =  i , b = iq + jp. We calculate a2 + b2 = i2 + (iq + jp)2 = 

i2 + i2q2 + 2iqjp + j2p2 i2 ( 1  + q2 ) 0 (modp) . Therefore a2 + b2 = p. D 

Bibliography and remarks. The fact that every prime congruent 
to 1 mod 4 can be written as the sum of two squares was already known 
to Fermat (a more rigorous proof was given by Euler) . The possibility 
of expressing every natural number as a sum of at most 4 squares was 
proved by Lagrange in 1770, as a part of his work on quadratic forms. 
The proof indicated in Exercise 1 below is due to Davenport. 

Exercises 

1 .  (Lagrange's four-square theorem) Let p be a prime. 
(a) Show that there exist integers a, b with a2 + b2 -1  (modp) .  m 
(b) Show that the set A = { (x, y, z, t) E Z4 : z _ ax + by (modp) ,  t -

bx - ay (modp) } is a lattice, and compute det(A) . II1 
(c) Show the existence of a nonzero point of A in a ball of a sui table 
radius, and infer that p can be written as a sum of 4 squares of integers. 
� 
(d) Show that any natural number can be written as a sum of 4 squares 
of integers. 0 
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Convex Independent Subsets 

Here we consider geometric Ramsey-type results about finite point sets in 
the plane. Ramsey-type theorems are generally statements of the following 
type: Every sufficiently large structure of a given type contains a "regular" 
substructure of a prescribed size. In the forthcoming Erdos-Szekeres theorem 
(Theorem 3.1 .3) ,  the "structure of a given type" is simply a finite set of points 
in general position in R 2 , and the "regular substructure" is a set of points 
forming the vertex set of a convex polygon, as is indicated in the picture: 

• • 

• 

• 
• 

• • 

A prototype of Ramsey-type results is Ramsey's theorem itself: For every 
choice of natural numbers p, r, n, there exists a natural number N such that 
whenever X is an N-element set and c: (x) -+ { 1 ,  2 ,  . . .  , r} is an arbitrary 
coloring of the system of all p-element subsets of X by r colors, then there 
is an n-element subset Y C X such that all the p-tuples in (�) have the 

same color. The most famous special case is with p = r = 2, where ( "'i) is 
interpreted as the edge set of the complete graph K N on N vertices. Ramsey's 
theorem asserts that if each of the edges of KN is colored red or blue, we can 
always find a complete subgraph on n vertices with all edges red or all edges 
blue. 

Many of the geometric Ramsey-type theorems, including the Erdos
Szekeres theorem, can be derived from Ramsey's theorem. But the quantita
tive bound for the N in Ramsey's theorem is very large, and consequently, 
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the size of the "regular" configurations guaranteed by proofs via Ramsey's 
theorem is very small. Other proofs tailored to the particular problems and 
using more of their geometric structure often yield much better quantitative 
results. 

3 . 1  The Erdos-Szekeres Theorem 

3.1 .1  Definition (Convex independent set) .  We say that a set X C  Rd 
is convex independent if for every x E X, we have x � conv(X \ {x} ) .  

The phrase "in convex position" is sometimes used synonymously with 
"convex independent ." In the plane, a finite convex independent set is the 
set of vertices of a convex polygon. We will discuss results concerning the 
occurrence of convex independent subsets in sufficiently large point sets. Here 
is a simple example of such a statement . 

3.1.2 Proposition. Among any 5 points in the plane in general position (no 
3 collinear) , we can find 4 points forming a convex independent set. 

Proof. If the convex hull has 4 or 5 vertices, we are done. Otherwise, we 
have a triangle with two points inside, and the two interior points together 
with one of the sides of the triangle define a convex quadrilateral. D 

Next, we prove a general result . 

3.1.3 Theorem (Erdos-Szekeres theorem). For every natural number k 
there exists a number n (k) such that any n (k)-point set X c R2 in general 
position contains a k-point convex independent subset. 

First proof (using Ramsey's theorem and Proposition 3.1 .2) . Color 
a 4-tuple T c X red if its four points are convex independent and blue 
otherwise. If n is sufficiently large, Ramsey's theorem provides a k-point 
subset Y c X such that all 4-tuples from Y have the same color. But for 
k > 5 this color cannot be blue, because any 5 points determine at least 
one red 4-tuple. Consequently, Y is convex independent, since every 4 of its 
points are ( Caratheodory's theorem) . o 

Next, we give an inductive proof; it yields an almost tight bound for n(k) . 

Second proof of the Erdos-Szekeres theorem. In this proof, by a set 
in general position we mean a set with no 3 points on a common line and no 
2 points having the same x-coordinate. The latter can always be achieved by 
rotating the coordinate system. 

Let X be a finite point set in the plane in general position. We call ... X" a 
cup if X is convex independent and itR convex hull is bounded from above by 
a single edge (in other words, if the points of X lie on the graph of a convex 
function) .  
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Similarly, we define a cap, with a single edge bounding the convex hull from 
below. 

A k-cap is a cap with k points, and similarly for an t'-cup. 
We define f(k, f) as the smallest number N such than any N-point set in 

general position contains a k-cup or an t'-cap. By induction on k and t', we 
prove the following formula for f ( k, f): 

f(k, 1!) < c;  � 2 4) + 1 .  (3.1) 

Theorem 3.1 .3 clearly follows from this, with n(k) < f(k, k) . For k < 2 
or .e < 2 the formula holds. Thus, let k, t' > 3, and consider a set P in 
general position with N :::::;: /(k-1 , £) + f(k, f-1 )- l  points. We prove that 
it contains a k-cup or an l-eap. This will establish the inequality f(k, f) < 
f(k- 1 , f) + f(k, f-1)-1 ,  and then (3. 1) follows by induction; we leave the 
simple manipulation of binomial coefficients to the reader. 

Suppose that there is no t'-cap in X.  Let E C X be the set of points 
p E X  such that X contains a (k-1)-cup ending with p. 

We have lE I  > N - f(k-1 , l) + 1 = f(k, i-1 ) ,  because X \  E contains no 
(k-1)-cup and so IX \ El  < f(k- 1 , i) . 

Either the set E contains a k-cup, and then we are done, or there is an 
( f -1 )-cap. The first point p of such an ( i-1 )-cap is, by the definition of E, 
the last point of some ( k-1 )-cup in X, and in this situation, either the cup 
or the cap can be extended by one point: 

k - 1  

·
•

.
• .··p· . . 

··•···· · · · · · · · ·•· 

i - 1  

.•···--.... . . ' . . . . 

This finishes the inductive step. 

or 
. . . 

k - 1  

, ·· .•. . . . . . . . . . . .• -· p 

f - 1 

.--•--·- -• . -- · ..... 

D 

A lower bound for sets without k-cups and £-caps. Interestingly, the 
bound for f(k, t') proved above is tight , not only asymptotically but exactly! 
This means, in particular, that there are n-point planar sets in general posi
tion where any convex independent subset has at most O(log n) points, which 
is somewhat surprising at first sight . 

An example of a set Xk,e of (kt!_2 
4) points in general position with no 

k-cup and no t'-cap can be constructed, again by induction on k + .e. If k < 2 
or f < 2, then Xk,e can be taken as a one-point set. 



32 Chapter 3: Convex Independent Subsets 

Supposing both k > 3 and f > 3, the set Xk,£ is obtained from the sets 
L :=:; Xk- l ,l and R :=:; Xk,l- l according to the following picture: 

- ·  
... 

- · · - - ·  
. ..... ....... 

L = xk- 1 £  ' 

... . - -

.. -... . --
R = Xk,l- 1 

... .. . . - - · · 
. ..... .. - .. .. . .  - · · 

.. -

The set L is placed to the left of R in such a way that all lines determined 
by pairs of points in L go below R and all lines determined by pairs of points 
of R go above L. 

Consider a cup C in the set Xk,l thus constructed. If C n L = 0, then 
IC I  < k-1  by the assumption on R. If C n L =I= 0, then C has at most 1 point 
in R, and since no cup in L has more than k-2 points, we get IC I  < k-l as 
well. The argument for caps is symmetric. 

We have JXk,t. l  = IXk- 1,£ 1 + IXk,t.- 1 1 ,  and the formula for IXk,£ 1 follows 
by induction; the calculation is almost the same as in the previous proof. D 

Determining the exact value of n(k) in the Erdos-Szekeres theorem is 
much more challenging. Here are the best known bounds: (2k - 5) 2k-2 + 1 < n(k) < 

k _ 2 + 2. 

The upper bound is a small improvement over the bound f(k, k) derived 
above; see Exercise 5. The lower bound results from an inductive construction 
slightly more complicated than that of Xk,l · 

Bibliography and remarks. A recent survey of the topics discussed 
in the present chapter is Morris and Sol tan [MSOO] . 

The Erdos-Szekeres theorem was one of the first Ramsey-type re
sults [ES35] , and Erdos and Szekeres independently rediscovered the 
general Ramsey's theorem at that occasion. Still another proof, also 
using Ramsey's theorem, was noted by Tarsi: Let the points of X be 
numbered x1 , x2 , . . .  , Xn , and color the triple {Xi , x j ,  Xk} ,  i < j < k, 
red if we make a right turn when going from Xi to Xk via Xj , and blue 
if we make a left turn. It is not difficult to check that a homogeneous 
subset, with all triples having the same color, is in convex position. 



3. 1 The Erdos-Szekeres Theorem 

The original upper bound ofn(k) < (2; 24) + 1  from (ES35] has been 
improved only recently and very slightly; the last improvement to the 
bound stated in the text above is due to T6th1 and Valtr [TV98J . 

The Erdos-Szekeres theorem was generalized to planar convex sets. 
The following somewhat misleading term is used: A family of pairwise 
disjoint convex sets is in general position if no set is contained in the 
convex hull of the union of two other sets of the family. For every k 
there exists n such that in any family of n pairwise disjoint convex sets 
in the plane in general position, there are k sets in convex position, 
meaning that none of them is contained in the convex hull of the union 
of the others. This was shown by Bisztriczky and G. Fejes T6th [BT89] 
and, with a different proof and better quantitative bound, by Pach and 
T6th [PT98] . The assumption of general position is necessary. 

An interesting problem is the generalization of the Erdos-Szekeres 
theorem to Rd, d > 3. The existence of nd(k) such that every nd(k) 
points in Rd in general position contain a k-point subset in convex 
position is easy to see (Exercise 4) ,  but the order of magnitude is wide 
open. The current best upper bound nd (k) < (2k k 2�-1) +d [KarOl] 
slightly improves the immediate bound. Fiiredi (unpublished] conjec-
tured that n3 (k) < e0(Vk) .  If true, this would be best possible: A 
construction of Karolyi and Valtr [KVOl] shows that for every fixed 
d > 3, nd (k) > ecd k i / ( d- I )  

with a suitable cd > 0 .  The construction 
starts with a one-point set X0 , and Xi+1  is obtained from Xi by re
placing each point X E Xi by the two points X - ( cf, cf- 1 , . . .  , ci) 
and x + (cf , cf- 1

, . . .  , Ei ) ,  with Ei > 0 sufficiently small, and then 
perturbing the resulting set very slightly, so that Xi+1 is in suitable 
general position. We have IXi l  == 2i , and the key lemma asserts that 
mc(Xi+l ) < mc(Xi)+mc(7r(Xi ) ) ,  where mc(X) denotes the maximum 
size of a convex independent subset of X and 7f is the projection to 
the hyperplane { xd == 0}. 

Another interesting generalization of the Erdos-Szekeres theorem 
to R d is mentioned in Exercise 5.4.3. 

The bounds in the Erdos-Szekeres theorem were also investigated 
for special point sets, namely, for the so-called dense sets in the plane. 
An n-point X c R2 is called c-dense if the ratio of the maximum and 
minimum distances of points in X is at most cy'ri. For every planar 
n-point set, this ratio is at least c0 fo for a suitable constant c0 > 0, 
as an easy volume argument shows, and so the dense sets are quite 
well spread. Improving on slightly weaker results of Alon, Katchalski, 
and Pulleyblank [AKP89] , Valtr [Val92a] showed, by a probabilistic 
argument, that every c-dense n-point set in general position contains 
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The reader should be warned that four mathematicians named Toth are men
tioned throughout the book. For two of them, the surname is actually Fejes Toth 
(Laszlo and Gabor), and for the other two it is just Toth (Geza and Csaba) . 



34 Chapter 3: Convex Independent Subsets 

a convex independent subset of at least c1 n 1 13 points, for some c1 > 
0 depending on c, and he proved that this bound is asymptotically 
optimal. Simplified proofs, as well as many other results on dense 
sets, can be found in Valtr's thesis [Val94] . 

Exercises 

1 .  Find a configuration of 8 points in general position in the plane with no 
5 convex independent points (thereby showing that n(5) > 9) .  0 

2. Prove that the set { (i , j ) ;  i = 1 ,  2 , . . . , m, j = 1 ,  2, . . .  , m} contains no 
convex independent subset with more that Cm213 points (with C some 
constant independent of m). m 

3. Prove that for each k there exists n (  k) such that each n( k )-point set in 
the plane contains a k-point convex independent subset or k points lying 
on a common line. 0 

4. Prove an Erdos-Szekeres theorem in Rd: For every k there exists n = 
nd(k) such that any n points in Rd in general position contain a k-point 
convex independent subset. l:3J 

5. (A small improvement on the upper bound on n(k)) Let X c Rd be a 
planar set in general position with f(k, i)+ l  points, where f is as in the 
second proof of Erdos-Szekeres, and let t be the (unique) topmost point 
of X. Prove that X contains a k-cup with respect to t or an f-cap with 
respect to t, where a cup with respect to t is a subset Y C X \ { t} such 
that Y U  { t }  is in convex position, and a cap with respect to t is a subset 
Y C X \ { t }  such that { x, y, z ,  t} is not in convex position for any triple 
{x, y, z} C Y. Infer that n(k) < f(k-l , k)+l .  m 

6. Show that the construction of Xk R. described in the text can be realized 
' 

on a polynomial-size grid. That is, if we let n = JXk,t J ,  we may suppose 
that the coordinates of all points in X k,e are integers between 1 and nc 
with a suitable constant c. (This was observed by Valtr.) 0 

3.2  Horton Sets 

Let X be a set in Rd . A k-point set Y C X is called a k-hole in X if Y 
is convex independent and conv(Y) n X = Y. In the plane, Y determines a 
convex k-gon with no points of X inside. Erdos raised the question about the 
rather natural strengthening of the Erdos-Szekeres theorem: Is it true that 
for every k there exists an n( k) such that any n( k )-point set in the plane in 
general position has a k-hole? 

A construction due to Horton, whose streamlined version we present be
low, shows that this is false for k > 7: There are arbitrarily large sets without 
a 7-hole. On the other hand, a positive result holds for k <  5.  For k = 6, the 
answer is not known, and this "6-hole problem" appears quite challenging. 
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3.2.1 Proposition (The existence of a 5-hole) .  Every sufficientl.Y large 
planar point set in general position contains a 5-hole. 

Proof. By the Erdos-Szekeres theorem, we may assume that there exists a 
6-point convex independent subset of our set X. Consider a 6-point convex 
independent subset H C X with the smallest possible IX n conv(H) I .  Let 
I ==  conv(H) n (X \ H) be the points inside the convex hull of H. 

• If I ==  0, we have a 6-hole. 
• If there is one point x in I, we consider a diagonal that partitions the 

hexagon into two quadrilaterals: 

The point x lies in one of these quadrilaterals, and the vertices of the 
other quadrilateral together with x form a 5-hole. 

• If I I I  > 2, we choose an edge xy of conv(J) .  Let "f be an open half-plane 
bounded by the line xy and containing no points of I (it is determined 
uniquely unless I I I == 2) . 
If I'Y n HI > 3, we get a 5-hole formed by X, y, and 3 points of 'Y n H. 
For I'Y n HI < 2, we have one of the two cases indicated in the following 
picture: 

By replacing 'U and v by x and y in the left situation, or u by x in the 
right situation, we obtain a 6-point convex independent set having fewer 
points inside than H, which is a contradiction. D 

3.2.2 Theorem (Seven-hole theorem). There exist arbitrarily large finite 
sets in the plane in general position without a 7 -hole. 

The sets constructed in the proof have other interesting properties as well. 

Definitions. Let X and Y be finite sets in the plane. We say that X is high 
above Y (and that Y is deep below X) if the following hold: 
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(i) No line determined by two points of X U  Y is vertical. 
( ii) Each line determined by two points of X lies above all the points of Y. 
(iii) Each line determined by two points of Y lies below all the points of X. 

For a set X ;:;;;;;;; { Xt , x2 , . . .  , Xn}, with no two points having equal x
coordinatcs and with notation chosen so that the x-coordinates of the Xi 
increase with i ,  we define the sets X0 ;:;;;;;;; { x2 , x4, . • .  } (consisting of the points 
with even indices) and X 1 ;:;;;;;;; { x1 , X3 , . • .  } (consisting of the points with odd 
indices) . 

A finite set H c R2 is a Horton set if JH J  < 1 ,  or the following conditions 
hold: JH J  > 1 ,  both H0 and H1 are Horton sets, and H1 lies high above Ho 
or Ho lies high above H1 . 

3.2.3 Lemma. For every n > 1 ,  an n-point Horton set exists. 

Proof. We note that one can produce a smaller Horton set from a larger 
one by deleting points from the right. We construct H(k) , a Horton set of size 
2k , by induction. 

We define H(O) as the point (0, 0) .  Suppose that we can construct a Horton 
set H(k) with 2k points whose x-coordinates are 0, 1 ,  . . .  , 2k- 1 . The induction 
step goes as follows. 

Let A ;:;;;;;;; 2H(k) (i .e. , H(k) expanded twice) , and B == A +  ( 1 ,  hk) ,  where 
hk is a sufficiently large number. We set H(k+l) == A U  B. It is easily seen 
that if hk is large enough, B lies high above A, and so H(k+l ) is Horton as 
well. The set H(3) looks like this: 

• 
• 

• 
• 

• 
• 

• 
• 

D 

Closedness from above and from below. A set X in R2 is r-closed from 
above if for any r-cup in X there exists a point in X lying above the r-cup 
(i .e . ,  above the bottom part of its convex hull) . 

r == 4  

Similarly, we define a set r-closed from below using r-eaps. 

3.2.4 Lemma. Every Horton set is both 4-closed from above and 4-closed 
from below. 
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Proof. We proceed by induction on the size of the Horton set. Let H be a 
Horton set, and assume that H0 lies deep below H1 (the other possible case 
is analogous) .  Let C C H be a 4-cup. 

If C C H0 or C C H1 , then a point closing C from above exists by the 
inductive hypothesis. Thus, let C n H0 =/= 0 =/= C n H1 . 

The cup C may have at most 2 points in H1 (the upper part) : If there 
were 3 points, say a, b, c ( in left-to-right order) , then Ho lies below the lines 
ab and be, and so the remaining point of C, which was supposed to lie in H0, 
cannot form a cup with {a, b, c} : 

Hr 

This means that C has at least 2 points, a and b, in the lower part H0. 
Since the points of H0 and H1 alternate along the x-axis, there is a point 
c E H1 between a and b in the ordering by x-coordinates. This c is above the 
segment ab, and so it closes the cup C from above. We argue similarly for a 
4-cap. D 

3.2.5 Proposition. No Horton set contains a 7-hole. 

Proof. (Very similar to the previous one.) For contradiction, suppose there 
is a 7-hole X in the considered Horton set H. If X C Ho or X C H1 , we 
use induction. Otherwise, we select the part (Ho or H1 ) containing the larger 
portion of X;  this has at least 4 points of X.  If this part is, say, H 0 ,  and it lies 
deep below H1 , these 4 points must form a cup in H0, for if some 3 of them 
were a cap, no point of H1 could complete them to a convex independent set. 
By Lemma 3.2.4, H0 (being a Horton set) contains a point closing the 4-cup 
from above. Such a point must be contained in the convex hull of the 7-hole 
X, a contradiction. D 

Bibliography and remarks. The existence of a 5-hole in every 10-
point planar set in general position was proved by Harborth [Har79] . 
Horton [Hor83] constructed arbitrarily large sets without a 7-hole; we 
followed a presentation of his construction according to Valtr [Val92a) . 

The question of existence of k-holes can be generalized to point sets 
in Rd. Valtr [Val92b] proved that (2d+l)-holes exist in all sufficiently 
large sets in general position in R d, and he constructed arbitrarily 
large sets without k-holes for k >  2d-1 (P(d-1 )+1 ) ,  where P(d-1 )  is 
the product of the first d-1 primes. We outline the construction. Let H 
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be a finite set in Rd, d > 2, in general position (no d+1 on a common 
hyperplane and no two sharing the value of any coordinate) . Let H = 

{ x1 , x2 , . . .  , X11 .} be enumeration of H by increasing first coordinate, 
and let Hq,r = {xi : i - r (mod q) } .  Let Pl = 2 , p2 = 3, . . .  , Pd-1 be 
the first d-1  primes, and let us write p = Pd- l  for brevity. The set H 
is called d-Horton if 

(i) its projection on the first d-1 coordinates is a (d-1 )-Horton set in 
Rd-l (where all sets in R1 are 1-Horton), and 

(ii) either IH I  < 1 or all the sets Hp,r are d-Horton, r = 0, 1 ,  . . .  , p-l, 
and for every subset I C { 0, 1 ,  . . .  , p-I } of at least two indices, there 
is a partition I = J U K, J =I= 0 =I= K, such that UrEJ Hp,r lies high 
above UrEK Hp,r · 
Here A lies high above B if every hyperplane determined by d points 
of A lies above B (in the direction of the dth coordinate) and vice 
versa. Arbitrarily large d-Horton sets can be constructed by induc
tion: We first construct the (d-1)-dimensional projection, and then 
we determine the dth coordinates suitably to meet condition (ii ) .  The 
nonexistence of large holes is proved using an appropriate generaliza
tion of r-closedness from above and from below. 

Since large sets generally need not contain k-holes, it is natural to 
look for other, less special, configurations. Bialostocki, Dierker, and 
Voxman (BDV91] proved the existence of k-holes modulo q: For every 
q and for all k > q+ 2, each sufficiently large set X (in terms of q and 
k) in general position contains a k-point convex independent subset 
Y such that the number of points of X in the interior of conv(Y) 
is divisible by q; see Exercise 6. Karolyi, Pach, and T6th [KPT01] 
obtained a similar result with the weaker condition k > � q + 0(1 ) .  
They also showed that every sufficiently large 1-almost convex set in 
the plane contains a k-hole, and Valtr [Val01] extended this to k-almost 
convex sets, where X is k-almost convex if no triangle with vertices at 
points of X contains more than k points of X inside. 

Exercises 

1 .  Prove that an n-point Horton set contains no convex independent subset 
with more than 4 log2 n points. l3J 

2. Find a configuration of 9 points in the plane in general position with no 
5-hole. l3J 

3. Prove that every sufficiently large set in general position in R 3 has a 
7-hole. 0 

4. Let H be a Horton set and let k > 7. Prove that if Y C H is a k-point 
subset in convex position, then IH  n conv(Y) I > 2 Lk/4J . Thus, not only 
does H contain no k-holes, but each convex k-gon has even exponentially 
many points inside. 8J 
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This result is due to Nyklova [NykOO] , who proved exact bounds for 
Horton sets and observed that the number of points inside each convex 
k-gon can be somewhat increased by replacing each point of a Horton set 
by a tiny copy of a small Horton set. 

5. Call a set X C R2 in general position almost convex if no triangle with 
vertices at points of X contains more than 1 point of X in its interior. 
Let X C R2 be a finite set in general position such that no triangle with 
vertices at vertices of conv(X ) contains more than 1 point of X.  Prove 
that X is almost convex. 0 

6. (a) Let q > 2 be an integer and let k = mq+2 for an integer m > 1 .  Prove 
that every sufficiently large set X c R 2 in general position contains a 
k-point convex independent subset Y such that the number of points of 
X in the interior of conv(Y) is divisible by q. Use Ramsey's theorem for 
triples. m 
(b) Extend the result of (a) to all k > q + 2. 0 
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Incidence Problems 

In this chapter we study a very natural problem of combinatorial geometry: 
the maximum possible number of incidences between m points and n lines 

. in the plane. In addition to its mathematical appeal, this problem and its 
relatives are significant in the analysis of several basic geometric algorithms. 
In the proofs we encounter number-theoretic arguments, results about graph 
drawing, the probabilistic method, forbidden subgraphs, and line arrange
ments. 

4.1 Formulation 

Point-line incidences. Consider a set P of m points and a set L of n lines 
in the plane. What is the maximum possible number of their incidences, i .e. ,  
pairs (p, f) such that p E P, f E L, and p lies on f? We denote the number 
of incidences for specific P and L by I(P, L) , and we let I(m, n) be the 
maximum of l(P, L) over all choices of an m-element P and an n-element L. 
For example, the following picture illustrates that 1(3, 3) > 6, 

and it is not hard to see that actually 1(3, 3) = 6.  
A trivial upper bound is J(m, n) < mn, but it it can never be attained 

unless m = 1 or n = 1 .  In fact ,  if m has a similar order of rnagnitude as n then 
I(m, n) is asymptotically much smaller than mn. The order of magnitude is 
known exactly: 

4.1 . 1  Theorem (Szemeredi-Trotter theorem). For all m, n > 1 ,  we 
have l(m, n) = O(m213n213 + m + n) ,  and this bound is asymptotically tight. 
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We give two proofs in the sequel, one simpler and one including techniques 
useful in more general situations. We will mostly consider only the most 
interesting case m = n. The general case needs no new ideas but only a little 
more complicated calculation. 

Of course, the problem of point-line incidences can be generalized in many 
ways. We can consider incidences between points and hyperplanes in higher 
dimensions, or between points in the plane and some family of curves, and 
so on. A particularly interesting case is that of points and unit circles, which 
is closely related to counting unit distances. 

Unit distances and distinct distances. Let U(n) denote the maximum 
possible number of pairs of points with unit distance in an n-point set in the 
plane. For n < 3 we have U(n) = (�) (all distances can be 1 ) ,  but already 
for n = 4 at most 5 of the 6 distances can be 1 ;  i.e. , U( 4) = 5:  

We are interested in the asymptotic behavior of the function U ( n) for n ---+ oo. 
This can also be reformulated as an incidence problem. Namely, consider 

an n-point set P and draw a unit circle around each point of p, thereby 
obtaining a set C of n unit circles. Each pair of points at unit distance con
tributes two point-circle incidences, and hence U(n) < �Ilcirc (n, n) , where 
I1circ (m , n) denotes the maximum possible number of incidences between m 

points and n unit circles. 
Unlike the case of point-line incidences, the correct order of magnitude of 

U(n) is not known. An upper bound of O(n413) can be obtained by modifying 
proofs of the Szemeredi-Trotter theorem. But the best known lower bound 
is U(n) > n1+c1 /log logn , for some positive constant c1 ; this is superlincar in 
n but grows more slowly than n1+e for every fixed c > 0. 

A related quantity is the minimum possible number of distinct distances 
determined by n points in the plane; formally, 

g(n) = min l {dist(x, y) :  x, y E P} l .  
PcR2 :  I P I =n 

Clearly, g(n) > (�) /U(n) , and so the bound U(n) = O(n413 ) mentioned 
above gives g(n) = O(n213) .  This has been improved several times, and the 
current best lower bound is approximately O(n°·863 ) .  The best known upper 
bound is O(n/Jlog n) . 
Arrangements of lines. We need to introduce some terminology concern
ing line arrangements. Consider a finite set L of lines in the plane. They 
divide the plane into convex subsets of various dimensions, as is indicated in 
the following picture with 4 lines: 
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The intersections of the lines, indicated by black dots, are called the vertices. 
By removing all the vertices lying on a line f E L, the line is split into 
two unbounded rays and several segments, and these parts are the edges. 
Finally, by deleting all the lines of L, the plane is divided into open convex 
polygons, called the cells. In Chapter 6 we will study arrangements of lines 
and hyperplanes further, but here we need only this basic terminology and 
(later) the simple fact that an arrangement of n lines in general position has 
(�) vertices, n2 edges, and (�) +n+ 1 cells. For the time being, the reader can 
regard this as an exercise, or wait until Chapter 6 for a proof. 

Many cells in arrangements. What is the maximum total number of 
vertices of m distinct cells in an arrangement of n lines in the plane? Let us 
denote this number by K(m, n) .  A simple construction shows that the maxi
mum number of incidences J(m, n) is asymptotically bounded from above by 
K(m, n); more exactly, we have I(rn, n) < � K (m, 2n) . To see this, consider 
a set P of m points and a set L of n lines realizing I ( m, n) ,  and replace each 
line f E L by a pair of lines £', f" parallel to f and lying at distance c from £: 

f' ---�--.-�� . . 
2e 1 . 

If c > 0 is sufficiently small, then a point p E P incident to k lines in the 
original arrangement now lies in a tiny cell with 2k vertices in the modified 
arrangement. 

It turns out that K ( m, n) has the same order of magnitude as I ( m, n) ,  
and the upper bound can be obtained by methods similar to those used 
for I(m, n) .  In higher-dimensional problems, even determining the maximum 
possible complexity of a single cell can be quite challenging. For example, the 
maximum complexity of a single cell in an arrangement of n hyperplanes is 
described by the so-called upper bound theorem from the 1970s, which will 
be discussed in Chapter 5. 
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Bibliography and remarks. This chapter is partially based on 
a nice presentation of the discussed topics in the book by Pach and 
Agarwal [PA95] , which we recommend as a source of additional in
formation concerning history, bibliographic references, and various re
lated problems. But we also include some newer results and techniques 
discovered since the publication of that book. 

The following neat problem concerning point-line incidences was 
posed by Sylvester [Syl93] in 1893: Prove that it is impossible to ar
range a finite nurnber of points in the plane so that a line through 
every two of them passes through a third, unless they all lie on the 
same line. This problem remained unsolved until 1933, when it was 
asked again by Erdos and solved shortly afterward by Gallai. The so
lution shows, in particular, that it is impossible to embed the points of 
a finite projective plane :F into R2 in such a way that points of each 
line of F lie on a straight line in R2 . For example, the well-known 
drawing of the Fano plane of order 3 has to contain a curved line: 

Recently Pinchasi [Pin02] proved the following conjecture of Bez
dek, resembling Sylvester's problem: For every finite family of at least 
5 unit circles in the plane, every two of them intersecting, there exists 
an intersection point common to exactly 2 of the circles. 

The problems of estimating the maximum number of point-line 
incidences, the maximun1 nurnber of unit distances, and the minimum 
number of distinct distances were raised by Erdos [Erd46] . For point
line incidences, he proved the lower bound I(m, n) = O(m213n213 + 
m + n) (see Section 4.2) and conjectured it to be the right order of 
magnitude. This was first proved by Szemeredi and Trotter [ST83] . 
Simpler proofs were found later by Clarkson, Edelsbrunner, Guibas, 
Sharir, and Welzl [CEG+9o] , by Szekely [Sze97] , and by Aronov and 
Sharir [ASOla} ;  they are quite different from one another, and we dis
cuss them all in this chapter. 

T6th [T6t01a] proved the analogy of the Szemeredi-Trotter the
orem for the con1plex plane; he used the original Szemeredi-Trotter 
technique, since none of the simpler proofs seems to work there. 

A beautiful application of techniques of Clarkson et al. [CEG+90] 
in geometric measure theory can be found in Wolff (Wol97] . This pa
per deals with a variation of the Kakeya problem: It shows that any 
Borel set in the plane containing a circle of every radius has Hausdorff 
dimension 2. 
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For unit distances in the plane Erdos [Erd46] established the lower 
bound U(n) = O(n1+cf log logn) (Section 4.2) and again conjectured it 
to be tight, but the best known upper bound remains O(n413) .  This 
was first shown by Spencer, Szemeredi, and Trotter [SST84] , and it 
can be re-proved by modifying each of the proofs mentioned above for 
point-line incidences. Further improvement of the upper bound prob
ably needs different, more "algebraic," methods, which would use the 
"circularity" in a strong way, not just in the form of simple combi
natorial axion1s (such as that two points determine at rnost two unit 
circles) .  

For the analogous problem of unit distances among n points in R 3 , 
Erdos (Erd60] proved O(n413 Iog log n) from below and O(n513 ) from 
above. The example for the lower bound is the grid { 1 ,  2, . . .  , ln113 J }3 
appropriately scaled; the bound n( n413) is entirely straightforward, 
and the extra log log n factor needs further number-theoretic consid
erations. The upper bound follows by an argument with forbidden 
K3,3 ; similar proofs are shown in Section 4.5. The current best bound 
is close to O(n312) ; more precisely, it is n3122°(a2 (n)) [CEG+9o] . Here 
the function a(n) , to be defined in Section 7.2, grows extremely slowly, 
more slowly than log n, log log n, log log log n, etc. In dimensions 4 and 
higher, the number of unit distances can be O(n2) (Exer�ise 2). Here 
even the constant at the leading term is known; see [PA95] . Among 
other results related to the unit-distance problems and considering 
point sets with various restrictions, we mention a neat construction of 
Erdos, Hickerson, and Pach [EHP89] showing that, for every a E (0, 2) ,  
there is an n-point set on the 2-dimensional unit sphere with the dis
tance Q occurring at least n( n log* n) times (the special distance v'2 
can even occur 0( n413) times) ,  and the annoying (and still unsolved) 
problem of Erdos and Moser, whether the number of unit distances in 
an n-point planar set in convex position is always bounded by 0( n) 
(see [PA95] for partial results and references) . 

For distinct distances in the plane, the best known upper bound, 
due to Erdos, is O(n/Jlogn). This bound is attained for the foxfo 
square grid. After a series of increases of the lower bound (Moser 
[Mos52] , Chung [Chu84] , Beck [Bec83] , Clarkson et al. [CEG+9o] , 
Chung, Szemeredi, and Trotter [CST92] , Szekely [Sze97] , Solymosi and 
T6th (STOl] )  the current record is O (n4/(S- l/e)-e:) for every fixed c > 0 
(the exponent is approximately 0.863) by Tardos [TarOl] , who im
proved a number-theoretic lemma in the Solymosi-T6th proof. Aronov 
and Sharir [ASOlb] obtained the lower bound of approximately n°·526 
for distinct distances in R 3 . 

Another challenging quantity is the number I eire ( m, n) of inci
dences of m points with n arbitrary circles in the plane. The lower 
bound for point-line incidences can be converted to an example with 

45 
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m points, n circles, and O (m213n213 + m + n) incidences, but in the 
case of I eire ( m, n) ,  this lower bound is not the best possible for all m 
and n:  Consider an example of an n-point set with t = O(njJIOgri ) 
distinct distances and draw the t circles with these distances as radii 
around each point; the resulting tn = o( n2) circles have 0( n2) in
cidences with the n points. The current record in the upper bound 
is due to Aronov and Sharir [ASOla] , and for m = n it yields 
Icirc (n, n) = O(n15/ l l+e )  = O(nl .364 ) .  A little more about their ap
proach is mentioned in the notes to Section 4.5, including an outline 
of a proof of a weaker bound Icirc (n, n) = O(n1 ·4) .  Two other methods 
for obtaining upper bounds are indicated in Exercises 4.4.2 and 4.6.4. 

More generally, one can consider I (P, f) ,  the number of incidences 
between an m-point P c R2 and a family r of n planar curves. Pach 
and Sharir [PS98a] proved by Szekely's method that if r is a family 
of curves with k degrees of freedom and multiplicity type s ,  meaning 
that for any k points there are at most s curves of r passing through 
all of them and no two curves intersect in more than k points, then 
I I(P, f) l  = 0 (mk/ (2k-l)nl-I/(2k-I) + m + n) , with the constant of 
proportionality depending on k and s. Earlier [PS92] , they proved the 
same bound with some additional technical assumptions on the family 
r by the technique of Clarkson et al. [CEG+9o] . Most likely this bound 
is not tight for k > 3 .  Aronov and Sharir [ASOla] improved the bound 
slightly for r a family of graphs of univariate polynomials of degree 
at most k. The best known lower bound is mentioned in the notes to 
Section 4.2 below. 
Point-plane incidences. Considering n points on a line in R3 and 
m, planes containing that line, we see that the number of incidences 
can be mn without further assumptions on the position of the points 
and/or planes. Agarwal and Aronov [AA92] proved the upper bound 
O(m315n415 + m + n )  for the number of incidences between m planes 
and n points in R 3 if no 3 of the points are collinear, slightly improving 
on a result of Edelsbrunner, Guibas, and Sharir [EGS90] . In dimension 
d, the maximum number of incidences of n hyperplanes with m vertices 
of their arrangement is O(m213nd/3 + nd-I ) [AA92] , and this is tight 
for m >  nd-2 (for smaller m, the trivial O(mn) bound is tight) . 

The con1plexity of many cells in an arrangement of lines was first 
studied by Canham [Can69] , who proved K(m, n) = O(m2 + n) ,  
using the fact that two cells can have at most 4 lines incident to 
both of them (essentially a "forbidden K2,5" argurnent; see Sec
tion 4.5) . The tight bound O(m213n213 + m + n) was first achieved 
by Clarkson et al. [CEG+9o] . Among results for the complexity 
of m cells in other types of arrangements we mention the bound 
O(m213n213 + na(n) + n log m) for segments by Aronov, Edelsbrun
ner, Guibas, and Sharir (AEGS92] , O(m213n213a(n) 113 + n) for unit 
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circles (CEG+9o] (improved to O(m213n213) + n) by Agarwal, Aronov, 
and Sharir [AASOl ] ) ,  O(m315n4152°.4n(n) + n) for arbitrary circles 
[CEG+9o] (also improved in [AASOl] ; see the notes to Section 4.5) , 
O(m213n+n2) for planes in R3 by Agarwal and Aronov (AA92] (which 
is tight) ,  and O(m112nd12 (log n) ( ld/2J -l)f2) for hyperplanes in Rd by 
Aronov, Matousek, and Sharir (AMS94] . If one counts only facets of m 

cells in an arrangement of n hyperplanes in Rd, then the tight bound 
is O(m213nd/3 + nd- I )  (AA92] . A few more references on this topic 
can be found in Agarwal and Sharir [ASOOa] . 
The number of similar copies of a configuration. The problem of unit 
distances can be rephrased as follows. Let K denote a set consisting 
of two points in the plane with unit distance. What is the maximum 
number of congruent copies of K that can occur in an n-point set in 
the plane? This reformulation opens the way to various interesting 
generalizations, where one can vary K, or one can consider homo
thetic or similar copies of K, and so on. Elekes's survey (EleOl] nicely 
describes these problems, their relation to the incidence bounds, and 
other connections. Here we sketch some of the main developments. 

Beautiful results were obtained by Laczkovich and Ruzsa [LR97] , 
who investigated the maximum number of similar copies of a given 
finite configuration K that can be contained in an n-point set in the 
plane. Earlier, Elekes and Erdos [EE94] proved that this number is 
O(n2-(log n)-c ) for all K, where c > 0 depends on K, and it is O(n2 ) 
whenever all the coordinates of the points in K are algebraic num
bers. Building on these results, Laczkovich and Ruzsa proved that the 
maximum number of similar copies of K is n(n2) if and only if the 
cross-ratio of every 4 points of K is algebraic, where the cross-ratio 
of points a, b, c, d E R 2 equals � � · � ! , with a, b, c, d interpreted as 
complex numbers in this formula. 

Their proof makes use of very nice results from the additive the
ory of numbers, most notably a theorem of Freiman [Fre73] (also see 
Ruzsa [Ruz94] ) :  If A is a set of n integers such that lA + AI < en, 
where A + A = {a  + b: a , b E A} and c > 0 is a constant, then A 
is contained in a d-dimensional generalized arithmetic progression of 
size at most Cn, with C and d depending on c only. Here a d-dimen
sional generalized arithmetic progression is a set of integers of the form 
{zo +i1q1 +i2q2 + · · · +idqd: i 1  = O, l ,  . . .  , n1 ,  i2 = O, l , .. . . . , n2 , · · · , id = 

0, 1 ,  . . .  , nd} for some integers zo and QI , Q2 , . . •  , Qd· It is easy to see that 
lA + AI < Cd iAI  for every d-dimensional generalized arithmetic pro
gression, and Freiman's theorem is a sort of converse statement: If 
lA + AI = O( IA I ) ,  then A is not too far from a generalized arithmetic 
progression. (Freiman's theorem has also been used for incidence
related problems by Erdos, Fiiredi, Pach, and Ruzsa (EFPR93] , and 

47 
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Gowers's paper [Gow98] is an impressive application of results of this 
type in combinatorial number theory. ) 
Polynomials attaining O(n) values on Cartesian products. Interesting 
results related to those of Freiman, as well as to incidence problems, 
were obtained in a series of papers by Elekes and his coworkers (they 
are described in the already mentioned survey [Ele01 ] ) .  Perhaps even 
more significant than the particular results is the direction of research 
opened by them, combining algebraic and combinatorial tools. Let us 
begin with a conjecture of Purdy proved by Elekes and Ronyai [EROO] 
as a consequence of their theorems. Let P be a set of n distinct points 
lying on a line u C R 2 , let Q be a set of n distinct points lying on 
a line v C R2 , and let Dist(P, Q) = { l iP - q l l :  p E P, q E Q}. If, for 
example, u and v are parallel and if both P and Q are placed with equal 
spacing along their lines, then I Dist (P, Q) l < 2n. Another such case 
is P = { ( Jl, 0) :  i = 1 ,  2, . . . , n} and Q = { (0, .JJ) : j = 1 ,  2, . . .  , n } :  
This time u and v are perpendicular, and again I Dist(P, Q) l  < 2n. 
According to Purdy's conjecture, these are the only possible positions 
of u and v if the number of distances is linear: For every C > 0 there 
is an no such that if n > no and I Dist (P, Q) l < Cn, then u and v are 
parallel or perpendicular. 

If we parameterize the line u by a real parameter x, and v by y, and 
denote the cosine of the angle of u and v by A, then Purdy's conjecture 
can be reformulated in algebraic terms as follows: Whenever X, Y C R 
are n-point sets such that the polynomial F(x, y) = x2 + y2 + 2Axy 
attains at most Cn distinct values on X x Y, i .e. , I {F(x, y ) :  x E X, y E 
Y} l < Cn, then necessarily A =  0 or .X = ±1 ,  provided that n > no( C). 

Elekes and Ronyai [EROO] characterized all bivariate polynomials 
F(x, y) that attain only O(n) values on Cartesian products X x Y. 
For every C, d there exists an no such that if F( x, y) is a bivariate 
polynomial of degree at most d and X, Y C R are n-point sets, n > n0 , 
such that F(x, y) attains at most Cn distinct values on X x Y, then 
F(x, y) has one of the two special forms f(g(x) + h(y)) or f(g(x)h(y) ) ,  
where f, g ,  h are univariate polynomials. In fact, we need not consider 
the whole X x Y; it suffices to assume that F attains at most Cn values 
on an arbitrary subset of 8n2 pairs from X x Y (with no depending 
on 8, too) . A siinilar result holds for a bivariate rational function 
F(x, y) ,  with one more special form to consider, namely, F(x, y) = 

f( (g (x) + h(y) )/ ( 1 - g (x)h(y ) ) ) .  
We indicate a proof only for the special case of the polynomial 

F(x, y) = x2 + y2 + 2-Xxy from Purdy's conjecture (following Elekes 
[Ele99] ) ;  the basic idea of the general case is sirnilar, but several rnore 
tools are needed, especially from elementary algebraic geometry. So let 
Z = F(X, Y) be the set of values attained by F on X x Y. For each 
Yi E Y, put fi (x) = F(x, yi ) ,  and define the family f = {lij : i , j = 
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1 ,  2, . . . , n, i #- j} of planar curves by rij = { (fi (t) , fi (t) ) :  t E R} 
(this is the key trick) .  Each rij contains at least � points of z X z' 
since among the n points (fi (xk) ,  /j (xk) ) ,  Xk E X, no 3 can coincide, 
because the fi are quadratic polynomials. Moreover, a straightfor
ward (although lengthy) calculation using resultants verifies that for 
A ¢. {0, ±1} ,  at most 8 distinct curves rij can pass through any two 
given distinct points a, b E R 2 .  Consequently, r contains at least � n2 
distinct curves. Using the bound of Pach and Sharir (PS92) , [PS98a) 
on the nurnber of incidences between points and algebraic curves men
tioned above, with Z x Z as the points and the at least � n2 distinct 
curves of r as the curves, we obtain that IZ I  = O(n514 ) .  So there is 
even a significant gap: Either A E {0, ±1 } ,  and then F(X, Y) can have 
only 2n distinct elements for suitable X, Y, or .A ¢ {0, ±1}  and then 
IF{X, Y) l = n(n514) for all X, Y. 

Perhaps this latter bound can be improved to O(n2-e) for every 
e > 0 (so there would be an almost-dichotomy: either the number of 
values ofF can be linear, or it has to be always near-quadratic) . On the 
other hand, it is known that the polynomial x2 + y2 + xy attains only 
O(n2 /Jlogn) distinct values for x, y ranging over { 1 ,  2, . . .  , n} , and 
so the bound need not always be linear or quadratic. It seems likely 
that in the general case of the Elekes-R6nyai theorem the number of 
values attained by F should be near-quadratic unless F is one of the 
special forms. 

Further generalizations of the Elekes-R6nyai theorem were ob
tained by Elekes and Szabo; see [Ele01 J .  

Exercises 
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1 .  Let It eire ( m, n) be the maximum number of incidences of m points with 
n unit circles and let U ( n) be the maximum number of unit distances for 
an n-point set. 
(a) Prove that ltcirc (2n, 2n) = O(ltcirc (n, n) ) .  II1 
(b) We have seen that U(n) < � Jlcirc(n, n) .  Prove that Itcirc (n, n) 
O(U(n) ) .  � 

2. Show that an n-point set in R4 may determine O(n2) unit distances. [!] 
3. Prove that if X c Rd is a set where every two points have distance 1 ,  

then lX I  < d+1 .  m 
4. What can be said about the maximum possible number of incidences of 

n lines in R3 with m points? � 
5.  Use the Szemeredi-Trotter theorem to show that n points in the plane 

determine at most 
(a) O(n?13) triangles of unit area, 0 
(b) O(n713) triangles with a given fixed angle a. � 
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The result in (a) was first proved by Erdos and Purdy [EP71] . As for 
(b) , Pach and Sharir [PS92] proved the better bound O(n2 logn) ; also 
see [PA95] . 

6. (a) Using the Szen1eredi-Trotter theore1n, show that the maxi1nun1 pos
sible number of distinct lines such that each of them contains at least k 
points of a given m-point set P in the plane is O(m2 jk3 + m/k). ill 
(b) Prove that such lines have at most 0( m2 j k2 + m) incidences with P. 
m 

7. (Many points on a line or many lines) 
(a) Let P be an m-point set in the plane and let k < y'rii be an integer 
parameter. Prove (using Exercise 6, say) that at most O(m2 /k) pairs of 
points of P lie on lines containing at least k and at most y'rii points of 
P. 0 
(b) Similarly, for K > y'rii, the number of pairs lying on lines with at 
least y'rii and at most K points is O(Km) . III 
(c) Prove the following theorem of Beck [Bec83] : There is a constant 
e > 0 such that for any n-point P C R 2 , at least en 2 distinct lines are 
determined by P or there is a line containing at least en points of P. 0 
(d) Derive that there exists a constant c > 0 such that for every n-point 
set P in the plane that does not lie on a single line there exists a point 
p E P lying on at least en distinct lines determined by points of P. ITJ 
Part (d) is a weak form of the Dirac-Motzkin conjectnre; the full conjec
ture, still unsolved, is the same assertion with c = � .  

8. (Many distinct radii) 
(a) Assume that Icirc (m, n) = O(mo:nf3 +m+n) for some constants o: < 1 
and f3 < 1 ,  where Icirc (m, n) is the maximum number of incidences of m 
points with n circles in the plane. In analogy with to Exercise 7, derive 
that there is a constant e > 0 such that for any n-point set P c R 2 , 
there are at least en3 distinct circles containing at least 3 points of P 
each or there is a circle or line containing at least en points of P. III 
(b) Using (a) , prove the following result of Elekes (an answer to a question 
of Balog) : For any n-point set P c R2 not lying on a common circle or 
line, the circles determined by P (i.e., those containing 3 or more points 
of P) have 0( n) distinct radii. [!] 
(c) Find an example of an n-point set with only O(n) distinct radii. II1 

9. (Surns and products cannot both be few) Let A c R be a set of n distinct 
real numbers and let S = A + A = {a + b: a, b E A} and P = A · A = 

{ ab: a, b E A}.  
(a) Check that each of the n2 lines { (x, y) E R2: y = a(x - b) } ,  a ,  b E  A, 
contains at least n distinct points of S x P. II] 
(b) Conclude using Exercise 6 that IS X PI = n(n512) ,  and consequently, 
max( lSI ,  IP) = O(n514) ;  i.e. , the set of sums and the set of products can 
never both have almost linear size. � (This is a theorem of Elekes [Ele97] 
improving previous results on a problem raised by Erdos and Szemeredi.) 
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10. (a) Find n-point sets in the plane that contain O(n2) similar copies of 
the vertex set of an equilateral triangle. ill 
(b) Verify that the following set Pm has n = O(m4) points and contains 
O(n2) similar copies of the vertex set of a regular pentagon: Identify R2 
with the complex plane C, let w = e27ri/S denote a primitive 5th root of 
unity, and put 

Pm = { io + i1w + i2w2 + i3w3 : io ,  i 1 , i2 , i3 E Z, l ij I < m } .  

IT] 
The example in (b) is from Elekes and Erdos [EE94] , and the set P00 is 
called a pentagonal psendolattice. The following picture shows P2 : 
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4.2 Lower Bounds: Incidences and Unit Distances 

4.2.1 Proposition (Many point-line incidences) .  We have I(n, n) 
O(n413) ,  and so the upper bound for the maximum number of incidences 
of n points and n lines in the plane in the Szemeredi-TI-otter theorem is 
asymptotically optimal. 

It is not easy to come up with good constructions "by hand." Small cases 
do not seem to be helpful for discovering a general pattern. Surprisingly, an 
asymptotically optimal construction is quite simple. The appropriate lower 
bound for I(m, n) with n # m is obtained similarly (Exercise 1 ) .  

Proof. For simplicity, we suppose that n � 4k3 for a natural number k. 
For the point set P, we choose the k x 4k2 grid; i.e. , we set P = { (i , j) : i = 

0, 1 ,  2, . . .  , k-1 ,  j = 0, 1 ,  . . .  , 4k2 -1 } .  The set L consists of all the lines with 
equations y = ax + b, where a = 0, 1 ,  . . .  , 2k-1 and b = 0, 1 ,  . . .  , 2k2-1 .  
These are n lines, as it should be. For x E [0, k) ,  we have ax + b < ak  + b < 
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2k2 + 2k2 = 4k2 . Therefore, for each i = 0, 1 ,  . . .  , k-1 ,  each line of L contains 
a point of P with the x-coordinate equal to i ,  and so I(P, L) > k · IL I  = ! n413 . 

0 

Next, we consider unit distances, where the construction is equally simple 
but the analysis uses considerable number-theoretic tools. 

4.2.2 Theorem (Many unit distances) . For all n > 2, there exist con
figurations of n points in the plane determining at least n 1 +c1 I log log n unit 
distances, with a positive constant c1 . 

A configuration with the asymptotically largest known number of unit 
distances is a y'n x y'n regular grid with a suitably chosen step. Here unit 
distances are related to the number of possible representations of an integer 
as a sun1 of two squares. We begin with the following claim: 

4.2.3 Lemma. Let P1 < P2 < · · · < Pr be primes of the form 4k+1 ,  and 
put M = P1P2 · · · Pr · Then M can be expressed as a surn of two squares of 
integers in at least 2r ways. 

Proof. As we know from Theorem 2.3 . 1 ,  each Pi can be written as a sum 
of two squares: Pi = a] + b] . In the sequel, we work with the ring Z[i] , the 
so-called Gaussian integers, consisting of all complex numbers u + iv, where 
u ,  v E Z. We use the fact that each element of Z [i] can be uniquely factored 
into primes. From algebra, we recall that a prime in the ring Z [i] is an element 
r E Z[i] such that whenever r = 11 1'2 with 11 , {2 E Z [i] , then lr1 l = 1 or 
lr2 l = 1 .  Both existence and uniqueness of prime factorization follows from 
the fact that Z [i] is a Euclidean ring (see an introductory course on algebra 
for an explanation of these notions) .  

Let us put aj = aj + i bj , and let iii = aj - i bj be the complex con
jugate of aj . We have ajiij = (aj + i bj ) (aj - i bj )  = a] + b] = Pi · Let us 
choose an arbitrary subset J C I = { 1 ,  2, . . .  , r} and define AJ + iB J = ( njEJ aj) ( njEl\J &j) . Then AJ - iBJ = ( njEJ &j) ( njEl\J aj) , and 
hence M = (AJ + iBJ) (AJ - iBJ) = A} +  B] . This gives one expression of 
the number M as a sum of two squares. It remains to prove that for two sets 
J =/= J' , AJ + iB J =/= AJ' + iB J' . To this end, it suffices to show that all the 
aj and iij are primes in Z [i] . Then the numbers AJ + iBJ and AJ' + iBJ' are 
distinct, since they have distinct prime factorizations. (No ai or iij can be 
obtained from another one by Inultiplying it by a unit of the ring Z [i] : The 
units are only the elements 1 ,  - 1 ,  i , and -i.) 

So suppose that aj = /'1 12, rl , 12 E Z[iJ . We have Pi = ajiij == 

rl/'21112 = lrd2 l1'2 l2 . Now, lr1 l 2 and l12 l 2 are both integers, and since pi is 
a prime, we get that lr1 l = 1 or lr2 l = 1 .  o 

Next, we need to know that the primes of the form 4k+ 1 are sufficiently 
dense. First we recall the well-known prime number theorem: If 1r(n) denotes 
the number of primes not exceeding n, then 
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n 
1r(n) = ( 1  + o( 1 ) )  1 as n --+ oo. 

n n 
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Proofs of this fact are quite complicated; on the other hand, it is not so hard 
to prove weaker bounds en/ log n < 1r( n) < Cn/ log n for suitable positive 
constants c, C. 

We consider primes in the arithmetic progression 1 ,  5, 9, . . .  , 4k+ 1 ,  . . . . A 
famous theorem of Dirichlet asserts that every arithmetic progression con
tains infinitely many primes unless this is impossible for a trivial reason, 
namely, unless all the terms have a nontrivial common divisor. The following 
theorem is still stronger: 

4.2.4 Theorem. Let d and a be relatively prime natural numbers, and let 
1rd,a (n) be the number of primes of the form a +  kd (k = 0, 1 ,  2,  . .  .) not 
exceeding n. We have 

1 n 
1l"d,a (n) = ( 1  + o(l ) )  <p(d) ln n

, 

where r.p denotes the Euler function: r.p( d) is the number of integers between 1 
and d that are relatively prime to d. 

For every d > 2, there are <.p( d) residue classes modulo d that can possi
bly contain primes. The theorem shows that the primes are quite uniformly 
distributed among these residue classes. 

The proof of the theorem is not simple, and we omit it, but it is very 
nice, and we can only recommend to the reader to look it up in a textbook 
on number theory. 

Proof of the lower bound for unit distances (Theorem 4.2.2). Let us 
suppose that n is a square. For the set P we choose the points of the y'n x y'n 
grid with step 11 VIJ, where lvf is the product of the first r-1 primes of the 
form 4k+1 ,  and r is chosen as the largest number such that M < � .  

It is easy to see that each point of the grid participates in at least as many 
unit distances as there are representations of M as a sum of two squares of 
nonnegative integers. Since one representation by a sum of two squares of 
nonnegative integers corresponds to at most 4 representations by a sum of 
two squares of arbitrary integers (the signs can be chosen in 4 ways) , we have 
at least 21._ 1 /16 unit distances by Lemma 4.2.3. 

By the choice of r, we have 4P1P2 · · · Pr-1 < n < 4P1P2 · · · Pr , and 
hence 2r < n and Pr > (� ) l fr . Further, we obtain, by Theorem 4.2.4, 
r = 7r 4, 1 (Pr) > ( � - o( 1) )Pr / log Pr > yP; > n 1 13r for sufficiently large 
n, and thus r3r > n. Taking logarithms, we have 3r log r > log n, and hence 
r > log n I ( 3 log r) > log n I ( 3 log log n). The number of unit distances is at 
least n 2r-4 > n1+ct / log log n ,  as Theorem 4.2.2 claims. Let us remark that for 
sufficiently large n the constant c1 can be made as close to 1 as desired. D 

Bibliography and remarks. Proposition 4.2.1 is due to Erdos 
[Erd46] . His example is outlined in Exercise 2 (also see [PA95] ) ;  the 
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analysis requires a bit of number theory. The simpler example in the 
text is from Elekes [EleO 1 ] .  Its extension provides the best known 
lower bound for the number of incidences between m points and n > 
m(k- I)/2 curves with k degrees of freedom: For a parameter t < m11k , 
let P = { (i , j ) :  0 < i < t ,  0 < j < 7 } ,  and let r consist of the 
graphs of the polynomials 2.:; � atx£ with a£ = 0, 1 ,  . . .  , l kt"i+t J ,  f = 

0, 1 ,  . . .  ' k-1 .  
Theorem 4.2.2 is due to Erdos [Erd46] , and the proof uses ingredi

ents well known in number theory. The prime number theorem (and 
also Theorem 4.2.4) was proved in 1896, by de la Valee Poussin and 
independently by Hadamard (see Narkiewicz [NarOO] ) .  

Exercises 

1 .  By extending the example in the text, prove that for all m, n with n2 < m 
and m2 < n ,  we have J(m, n) = O(n213m213) .  0 

2. (Another exarnple for incidences) Suppose that n = 4t6 for an integer 
t > 1 and let P = { (i , j ) :  0 < i , j < y'n}. Let S = { (a, b) , a, b  = 

1 ,  2, . . .  , t ,  gcd (a, b) = 1 } ,  where gcd (a, b) denotes the greatest common 
divisor of a and b. For each point p E P, consider the lines passing 
through p with slope ajb, for all pairs (a, b) E S. Let L be the union of 
all the lines thus obtained for all points p E P. 
(a) Check that IL l  < n. 0 
(b) Prove that lS I  > ct2 for a suitable positive constant c > 0, and infer 
that I(P, L) = O(nt2) = O(n413) .  [I] 

4.3 Point-Line Incidences via Crossing Numbers 

Here we present a very simple proof of the Szemeredi-Trotter theorem based 
on a result concerning graph drawing. We need the notion of the crossing 
number of a graph G; this is the minimum possible number of edge crossings 
in a drawing of G. To Inake this rigorous, let us first recall a for1nal definition 
of a drawing. 

An arc is the image of a continuous injective map [0, 1] --+ R 2 . A drawing 
of a graph G is a mapping that assigns to each vertex of G a point in the plane 
(distinct vertices being assigned distinct points) and to each edge of G an 
arc connecting the corresponding two (in1ages of) vertices and not incident 
to any other vertex. We do not insist that the drawing be planar, so the 
arcs are allowed to cross. A crossing is a point common to at least two arcs 
but distinct from all vertices. In this section we will actually deal only with 
drawings where each edge is represented by a straight segment. 

Let G be a graph (or n1ultigraph) . The crossing nurnber of a drawing of 
G in the plane is the number of crossings in the considered drawing, where a 
crossing incident to k > 2 edges is counted (�) times. So a drawing is planar 
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if and only if its crossing number is 0. The crossing number of the graph G 
is the smallest possible crossing number of a drawing of G; we denote it by 
cr(G) . For example, cr(K5 ) = 1 :  

As is well known, for n > 2 ,  a planar graph with n vertices has at most 
3n-6 edges. This can be rephrased as follows: If the number of edges is 
at least 3n-5 then cr( G) > 0. The following theorem can be viewed as a 
generalization of this fact. 

4.3.1 Theorem (Crossing number theorem) . Let G = (V, E) be a sim
ple graph (no multiple edges) . Then 

1 IEI 3 cr(G) > - · - lV I  - 64 IV I2 

(the constant 6� can be improved by a more careful calculation). 

The lower bound in this theorem is asymptotically tight; i.e. , there exist 
graphs with n vertices, m edges, and crossing number O(m3 jn2) ;  see Exer
cise 1 .  The assumption that the graph is simple cannot be omitted. 

For a proof of this theorem, we need a simple lemma: 

4.3.2 Lemma. The crossing number of any simple graph G = (V, E) is at 
least lE I - 3 IVI . 

Proof. If lEI > 3 IV I  and some drawing of the graph had fewer than IE I -3 IV I  
crossings, then we could delete one edge from each crossing and obtain a 
planar graph with more than 3 IV I  edges. 0 
Proof of Theorem 4.3.1.  Consider some drawing of a graph G = (V, E) 
with n vertices, m edges, and crossing number x. We may assume m > 4n, 
for otherwise, the claimed bound is negative. Let p E (0, 1 )  be a parameter; 
later on we set it to a suitable value. We choose a random subset V' C V by 
including each vertex v E V into V' independently with probability p.  Let G' 
be the subgraph of G induced by the subset V' . Put n' == IV' I ,  m' == IE(G') I ,  
and let x' be the crossing number of the graph G' in the drawing "inherited" 
from the considered drawing of G. The expectation of n' is E [n'] = np. The 
probability that a given edge appears in E( G') is p2 , and hence E [rn'] == mp2 , 
and similarly we get E [x'] == xp4 . At the same time, by Lemma 4.3.2 we 
always have x' > m' - 3n' , and so this relation holds for the expectations as 
well: E [x'J > E [m'J - 3E [n'] .  So we have xp4 > mp2 - 3np. Setting p = !;: 
(which is at most 1 ,  since we assume m > 4n) , we calculate that 
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1 m3 
x > - -

- 64 n2 • 

The crossing number theorern is proved. 0 

Proof of the Szemeredi-Trotter theorem (Theorem 4.1 .1) .  We con
sider a set P of m points and a set L of n lines in the plane realizing the max
inlum number of incidences J(m, n) .  We define a certain topological graph 
G = (V, E) ,  that is, a graph together with its drawing in the plane. Each 
point p E P becomes a vertex of G, and two points p, q E P are connected 
by an edge if they lie on a common line f E L next to one another. So we 
have a drawing of G where the edges are straight segments. This is illustrated 
below, with G drawn thick: 

If a line f E L contains k > 1 points of P, then it contributes k-1 edges to 
P, and hence I(rn, n) = lE I + n. Since the edges are parts of the n lines, at 
most (�) pairs may cross: cr(G) < (�) . On the other hand, from the crossing 
number theorem we get cr(G) > l4 • IE I3  /m2 - m. So l4 · IE I 3 /m2 - m < 
cr(G) < (�) , and a calculation gives lE I = O(n213m213 + m) .  This proves the 
Szemeredi-Trotter theorem. 0 

The best known upper bound on the number of unit distances, U(n) = 

O(n413 ) ,  can be proved along similar lines; see Exercise 2. 

Bibliography and remarks. The presented proof of the Szemeredi
Trotter theorern is due to Szekely [Sze97] . 

The crossing number theorem was proved by Ajtai, Chvatal, New
born, and Szemeredi [ACNS82] and independently by Leighton [Lei84] . 
This result belongs to the theory of geometric graphs, which studies 
the properties of graphs drawn in the plane (most often with edges 
drawn as straight segments) . A nice introduction to this area is given 
in Pach and Agarwal [PA95] , and a newer survey is Pach [Pac99] . In 
the rest of this section we mention mainly some of the more recent 
results. 

Pach and T6th [PT97] improved the constant l4 in Theorem 4.3 . 1  
to approximately 0.0296, which is already within a factor of 2.01 of the 
best known upper bound (obtained by connecting all pairs of points of 
distance at most d in a regular y'ri x y'ri grid, for a suitable d). The im
provement is achieved by establishing a better version of Lemma 4.3.2, 
namely, cr(G) > 5IEI - 25 IV I  for lE I  > 7 IV I - 14. 
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Pach, Spencer, and T6th (PSTOO] proved that for graphs with cer
tain forbidden subgraphs, the bound can be improved substantially: 
For example, if G has n vertices, m edges, and contains no cycle of 
length 4, then cr(G) = fl(m4jn3) for m > 400n, which is asymp
totically tight. Generally, let g be a class of graphs that is mono
tone (closed under adding edges) and such that any n-vertex graph 
in g has at most O(n1+0) edges, for some a E (0, 1 ) .  Then cr(G) > 
cm2+l/ajn1+l/a for any G E g with n vertices and m > Cn log2 n 
edges, with suitable constants C, c > 0 depending on g. The proof 
applies a generally useful lower bound on the crossing number, which 
we outline next. Let bw( G) denote the bisection width of G, i.e. , the 
minimum number of edges connecting V1 and V2 , over all partitions 
(V1 , V2) of V(G) with IVt l , IV2 I > � IV(  G) I .  Leighton [Lei83] proved 
that cr(G) = O(bw(G)2) - IV(G) I for any graph G of maximum de
gree bounded by a constant. Pach, Shahrokhi, and Szegedy [PSS96] , 
and independently Sykora and Vrt'o [SV94] , extended this to graphs 
with arbitrary degrees: 
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( 4 .1) 

where degc (v) is the degree of v in G. The proof uses the fol
lowing version, due to Gazit and Miller [GM90] , of the well-known 
Lipton-Tarjan separator theorem for planar graphs: For any planar 
graph H and any nonnegative weight function w: V(H) -+ [0, �] with 
Lvev(H) w(v) = 1 ,  one can delete at most 1 .58JLvev(H) degH(v)2 

edges in such a way that the total weight of vertices in each component 
of the resulting graph is at most � .  To deduce ( 4 . 1 ) ,  consider a drawing 
of G with the minimum number of crossings, replace each crossing by a 
vertex of degree 4, assign weight 0 to these vertices and weight IVlG) I  
to the original vertices, and apply the separator theorem (see, e.g. , 
[PA95) for a more detailed account) .  Djidjev and Vrt'o [DV02] have re
cently strengthened ( 4. 1 ) ,  replacing bw( G) by the cutwidth of G. To 
define the cutwidth, we consider an injective mapping f: V (G) ---+ R. 
Each edge corresponds to a closed interval, and we find the maximum 
number of these intervals with a common interior point. The cutwidth 
is the minimum of this quantity over all f. 

To derive the result of Pach et al. [PSTOO] on the crossing number 
of graphs with forbidden subgraphs mentioned above from ( 4. 1 ) ,  we 
consider a graph G E g with n vertices and m edges. If cr( G) is 
small, then the bisection width is small, so G can be cut into two 
parts of almost equal size by removing not too many edges. For each 
of these parts, we bisect again, and so on, until parts of some suitable 
size s (depending on n and m) arc reached. By the assumption on Q, 
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each of the resulting parts has O (s 1+a ) edges, and so there are O(ns0) 
edges within the parts. This number of edges plus the number of edges 
deleted in the bisections add up to m, and this provides an inequality 
relating cr( G) to n and m; see [PSTOO] for the calculations. 

The notion of crossing number is a subtle one. Actually, one can 
give several natural definitions; a study of various notions and of their 
relations was made by Pach and T6th [PTOO] . Besides counting the 
crossings, as we did in the definition of cr( G) , one can count the 
number of (unordered) pairs of edges that cross; the resulting no
tion is called the pairwise crossing number in [PTOO] , and we denote 
it by pair-cr( G) . We always have pair-cr( G) < cr( G) , but since two 
edges (arcs) are allowed to cross several times, it is not clear whether 
pair-cr( G) = cr( G) for all graphs G, and currently this see1ns to be a 
challenging open problem (see Exercise 4 for a typical false attempt at 
a proof) . A simple argument shows that cr( G) < 2 pair-cr( G)2 (Exer
cise 4 ( c) ) . A stronger claim, proved in [PTOO] , is cr( G) < 2 odd-er( G)2 , 
where odd-er( G) is the odd-crossing number of G, counting the num
ber of pairs of edges that cross an odd number of times. An inspiration 
for their proof is a theorem of Hanani and Thtte claiming that a graph 
G is planar if and only if odd-er( G) = 0.  In a drawing of G, call an 
edge e even if there is no edge crossed by e an odd number of times. 
Pach and T6th show, by a somewhat complicated proof, that if we 
consider a drawing of G and let Eo be the set of the even edges, then 
there is another drawing of G in which the edges of Eo are involved in 
no crossings at all. The inequality cr( G) < 2 odd-er( G)2 then follows 
by an argument similar to that in Exercise 4(c) . 

Finally, let us remark that if we consider rectilinear drawings 
{where each edge is drawn as a straight segment) , then the result
ing rectilinear crossing number can be much larger than any of the 
crossing numbers considered above: Graphs are known with cr( G) = 4 
and arbitrarily large rectilinear crossing numbers (Bienstock and Dean 
[BD93] ) . 

Exercises 

1 .  Show that for any n and m, 5n < m < (�) , there exist graphs with n 
vertices, m edges, and crossing number O(m3 jn2) .  � 

2. In a manner similar to the above proof for point-line incidences, prove the 
bound ltcirc (n, n) = O(n413 ) ,  where Ilcirc (m, n) denotes the maximum 
possible number of incidences between m points and n unit circles in the 
plane (be careful in handling possible multiple edges in the considered 
topological graph! ) . IIl 

3. Let K ( n, m) denote the maximum total number of edges of m dis
tinct cells in an arrangement of n lines in the plane. Prove K(n, m) = 
O(n213m213 + n + m) using the method of the present section (it may be 
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convenient to classify edges into top and bottom ones and bound each 
type separately) . 0 

4. (a) Prove that in a drawing of G with the smallest possible number of 
crossings, no two edges cross more than once. � 
(b) Explain why the result in (a) does not imply that pair-cr( G) = cr( G) 
(where pair-cr(G) is the minimum number of pairs of crossing edges in a 
drawing of G). � 
(c) Prove that if G is a graph with pair-cr( G) = k, then cr( G) < (2

2
k) .  8J 

4.4 Distinct Distances via Crossing Numbers 

Here we use the methods from the preceding sections to establish a lower 
bound on the number of distinct distances determined by an n-point set 
in the plane. We do not go for the best known bound, whose proof is too 
complicated for our purposes, but in the notes below we indicate how the 
improvement is achieved. 

4.4. 1 Proposition (Distinct distances in R2) .  The minimum number 
g( n) of distinct distances determined by an n-point set in the plane satisfies 
g(n) = O(n415) .  

Proof. Fix an n-point set P, and let t be the number of distinct distances 
determined by P. This means that for each point p E P, all the other points 
are contained in t circles centered at p (the radii correspond to the t distances 
appearing in P) . 

These tn circles obtained for all the n points of P have n(n-1) incidences 
with the points of P. The first idea is to bound this number of incidences from 
above in terms of n and t, in a way similar to the proof of the Szemeredi
Trotter theorem in the preceding section, which yields a lower bound for t . 

First we delete all circles with at most 2 points on them (the innermost 
circle and the second outermost circle in the above picture) . We have de
stroyed at most 2nt incidences, and so still almost n 2 incidences remain (we 
may assume that t is much smaller than n, for otherwise, there is nothing 
to prove) . Now we define a graph G: The vertices are the points of P and 
the edges are the arcs of the circles between the points. This graph has n 
vertices, almost n2 edges, and there are at most t2n2 crossings because every 
two circles intersect in at most 2 points. 
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Now if we could apply the crossing number theorem to this graph, we 
would get that with n vertices and n2 edges there must be at least O(n6 jn2) = 

n ( n 4 ) crossings, and so t = n ( n) would follow. This, of course, is too good 
to be true, and indeed we cannot use the crossing number theorem directly 
because our graph may have multiple edges: Two points can be connected by 
several arcs. 

u 

A multigraph can have arbitrarily many edges even if it is planar. But if we 
have a bound on the maximum edge multiplicity, we can still infer a lower 
bound on the crossing number: 

4.4.2 Lemma. Let G = (V, E) be a multigraph with maximum edge multi
plicity k. Then ( IE I3 ) 2 cr(G) = n k iVI2 

- O(k lV I ) .  

We defer the proof to the end of this section. 
In the graph G defined above, it appears that the maximum edge multi

plicity can be as high as t .  If we used Lemma 4.4.2 with k = t in the manner 
indicated above, we would get only the estimate t = O(n213 ) .  

The next idea is to deal with the edges of very high multiplicity separately. 
Namely, we observe that if a pair { u ,  v} of points is connected by k arcs, then 
the centers of these arcs lie on the symmetry axis fuv of the segment uv: 

v 

u 

So the line fuv has at least k incidences with the points of P. But the Sze
meredi-Trotter theorem tells us that there cannot be too many distinct lines, 
each incident to many points of P. Let us make this precise. 

By a consequence of the Szemeredi-Trotter theorem stated in Exer
cise 4 .1 .6(b ) , lines containing at least k points of P each have altogether 
no more than O(n2 jk2 + n) incidences with P. 

Let M be the set of pairs { u, v} of vertices of G connected by at least 
k edges in G, and let E be the set of edges (arcs) connecting these pairs. 
Each edge in E connecting the pair { u, v}  contributes one incidence of the 
bisecting line fuv with a point p E P. On the other hand, one incidence of 
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such p with some fuv can correspond to at most 2t edges of E, because at 
most t circles are centered at p, and so fuv intersects at most 2t arcs with 
center p. So we have lE I = O(tn2 /k2 + tn) . 

Let us set k as large as possible but so that lEI < � n2 , i .e. , k = Cv't 
for a sufficiently large constant C. If we delete all edges of E, the remaining 
graph still has O(n2) edges, but the maximum multiplicity is now below k. 
We can finally apply Lemma 4.4.2: With n vertices, O(n2) edges, and edge 
multiplicity at most k = 0( Vt) ,  we have at least O(n4 /Vi)  crossings. This 
number must be below t2n2 , which yields t = 0( n415) as claimed. D 

Proof of Lemma 4.4.2. Consider a fixed drawing of G. We choose a 
subgraph G' of G by the following random experiment. In the first stage, 
we consider each edge of G independently, and we delete it with probability 
1 - i .  In the second stage, we delete all the remaining multiple edges, and 
this gives G', which has n vertices, m' edges, and x' crossing pairs of edges. 
Consider the probability Pe that a fixed edge e E E remains in G'. Clearly, 
Pe < k .  On the other hand, if e was one of k' < k edges connecting the same 
pair of vertices, then the probability that e survives the first stage while all 
the other edges connecting its two vertices are deleted is 

1 ( 1 ) k'- l 1 - 1 - - > -
k k - 3k 

(since (1 - 1/k)k-l > � ) .  We get E [m'] > IE I/3k and E [x'] < x/k2 . Applying 
the crossing number theorem for the graph G' and taking expectations, we 
have 

1 E [m'3] 
E [x'] > - · - n. - 64 n2 

By convexity (Jensen's inequality), we have E [m'3] > (E [m'] )3 = O( IE I3  jk3 ) .  
Plugging this plus the bound E [x'] < xjk2 into the above formula, we get 

and the lemma follows. 

Bibliography and remarks. The proof presented above is, with 
minor modifications, that of Szekely [Sze97] . The bound has su bse
quently been improved by Solymosi and T6th [ST01] to O(n617) and 
then by Tardos [Tar01] to (approximately) O(n°·863 ) .  

The weakest point of the proof shown above seems to be the lower 
bound on the number of incidences between the points of P and the 
"rich" bisectors fuv ( { u, v} being the pairs connected by k or more 
edges) . We counted as if each such incidence could be responsible for as 
many as t edges. While this docs not look geometrically very plausible, 

D 
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it seems hard to exclude such a possibility directly. Instead, Solymosi 
and T6th prove a better lower bound for the number of incidences of 
P with the rich bisectors differently; they show that if there arc many 
edges with multiplicity at least k, then each of 0( n) suitable points is 
incident to many (namely fJ(n/t312 ) in their proof) rich bisectors. We 
outline this argument. 

We need to modify the definition of the graph G. The new definition 
uses an auxiliary parameter r (a constant, with r = 3 in the original 
Solymosi-T6th proof) . First, we note that by the theorem of Beck 
mentioned in Exercise 4. 1 .7 ,  there is a subset P' C P of O(n) points 
such that each p E P' sees the other points of P in 0( n) distinct 
directions. For each p E P' , we draw the t circles around p. If several 
points of P are visible from p in the same direction, we temporarily 
delete all of them but one. Then, on each circle, we group the remaining 
points into groups by r consecutive points, and on each circle we delete 
the at most r-l leftover points fitting in no such group. This still 
leaves O(n) r-point groups on the circles centered at p. 

Next, we consider one such r-point group and all the (;) bisecting 
lines of its points. If at least one of these bisectors, call it fuv , contains 
fewer than k points of P (k being a suitable threshold) , then we add 
the arc connecting u and v as an edge of G: 

:' If this bisector has at most k points of P, 
u : 

___...-...-.:·�-

fuv / 
' 

then the arc { u ,  v}  is added to G. 

(This is not quite in agree1nent with our definition of a graph drawing, 
since the arc may pass though other vertices of G, but it is easy to 
check that if we permit arcs through vertices and modify the definition 
of the crossing number appropriately, Lemma 4.4.2 remains valid. ) The 
groups where every bisector contains at least k points of P (call them 
rich groups) do not contribute any edges of G. 

Setting k = an2 jt2 for a small constant o:, we argue by Lemma 4.4.2 
that G has at most f3n2 edges for a small f3 = j3(o:) > 0. It follows 
that most of the r-point groups must be rich, and so there is a subset 
P" C P' of fJ(n) points, each of them possessing fJ(n) rich groups 
on its circles. It remains to prove that each point p E P" is incident 
to many rich bisectors. We divide the plane around p into angular 
sectors such that each sector contains about 3rt points (of the 0( n) 
points in the rich groups belonging to p) . Each sector contains at least 
t complete rich groups (since there are t circles, and so the sector's 
boundaries cut through at most 2t groups) , and we claim that it has 
to contain many rich bisectors. This leads to the following number
theoretic problem: we have tr distinct real numbers (corresponding to 
the angles of the points in the sector as seen from p) , arranged into 
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t groups by r numbers, and we form all the (�) arithmetic averages 
of the pairs in each group (corresponding to the rich bisectors of the 
group) . This yields t (�) real numbers, and we want to know how many 
of them must be distinct. 

It is not hard to see that for r = 3, there must be at least 0( t113) 
distinct numbers, because the three averages (a + b)/2, (a +  c)/2, and 
( b + c) /2 determine the numbers a, b, c uniquely. It follows, still for 
r = 3, that each of the 0( 7 )  sectors has O(t113) distinct bisectors, 
and so each point in P" has O(njt213) incidences with the rich lines. 
Applying Szemen§di-Trotter now yields the Solymosi-T6th bound of 
t = O(n617) distinct distances. 

Tardos [TarOI ] considered the number-theoretic problem above for 
larger r ,  and he proved, by a complicated argument, that for r large 
but fixed, the number of distinct pairwise averages is O(t1fe+e ) ,  with 
c ---+ 0 as r ---+ oo. Plugging this into the proof leads to the current 
best bound mentioned above. An example by Ruzsa shows that the 
number of distinct pairwise averages can be 0( Jt )  for any fixed r,  

and it follows that the Solymosi-T6th method as is cannot provide a 
bound better than O(n819) .  But surely one can look forward to the 
further continuation of the adventure of distinct distances. 

Exercises 
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1 .  Let Icirc (m, n) be the maximum number of incidences between m points 
and n arbitrary circles in the plane. Fill in the details of the following 
approach to bounding Icirc(n, n) .  Let K be a set of n circles, C the set 
of their centers, and P a set of n points. 
(a) First, assume that the centers of the circles are mutually distinct, i .e. , 
JC I  = JK J .  Proceed as in the proof in the text: Remove circles with at 
most 2 incidences, and let the others define a drawing of a multigraph G 
with vertex set P and arcs of the circles as edges. Handle the edges with 
multiplicity k or larger via Szemeredi-Trotter, using the incidences of the 
bisectors with the set C, and those with multiplicity < k by Lemma 4.4.2. 
Balance k suitably. What bound is obtained for the total number of 
incidences? ill 
(b) Extend the argument to handle concentric circles too. ill 

2. This exercise provides another bound for I eire ( n, n) ,  the maximum possi
ble number of incidences between n arbitrary circles and n points in the 
plane. Let K be the set of circles and P the set of points. Let Pi be the 
points with at least di == 2i and fewer than 2i+l  incidences; we will argue 
for each Pi separately. 
Define the multigraph G on Pi as usual, with arcs of circles of K con
necting neighboring points of Pi (the circles with at most 2 incidences 
with Pi are deleted) . Let E be the set of edges of G. For a point u E Pi, 
let N ( u) be the set of its neighboring points, and for a v E N ( u) , let 
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J.t( u, v) be the number of edges connecting u and v. For an edge e,  define 
its partner edge as the edge following after e clockwise around its circle. 
(a) Show that for each u E Pi, l {v E N(u) : J.t(u, v) > 4Jd;} l < Jd;/2. 
CD 
(b) Let Eh C E be the edges of multiplicity at least 4Jd;. Argue that 
for at least ! of the edges in Eh , their partner edges do not belong to 
Eh , and hence IE \ Eh l � n( IE I ) .  0 
(c) Delete the edges of Eh from the graph, and apply Lemma 4.4.2 to 
bound IE \ Eh l ·  What overall bound does all this give for Icirc (n, n)? � 
A similar proof appears in Pach and Sharir (PS98a] (for the more general 
case of curves mentioned in the notes to Section 4 . 1 ) .  

4.5 Point-Line Incidences via Cuttings 

Here we explain another proof of the upper bound I(n, n) = O(n413) for 
point-line incidences. The technique is quite different. It leads to an efficient 
algorithm and seems more generally applicable than the one with the crossing 
number theorem. 

4.5.1 Lemma (A worse but useful bound). 

I(m, n) = O(nVm + m) ,  
I(m, n) = O(my'ri + n) . 

(4.2) 

(4.3) 

Proof. There are at most (�) crossing pairs of lines in total. On the other 
hand, a point Pi E P with di incidences "consumes" (�i) crossing pairs (their 
intersections all lie at Pi ) .  Therefore, E:n 1 ( �t ) < (�) . 

We want to bound E:n 1 di from above. Since points with no incidences 
can be deleted from P in advance, we may assume di > 1 for all i , and then 
we have (�i) > (di-1 ) 2 /2. By the Cauchy-Schwarz inequality, 

m m 
L(di-1 ) < m L(di- 1) 2 < 
i=1 i=1 

and hence l::: di = O(nfo+ m) . 
The other inequality in the lemma can be proved similarly by looking at 

pairs of points on each line. Alternatively, the equality I(n, m) = I(m, n) for 
all m, n follows using the geometric duality introduced in Section 5. 1 .  D 

Forbidden subgraph arguments. For integers r, s > 1 ,  let Kr,s denote 
the complete bipartite graph on r + s vertices; the picture shows K3,4 : 



4.5 Point-Line Incidences via Cuttings 65 

The above proof can be expressed using graphs with forbidden K2,2 as a 
subgraph and thus put into the context of extremal graph theory. 

A typical question in extremal graph theory is the maximum possible 
number of edges of a (simple) graph on n vertices that does not contain a 
given forbidden subgraph, such as K2,2 .  Here the subgraph is understood in 
a noninduced sense: For example, the complete graph K4 does contain K2,2 
as a subgraph. More generally, one can forbid all subgraphs from a finite or 
infinite family F of graphs, or consider ''containment" relations other than 
being a subgraph, such as "being a minor." 

If the forbidden subgraph H is not bipartite, then, for example, the com
plete bipartite graph Kn,n has 2n vertices, n2 edges, and no subgraph iso
morphic to H. This shows that forbidding a nonhipartite H does not reduce 
the maximum number of edges too significantly, and the order of magnitude 
remains quadratic. 

On the other hand, forbidding Kr,s with some fixed r and s decreases 
the exponent of n, and forbidden bipartite subgraphs are the key to many 
estimates in incidence problems and elsewhere. 

4.5.2 Theorem (Kovari-Sos-Turan theorem). Let r < s be fixed nat
ural numbers. Then any graph on n vertices containing no Kr,s as a subgraph 
has at most O(n2-l/r) edges. 

If G is a bipartite graph with color classes of sizes m and n containing no 
subgraph Kr,s with the r vertices in the class of size m and the s vertices in 
the class of size n, then 

IE( G) I =  0 ( min(mn1-1/r + n, m1- 118n + m)) .  
(In both parts, the constant of proportionality depends on r and s .) 

Note that in the second part of the theorem, the situation is not symmet
ric: By forbidding the "reverse" placement of K.,., s ,  we get a different bound 
in general. 

The upper bound in the theorem is suspected to be tight, but a matching 
lower bound is known only for some special values of r and s ,  in particular 
for r < 3 (and all s > r) . 

To see the relevance of forbidden K2,2  to the point-line incidences, we 
consider a set P of points and a set L of lines and we define a bipartite 
graph with vertex set P U L and with edges corresponding to incidences. 
An edge {p, f} means that the point p lies on the line f.. So the number of 
incidences equals the number of edges. Since two points determine a line, 
this graph contains no K2,2 as a subgraph: Its presence would mean that 
two distinct lines both contain the same two distinct points. The Kovari
S6s-Turan theorem thus immediately implies Lemma 4 .5 .1 ,  and the above 
proof of this lemma is the usual proof of that theorem, for the special case 
r = s = 2, rephrased in terms of points and lines. 
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As was noted above, for arbitrary bipartite graphs with forbidden K2,2 , 
not necessarily being incidence graphs of points and lines in the plane, the 
bound in the Kovari-S6s-Turan theorem cannot be improved. So, in order 
to do better for point-line incidences, one has to use some more geometry 
than just the excluded K2,2 . In fact , this was one of the motivations of the 
problem of point-line incidences: In a finite projective plane of order q,  we 
have n == q2 +q+ 1 points, n lines, and ( q+ 1 )n � n312 incidences, and so the 
Szcmcredi-Trotter theorem strongly distinguishes the Euclidean plane from 
finite projective planes in a combinatorial sense. 
Proof of the Szemeredi-Trotter theorem (Theorem 4.1 . 1 )  for m =  
n .  The bound from Lemma 4.5. 1 is weaker than the tight Szemeredi-Trotter 
bound, but it is tight if n2 < m or m2 < n. The idea of the present proof 
is to convert the "balanced" case ( n points and n lines) into a collection of 
"unbalanced" subproblems, for which Lemma 4.5 .1  is optimal. \Ve apply the 
following important result : 

4.5.3 Lemma (Cutting lemma ) .  Let L be a set of n lines in the plane, 
and let r be a parameter, 1 < r < n. Then the plane can be subdivided 
into t generalized triangles (this means intersections of three half-planes) 
� 1 ,  �2 , . . .  , �t in such a way that the interior of each �i is intersected by at 
most � lines of L, and we have t < Cr2 for a certain constant C independent 
of n and r .  

Such a collection �1 , . • .  , �t may look like this, for example: 

�1 

�12 

The lines of L arc not shown. 
In order to express ourselves more economically, we introduce the follow

ing terminology. A cutting is a subdivision of the plane into finitely many 
generalized triangles. (We sometimes omit the adjective "generalized" in the 
sequel.) A given cutting is a � -cutting for a set L of n lines if the interior of 
each triangle of the cutting is intersected by at most � lines of L. 

Proofs of the cutting lemma will be discussed later, and now we continue 
the proof of the Szemeredi-Trotter theorem. 

Let P be the considered n-point set, L the set of n lines, and I(P, L) 
the number of their incidences. We fix a "magic" value T = n 113 ,  and we 
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divide the plane into t � O(r2 ) � O(n213 ) generalized triangles �1 ,  . . • , �t 
so that the interior of each �i is intersected by at most n/r == n213 lines of 
L, according to the cutting lemma . 

Let Pi denote the points of P lying inside �i or on its boundary but not at 
the vertices of �i, and let Li be the set of lines of L intersecting the interior 
of �'i · The pairs (Li , Pi) define the desired "unbalanced" subproblems. We 
have ILi l < n213 , and while the size of the Pi may vary, the average IPi l is 
7 � n113 , which is about the square root of the size of Li. 

\Ve have to be a little careful, since not all incidences of L and P are 
necessarily included among the incidences of some Li and Pi . One exceptional 
case is a point p E P not appearing in any of the Pi . 

Such a point has to be the vertex of some �i, and so there are no more than 
3t such exceptional points. These points have at most I ( n, 3t) incidences with 
the lines of L. Another exceptional case is a line of L containing a side of �i 
but not intersecting its interior and therefore not included in Li , although it 
may be incident with some points on the boundary of �i · 

There are at most 3t such exceptional lines, and they have at most I ( 3t, n) 
incidences with the points of P. So we have 

t 

I(L, P) < I(n, 3t) + I(3t, n) + L I(Li , Pi ) · 
i=l 

By Lemma 4.5 . 1 ,  I(n, 3t) and I(3t, n) are both bounded by O(ty'n + n) � 

O(n716) << n413 , and it remains to estimate the main term. We have I Li l < 
n213 and L:�=l I Pi I < 2n, since each point of P goes into at most two Pi . 
Using the bound (4.2) for each I(Li , Pi) we obtain 

t t t 

L I(Li , Pi) < L I(n213 , I Pi I ) = L O( IPi ln113 + n213 ) 
i=l i=l i= l  
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This finally shows that I(n, n) = O(n413 ) .  

Bibliography and remarks. The bound in Lemma 4.5.1 using 
excluded K2,2 is due to Erdos [Erd46] . 

Determining the maximum possible number of edges in a Kr,s
free bipartite graph with given sizes of the two color classes is known 
as the Zarankiewicz problem. The general upper bound given in the 
text was shown by Kovari, Sos, and Thran [KST54] . For a long time, 
matching lower bounds (constructions) were known only for r < 3 
and all s > r (in these cases, even the constant in the leading term 
is known exactly; see Fiiredi [Fiir96] for some of these results and 
references) . In particular, K2,2-free graphs on n vertices with O(n312 ) 
edges are provided by incidence graphs of finite projective planes, and 
K3,3-free graphs on n vertices with O(n513 ) edges were obtained by 
Brown [Bro66] . His construction is the "distance-k graph" in the 3-
dimensional affine space over finite fields of order q _ -1 mod 4, for 
a suitable k = k(q) . Recently, Kollar, R6nyai, and Szabo [KRS96) 
constructed asymptotically optimal Kr,8-free graphs for s very large 
compared to r, namely s > r!+ 1 ,  using results of algebraic geometry. 
This was slightly improved by Alon, R6nyai, and Szabo [ARS99] to s > 
(r-1) !+1 .  They also obtained an alternative to Brown's construction 
of K3,3-free graphs with a better constant, and asymptotically tight 
lower bounds for some "asymmetric" instances of the Zarankiewicz 
problem, where one wants a Kr,s-free bipartite graph with color classes 
of sizes n and m (with the "orientation" of the forbidden Kr,s fixed) .  

The approach to incidence problems using cuttings first appeared 
in a seminal paper of Clarkson, Edelsbrunner, Guibas, Sharir, and 
Welzl (CEG+9o] , based on probabilistic methods developed in compu
tational geometry ( [Cla87] , [HW87] , and [CS89] are among the most 
influential papers in this development) .  Clarkson et al. did not use 
cuttings in our sense but certain "cuttings on the average." Namely, 
if ni is the number of lines intersecting the interior of �i, then their 
cuttings have t = 0 ( r2 ) triangles and satisfy I:!= 1 ni < C (c) · r2 ( � ) c ,  

where c > 1 is an integer constant, which can be selected as needed 
for each particular application, and C (c) is a constant depending on 
c. This means that the cth degree average of the ni is, up to a con
stant, the same as if all the ni were 0 ( � ) .  Technically, these "cuttings 
on the average" can replace the optimal ; -cuttings in most applica
tions. Clarkson et al. [CEG+9o] proved numerous results on various 
incidence problems and many-cells problerns by this method; see the 
notes to Section 4 . 1 .  

The cutting lemma was first proved by Chazelle and Friedman 
[CF90] and, independently, by Matousek [Mat90a] . The former proof 
yields an optimal cutting lemma in every fixed dimension and will be 
discussed in Section 6.5, while the latter proof applies only to planar 

0 
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cutting and is presented in Section 4. 7. A third, substantially different, 
proof was discovered by Chazelle [Cha93a] . 
Yet another proof of the Szemeredi-Trotter theorem was recently 
found by Aronov and Sharir (it is a simplification of the techniques 
in [ASOla] ) .  It is based on the case d = 2 of the following partition 
theorem of Matousek [Mat92] : For every n-point set X C R d, d fixed, 
and every r, 1 < r < n, there exists a partition X = X1 UX2 U · · · UXt ,  
t = 0 (  r) ,  such that � < I Xi I < 2;! for all i and no hyperplane h crosses 
more than O(rl- l/d ) of the sets Xi . Here h crossing Xi means that Xi 
is not completely contained in one of the open half-spaces defined by 
h or in h itself. 1 This result is proved using the d-dimensional cutting 
lemma (see Section 4.6) . The bound O(rl- l/d) is asymptotically the 
best possible in general. 

To use this result for bounding I (L, P) , where L is a set of n lines 
and P a set of n points in the plane, we let X =  V0 (L) be the set of 
points dual to the lines of L (see Section 5 . 1 ) .  We apply the partition 
theorem to X with r = n213 and dualize back, which yields a partition 
L = Lt U £2 U · · · U Lt, t = O(r), with ILi l � � = n113 .  The crossing 
condition implies that no point p is incident to lines from more than 
0( Vr) of the Li , not counting the pathological Li where p is common 
to all the lines of Li. 

We consider the incidences of a point p E P with the lines of Li . 
The i where p lies on at most one line of Li contribute at most 0( Vr) 
incidences, which gives a total of O(nVr) = O(n413) for all p E P. 
On the other hand, if p lies on at least two lines of Li then it is a 
vertex of the arrangement of Li . As is easy to show, the number of in
cidences of k lines with the vertices of their arrangement is 0( k2 ) 
(Exercise 6.1 .6) ,  and so the total contribution from these cases is 
0(2::: 1Li l 2 ) = O(n2 /r) = O(n413) . This proves the balanced case of 
Szemen§di-Trotter, and the unbalanced case works in the same way 
with an appropriate choice of r. Unlike the previous proofs, this one 
does not directly apply with pseudolines instead of lines. 
Improved point-circle incidences. A similar method also proves that 
Icirc (n, n) = O(n1 .4) (see Exercise 4.4.2 for another proof) .  Circles 
are dualized to points and points to surfaces of cones in R 3 ,  and the 
appropriate partition theorem holds as well, with no surface of a cone 
crossing more than 0( r213) of the subsets Xi . 

Aronov and Sharir [ASOla] improved the bound to Icirc (m, n) = 
O(m213n213 + m) for large m, namely m > n<5-3e)/ (4-9e) , and to 
Icirc (m, n) = O(m<6+3c)/ Iln(9-c-)/l l  + n) for the smaller m (here, as 
usual, c > 0 can be chosen arbitrarily small, influencing the constants 
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1 A slightly stronger result is proved in [Mat92] : For every Xi we can choose 

a relatively open simplex ai :J Xi, and no h crosses more than O(r1-1 /d) of 
the ai . 
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of proportionality) .  Agarwal et a1 . [AASOl] obtained almost the same 
bounds for the maximum complexity of m cells in an arrangement of 
n circles. 

A key ingredient in the Aronov-Sharir proof are results on the 
following question of independent interest. Given a family of n curves 
in the plane, into how many pieces ( "pseudosegments" ) must we cut 
them, in the worst case, so that no two pieces intersect more than once? 
This problem, first studied by Tamaki and Tokuyama [TT98] , will be 
briefly discussed in the notes to Section 1 1 . 1 .  For the curves being 
circles, Aronov and Sharir [ASOla] obtained the estimate O(n312+e-) ,  
improving on several previous results. 

To bound the number I(P, C) of incidences of an m-point set P and 
a set C of n circles, we delete the circles containing at most 2 points, we 
cut the circles into O(n312+c) pieces as above, and we define a graph 
with vertex set P and with edges being the circle arcs that connect 
consecutive points along the pieces. The number of edges is at least 
I(P, C) - O(n312+.:: ) .  The crossing number theorem applies (since the 
graph is simple) and yields I(P, C) = O(m213n213 + n312+c) ,  which is 
tight for m about n5/4 and larger. For smaller m, Aronov and Sharir 
use the method with partition in the dual space outlined above to 
divide the original problem into smaller subproblems, and for these 
they use the bound just mentioned. 

Exercises 

1 .  Let I1circ (m, n) be the maximum number of incidences between m points 
and n unit circles in the plane. Prove that Jlcirc (m, n) = O(mfo+ n) by 
the method of Lemma 4.5 . 1 .  [I] 

2. Let Icirc (m, n) be the maximum possible number of incidences between 
m points and n arbitrary circles in the plane. Prove that Icirc (m, n) = 

O(ny'rii + n) and Icirc (m, n) = O(mn213 + n) .  [I] 

4.6 A Weaker Cutting Lemma 

Here we prove a version of the cutting lemma (Lemma 4.5.3) with a slightly 
worse bound on the number of the Lli . The proof uses the probabilistic 
method and the argument is very simple and general. We will improve on 
it later and obtain tight bounds in a more general setting in Section 6.5. In 
Section 4.7 below we give another, self-contained, elementary geometric proof 
of the planar cutting lemma . 

Here we are going to prove that every set of n lines admits a �-cutting 
consisting of O(r2 log2 n) triangles. But first let us see why at least fl(r2) 
triangles are necessary. 
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A lower bound. Consider n lines in general position. Their arrangement 
has, as we know, (�)+n+l > n2 /2 cells. On the other hand, considering 
a triangle �i whose interior is intersected by k < ; lines ( k > 1 ) ,  we see 
that �i is divided into at most (;) +k+ 1 < 2k2 cells. Since each cell of the 
arrangement has to show up in the interior of at least one triangle �i , the 
number of triangles is at least n2 /4k2 = O(r2 ) .  Hence the cutting lemma is 
asymptotically optimal for r --+ oo .  

Proof of a weaker version of the cutting lemma (Lemma 4.5.3) . We 
select a random sample S C L of the given lines. We make s independent 
random draws, drawing a random line from L each time. These are draws 
with replacement : One line can be selected several times, and so S may have 
fewer than s lines. 

Consider the arrangement of S. Partition the cells that are not (general
ized) triangles by adding some suitable diagonals, a.." illustrated below: 
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added diagonals 

lines of L \ S 

This creates (generalized) triangles �1 , �2 , . . .  , �t with t = O(s2) (since we 
have a drawing of a planar graph with (�) + 1 vertices; also see Exercise 2) .  

4.6.1 Lemma. For s = 6r Inn , the following holds with a positive probabil
ity: The �i form a ; -cutting for L; that is, the interior of no 6.i is intersected 
by more than ; lines of L.  

This implies the promised weaker version of the cutting lemma: Since the 
probability of the sample S being good is positive, there exists at least one 
good S that yields the desired collection of triangles. 

Proof of Lemma 4.6.1 .  Let us say that a triangle T is dangerous if its 
interior is intersected by at least k = ; lines of L. We fix some arbitrary 
dangerous triangle T. What is the probability that no line of the sample S 
intersects the interior of T? We select a random line s times. The probability 
that we never hit one of the k lines intersecting the interior of T is at most 
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( 1 - k/n)8 • Using the well-known inequality 1+x < ex , we can bound this 
probability by e-ks/n = e-6 ln n = n -6 . 

Call a triangle T interesting (for L) if it can appear in a triangulation for 
some sample S C L. Any interesting triangle has vertices at some three ver
tices of the arrangement of L, and hence there are fewer than n6 interesting 
triangles. 2 Therefore, with a positive probability, a random sample S inter
sects the interiors of all the dangerous interesting triangles simultaneously. 
In particular, none of the triangles �i appearing in the triangulation of such 
a sample S can be dangerous. This proves Lemma 4.6 . 1 . D 

More sophisticated probabilistic reasoning shows that it is sufficient to 
choose s = canst · r log r in Lemma 4.6. 1 ,  instead of canst · r log n, and still, 
with a positive probability no interesting dangerous triangle is missed by S 
(see Section 6.5 and also Exercise 10.3.4) . This improvement is important for 
r small, say constant : It shows that the number of triangles in a ;-cutting 
can be bounded independent of n. 

To prove the asymptotically tight bound O (r2 ) by a random sampling 
argument seems considerably more complicated and we will discuss this in 
Section 6.5. 

Bibliography and remarks. The ideas in the above proof of the 
weaker cutting lemma can be traced back at least to early papers of 
Clarkson (such as [Cla87]) on random sampling in computational ge
ometry. The presented proof was constructed ex post facto for didactic 
purposes; the cutting lennna was first proved, as far as I know, in a 
stronger form (with log r instead of log n) . 

Exercises 

1 .  Calculate the exact expected size of 8, a sample drawn from n elements 
by s independent random draws with replacements. 0 

2. Calculate the number of (generalized) triangles arising by triangulating 
an arrangement of n lines in the plane in general position. (First, specify 
how exactly the unbounded cells are triangulated.) 0 

3. (A cutting lemma for circles) Consider a set K of n circles in the plane. 
Select a sample S C K by s independent random draws with replacement. 
Consider the arrangement of S, and construct its vertical decomposition; 
that is, from each vertex extend vertical segments upwards and down
wards until they hit a circle of 8 (or all the way to infinity) .  Similarly 
extend vertical segments from the leftmost and rightmost points of each 
circle. 

2 The unbounded triangles have only 1 or 2 vertices, but they are completely 
determined by their two unbounded rays, and so their number is at most n2 . 
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(a) Show that this partitions the plane into 0( s2) "circular trapezoids" 
(shapes bounded by at most two vertical segments and at most two cir
cular arcs) . [I] 
(b) Show that for s = Cr ln n with a sufficiently large constant C, there 
is a positive probability that the sample S intersects all the dangerous 
interesting circular trapezoids, where "dangerous" and "interesting" are 
defined analogously to the definitions in the proof of the weaker version 
of the cutting lemma . 0 

4. Using Exercises 3 and 4.5. 1 ,  show that the nurnber of unit distances 
determined by n points in the plane is O(n413 log213 n). [I] 

5. Using Exercises 3 and 4.5.2, show that Icirc (n, n) = O(nL4 logc n) (for 
some constant c) , where Icirc(m, n) is the maximum possible number of 
incidences between m points and n arbitrary circles in the plane. m 

4. 7 The Cutting Lemma: A Tight Bound 

Here we prove the cutting lemma in full strength. The proof is simple and 
elementary, but it does not seem to generalize to higher-dimensional situa
tions. 

For simplicity, we suppose that the given set L of n lines is in general 
position. (If not, perturb it slightly to get general position, construct the �
cutting, and perturb back; this gives a �-cutting for the original collection of 
lines; we omit the details. )  First we need some definitions and observations 
concerning levels. 

Levels and their simplifications. Let L be a fixed finite set of lines in 
the plane; we assume that no line of L is vertical. The level of a point x E R 2 
is defined as the number of lines of L lying strictly below x. 

We note that the level of all points of an (open) cell of the arrangement of 
L is the same, and similarly for a (relatively open) edge. On the other hand, 
the level of an edge can differ from the levels of its endpoints, for example. 

We define the level k of the arrangement of L, where 0 < k < n, as the set 
Ek of all edges of the arrangement of L having level exactly k. These edges 
plus their endpoints form an x-monotone polygonal line, where x-monotone 
means that each vertical line intersects it at exactly one point. 

It is easy to see that the level k makes a turn at each endpoint of its 
edges; it looks somewhat like this: 
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The level k is drawn thick, while the thin segments are pieces of lines of L 
and they do not belong to the level k. 

Let eo , e 1 ,  . . .  , et be the edges of Ek numbered from left to right; e0 and 
et are the unbounded rays. Let us fix a point Pi in the interior of ei . For an 
integer parameter q > 2, we define the q-simplification of the level k as the 
monotone polygonal line containing the left part of e0 up to the point p0 , the 
segments PoPq , PqP2q , · . .  , P L(t- l)/qJ qPt , and the part of et to the right of Pt · 
Thus, the q-simplification has at most ! +2 edges. Here is an illustration for 
t = 9, q = 4: 

(We could have defined the q-simplification by connecting every qth vertex 
of the level, but the present way makes some future considerations a little 
simpler.) 
4.7.1 Lemma. 

( i) The portion II of the level k (considered as a polygonal line) between the 
points Pj and Pj+q is intersected by at most q+l lines of L. 

(ii) The segment PjPj+q is intersected by at most q+1 lines of L. 
(iii) The q-simplification of the level k is contained in the strip between the 

levels k - r q/21 and k + r q/21 . 

Proof. Part (i) is obvious: Each line of L intersecting II contains one of 
the edges ej , ej+ l , . . .  , ej+q · As for (ii) , II is connected, and hence all lines 
intersecting its convex hull must intersect ll itself as well. The segment PjPj+q 
is contained in conv(ll) . 

Concerning (iii) , imagine walking along some segment PjPj+q of the q
simplification. We start at an endpoint, which has level k .  Our current level 
may change only as we cross lines of L. Moreover, having traversed the ,vhole 
segment we must be back to level k .  Thus, to get from level k to k + i and 
back to k we need to cross at least 2i lines on the way. From this and (ii) , 
2i < q+1 ,  and hence i < L(q+l ) /2J = fq/21 . D 

Proof of the cutting lemma for lines in general position. Let r be the 
given parameter. If r = 0( n) , then it suffices to produce a 0-cutting of size 
O (n2) by simply triangulating the arrangement of L. Hence we may assume 
that r is much smaller than n. 

Set q = f nj10r 1 · Divide the levels Eo , E1 , . . .  , En-1 into q groups: The 
ith group contains all Ej with j congruent to i modulo q (i = 0, 1 ,  . . .  , q-1 ) . 
Since the total number of edges in the arrangement is n 2 , there is an i such 
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that the ith group contains at most n2 jq edges. We fix one such i ;  from now 
on, we consider only the levels i ,  q+i, 2q+i, . . .  , and we construct the desired 
; -cutting from them. 

Let PJ be the q-simplification of the level jq+i. If Ejq+i has mj edges, 
then Pj has at most mj / q + 3 edges, and the total number of edges of the Pi , 
j = 0, 1 ,  . . .  , l (n-1)/qJ , can be estimated by n2 jq2 + 3(nfq+1 )  = O(n2 jq2) .  
We note that the polygonal chains Pi never intersect properly: If they did, a 
vertex of some Pi , which has level qj + i ,  would be above Pj+l ,  and this is 
ruled out by Lemma 4. 7 . 1  ( iii) . 

We form the vertical decomposition for the Pi ; that is, we extend vertical 
segrnents fron1 each vertex of PJ upwards and downwards until they hit Pj-l 
and Pj+l : 

p. J 

This subdivides the plane into O(n2 jq2) = O(r2) trapezoids. 
We claim that each such trapezoid is intersected by at most � lines of L. 

We look at a trapezoid in the strip between Pj and PJ+l ·  By Lemma 4. 7.l (iii) , 
it lies between the levels qj + i - r q/21 and q(j+ 1) + i + r q/21 ' and therefore, 
each of its vertical sides is intersected by no more than 3q lines. The bottom 
side is a part of an edge of Pj , and consequently, it is intersected by no 
more than q+1 lines; similarly for the top side. Hence the number of lines 
intersecting the considered trapezoid is certainly at most 10q < � .  (A more 
careful analysis shows that one trapezoid is in fact intersected by at most 
2q + 0 ( 1) lines; see Exercise 1 . )  

Finally, a ; -cutting can be obtained by subdividing each trapezoid into 
two triangles by a diagonal. But let us remark that for applications of ; -
cuttings, trapezoids are usually as good as triangles. D 

Bibliography and remarks. The basic ideas of the presented proof 
are from [Mat90a] , and the presentation basically follows [Mat98] . 
The latter paper provides some estimates for the number of trian
gles or trapezoids in a �-cutting, as r --t oo :  For example, at least 
2.54( 1 - o( 1 )  )r2 trapezoids are sometimes necessary, and 8( 1 + o( 1 ) )  r2 
trapezoids always suffice. The notion of levels and their simplifications, 
as well as Lemma 4.7. 1 ,  are due to Edelsbrunner and Welzl [EW86] . 
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Exercises 

1 .  (a) Verify that each trapezoid arising in the described construction is 
intersected by at most 2.5q+0(1 )  lines. Setting q appropriately, show that 
the plane can subdivided into 12 .5r2 + 0( r) trapezoids, each intersected 
by at most ;. lines, assuming 1 << r << n. 0 
(b) Improve the bounds from (a) to 2q+0(1 )  and 8r2+0(r) , respectively. 
m 
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Convex Polytopes 

Convex polytopes are convex hulls of finite point sets in Rd. They constitute 
the most important class of convex sets with an enormous number of appli
cations and connections. 

Three-dimensional convex polytopes, especially the regular ones, have 
been fascinating people since the antiquity. Their investigation was one of 
the main sources of the theory of planar graphs, and thanks to this well
developed theory they are quite well understood. But convex polytopes in 
dimension 4 and higher are considerably more challenging, and a surprisingly 
deep theory, mainly of algebraic nature, was developed in attempts to under
stand their structure. 

A strong motivation for the study of convex polytopes comes from prac
tically significant areas such as combinatorial optimization, linear program
ming, and computational geometry. Let us look at a simple example illus
trating how polytopes can be associated with combinatorial objects. The 
3-dimensional polytope in the picture 

2341 1342 

3421 

2 134 
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is called the permutahedron. Although it is 3-dimensional, it is most natu
rally defined as a subset of R4, namely, the convex hull of the 24 vectors 
obtained by permuting the coordinates of the vector ( 1 ,  2, 3, 4) in all possible 
ways. In the picture, the (visible) vertices are labeled by the correspond
ing permutations. Similarly, the d-dimensional permutahedron is the con
vex hull of the ( d+ 1 ) !  vectors in R d+ 1 arising by permuting the coordinates 
of ( 1 ,  2, . . . , d+ 1 ) .  0 ne can observe that the edges of the polytope connect 
exactly pairs of permutations differing by a transposition of two adjacent 
numbers, and a closer examination reveals other connections between the 
structure of the permutahedron and properties of permutations. 

There are many other, more sophisticated, examples of convex polytopes 
assigned to combinatorial and geometric objects such as graphs, partially or
dered sets, classes of metric spaces, or triangulations of a given point set. In 
many cases, such convex polytopes are a key tool for proving hard theorems 
about the original objects or for obtaining efficient algorithms. Two impres
sive examples are discussed in Chapter 12, and several others are scattered 
in other chapters. 

The present chapter should convey some initial working knowledge of 
convex polytopes for a nonpolytopist. It is just a sn1all sample of an extensive 
theory. A more comprehensive modern introduction is the book by Ziegler 
[Zie94] . 

5 . 1  Geometric Duality 

First we discuss geometric duality, a simple technical tool indispensable in 
the study of convex polytopes and handy in many other situations. We begin 
with a simple motivating question. 

How can we visualize the set of all lines intersecting a convex pentagon 
as in the picture? 

A suitable way is provided by line-point duality. 

5 .1 .1  Definition (Duality transform). The (geometric) duality transform 
is a mapping denoted by V0 . To a point a E R d \ { 0} it assigns the hyperplane 

Vo(a) = {x E Rd: (a , x) = 1} ,  

and to a hyperplane h not passing through the origin, which can be uniquely 
written in the forrn h = {x E Rd: (a, x) = 1 } ,  it assigns the point V0(h) = 

a E Rd \ {0}. 
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Here is the geometric meaning of the duality transform. If a is a point 
at distance 8 from 0, then V0 (a) is the hyperplane perpendicular to the line 
Oa and intersecting that line at distance � from 0, in the direction from 0 
towards a. 

_/,a 
1 ,./ 8 
6 .�-- ,' 
0 1Jo (a) 

A nice interpretation of duality is obtained by working in Rd+1 and iden
tifying the "primal" R d with the hyperplane 1r = { x E R d+ 1 : Xd+ 1 = 1 }  
and the "dual" Rd with the hyperplane p = {x E Rd+l : xd+1 = -1} .  The 
hyperplane dual to a point a E 1r is produced as follows: We construct the 
hyperplane in Rd+l perpendicular to Oa and containing 0, and we intersect 
it with p. Here is an illustration for d = 2: 

In this way, the duality 1J0 can be naturally extended to k-flats in Rd, whose 
duals are (d-k- 1)-fiats. Namely, given a k-fiat f C 1r, we consider the (k+l )
flat F through 0 and J, we construct the orthogonal complement of F, and 
we intersect it with p, obtaining Vo(f). 

Let us consider the pentagon drawn above and place it so that the origin 
lies in the interior. Let Vi = V0(£i ) ,  where £i is the line containing the side 
aiai+l ·  Then the points dual to the lines intersecting the pentagon a1 a2 . . .  as 
fill exactly the exterior of the convex pentagon v1 v2 . . . 'V5 : 

. 
. 
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This follows easily from the properties of duality listed below (of course, there 
is nothing special about a pentagon here) .  Thus, the considered set of lines 
can be nicely described in the dual plane. A similar passage from lines to 
points or back is useful in many geometric or computational problems. 

Properties of the duality transform. Let p be a point of Rd distinct 
from the origin and let h be a hyperplane in R d not containing the origin. 
Let h- stand for the closed half-space bounded by h and containing the 
origin, while h + denotes the other closed half-space bounded by h. That is, 
if h = {x E Rd: (a, x) = 1 } ,  then h- = {x E Rd: (a, x) < 1 } .  

5.1 .2 Lemma (Duality preserves incidences) .  

(i) p E h if and only if V0 (h) E Do (p) . 
(ii) p E h- if and only if Vo(h) E Vo (P) - . 

Proof. (i) Let h = {x E Rd: (a, x) = 1 } .  Then p E h means (a, p) = 1 .  
Now, V0(h) is the point a ,  and V0(p) is the hyperplane {y  E Rd: (y, p) = 1 } ,  
and hence V0(h) = a  E V0(p) also means just (a, p) = 1 .  Part (ii) is proved 
similarly. D 

5. 1 .3 Definition (Dual set) .  For a set X C Rd, we define the set dual to 
X,  denoted by X*,  as follows: 

X* = {y E Rd: (x, y) < 1 for all x E X} .  

Another common name used for the duality is polarity; the dual set would 
then be called the polar set. Sometimes it is denoted by X0 •  

Geometrically, X* is the intersection of all half-spaces of the form Do ( x)
with x E X. Or in other words, X* consists of the origin plus all points y 
such that X C Do (y) - .  For example, if X is the pentagon a1 a2 . . •  a5 drawn 
above, then X* is the pentagon v1 v2 . . . Vs . 

For any set X ,  the set X* is obviously closed and convex and contains the 
origin. Using the separation theorem (Theorem 1.2.4), it is easily shown that 
for any set X C  Rd, the set (X*)*  is the closure conv(X U {0} ) .  In particular, 
for a closed convex set containing the origin we have (X* ) *  = X (Exercise 3). 

For a hyperplane h, the dual set h* is different from the point Vo(h) . 1  
For readers familiar with the duality of planar graphs, let us remark that 

it is closely related to the geometric duality applied to convex polytopes in 
R 3 . For example, the next drawing illustrates a planar graph and its dual 
graph (dashed) :  

1 In the literature, however, the "star" notation is sometimes also used for the dual 
point or hyperplane, so for a point p, the hyperplane Vo (p) would be denoted by 
p* , and similarly, h * may stand for Vo (h). 
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Later we will see that these are graphs of the 3-dimensional cube and of 
the regular octahedron, which are polytopes dual to each other in the sense 
defined above. A similar relation holds for all 3-dimensional polytopes and 
their graphs. 

Other variants of duality. The duality transform Do defined above is just 
one of a class of geometric transforms with similar properties. For some pur
poses, other such transforms (dualities) are more convenient. A particularly 
important duality, denoted by D, corresponds to moving the origin to the 
"minus infinity" of the xd-axis (the xd-axis is considered vertical) . A formal 
definition is as follows. 

5.1 .4 Definition (Another duality) . A nonvertical hyperplane h can be 
uniquely written in the form h = {x E Rd : Xd = a1x1 + · · · + ad- IXd-1 - ad} · 
We set D(h) = (a1 , . . .  , ad-1 ,  ad) - Conversely, the point a =  (a1 , . . .  , ad-1 , ad) 
maps back to h. 

The property (i) of Lemma 5.1 .2 holds for this D, and an analogue of (ii) 
. 
IS: 

(ii') A point p lies above a hyperplane h if and only if the point D( h) lies 
above the hyperplane D(p) . 

Exercises 

1 .  Let C = {x E Rd: lxd + · · · + lxd l < 1 } .  Show that C* is the d-dimen
sional cube {X E Rd: max lxi I < 1 } .  Picture both bodies for d = 3. m 

2. Prove the assertion made in the text about the lines intersecting a convex 
pentagon. m 

3. Show that for any X C  Rd, (X* )* equals the closure of conv(X U {0} ) ,  
where X* stands for the dual set to X.  � 

4. Let C C Rd be a convex set. Prove that C* is bounded if and only if 0 
lies in the interior of c. m 

5. Show that C = C* if and only if C is the unit ball centered at the origin. 
m 

6. (a) Let C = conv(X) C Rd. Prove that C* = nxEX Do (x)- . m 
{b) Show that if c = nhEH h-

' where H is a collection of hyperplanes not 
passing through 0, and if C is bounded, then C* = conv{Do (h) : h E H}.  
[2] 
(c) What is the right analogue of {b) if C is unbounded? m 

7. What is the dual set h* for a hyperplane h, and what about h**? � 
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8. Verify the geometric interpretation of the duality V0 outlined in the text 
(using the embeddings of Rd into Rd+l ) .  m 

9. (a) Let s be a segment in the plane. Describe the set of all points dual 
to lines intersecting s.  CD 
(b) Consider n > 3 segments in the plane, such that none of them contains 
0 but they all lie on lines passing through 0. Show that if every 3 among 
such segments can be intersected by a single line, then all the segments 
can be simultaneously intersected by a line. 0 
(c) Show that the assumption in (b) that the extensions of the segments 
pass through 0 is essential: For each n > 1 ,  construct n+ 1 pairwise 
disjoint segments in the plane that cannot be simultaneously intersected 
by a line but every n of them can (such an example was first found by 
Hadwiger and Deb runner) .  C!J 

5.2 H -Polytopes and V -Polytopes 

A convex polytope in the plane is a convex polygon. Famous examples of 
convex polytopes in R 3 are the Platonic solids: regular tetrahedron, cube, 
regular octahedron, regular dodecahedron, and regular icosahedron. A convex 
polytope in R3 is a convex set bounded by finitely many convex polygons. 
Such a set can be regarded as a convex hull of a finite point set, or as an 
intersection of finitely many half-spaces. We thus define two types of convex 
polytopes, based on these two views. 

5.2 . 1  Definition (H-polytope and ¥-polytope) . An H-polyhedron is 
an intersection of finitely many closed half-spaces in some Rd. An H-poly
tope is a bounded H -polyhedron. 

A V-polytope is the convex hull of a finite point set in Rd. 

A basic theorem about convex polytopes claims that from the mathemat
ical point of view, H -polytopes and V -polytopes are equivalent . 

5.2.2 Theorem. Each V-polytope is an H-polytope. Each H-polytope is a 
V -polytope. 

This is one of the theorems that may look "obvious" and whose proof 
needs no particularly clever idea but does require some work. In the present 
case, we do not intend to avoid it . Actually, we have quite a neat proof in 
store, but we postpone it to the end of this section. 

Although H-polytopes and V-polytopes are mathematically equivalent, 
there is an enormous difference between them from the computational point 
of view. That is, it matters a lot whether a convex polytope is given to 
us as a convex hull of a finite set or as an intersection of half-spaces. For 
example, given a set of n points specifying a V -polytope, how do we find 
its representation as an H-polytope? It is not hard to come up with some 
algorithm, but the problem is to find an efficient algorithm that would allow 
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one to handle large real-world problems. This algorithmic question is not yet 
satisfactorily solved. Moreover, in some cases the number of required half
spaces may be astronomically large compared to the number n of points, as 
we will see later in this chapter. 

As another illustration of the computational difference between V -po
lytopes and H-polytopes, we consider the maximization of a given linear 
function over a given polytope. For V -polytopes it is a trivial problem, since 
it suffices to substitute all points of V into the given linear function and select 
the maximum of the resulting values. But maximizing a linear function over 
the intersection of a collection of half-spaces is the basic problem of linear 
programrning, and it is certainly nontrivial. 

Terminology. The usual terminology does not distinguish V-polytopes and 
H-polytopes. A convex polytope means a point set in Rd that is a V-polytope 
(and thus also an H-polytope) .  An arbitrary, possibly unbounded, H-poly
hedron is called a convex polyhedron. All polytopes and polyhedra considered 
in this chapter are convex, and so the adjective "convex'' is often omitted. 

The dimension of a convex polyhedron is the dimension of its affine hull. 
It is the smallest dimension of a Euclidean space containing a congruent copy 
of P. 

Basic examples. One of the easiest classes of polytopes is that of cubes. 
The d-dimensional cube as a point set is the Cartesian product [-1 ,  lJd . 

d = 1  d = 2  d = 3  

As a V-polytope, the d-dimensional cube is the convex hull of the set {- 1 ,  1 }d 

(2d points) , and as an H-polytope, it can be described by the inequalities 
-1 < Xi < 1 ,  i = 1 ,  2, . . . , d, i .e . ,  by 2d half-spaces. We note that it is also 
the unit ball of the maximum norm l lx l loo = maxi lxi l · 

Another important example is the class of crosspolytopes (or generalized 
octahedra) . The d-dimensional crosspolytope is the convex hull of the "co
ordinate cross," i.e. , conv{e1 , -e1 , e2, -e2, . . .  , ed , -ed} ,  where e1 , . . .  , ed are 
the vectors of the standard orthonormal basis. 

d = l  d = 2  
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It is also the unit ball of the £1-norm l lx l l 1 = L.,t 1 lxi l . As an H-polytope, 
it can be expressed by the 2d half-spaces of the form (a, < ) 1 ,  where a runs 
through all vectors in { -1 ,  1 }  d. 

The polytopes with the smallest possible nurnber of vertices (for a given 
dimension) are called simplices. 

5.2.3 Definition (Simplex) . A simplex is the convex hull of an affinely 
independent point set in some Rd. 

A d-dimensional simplex in R d can also be represented as an intersection 
of d+ 1 half-spaces, as is not difficult to check. 

A regular d-dimensional simplex is the convex hull of d+1 points with all 
pairs of points having equal distances . 

• 

d = O  d = 1 d = 2  d = 3  

Unlike cubes and crosspolytopes, d-dimensional regular sirnplices do not have 
a very nice coordinate representation in Rd. The simplest and most useful 
representation lives one dimension higher: The convex hull of the d+ 1 vectors 
e1 ,  . . .  , ed+ 1 of the standard orthonormal basis in R d+ 1 is a d-dimensional 
regular simplex with side length J2. 

( 1 , 0, 0) 

Proof of Theorem 5.2.2 (equivalence of H -polytopes and V -poly
topes) . We first show that any H-polytope is also a V-polytope. We proceed 
by induction on d. The case d =  1 being trivial, we suppose that d > 2. 

So let r be a finite collection of closed half-spaces in Rd such that P = n r 
is nonempty and bounded. For each 7 E r, let F'Y = Pn87 be the intersection 
of P with the bounding hyperplane of 'Y· Each nonempty F'Y is an H-polytope 
of dimension at most d-1 (correct?) , and so it is the convex hull of a finite 
set V'Y c F'Y by the inductive hypothesis. 

We claim that p = conv (V) , where v = u"'(Er v'Y . Let X E p and let R 
be a line passing through x.  The intersection f n P is a segment; let y and z 
be its endpoints. There are a, {3 E r such that y E Fa and z E F13 (if y were 
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not on the boundary of any '"'I E r, we could continue along £ a little further 
within P) . 

(3 

We have y E conv(Va) and z E conv(V,a) ,  and thus x E conv(Va U V,a) C 
conv(V). 

We have proved that any H-polytope is a V-polytope, and it remains to 
show that a V-polytope can be expressed as the intersection of finitely many 
half-spaces. This follows easily by duality (and implicitly uses the separation 
theorem) .  

Let P =: conv(V) with V finite, and assume that 0 is an interior point 
of P. By Exercise 5 . 1 .6(a) , the dual body P* equals nvEV Do(v)- ,  and by 
Exercise 5 . 1 .4  it is bounded. By what we have already proved, P* is a V
polytope, and by Exercise 5 . 1 .6(a) again, P =: (P* ) *  is the intersection of 
finitely many half-spaces. 0 

Bibliography and remarks. The theory of convex polytopes is 
a well-developed area covered in numerous books and surveys, such 
as the already recommended recent monograph [Zie94) (with addenda 
and updates on the web page of its author),  the very influential book 
by Grtinbaum (Grii67] , the chapters on polytopes in the handbooks 
of discrete and computational geometry [G097] , of convex geometry 
[GW93] , and of combinatorics [GGL95J , or the books McMullen and 
Shephard [MS71] and Br0nsted [Br083] , concentrating on questions 
about the numbers of faces. Recent progress in combinatorial and com
putational polytope theory is reflected in the collection [KZOO] . For 
analyzing examples, one should be aware of (free) software systems 
for manipulating convex polytopes, such as polymake by Gawrilow 
and Joswig [GJOO] . 

Interesting discoveries about 3-dimensional convex polytopes were 
already made in ancient Greece. The treatise by Schlafli [Sch01 J writ
ten in 1850-52 is usually rnentioned as the beginning of modern theory, 
and several books were published around the turn of the century. We 
refer to Griinbaum [Grii67] , Schrijver [Sch86] , and to the other sources 
mentioned above for historical accounts. 

The permutahedron mentioned in the introduction to this chapter 
was considered by Schoute [Schll ] ,  and it arises by at least two other 
quite different and natural constructions (see [Zie94] ) .  

There are several ways of proving the equivalence of H-polytopes 
and V-polytopes. Ours is inspired by a proof by Edmonds, as presented 



86 Chapter 5: Convex Polytopes 

in Fukuda's lecture notes (ETH Zurich) . A classical algorithmic proof 
is provided by the Fourier-Motzkin elimination procedure, which pro
ceeds by projections on coordinate hyperplanes; see [Zie94] for a de
tailed exposition. The double-description method is a similar algorithm 
formulated in the dual setting, and it is still one of the most efficient 
known computational methods. We will say a little more about the 
algorithmic problem of expressing the convex hull of a finite set as the 
intersection of half-spaces in the notes to Section 5.5. 

One may ask, What is a "vertex description" of an unbounded H
polyhedron? Of course, it is not the convex hull of a finite set, but it 
can be expressed as the Minkowski sum P +  C, where P is a V-poly
tope and C is a convex cone described as the convex hull of finitely 
many rays emanating from 0. 

Exercises · 

1 .  Verify that a d-dimensional simplex in Rd can be expressed as the inter
section of d+ 1 half-spaces. III 

2. (a) Show that every convex polytope in Rd is an orthogonal projection 
of a simplex of a sufficiently large dimension onto the space Rd (which 
we consider embedded as a d-flat in some Rn) .  0 
(b) Prove that every convex polytope P symmetric about 0 (i.e. , with 
P = -P) is the affine image of a crosspolytope of a sufficiently large 
dimension. 0 

5.3 Faces of a Convex Polytope 

The surface of the 3-dimensional cube consists of 8 "corner" points called 
vertices, 12  edges, and 6 squares called facets. According to the perhaps more 
usual terminology in 3-dimensional geometry, the facets would be called faces. 
But in the theory of convex polytopes, the word face has a slightly different 
meaning, defined below. For the cube, not only the squares but also the 
vertices and the edges are all called faces of the cube. 

5.3.1 Definition (Face) . A face of a convex polytope P is defined as 

• either P itself, or 
• a subset of P of the forrn P n h, where h is a hyperplane such that P is 

fully contained in one of the closed half-spaces determined by h. 
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/ 
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We observe that each face of P is a convex polytope. This is because P is 
the intersection of finitely many half-spaces and h is the intersection of two 
half-spaces, so the face is an H-polyhedron, and moreover, it is bounded. 

If P is a polytope of dimension d, then its faces have dimensions - 1 ,  0, 
1 ,  . . .  , d, where - 1  is, by definition, the dimension of the empty set. A face 
of dimension j is also called a j-face. 

Names of faces. The 0-faces are called vertices, the 1-faces are called 
edges, and the ( d-1 )-faces of a d-dimensional polytope are called facets. The 
(d-2)-faces of a d-dimensional polytope are ridges; in the familiar 3-dimen
sional situation, edges = ridges. For example, the 3-dimensional cube has 28 
faces in total: the empty face, 8 vertices, 12 edges, 6 facets, and the whole 
cube. 

The following proposition shows that each V-polytope is the convex hull 
of its vertices, and that the faces can be described combinatorially: They are 
the convex hulls of certain subsets of vertices. This includes some intuitive 
facts such as that each edge connects two vertices. 

A helpful notion is that of an extremal point of a set: For a set X C  Rd , 
a point x E X is extremal if x � conv(X \ { x} ) .  

5.3.2 Proposition. Let P c Rd be a (bounded) convex polytope. 

(i) ("Vertices are extremal'') The extremal points of P are exactly its ver
tices, and P is the convex hull of its vertices. 

(ii) ("Face of a face is a face") Let F be a face of P. The vertices of F are 
exactly those vertices of P that lie in F. More generally, the faces of F 
are exactly those faces of P that are contained in F.  

The proof is not essential for our further considerations, and it is given at 
the end of this section (but Exercise 9 below illustrates that things are not 
quite as simple as it might perhaps seem) . The proposition has an appropriate 
analogue for polyhedra, but in order to avoid technicalities, we treat the 
bounded case only. 

Graphs of polytopes. Each !-dimensional face, or edge, of a convex poly
tope has exactly two vertices. We can thus define the graph G(P) of a polytope 
P in the natural way: The vertices of the polytope are vertices of the graph, 
and two vertices are connected by an edge in the graph if they are vertices of 
the same edge of P. (The terrns "vertices" and "edges" for graphs actually 
come from the corresponding notions for 3-dimensional convex polytopes. )  
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Here is an example of a 3-dimensional polytope, the regular octahedron, 
with its graph: 

For polytopes in R3 , the graph is always planar: Project the polytope from its 
interior point onto a circumscribed sphere, and then make a "cartographic 
map" of this sphere, say by stereographic projection. Moreover, it can be 
shown that the graph is vertex 3-connected. (A graph G is called vertex k
connected if IV (G) I > k+1 and deleting any at most k-1 vertices leaves G 
connected. )  Nicely enough, these properties characterize graphs of convex 3-
polytopes: 

5.3.3 Theorem (Steinitz theorem) .  A finite graph is isomorphic to the 
graph of a 3-dimensional convex polytope if and only if it is planar and vertex 
3-connected. 

We omit a proof of the considerably harder "if" part (exhibiting a poly
tope for every vertex 3-connected planar graph) ; all known proofs are quite 
complicated. 

Graphs of higher-dimensional polytopes probably have no nice description 
comparable to the 3-dimensional case, and it is likely that the problem of 
deciding whether a given graph is isomorphic to a graph of a 4-dimensional 
convex polytope is NP-hard. It is known that the graph of every d-dimen
sional polytope is vertex d-connected (Balinski 's theorem) , but this is only a 
necessary condition. 

Examples. A d-dimensional simplex has been defined as the convex hull of 
a (d+l)-point affinely independent set V. It is easy to see that each subset of 
V determines a face of the simplex. Thus, there are (�!�) faces of dimension 
k, k = -1 ,  0, . . .  , d, and 2d+ 1 faces in total. 

The d-dimensional cross polytope has V = { e 1 ,  -e1 , . . .  , ed , -ed} as the 
vertex set. A proper subset F c V determines a face if and only if there is 
no i such that both ei E F and -ei E F (Exercise 2) .  It follows that there 
are 3d+ 1  faces, including the empty one and the whole crosspolytope. 

The nonempty faces of the d-dimensional cube [- 1 ,  1]d correspond to 
vectors v E { - 1 ,  1 ,  0} d . The face corresponding to such v has the vertex 
set { u E { -1 ,  1 } d : ui = Vi for all i with Vi =I= 0}.  Geometrically, the vector v 
is the center of gravity of its face. 

The face lattice. Let F(P) be the set of all faces of a (bounded) convex 
polytope P (including the empty face 0 of dimension - 1) .  We consider the 
partial ordering of :F( P) by inclusion. 
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5.3.4 Definition (Combinatorial equivalence) .. Two convex polytopes 
P and Q are called combinatorially equivalent if F(P) and F(Q) are isomor
phic as partially ordered sets. 

We are going to state some properties of the partially ordered set F(P) 
without proofs. These are not difficult and can be found in [Zie94] . 

It turns out that :F(P) is a lattice (a partially ordered set satisfying 
additional axioms). We recall that this means the following two conditions: 

• Meets condition: For any two faces F, G E F(P), there exists a face 
1.\1 E :F(P) , called the meet of F and G, that is contained in both F and 
G and contains all other faces contained in both F and G. 

• Joins condition: For any two faces F, G E F(P), there exists a face 
J E :F(P) , called the join of F and G, that contains both F and G and 
is contained in all other faces containing both F and G. 

The meet of two faces is their geometric intersection F n G. 
For verifying the joins and meets conditions, it may be helpful to know 

that for a finite partially ordered set possessing the minimum element and the 
maxirnum element, the meets condition is equivalent to the joins condition, 
and so it is enough to check only one of the conditions. 

Here is the face lattice of a 3-dimensional pyramid: 

p 

5 

12 45 

1 2 
p 

0 
The vertices are numbered 1-5, and the faces are labeled by the vertex sets. 

The face lattice is graded, meaning that every maximal chain has the sarne 
length (the rank of a face F is dim(F)+l ) .  Quite obviously, it is atomic: Every 
face is the join of its vertices. A little less obviously, it is coatomic; that is, 
every face is the meet (intersection) of the facets containing it. An important 
consequence is that combinatorial type of a polytope is determined by the 
vertex-facet incidences. More precisely, if we know the dimension and all 
subsets of vertices that are vertex sets of facets (but without knowing the 
coordinates of the vertices, of course), we can uniquely reconstruct the whole 
face lattice in a simple and purely combinatorial way. 

Face lattices of convex polytopes have several other nice properties, but no 
full algebraic characterization is known, and the problem of deciding whether 
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a given lattice is a face lattice is algorithmically difficult (even for 4-dimen
sional polytopes) .  

The face lattice can be a suitable representation of a convex polytope in 
a co1nputer. Each j-face is connected by pointers to its (j-1)-faces and to 
the (j+1)-faces containing it. On the other hand, it is a somewhat redundant 
representation: Recall that the vertex-facet incidences already contain the 
full information, and for some applications, even less data may be sufficient, 
say the graph of the polytope. 

The dual polytope. Let P be a convex polytope containing the origin in 
its interior. Then the dual set P* is also a polytope; we have verified this in 
the proof of Theorem 5.2.2. 

5.3.5 Proposition. For each j = -1 ,  0, . . .  , d, the j-faces of P are in a 
bijective correspondence with the (d-j -1)-faces of P* . This correspondence 
also reverses inclusion; in particular, the face lattice of P* arises by turning 
the face lattice of P upside down. 

Again we refer to the reader's diligence or to (Zie94] for a proof. Let us 
examine a few examples instead. 

Among the five regular Platonic solids, the cube and the octahedron are 
dual to each other, the dodecahedron and the icosahedron are also dual, and 
the tetrahedron is dual to itself. More generally, if we have a 3-dimensional 
convex polytope and G is its graph, then the graph of the dual polytope 
is the dual graph to G, in the usual graph-theoretic sense. The dual of a 
d-simplex is a d-simplex, and the d-dimensional cube and the d-dimensional 
crosspolytope are dual to each other. 

We conclude with two notions of polytopes "in general position." 

5.3.6 Definition (Simple and simplicial polytopes) .  A polytope P is 
called simplicial if each of its facets is a simplex (this happens, in particular, if 
the vertices of P are in general position, but general position is not necessary). 
A d-dimensional polytope P is called simple if each of its vertices is contained 
in exactly d facets. 

The faces of a simplex are again simplices, and so each proper face of a sim
plicial polytope is a simplex. Among the five Platonic solids, the tetrahedron, 
the octahedron, and the icosahedron are simplicial; and the tetrahedron, the 
cube, and the dodecahedron are simple. Crosspolytopes are simplicial, and 
cubes are simple. An example of a polytope that is neither simplicial nor 
simple is the 4-sided pyramid used in the illustration of the face lattice. 

The dual of a simple polytope is simplicial, and vice versa. For a simple 
d-dimensional polytope, a small neighborhood of each vertex looks coinbina
torially like a neighborhood of a vertex of the d-dimensional cube. Thus, for 
each vertex v of a d-dimensional simple polytope, there are d edges emanat
ing from v, and each k-tuple of these edges uniquely determines one k-face 
incident to v. Consequently, v belongs to (�) k-faces, k = 0, 1 ,  . . .  , d. 
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Proof of Proposition 5.3.2. In (i) ( "vertices are extremal" ) ,  we assume 
that P is the convex hull of a finite point set. Among all such sets, we fix one 
that is inclusion-minimal and call it V0 . Let �1 be the vertex set of P, and 
let Ve be the set of all extremal points of P. We prove that V0 = Vv = Ve ,  
which gives (i ) .  We have Ve C V0 by the definition of an extremal point. 

Next, we show that Vv C Ve. If v E Vv is a vertex of P, then there is a 
hyperplane h with P n h = { v} ,  and all of P \ { v}  lies in one of the open 
half-spaces defined by h. Hence P \ {v} is convex, which means that v is an 
extremal point of P, and so Vv C Ve. 

Finally we verify V0 C Vv .  Let v E V0 ; by the inclusion-minimality of V0 , 
we get that v ¢ C = conv(Vo \ { v} ) .  Since C and { v}  are disjoint compact 
convex sets, they can be strictly separated by a hyperplane h. Let hv be the 
hyperplane parallel to h and containing v; this hv has all points of V0 \ { v} 
on one side. 

We want to show that P n hv = { v}  (then v is a vertex of P, and we are 
done) .  The set P \ hv = conv(V0)  \ hv , being the intersection of a convex set 
with an open half-space, is convex. Any segment vx, where x E P \ hv , shares 
only the point v with the hyperplane hv , and so ( P \ hv) U { v}  is convex as 
well. Since this set contains Vo and is convex, it contains P = conv(V0 ) ,  and 
so p n hv = {v} indeed. 

As for (ii) ( "face of a face is a face" ) ,  it is clear that a face G of P contained 
in F is a face of F too (use the same witnessing hyperplane). For the reverse 
direction, we begin with the case of vertices. By a consideration similar to 
that at the end of the proof of (i) ,  we see that F = conv(V) n h = conv(V n h) .  
Hence all the extremal points of F, which by ( i )  are exactly the vertices of 
F, are in V. 

Finally, let F be a face of P defined by a hyperplane h, and let G c F be 
a face of F defined by a hyperplane g within h; that is, g is a ( d-2 )-dimen
sional affine subspace of h with G = g n F and with all of F on one side. Let 
'Y be the closed half-space bounded by h with P c 'Y· We start rotating the 
boundary h of 'Y around g in the direction such that the rotated half-space 
1' still contains F. 

� Z=�=====-��====::::.. 
h' 
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If we rotate by a sufficiently small amount, then all the vertices of P not 
lying in F are still in the interior of 1' . At the same time, the interior of 1' 
contains all the vertices of F not lying in G, while all the vertices of G remain 
on the boundary h' of 1' . So h' defines a face of P (since all of P is on one 
side) , and this face has the same vertex set as G, and so it equals G by the 
first part of (ii} proved above. D 

Bibliography and remarks. Most of the material in this section 
is quite old, and we restrict ourselves to a few comments and remarks 
on recent developments. 

Graphs of polytopes. The Steinitz theorem was published in [Ste22] . A 
proof (of the harder implication) can be found in (Zie94) . In this type 
of proof, one starts with the planar graph K4, which is obviously re
alizable as a graph of a 3-dimensional polytope, and creates the given 
3-connected planar graph by a sequence of suitable elementary opera
tions, the so-called �y transformations, which are shown to preserve 
the realizability. Another type of proof first finds a suitable straight 
edge planar drawing of the given graph G and then shows that the 
vertices of such a drawing can be lifted to R 3 to form the appropriate 
polytope. The drawings needed here are "rubber band" drawings: Pin 
down the vertices of an outer face and think of the edges as rubber 
bands of various strengths, which left alone would contract to points. 
Then the equilibrium position, where the forces at every inner vertex 
add up to 0, specifies the drawing (see, e.g. , Richter-Gebert [RG97] 
for a presentation) . These ideas go back to Maxwell; the result about 
the equilibrium position specifying straight edge drawing for every 
3-connected planar graph was proved by Tutte [Tut60] . Very interest
ing related results about graphs with higher connectivity are due to 
Linial, Lovasz, and Wigderson [LW88] . Another way of obtaining suit
able drawings is via Koebe 's representation theorem (see, e.g. , [PA95] 
for an exposition) :  Every planar graph G can be represented by touch
ing circles; that is, every vertex v E V (G) can be assigned a circular 
disk in the plane in such a way that the disks have pairwise disjoint 
interiors and two of them touch if and only if their two vertices are 
connected by an edge. 



5.3 Faces of a Convex Polytope 

On the other hand, Koebe's theorem follows easily from a stronger 
version of the Steinitz theorem due to Andreev: Every 3-connected 
planar graph has a cage representation, i .e. ,  as the graph of a 3-di
mensional convex polytope P whose edges are all tangent to the unit 
sphere (each vertex of P can see a cap of the unit sphere, and a suitable 
stereographic projection of these caps yields the disks as in Koebe's 
theorem) . These beautiful results, as well as several others along these 
lines, would certainly deserve to be included in a book like this, but 
here they are not for space and time reasons. 

A result of Blind and Mani-Levitska, with a beautiful simple new 
proof by Kalai [Kal88] , shows that a simple polytope is determined by 
its dimension and its graph; that is, if two d-dimensional simple poly
topes P and Q have isomorphic graphs, then they are combinatorially 
equivalent. 

One of the most challenging problems about graphs of convex poly
topes is the Hirsch conjecture. In its basic form, it states that the 
graph of any d-dimensional polytope with n facets has diameter at 
most n-d; i .e . ,  every two vertices can be connected by a path of at 
most n-d edges. This conjecture is implied by its special case with 
n = 2d , the so-called d-step conjecture. There are several variants of 
the Hirsch conjecture. Some of them are known to be false, such as 
the Hirsch conjecture for d-dimensional polyhedra with n-facets; their 
graph can have diameter at least n-d+ Ld/5J . But even here the con
jecture fails just by a little, while the crucial and wide open question 
is whether the diameter of the graph can be bounded by a fixed poly
nomial in d and n. 

The Hirsch conjecture is motivated by linear programming (and it 
was published in Dantzig's book [Dan63] ) ,  since the running time of 
all variants of the simplex algorithm is bounded from below by the 
number of edges that must be traversed in order to get from the start
ing vertex of the polyhedron of admissible solutions to the optimum 
vertex. 

The best upper bound is due to KalaL He published several papers 
on this subject, successively improving and si1nplifying his argu1nents, 
and this sequence is concluded with [Kal92] . He proves the following: 
Let P be a convex polyhedron in Rd with n facets. Assume that no 
edge of P is horizontal and that P has a (unique) topmost vertex w .  

Then from every vertex v of P there is a path to w consisting of at  most 
J ( d, n) < 2n ( d+ L l�g2 {" J -1) < 2n Iog2 d+ 1 edges and going upward all the 
time. The proof is quite short and uses only very simple properties of 
polytopes (also see [Zie94] or (Kal97] ) .  

Kalai [Kal92] also discovered a randomized variant of the simplex 
algorithm for linear programming for which the expected number of 
pivot steps, for every linear program with n constraints in R d, is 
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bounded by a subexponential function of n and d, namely by n°C v'd) . 
All the previous worst-case bounds were exponential. Interestingly, es
sentially the same algorithm (in a dual setting) was found by Sharir 
and Welzl and a little later analyzed in [MSW96] , independent of 
Kalai's work and at almost the same time, but coming from a quite 
different direction. The Sharir-Welzl algorithm is formulated in an 
abstract framework, and it can be used for many other oy>timization 
problems besides linear programming. 

Realizations of polytopes. By a realization of a d-diinensional polytope 
P we mean any polytope Q C Rd that is combinatorially equivalent 
to P. The proof of Steinitz's theorem shows that every 3-dimension
al polytope has a realization whose vertices have integer coordinates. 
For 3-polytopes with n vertices, Richter-Gebert [RG97] proved that 
the vertex coordinates can be chosen as positive integers no larger than 
218n2 , and if the polytope has at least one triangular facet ,  the upper 
bound becomes 43n (a previous, slightly worse, estimate was given by 
Onn and Sturmfels [0894] ) .  No nontrivial lower bounds seem to be 
known. Let us remark that for straight edge drawings of planar graphs, 
the vertices of every n-vertex graph can be placed on a grid with 
side O (n). This was first proved by de Fraysseix, Pach, and Pollack 
[dFPP90] with the (2n-4) x (n-2) grid, and re-proved by Schnyder 
[Sch90] by a different method, with the ( n-1)  x ( n-1 )  grid; see also 
Kant (Kan96] for more recent results in this direction. 

For higher-dimensional polytopes, the situation is strikingly differ
ent. Although all simple polytopes and all simplicial polytopes can be 
realized with integer vertex coordinates, there are 4-dimensional poly
topes for which every realization requires irrational coordinates (we 
will see an 8-dimensional example in Section 5.6) .  There are also 4-di
mensional n-vertex polytopes for which every realization with integer 
coordinates uses doubly exponential coordinates, of order 220(n) . There 
are numerous other results indicating that the polytopes of dimension 
4 and higher are complicated. For example, the problem of deciding 
whether a given finite lattice is isomorphic to the face lattice of a 
4-dimensional polytope is algorithmically difficult; it is polynomially 
equivalent to the problem of deciding whether a system of polynomial 
inequalities with integer coefficients in n variables has a solution. This 
latter problem is known to be NP-hard, but most likely it is even 
harder; the best known algorithm needs exponential time and poly
nomial space. An overview of such results, and references to previous 
work on which they are built, can be found in Richter-Gebert [RG99J , 
and detailed proofs in [RG97] . Section 6.2 contains a few more remarks 
on realizability (see, in particular, Exercise 6.2.3) .  
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Exercises 

1 .  Verify that if V c Rd is affinely independent , then each subset F C V 
determines a face of the simplex conv(V).  m 

2. Verify the description of the faces of the cube and of the crosspolytope 
given in the text. m 

3. Consider the ( n-1 )-diinensional pern1utahedron as defined in the intro
duction to this chapter. 
(a) Verify that it really has n! vertices corresponding to the permutations 
of { 1 '  2

' . . .  
' n}. m 

(b) Describe all faces of the permutahedron combinatorially (what sets 
of perrnutations are vertex sets of faces?) .  0 
(c) Determine the dimensions of the faces found in (b) .  In particular, show 
that the facets correspond to ordered partitions (A, B)  of { 1 , 2 ,  . . .  , n } ,  
A, B # 0 ,  and count them. 0 

4. Let P C R4 = conv{ ±ei ± ej : i ,  j = 1 ,  2, 3, 4, i # j} ,  where e1 , . . .  , e4 is 
the standard basis (this P is called the 24-cell). Describe the face lattice 
of P and prove that P is combinatorially equivalent to P* (in fact, P can 
be obtained from P* by an isometry and scaling) . 0 

5. Using Proposition 5.3.2, prove the following: 
(a) If F is a face of a convex polytope P, then F is the intersection of P 
with the affine hull of F.  m 
(b) If F and G are faces of a convex polytope P, then F n G is a face, 
too. IT1 

6. Let P be a convex polytope in R3 containing the origin as an interior 
point , and let F be a j-face of P, j = 0, 1 ,  2. 
(a) Give a precise definition of the face F' of the dual polytope P* cor
responding to F (i .e. ,  describe F' as a subset of R3) .  [I] 
(b) Verify that F' is indeed a face of P* .  m 

7. Let V C Rd be the vertex set of a convex polytope and let U C V. Prove 
that U is the vertex set of a face of conv(V) if and only if the affine hull 
of U is disjoint from conv(V \ U) . 0 

8. Prove that the graph of any 3-dimensional convex polytope is 3-connected; 
i.e. ' removing any 2 vertices leaves the graph connected. m 

9. Let C be a convex set. Call a point x E C exposed if there is a hyperplane 
h with Cnh = { x}  and all the rest of C on one side. For convex polytopes, 
exposed points are exactly the vertices, and we have shown that any 
extremal point is also exposed. Find an example of a compact convex set 
C c R2 with an extremal point that is not exposed. 0 

10. (On extremal points) For a set X C Rd, let ex(X) = {x E X: x f/. 
conv( X \ { x})}  denote the set of extremal points of X.  
(a) Find a convex set C C Rd with C # conv(ex(C) ) .  [!] 
(b) Find a compact convex C C R3 for which ex( C) is not closed. [!] 
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(c) By modifying the proof of Theorem 5.2.2, prove that C = conv( ex( C)) 
for every compact convex C C Rd (this is a finite-dimensional version of 
the well known Krein-Milman theorem) . 0 

5.4 Many Faces: The Cyclic Polytopes 

A convex polytope P can be given to us by the list of vertices. How difficult 
is it to recover the full face lattice, or, more modestly, a representation of P 
as an intersection of half-spaces? The first question to ask is how large the 
face lattice or the collection of half-spaces can be, compared to the number 
of vertices. That is, what is the maximum total number of faces, or the 
maximum number of facets, of a convex polytope in Rd with n vertices? The 
dual question is, of course, the maximum number of faces or vertices of a 
bounded intersection of n half-spaces in Rd. 

Let fi = /j (P) denote the number of j-faces of a polytope P. The vector 
(fo ,  ft ,  . . . , /d) is called the !-vector of P. We thus assume fo = n and we 
are interested in estimating the maximum value of /d-l and of 'E�=O fk · 

In dimensions 2 and 3, the situation is simple and favorable. For d = 2, our 
polytope is a convex polygon with n vertices and n edges, and so fo = /1 = n, 
f2 = 1 .  The /-vector is even determined uniquely. 

A 3-dimensional polytope can be regarded as a drawing of a planar graph, 
in our case with n vertices. By well-known results for planar graphs, we have 
/1 < 3n-6 and !2 < 2n-4.  Equalities hold if and only if the polytope is 
simplicial (all facets are triangles) .  

In both cases the total number of faces is linear in n. But as the dirnension 
grows, polytopes become much more complicated. First of all, even the total 
number of faces of the most innocent convex polytope, the d-dimensional 
simplex, is exponential in d. But here we consider d fixed and relatively 
small, and we investigate the dependence on the number of vertices n. 

Still, as we will see, for every n > 5 there is a 4-dimensional convex 
polytope with n vertices and with every two vertices connected by an edge, 
i .e. , with (�) edges! This looks counterintuitive, but our intuition is based 
on the 3-dimensional case. In any fixed dimension d, the number of facets 
can be of order nld/2J ,  which is rather disappointing for someone wishing to 
handle convex polytopes efficiently. On the other hand, complete desperation 
is perhaps not appropriate: Certainly not all polytopes exhibit this very bad 
behavior. For example, it is known that if we choose n points uniformly at 
random in the unit ball Bd, then the expected number of faces of their convex 
hull is only o( n) ,  for every fixed d. 

It turns out that the number of faces for a given dimension and number of 
vertices is the largest possible for so-called cyclic polytopes, to be introduced 
next. First we define a very useful curve in Rd. 
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5.4.1 Definition (Moment curve). The curve 7 == { (t ,  t2 , . • •  , td) :  t E R} 
in Rd is called the moment curve. 

5.4.2 Lemma. Any hyperplane h intersects the moment curve 7 in at most 
d points. If there are d intersections, then h cannot be tangent to 7, and thus 
at eacl1 intersection, 7 passes frorn or1e side of h to the other. 

Proof. A hyperplane h can be expressed by the equation (a, x) == b, or 
in coordinates at Xt + a2x2 + · · · + adXd == b. A point of 7 has the form 
(t, t2 , . • •  , td) ,  and if it lies in h, we obtain a1t + a2t2 + · · · + adtd - b == 0. This 
means that t is a root of a nonzero polynornial Ph ( t )  of degree at rnost d, 
and hence the number of intersections of h with 7 is at most d. If there are d 
distinct roots, then they must be all simple. At a simple root, the polynomial 
Ph ( t) changes sign, and this means that the curve 7 passes from one side of 
h to the other. D 

As a corollary, we see that every d points of the moment curve are affinely 
independent, for otherwise, we could pass a hyperplane through them plus 
one more point of 'Y· So the moment curve readily supplies explicit examples 
of point sets in general position. 

5.4.3 Definition (Cyclic polytope) . The convex hull of finitely many 
points on the mornent curve is called a cyclic polytope. 

How many facets does a cyclic polytope have? Each facet is deterrnined 
by a d-tuple of vertices, and distinct d-tuples determine distinct facets. Here 
is a criterion telling us exactly which d-tuples determine facets. 

5.4.4 Proposition (Gale's evenness criterion). Let V be the vertex set 
of a cyclic polytope P considered with the linear ordering < along the mo
ment curve (larger vertices have larger values of the parameter t). Let F == 

{ Vt , v2 , . . .  , vd} C V be a d-tuple of vertices of P, where Vt < v2 < · · · < vd . 
Then F determines a facet of P if and only if for any two vertices u, v E V \ F, 
the number of vertices Vi E F with u < Vi < v is even. 

Proof. Let hF be the hyperplane affinely spanned by F. Then F determines 
a facet if and only if all the points of V \ F lie on the same side of h F .  

Since the moment curve 7 intersects hp in exactly d points, namely at 
the points of F, it is partitioned into d+l pieces, say 'Yo , . . .  , 'Yd , each lying 
completely in one of the half-spaces, as is indicated in the drawing: 
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Hence, if the vertices of V \ F are all contained in the odd-nurnbered pieces 
11 ,  !3 , . . .  , as in the picture, or if they are all contained in the even-numbered 
pieces !o , 12 , • • .  , then F determines a facet. This condition is equivalent to 
Gale's criterion. D 

Now we can count the facets. 

5.4.5 Theorem. The nurnber of facets of a d-dimensional cyclic polytope 
with n vertices (n > d+1) is (n - ld/2J) (n - ld/2J - 1) 

ld/2J 
+ 

ld/2J _ 1 
for d even, and 

(n - ld/2J - 1) 
2 

Ld/2J 
for d odd. 

For fixed d, this has the order of magnitude nld/2J .  

Proof. The number of facets equals the number of ways of placing d black 
circles and n - d white circles in a row in such a way that we have an even 
number of black circles between each two white circles. 

Let us say that an arrangement of black and white circles is paired if any 
contiguous segment of black circles has an even length (the arrangements 
permitted by Gale's criterion need not be paired because of the initial and 
final segments) . The number of paired arrangements of 2k black circles and 
n - 2k white circles is (n 

k 
k) , since by deleting every second black circle we 

get a one-to-one correspondence with selections of the positions of k black 
circles among n - k possible positions. 

Let us return to the original problem, and first consider an odd d = 2k+l .  
In a valid arrangement of circles, we must have an odd number of consecutive 
black circles at the beginning or at the end (but not both) . In the former case, 
we delete the initial black circle, and we get a paired arrangement of 2k black 
and n-1-2k white circles. In the latter case, we similarly delete the black 
circle at the end and again get a paired arrangement as in the first case. This 
establishes the formula in the theorem for odd d. 

For even d = 2k, the number of initial consecutive black circles is ei
ther odd or even. In the even case, we have a paired arrangement, which 
contributes (n k 

k) possibilities. In the odd case, we also have an odd num
ber of consecutive black circles at the end, and so by deleting the first and 
last black circles we obtain a paired arrangement of 2(k-1 )  black circles and 
n-2k white circles. This contributes (n 

k 
k�2) possibilities. D 

Bibliography and remarks. The convex hull of the moment curve 
was studied by by Caratheodory [Car07) . In the 1950s, Gale con
structed neighborly polytopes by induction. Cyclic polytopes and the 
evenness criterion appear in Gale [Gal63] . The moment curve is an 
important object in many other branches besides the theory of convex 
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polytopes. For example, in elementary algebraic topology it is used 
for proving that every (at most countable) d-dimensional simplicial 
complex has a geometric realization in R2d+I . 
Convex hulls of random sets. Baniny [Bar89] proved that if n points 
are chosen uniformly and independently at random from a fixed d
dimensional convex polytope K (for example, the unit cube) , then 
the number of k-dimensional faces of their convex hull has the order 
(log n)d-1 for every fixed d and k ,  0 < k < d-1  (the constant of pro
portionality depending on d, k, and K). If K is a smooth convex body 
(such as the unit ball) , then the order of magnitude is n(d- l )/(d+1) , 
again with d, k ,  and K fixed. For more references and wider context 
see, e.g. , Weil and Wieacker [WW93] . 

Exercises 

99 

1 .  (a) Show that if V is a finite subset of the moment curve, then all the 
points of V are extreme in conv(V) ;  that is, they are vertices of the 
corresponding cyclic polytope. [I] 
(b) Show that any two cyclic polytopes in R d with n vertices are com
binatorially the sarne: They have isomorphic face lattices. Thus, we can 
speak of the cyclic polytope. m 

2.  (Another curve like 'Y) Let j3 C R d be the curve { ( t� 1 ,  t�2 , . • . , t�d ) :  t E 
R, t > 0}. Show that any hyperplane intersects /3 in at most d points 
(and if there are d intersections, then there is no tangency) ,  and conclude 
that any n distinct points on j3 form the vertex set of a polytope com
binatorially isomorphic to the cyclic polytope. GJ (Let us remark that 
many other curves have these properties as well; the moment curve is 
just the most convenient example.) 

3. (Universality of the cyclic polytope) 
(a) Let x 1 , . . .  , Xn be points in Rd. Let Yi denote the vector arising by 
appending 1 as the (d+1)st component of Xi . Show that if the determi
nants of all matrices with columns Yi1 , • • •  , Yid+l , for all choices of indices 
i1 < i2 < · · · < id+1 , have the same nonzero sign, then x1 , . . .  , Xn form 
the vertex set of a convex polytope combinatorially equivalent to the n
vertex cyclic polytope in Rd . GJ 
(b) Show that for any integers n and d there exists N such that among any 
N points in Rd in general position, one can choose n points forming the 
vertex set of a convex polytope combinatorially equivalent to the n-vertex 
cyclic polytope. 0 (This can be seen as a d-dimensional generalization of 
the Erdos-Szekeres theorern.) 

4. Prove that if n is sufficiently large in terms of d ,  then for every set of 
n points in R d in general position, one can choose d+ 1 simplices of di
mension d with vertices at some of these points such that any hyperplane 
avoids at least one of these simplices. Use Exercise 3. [I] 
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This exercise is a special case of a problem raised by Lovasz, and it was 
communicated to me by Barany. A detailed solution can be found in 
[Bvs+99] . 

5. Show that for cyclic polytopes in dimensions 4 and higher, every pair 
of vertices is connected by an edge. For dimension 4 and two arbitrary 
vertices, write out explicitly the equation of a hyperplane intersecting the 
cyclic polytope exactly in this edge. m 

6.  Determine the /-vector of a cyclic polytope with n vertices in dimensions 
4,  5,  and 6. m 

5.5  The Upper Bound Theorem 

The upper bound theorem, one of the earlier major achievements of the theory 
of convex polytopes, clahns that the cyclic polytope has the largest possible 
number of faces. 

5.5.1 Theorem (Upper bound theorem) . Among all d-dimensional con
vex polytopes with n vertices, the cyclic polytope maximizes the number of 
faces of each dimension. 

In this section we prove only an approximate result, which gives the cor
rect order of magnitude for the maximum number of facets. 

5.5.2 Proposition (Asymptotic upper bound theorem). A d-dimcn
sional convex polytope with n vertices has at most 2 ( Ldf2J ) facets and no 

more than 2d+t ( Ldf2J ) faces in total. For d fixed, both quantities thus have 

the order of magnitude nld/2J . 

First we establish this proposition for simplicial polytopes, in the following 
form. 

5.5.3 Proposition. Let P be a d-dimensional simplicial polytope. Then 

(a) fo (P) + ft (P) + · · · + /d (P) < 2d/d-t (P), and 
(b) fd-t (P) < 2fLd/2J -t (P) . 

This implies Proposition 5.5.2 for simplicial polytopes, since the number 
of ( L d/2 J - 1)-faces is certainly no bigger than ( Ldf2J ) ,  the number of all ld/2 J 
tuples of vertices. 

Proof of Proposition 5.5.3. We pass to the dual polytope P* , which 
is simple. Now we need to prove ��=O fk (P* ) < 2d f0 (P* ) and fo (P*) < 
2/rd/21 (P* ) .  

Each face of P* has at least one vertex, and every vertex of a simple 
d-polytope is incident to 2d faces, which gives the first inequality. 
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We now bound the number of vertices in terms of the number of r d/21 -
faces. This is the heart of the proof, and it shows where the mysterious 
exponent ld/2J comes from. 

Let us rotate the polytope P* so that no two vertices share the xd-co
ordinate (i .e. , no two vertices have the same vertical level) . 

Consider a vertex v with the d edges emanating from it. By the pigeonhole 
principle, there are at least r d/2l edges directed downwards or at least r d/2l 
edges directed upwards. In the former case, every f d/21 -tuple of edges going 
up determines a f d/21 -face for which v is the lowest vertex. In the latter case, 
every r d/2l -tuple of edges going down determines a r d/2l -face for which v 

is the highest vertex. Here is an illustration, unfortunately for the not too 
interesting 3-dimensional case, showing a situation with 2 edges going up and 
the corresponding 2-dimensional face having v as the lowest vertex: 

v 

We have exhibited at least one I d/21 -face for which v is the lowest vertex or 
the highest vertex. Since the lowest vertex and the highest vertex are unique 
for each face, the number of vertices is no more than twice the number of 
r d/21 -faces. D 

Warning. For simple polytopes, the total combinatorial complexity is pro
portional to the number of vertices, and for simplicial polytopes it is pro
portional to the number of facets (considering the dimension fixed, that is) . 
For polytopes that are neither simple nor simplicial, the number of faces of 
intermediate dimensions can have larger order of magnitude than both the 
number of facets and the number of vertices; see Exercise 1 .  

Nonsimplicial polytopes. To prove the asymptotic upper bound theorem, 
it remains to deal with nonsimplicial polytopes. This is done by a perturba
tion argument, similar to numerous other results where general position is 
convenient for the proof but where we want to show that the result holds 
in degenerate cases as well. In most instances in this book, the details of 
perturbation arguments are omitted, but here we make an exception, since 
the proof seems somewhat nontrivial. 

5.5.4 Lemma. For any d-dimensional convex polytope P there exists a d
dimensional simplicial polytope Q with fo (P) = fo (Q) and fk (Q) > fk (P) 
for all k = 1 ,  2, . . .  , d. 

Proof. The basic idea is very simple: Move (perturb) every vertex of P by a 
very small amount, in such a way that the vertices are in general position, and 
show that each k-face of P gives rise to at least one k-face of the perturbed 
polytope. There are several ways of doing this proof. 
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We process the vertices one by one. Let V be the vertex set of P and 
let v E V. The operation of €-pushing v is as follows: We choose a point v' 

lying in the interior of P, at distance at most c from v, and on no hyperplane 
determined by the points of V, and we set V' = (V \ { v} ) U { v'} . If we 
successively cv-push each vertex v of the polytope, the resulting vertex set is 
in general position and we have a simple polytope. 

It remains to show that for any polytope P with vertex set V and any 
v E V, there is an c > 0 such that £-pushing v does not decrease the number 
of faces. 

Let U c V be the vertex set of a k-face of P, 0 < k < d-1 ,  and let V' 
arise from V by £-pushing v. If v � U, then no doubt, U determines a face of 
conv(V') ,  and so we assume that v E U. First suppose that v lies in the affine 
hull of U \ { v } ;  we claim that then U \ { v} determines a k-face of conv(V') .  
This follows easily from the criterion in Exercise 5.3. 7: A subset U c V is the 
vertex set of a face of conv(V) if and only if the affine hull of U is disjoint 
from conv(V \ U) . We leave a detailed argument to the reader (one must use 
the fact that v is pushed inside) . 

If v lies outside of the affine hull of U \ { v } ,  then we want to show that 
U' = (U \ { v} ) U { v'} deterrnines a k-face of conv(V' ) .  The affine hull of U 
is disjoint from the compact set conv(V \ U) .  If we tnove v continuously by 
a sufficiently small amount, the affine hull of U moves continuously, and so 
there is an c > 0 such that if we move v within c from its original position, 
the considered affine hull and conv(V \ U) remain disjoint. 0 

The h-vector and such. Here we introduce some notions extremely useful 
for deeper study of the /-vectors of convex polytopes. In particular, they are 
crucial in proofs of the (exact) upper bound theorem. 

Let us go back to the setting of the proof of Proposition 5.5.3. There we 
considered a simple polytope that used to be called P* but now, for simplicity, 
let us call it P. It is positioned in Rd in such a way that no edge is horizontal, 
and so for each vertex v, there are some iv edges going upwards and d - iv 
edges going downwards. 

The central definition is this: The h-vector of P is ( ho , h 1 ,  . . .  , hd) ,  where 
hi is the number of vertices v with exactly i edges going upwards. So, for 
example, we have ho = hd = 1 .  

Next , we relate the h-vector to the /-vector. Each vertex v is the lowest 
vertex for exactly (ik') faces of dimension k, and each k-face has exactly one 
lowest vertex, and so 

(5. 1) 

(for i < k we have (k) = 0) .  So the h-vector determines the f-vector. Less 
obviously, the h-vector can be uniquely reconstructed from the /-vector! A 
quick way of seeing this is via generating functions: If f ( x) is the polynomial 

d k d . 
L:k=O fkx and h(x) = I:i=O hix"' , then (5. 1 )  translates to f(x) = h(x+l) ,  
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and therefore h (x) = f (x-1 ) .  Explicitly, we have 

(5.2) 

We have defined the h-vector using one particular choice of the vertical 
direction, but now we know that it is determined by the /-vector and thus 
independent of the chosen direction. By turning P upside down, we see that 

hi = hd-i for all i = 0, 1 ,  . . .  , d. 

These equalities are known as the Dehn-Sommerville relations. They include 
the usual Euler formula fo + /2 = /1 + 2 for 3-dirnensional polytopes. 

Let us stress once again that all we have said about h-vectors concerns 
only simple polytopes. For a simplicial polytope P, the h-vector can now be 
defined as the h-vector of the dual simple polytope P* . Explicitly, 

� . k (d - k) 
hj = L,_,(-1)1- d - . !k- l · 

k=O J 

The upper bound theorem has the following neat reformulation in terms 
of h-vectors: For any d-dimensional simplicial polytope with fo = n vertices, 
we have (n - d + i - 1) 

hi < . ' 'l 
i = 0, 1 ,  . . .  , ld/2J . (5.3) 

Proving the upper bound theorem is not one of our main topics, but an 
outline of a proof can be found in this book. It starts in the next section 
and finishes in Exercise 1 1 .3.6, and it is not arnong the most direct possible 
proofs. Deriving the upper bound theorem from (5.3) is a pure and direct 
calculation, veri(ying that the h-vector of the cyclic polytope satisfies (5.3) 
with equality. We omit this part. 

Bibliography and remarks. The upper bound theorem was con
jectured by Motzkin in 1957 and proved by McMullen [McM70] . Many 
partial results have been obtained in the meantime. Perhaps most no
tably, Klee [Kle64] found a simple proof for polytopes with not too few 
vertices (at least about d2 vertices in dimension d) . That proof applies 
to simplicial complexes much more general than the boundary com
plexes of simplicial polytopes: It works for Eulerian pseudornanifolds 
and, in particular, for all simplicial spheres, i .e. , simplicial complexes 
homeomorphic to sd-l . Presentations of McMullen's proof and Klee's 
proof can be found in Ziegler's book [Zie94] . A nice variation was de
scribed by Alon and Kalai [AK85] . Another proof, based on linear 
programming duality and results on hyperplane arrangements, was 
given by Clarkson [Cla93] . An elegant presentation of similar ideas, 
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using the Gale transform discussed below in Section 5.6, can be found 
in Welzl [WelOl )  and in Exercises 11 .3.5 and 11 .3.6. Our exposition of 
the asymptotic upper bound theorem is based on Seidel [Sei95] . 

The ordering of the vertices of a sirnple polytope P by their height 
in the definition of the h-vector corresponds to a linear ordering of the 
facets of P* .  This ordering of the facets is a shelling. Shelling, even 
in the strictly peaceful mathematical sense, is quite important, also 
beyond the realm of convex polytopes. Let K, be a finite cell complex 
whose cells are convex polytopes (such as the boundary complex of a 
convex polytope) , and suppose that all maximal cells have the same 
dimension k. Such /C is called shellable if k � 0 or k > 1 and K, has 
a shelling. A shelling of IC is an enumeration F1 , F2 , . . .  , Fn of the 
facets (maximum-dimension cells) of K, such that (i) the boundary 
cornplex of F1 is shellable, and (ii) for every i > 1 , there is a shelling 
of the complex Fi n U�-� Fi that can be extended to a shelling of the 
boundary complex of Fi . The boundary complex of a convex polytope 
is homeomorphic to a sphere, and a shelling builds the sphere in �uch 
a way that each new cell is glued by contractible part of its boundary 
to the previously built part, except for the last cell, which closes the 
remaining hole. 

McMullen's proof of the upper bound theorem does not generalize 
to simplicial spheres (i.e . ,  finite simplicial complexes homeomorphic 
to spheres) ,  for example because they need not be shellable, counter
intuitive as this may look. The upper bound theorem for them was 
proved by Stanley [Sta75] using much heavier algebraic and algebraic
topological tools. 

An interesting extension of the upper bound theorem was found 
by Kalai [Kal91] . Let P be a simplicial d-dimensional polytope. All 
proper faces of P are simplices, and so the boundary is a simplicial 
complex. Let K be any subcomplex of the boundary (a subset of the 
proper faces of P such that if F E K, then all faces of F also lie in 
K) . The strong upper bound theorem, as Kalai's result is called, asserts 
that if K has at least as many ( d-1 )-faces as the d-dimensional cyclic 
polytope on n vertices, then K has at least as many k-faces as that 
cyclic polytope, for all k = 0, 1 ,  . . .  , d-1 .  (Note that we do not assurne 
that P has n vertices! ) The proof uses methods developed for the 
proof of the g-theorem mentioned below as well as Kalai's technique 
of algebraic shifting. 

Another major achievement concerning the !-vectors of polytopes 
is the so-called g-theorem. The inventive name g-vector of a d-dimen
sional simple polytope refers to the vector (g0, 91 , . . .  , 9Ld/2J ) ,  where 
go � ho and 9i � hi - hi-l , i � 1 , 2, . . .  , ld/2J . The g-theorem char
acterizes all possible integer vectors that can appear as the g-vector 
of a d-dimensional simple (or simplicial) polytope. Since the g-vector 



5.5 The Upper Bound Theorem 

uniquely determines the /-vector, we have a complete characteriza
tion of !-vectors of simple polytopes. In particular, the g-theorem 
guarantees that all the components of the g-vector are always non
negative (this fact is known as the generalized lower bound theorem) , 
and therefore the h-vector is unimodal: We have h0 < h1 < · · · < 
hld/2J = hrd/21 > · · · > hd. (On the other hand, the /-vector of a 
simple polytope need not be unimodal; more exactly, it is unimodal 
in dimensions up to 19, and there are 20-dimensional nonunimodal 
exarnples. ) We again refer to [Zie94] for a full statement of the g
theorem. The proof has two independent parts; one of them, due to 
Biller a and Lee [BL81] ,  constructs suitable polytopes, and the other 
part, first proved by Stanley [Sta80] , shows certain inequalities for all 
simple polytopes. For studying the most elementary proof of the sec
ond part currently available, one can start with McMullen [McM96] 
and continue with [McM93] . 

For nonsimple (and nonsimplicial) polytopes, a characterization 
of possible /-vectors remains elusive. It seems, anyway, that the flag 
vector might be a more appropriate parameter for nonsimple poly
topes. The flag vector counts, for every k = 1 ,  2 , . . .  , d and for every 
i1 < i2 < · · · < ik , the number of chains F1 C F2 c · · · C Fk , where 
F1 , . . .  , Fk are faces with dim(Fj ) = ij (such a chain is called a flag) .  

No analogue of the upper bound theorem is known for centrally 
symmetric polytopes. A few results concerning their face counts, ob
tained by 1nethods quite different front the ones for arbitrary poly
topes, will be mentioned in Section 14.5. 

The proof of Lemma 5.5.4 by pushing vertices inside is similar to 
an argument in Klee [Kle64] , but he proves more and presents the 
proof in more detail. 
Convex hull computation. What does it mean to compute the convex 
hull of a given n-point set V c Rd? One possible answer, briefly 
touched upon in the notes to Section 5.2, is to express conv(V) as 
the intersection of half-spaces and to compute the vertex sets of all 
facets. (As we know, the face lattice can be reconstructed from this 
information purely combinatorially; see Kaibel and Pfetsch [KP01] 
for an efficient algorithm.) Of course, for some applications it may 
be sufficient to know much less about the convex hull, say only the 
graph of the polytope or only the list of its vertices, but here we will 
discuss only algorithms for computing all the vertex-facet incidences 
or the whole face lattice. For a more detailed overview of convex hull 
algorithms see, e.g., Seidel [Sei97] . 

For the dimension d considered fixed, there is a quite simple and 
practical randomized algorithm. It computes the convex hull of n 
points in Rd in expected time O(nld/2J + n log n) (Seidel [Sei91] , 
simplifying Clarkson and Shor (CS89] ) ,  and also a very complicated 
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but deterministic algorithm with the same asymptotic running time 
( Chazelle (Cha93b] ; somewhat simplified in Bronnimann, Chazelle, 
and Matousek [BCM99] ) .  This is worst-case optimal, since an n-vertex 
polytope may have about n ld/2J facets. There are also output-sensitive 
algorithms, whose running time depends on the total number f of faces 
of the resulting polytope. Recent results in this direction, including an 
algorithm that computes the convex hull of n points in general posi
tion in Rd (d fixed) in time O(n log f + (n/) l- l/( Ld/2J +1) (Iogn)c(d) ) ,  
can be found in Chan [ChaOOb] . 

Still, none of the known algorithms is theoretically fully satisfac
tory, and practical computation of convex hulls even in moderate di
mensions, say 10 or 20, can be quite challenging. Some of the algo
rithms are too complicated and with too large constants hidden in the 
asymptotic notation to be of practical value. Algorithms requiring gen
eral position of the points are problematic for highly degenerate point 
configurations (which appear in many applications) ,  since small per
turbations used to achieve general position often increase the number 
of faces tremendously. Some of the randomized algorithms compute 
intermediate polytopes that can have many more faces than the fi
nal result. Often we are interested just in the vertex---facet incidences, 
but many algorithms compute all faces, whose number can be much 
larger, or even a triangulation of every face, which may again increase 
the complexity. Such problems of existing algorithms are discussed in 
A vis, Bremner, and Seidel [ABS97] . 

For actual computations, simple and theoretically suboptimal al
gorithms are often preferable. One of them is the double-description 
method mentioned earlier, and another algorithm that seems to be
have well in many difficult instances is the reverse search of A vis and 
Fukuda [AF92] . It enumerates the vertices of the intersection of a given 
set H of half-spaces one by one, using quite small storage. Conceptu
ally, one thinks of optimizing a generic linear function over n H by a 
simplex algorithm with Bland's rule. This defines a spanning tree in 
the graph of the polytope, and this tree is searched depth-first starting 
from the optimum vertex, essentially by running the simplex algorithm 
"backwards." The main problem of this algorithm is with degenerate 
vertices of high degree, which rnay correspond to an enorrnous nun1ber 
of bases in the simplex algorithm. 

Also, it sometimes helps if one knows some special properties of 
the convex hull in a particular problem, say many symmetries. For ex
ample, very extensive computations of convex hulls were performed by 
Deza, Fukuda, Pasechnik, and Sato [DFPSOO] , who studied the metric 
polytope. Before we define this interesting polytope, let us first intro-
duce the metric cone Mn . This is a set in R(�) representing all metrics 
on { 1 , 2 , . . . , n} ,  where the coordinate X{id} specifies the distance of 



5.6 The Gale Transform 

i to j, 1 < i < j < n. So Mn is defined by the triangle inequalities 
X{i,j } + X{j,k} < X{i,k} , where i, j, k are three distinct indices. The 
metric polytope mn is the subset of Mn defined by the additional 
inequalities saying that the perimeter of each triangle is at most 2, 
namely x{i,j} + x{j,k} + x{i,k} < 2. Deza et al. were able to enumerate 
all the approximately 1 .5  · 109 vertices of the 28-dimensional polytope 
m8; this may give some idea of the extent of these computational prob
lems. Without using many symmetries of mn, a polytope of this size 
would currently be out of reach. Such computations might provide in
sight into various conjectures concerning the metric polytope, which 
are important for combinatorial optimization problems (see, e.g. , Deza 
and Laurent [DL97] for background) . 

Exercises 
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1 .  (a) Let P be a k-dimensional convex polytope in R k , and Q an £-dimen
sional convex polytope in Rf. Show that the Cartesian product P x Q c 
Rk+t is a convex polytope of dimension k + f. [I] 
(b) If F is an i-face of P, and G is a j-face of Q, i , j > 0, then F x G is 
an (i + j)-face of P x Q. Moreover, this yields all the nonempty faces of 
P x  Q. 0 
(c) Using the product of suitable polytopes, find an example of a "fat
lattice" polytope, i.e., a polytope for which the total number of faces has 
a larger order of magnitude than the number of vertices plus the number 
of facets together (the din1ension should be a constant) .  [I] 
(d) Show that the following yields a 5-dimensional fat-lattice polytope: 
The convex hull of two regular n-gons whose affine hulls are skew 2-fiats 
in R5 . [I] 
For recent results on fat-lattice polytopes see Eppstein, Kuperberg, and 
Ziegler [EKZ01] . 

5.6 The Gale Transform 

On a very general level, the Gale transform resembles the duality transform 
defined in Section 5 .1 .  Both convert a (finite) geometric configuration into 
another geometric configuration, and they may help uncover some properties 
of the original configuration by making them more apparent , or easier to 
visualize, in the new configuration. The Gale transform is more complicated 
to explain and probably more difficult to get used to, but it seems worth the 
effort. It was invented for studying high-dimensional convex polytopes, and 
recently it has been used for solving problems about point configurations by 
relating them to advanced theorems on convex polytopes. It is also closely 
related to the duality of linear programming (see Section 10. 1 ) ,  but we will 
not elaborate on this connection here. 
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The Gale transform assigns to a sequence a =  (at , a2 ,  . . . , an) of n > d+1 
points in R d another sequence g ::::;: (91 , 92 , . . .  , 9n) of n points. The points 
9t , 92 , . . .  , 9n live in a different dimension, namely in R n-d-1 . For example, 
n points in the plane are transformed to n points in R n-3 and vice versa. 
In the literature one finds many results about k-dimensional polytopes with 
k+3 or k+4 vertices; this is because their vertex sets have a low-dimensional 
Gale transform. 

Let us stress that the Gale transform operates on sequences, not individual 
points: We cannot say what 91 is without knowing all of a1 , a2 , . . . , an . We 
also require that the affine hull of the ai be the whole Rd; otherwise, the 
Gale transform is not defined. (On the other hand, we do not need any sort 
of general position, and some of the ai may even coincide. ) 

The reader might wonder why the points of the Gale transform are written 
with bars. This is to indicate that they should be interpreted as vectors 
in a vector space, rather than as points in an affine space. As we will see, 
"affine" properties of the sequence a, such as affine dependencies, correspond 
to "linear" properties of the Gale transform, such as linear dependencies. 

In order to obtain the Gale transform of a, we first convert the ai into 
(d+l )-dimensional vectors: ai E Rd+l is obtained from ai by appending a 
(d+1)st coordinate equal to 1 .  This is the embedding Rd --t Rd+l often used 
for relating affine notions in R d to linear notions in R d+ 1 ; see Section 1 . 1 .  

Let A be the d x n matrix with ai as the ith column. Since we assume that 
there are d+ 1 affinely independent points in a, the matrix A has rank d+ 1 ,  
and so the vector space V generated by the rows of A is a ( d+ 1 )-dimensional 
subspace of Rn. We let V j_ be the orthogonal complement of V in Rn; that is, 
Vl_ = {w E  Rn: (v, w) = 0 for all v E V} . We have dim(Vj_ ) = n -d- 1 . Let 
us choose some basis ( b1 , b2 , . . .  , bn-d- 1 )  of V 1_ ,  and let B be the ( n -d- 1 ) x n 
matrix with bj as the jth row. Finally, we let 9i E Rn-d-l be the ith column 
of B. The sequence g = (91 , 92 , . . .  , 9n) is the Gale transforrn of a. Here is a 
pictorial summary: 

n 

d l l l l l l l l l l  � 

a1 an 
point sequence 

5.6.1 Observation. 

1 1 1 1 1 1 1 1 
� d+l 

1 
basis of 

n-d-1 orthogonal 
complement 

Gale transform 

-91 Yn 

( i) (The Gale transform is determined up to linear isomorphism) In the 
construction of g, we can choose an arbitrary basis of V j_ .  Choosing a 
different basis corresponds to multiplying the matrix B from the left by a 
nonsingular (n - d- 1 ) x (n-d-l)  matrix T (Exercise 1), and this means 
transforming (91 , . . .  , 9n) by a linear isomorphism of R n-d-1 . 
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(ii) A sequence g in Rn-d-1 is the Gale transform of some a if and only if 
it spans Rn-d-1 and has 0 as the center of gravity: L:� 1 Bi = 0. 

(iii) Let us consider a sequence g in Rn-d-1 satisfying the condition in (ii) . 
If we interpret it as a point sequence (breaking the convention that the 
result of the Gale transform should be thought of as a sequence of vec
tors), apply the Gale transform to it, again consider the result as a point 
sequence, and apply the Gale transform the second time, we recover the 
original g, up to linear isomorphism (Exercise 5) . 

Two ways of probing a configuration. We would like to set up a dictio
nary for translating between geometric properties of a sequence a and those 
of its Gale transform. First we discuss how some familiar geometric proper
ties of a configuration of points or vectors are reflected in the values of affine 
or linear functions on the configuration, and how they manifest themselves 
in affine or linear dependencies. For a sequence a = (a1 , . . •  , an) of vectors in 
Rd+1 , we define two vector subspaces of Rn: 

LinVal (a) = { (f(a1 ) ,  f(a2 ) ,  . . .  , f(an) ) :  f :  Rd+1 -4 R is a linear function} ,  
LinDep(a) = {a E Rn : a1a1 + a2a2 + · · · + aniin = 0} .  

For a point sequence a =  (a1 , . . .  , an) ,  we then let AffVal (a) = LinVa l (a) and 
AffDep(a) == LinDep(a) , where a is obtained from a as above, by appending 
1 's. Another description is 

AfNal (a) = { (j(a1 ) ,  f(a2 ) ,  . . .  , f(an) ) :  f: Rd -4 R is an affine function} ,  
AffDep(a) = {a  E Rn : a1a1 + · · · + anan = 0, a1 + · · · + an = 0}. 

The knowledge of LinVal (a) tells us a lot about a, and we only have to 
learn to decode the information. As usual, we assume that a linearly spans 
all of Rd+1 . 

Each nonzero linear function f: Rd+l -4 R determines the linear hy
perplane ht = {x E Rd+l : f(x) = 0} (by a linear hyperplane we mean a 
hyperplane passing through 0) .  This ht is oriented (one of its half-spaces is 
positive and the other negative) , and the sign of f (ai) determines whether iii 
lies on h f ,  on its positive side, or on its negative side. 

_ ... . . . ..  
. 

f(x) > 0 

_ .. - · - · 

. . .... . . .
.

.. · · · · · h f : f (X) = 0 

f(x) < 0 

We begin our decoding of the properties of a with the property "span
ning a linear hyperplane." That is, we choose our favorite index set I C 
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{ 1 ,  2, . . .  , n } ,  and we ask whether the points of the subsequence a1 = (ai : i E 
I) span a linear hyperplane. First, we observe that they lie in a common linear 
hyperplane if and only if there is a nonzero 'P E LinVal (a) such that 'Pi = 0 for 
all i E J. It could still happen that all of a1 lies in a lower-dimensional linear 
subspace. Using the assumption that a spans Rd+l , it is not difficult to see 
that a1 spans a linear hyperplane if and only if all 'P E LinVal (a) that vanish 
on a1 have identical zero sets; that is, the set { i :  'Pi = 0} is the same for all 
such <p. If we know that a1 spans a linear hyperplane, we can also see how 
the other vectors in a are distributed with respect to this linear hyperplane. 

Analogously, knowing AfNal(a) , we can determine which subsequences of 
a span (affine) hyperplanes and how the other points are partitioned by these 
hyperplanes. For example, we can tell whether there are some d+ 1 points on 
a common hyperplane, and so we know whether a is in general position. As a 
more complicated example, let P = conv(a) . We can read off from AfNal (a) 
which of the ai are the vertices of P, and also the whole face lattice of P 
(Exercise 6) .  

Similar information can be inferred from AffDep(a) (exactly the same 
information, in fact ,  since AffDep(a) = AfNa l (a)j_ ;  see Exercise 7) . For 
an a E A ffDep( a) let I+ (a) = { i E { 1 ,  2 ,  . . .  , n} :  ai > 0} and I_ (a) = 

{ i E { 1 ,  2, . . .  , n } :  ai < 0}.  As we learned in the proof of Radon's lemma 
(Lemma 1.3. 1 ) ,  /+ = I+ (a) and /_ = /_ (a) correspond to Radon partitions 
of a. Namely, 'L:iEJ+ aiai = 'L:iEI- (-ai)ai ,  and dividing by EiEJ+ ai = 
LiEI- (-ai) ,  we have convex combinations on both sides, and so conv(a1+ ) n  
conv( a1 _ ) i= 0. Conversely, if /1 and I2 are disjoint index sets with conv( a12 )n 
conv(aJ2 )  i= 0 ,  then there is a nonzero a E AffDep(a) with /+ (a) C /1 and 
I_ (a) C I 2 .  For example, ai is a vertex of conv( a) if and only if there is no 
a E AffDep(a) with /+ (a) = { i } .  

For a sequence a of vectors, linear dependencies correspond to expressing 
0 as a convex combination. Namely, for disjoint index sets /1 and !2 , we 
have 0 E conv( {ai : i E I1 } U {-ai : i E 12 })  if and only if there is a nonzero 
a E LinDep(a) with I+ (a) C I1 and /_ (a) C /2 . 

Together with these geometric interpretations of LinVa l (a) ,  AfNal (a), 
L inDep(a) , and AffDep(a) , the following lemma (whose proof is left to Ex
ercise 8) allows us to translate properties of point configurations to those of 
their Gale transforms. 

5.6.2 Lemma. Let a be a sequence of n points in Rd whose points aJHnely 
span Rd, and let g be its Gale transform. Then LinVa l (g) = AffDep(a) and 
LinDep(g) = AfNa l (a) .  D 

So a Radon partition of a corresponds to a partition of g by a linear 
hyperplane, and a partition of a by a hyperplane translates to a linear de
pendence (i.e. , a "linear Radon partition" ) of g. 

Let us list several interesting connections, again leaving the simple but 
instructive proofs to the reader. 
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5.6.3 Corollary (Dictionary of the Gale transform). 

(i) (Lying in a common hyperplane) For every (d+l)-point index set I C 
{ 1 ,  2, . . . , n } ,  the points ai with i E I lie in a common hyperplane if and 
only if all the vectors gj with j ¢ I  lie in a common linear hyperplane. 

(ii) (General position) In particular, the points of a are in general position 
(no d+l on a common hyperplane) if and only if every n-d-1 vectors 
among g1 , . . . , gn span Rn-d-l (which is a natural condition of general 
position for vectors) . 

(iii) (Faces of the convex hull) The points ai with i E I are contained in a 
common facet of P = conv(a) if and only if 0 E conv{gj : j tJ I} .  In par
ticular, if P is a simplicial polytope, then its k-faces exactly correspond 
to complements of the (n-k-1)-element subsets of g containing 0 in the 
convex hull. 

(iv) (Convex independence) The ai form a convex independent set if and only 
if there is no oriented linear hyperplane with exactly one of the 9) on the 
positive side. 

Here is, finally, a picture of a 3-dimensional convex polytope with 6 ver
tices and the (planar) Gale transform of its vertex set: 

-

94 

For exarnple, the facet a1a2a5a6 is reflected by the complementary pair 93 ,94 
of parallel oppositely oriented vectors, and so on. 

Signs suffice. As was noted above, in order to find out whether some 
ai is a vertex of conv( a) , we ask whether there is an o: E AffDep( a) with 
I+ (a) = { i} .  Only the signs of the vectors in AffDep(a) are important here, 
and this is the case with all the combinatorial-geometric information about 
point sequences or vector sequences in Corollary 5.6.3. For such purposes, 
the knowledge of sgn(AffDep(a)) = { (sgn(o:t ) ,  . . . , sgn (an) ) : a E AffDep(a)} 
is as good as the knowledge of AffDep(a). 

We can thus declare two sequences a and b combinatorially isomorphic if 
sgn(AffDep(a)) = sgn(AffDep(b)) and sgn(AfNal (a)) = sgn(AfNal (b) ) .2 We 
will hear a little more about this notion of combinatorial isomorphism in 
Section 9.3 when we discuss order types, and also in the notes to Section 6.2 
in connection with oriented matroids. 

2 It is nontrivial but true that either of these equalities implies the other one. 
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Here we need only one very special case: If g = (91 , . . .  , 9n) is a sequence 
of vectors, t1 , . . .  , tn > 0 are positive real numbers, and g' = (t1g1 , . . .  , tn9n) ,  
then clearly, 

sgn(LinVal (g) )  = sgn(LinVal (g') )  and sgn(LinDep(g) )  = sgn(Lin Dep(g')) , 

and so g and g' are combinatorially isomorphic vector configurations. 

Affine Gale diagrams. We have seen a certain asymmetry of the Gale 
transform: While the sequence a is interpreted affi.nely, as a point sequence, 
its Gale transform needs to be interpreted linearly, as a sequence of vectors 
(with 0 playing a special role) . Could one reduce the dimension of g by 1 and 
pass to an "affine version" of the Gale transform? This is indeed possible, but 
one has to distinguish "positive" and "negative" points in the affine version. 

Let g be the Gale transform of some a, g1 , . . .  , 9n E R n-d-l . Let us 
assume for simplicity that all the 9i are nonzero. We choose a hyperplane h 
not parallel to any of the 9i and not passing through 0, and we project the 
9i centrally from 0 into h, obtaining points Y1 , . . .  , Yn E h f".j R n-d-2 . If Yi 
lies on the same side of 0 as gi , i .e. , if 9i = ti9i with ti > 0, we set ai = +1, 
and call 9i a positive point. For Yi lying on the other side of 0 than 9i we 
let ai = -1 ,  and we call 9i a negative point. Here is an example with the 
2-dimensional Gale transform from the previous drawing: 

91 ' 96 93 ' 94 92 95 
��-----����(}----�-

affine Gale diagran1 

-91 h 

The positive 9i are marked by full circles, the negative ones by empty circles, 
and we have borrowed the (incomplete) yin-yang symbol for marking the 
positions shared by one positive and one negative point. This sequence g of 
positive and negative points in Rn-d-2 , or more formally the pair (g, a) , 
is called an affine Gale diagram of a. It conveys the same combinatorial 
information as g, although we cannot reconstruct a from it up to linear 
isomorphism, as was the case with g. (For this reason, we speak of Gale 
diagram rather than Gale transform.) One has to get used to interpreting 
the positive and negative points properly. If we put 

AffVa l (g ,  a) = { (a1 /(g1 ) ,  . . .  , anf(gn) ) :  f: Rn-d-2 -+ R affine}, 

AffDep(g, a) = {a E Rn : I:� 1 aiaigi = 0, I:� 1 aiai = 0 } ,  
then, as is easily checked, 
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sgn(AffDep(g, a)) = sgn(LinDep(g)) and sgn(AffVa l (g, a)) = sgn(LinVa l (g)) .  

Here is a reinterpretation of Corollary 5.6.3 in terms of the affine Gale dia
gram. 

5.6.4 Proposition (Dictionary of affine Gale diagrams) .  Let a be a 
sequence ofn points in Rd, let g be the Gale transform of a, and assume that 
all the gi are nonzero. Let (g, a) be an affine Gale diagram of a in Rn-d-2 •  

(i) A subsequence a1 lies in a common facet of conv(a) if and only if 
conv ( {g i : j ¢ I,  a i = 1 }) n conv( {g i : j ¢ I,  a j = -1 }) # 0. 

(ii) The points of a are in convex position if and only if for every oriented 
hyperplane in Rn-d-2 , the number of positive points of g on its positive 
side plus the number of negative points of g on its negative side is at 
least 2.  D 

So far we have assumed that Yi :/=- 0 for all i .  This need not hold in general, 
and points Yi = 0 need a special treatment in the affine Gale diagram: They 
are called the special points, and for a full specification of the affine Gale 
diagram, we draw the positive and negative points and give the number 
of special points. It is easy to find out how the presence of special points 
influences the conditions in the previous proposition. 

A nonrational polytope. Configurations of k+4 points in R k have planar 
affine Gale diagrams. This leads to many interesting constructions of k-dimen
sional convex polytopes with k+4 vertices. Here we give just one example: an 
8-dimensional polytope with 12  vertices that cannot be realized with rational 
coordinates; that is, no polytope with ison1orphic face lattice has all vertex 
coordinates rational. First one has to become convinced that if 9 distinct 
points are placed in R 2 so that they are not all collinear and there are collinear 
triples and 4-tuples as is marked by segments in the left drawing below, 

then not all coordinates of the points can be rational. We omit the proof, 
which has little to do with the Gale transform or convex polytopes. 

Next, we declare some points negative, some positive, and some both 
positive and negative, as in the right drawing, obtaining 12  points. These 
points have a chance of being an affine Gale diagram of the vertex set of 
an 8-dimensional convex polytope, since condition (ii) in Proposition 5.6.4 
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is satisfied. How do we construct such a polytope? For 9i = (Xi , Yi ) ,  we put 
9i = (tiXi, tiYi ,  ti) E R3 , choosing ti > 0 for positive 9i and ti < 0 for negative 
ti , in such a way that 'L:J2 1 9i = 0. Then the Gale transform of g is the vertex 
set of the desired convex polytope P (see Observation 5 .6 .1 (ii) and (iii) ) . 

Let P' be some convex polytope with an isomorphic face lattice and let 
(g' , a') be an affine Gale diagram of its vertex set a'. We have, for exam
ple, g� = g�0 because {a� : i =/= 7, 10} form a facet of P', and similarly for 
the other point coincidences. The triple g� , g�2 , g� (where g� is positive) is 
collinear, because {a�: i =!= 1 ,  8, 12} is a facet. In this way, we see that the 
point coincidences and collinearities are preserved, and so no affine Gale dia
gram of P' can have all coordinates rational. At the same time, by checking 
the definition, we see that a point sequence with rational coordinates has at 
least one affine Gale diagram with rational coordinates. Thus, P cannot be 
realized with rational coordinates. 

Bibliography and remarks. Gale diagrams and the Gale transforn1 
emerged from the work of Gale (Gal56] and were further developed 
by Perles, as is documented in [Grii67] (also see, e.g. , [MS71] ) . Our 
exposition essentially follows Ziegler's book [Zie94] (his treatment is 
combined with an introduction to oriented matroids) . We aim at con
creteness, and so, for example, the Gale transform is defined using the 
orthogonal complement , although it might be mathematically more 
elegant to work with the annihilator in the dual space (Rn )* ,  and so 
on. The construction of an irrational 8-polytope is due to Perles. 

In Section 1 1 .3 (Exercise 6) we mention an interpretation of the 
h-vector of a simplicial convex polytope via the Gale transform. Using 
this correspondence, Wagner and Welzl [WW01] found an interesting 
continuous analogue of the upper bound theorem, which speaks about 
probability distributions in Rd. For other recent applications of a sim
ilar correspondence see the notes to Section 1 1 .3. 

Exercises 

1 .  Let B be a k  x n matrix of rank k < n. Check that for any k x n matrix B' 
whose rows generate the san1e vector space as the rows of B, there exists 
a nonsingular k x k matrix T with B' = T B.  Infer that if g = (g1 , . . .  , 9n) 
is a Gale transform of a, then any other Gale transform of a has the form 
(Tg1 , Tg2 , . . .  , Tgn) for a nonsingular square matrix T. � 

2. Let a be a sequence of d+1 affinely independent points in Rd. What is 
the Gale transform of a, and what are AfNal (a) and AffDep(a)? ITJ 

3. Let g be a Gale transform of the vertex set of a convex polytope P c R d, 
and let h be obtained from g by appending the zero vector. Check that 
h is again a Gale transform of a convex independent set . What is the 
relation of this set to P? [}] 
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4. Using affine Gale diagrams, count the number of classes of combinatorial 
equivalence of d-dimensional convex polytopes with d+2 vertices. How 
many of them are simple, and how many simplicial? 0 

5. Verify the characterization in Observation 5 .6. l ( ii) of sequences g in 
Rn-d-l that are Gale transforms of some a, and check that if the Gale 
transform is applied twice to such g,  we obtain g up to linear isomor
phism. 0 

6. Let a =  (a1 , . . .  , an) be a point sequence in Rd whose affine hull is all of 
Rd, and let P = conv{ a1 , . . .  , an } · 
Given AfNal (a), explain how we can determine which of the ai are the 
vertices of P and how we reconstruct the face lattice of P. � 

7. Let a be a sequence of n vectors in Rd+l that spans Rd+l . 
(a) Find dim LinVa l (a) and dim LinDep(a) . � 
(b) Check that LinVa l (a) is the orthogonal complement of LinDep(a) . � 

8. Prove Lemma 5.6.2. 0 
9. Verify Corollary 5.6.3. 0 

5. 7 Voronoi Diagrams 

Consider a finite set P c Rd. For each point p E P, we define a region reg (p) , 
which is the "sphere of influence" of the point p: It consists of the points 
x E R d for which p is the closest point among the points of P. Formally, 

reg (p) = { x E R d : dist ( x, p) < dist ( x, q) for all q E P} , 

where dist(x, y) denotes the Euclidean distance of the points x and y. The 
Voronoi diagram of P is the set of all regions reg (p) for p E P. (More precisely, 
it is the cell complex induced by these regions; that is, every intersection of 
a subset of the regions is a face of the Voronoi diagram. ) Here an example of 
the Voronoi diagram of a point set in the plane: 

(Of course, the Voronoi diagram is clipped by a rectangle so that it fits into a 
finite page. ) The points of P are traditionally called the sites in the context 
of Voronoi diagrams. 
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5.7.1 Observation. Each region reg(p) is a convex polyhedron with at most 
IP I-1 fa.cets. 

Indeed, 
reg(p) = n {x: dist(x, p) < dist (x, q) }  

qEP\{p} 
is an intersection of IPI - 1 half-spaces. 0 

For d = 2, a Voronoi diagram of n points is a subdivision of the plane 
into n convex polygons (some of them are unbounded) .  It can be regarded as 
a drawing of a planar graph (with one vertex at the infinity, say) , and hence 
it has a linear combinatorial complexity: n regions, 0( n) vertices, and 0( n) 
edges. 

In the literature the Voronoi diagram also appears under various other 
names, such as the Dirichlet tessellation. 

Examples of applications. Voronoi diagrams have been reinvented and 
used in various branches of science. Sometimes the connections are surprising. 
For instance, in archaeology, Voronoi diagrams help study cultural influences. 
Here we mention a few applications, mostly algorithmic. 

• ( "Post office problem" or nearest neighbor searching) Given a point set 
P in the plane, we want to construct a data structure that finds the point 
of P nearest to a given query point x as quickly as possible. This prob
lem arises directly in some practical situations or, more significantly, as 
a subroutine in more complicated problems. The query can be answered 
by determining the region of the Voronoi diagram of P containing x. For 
this problem (point location in a subdivision of the plane) ,  efficient data 
structures are known; see, e.g., the book [dBvKOS97] or other introduc
tory texts on computational geometry. 

• (Robot motion planning) Consider a disk-shaped robot in the plane. It 
should pass among a set P of point obstacles, getting from a given start 
position to a given target position and touching none of the obstacles. 

If such a passage is possible at all, the robot can always walk along 
the edges of the Voronoi diagram of P, except for the initial and final 



5. 7 Voronoi Diagrams 1 17  

segments of the tour. This allows one to reduce the robot motion problem 
to a graph search problem: We define a subgraph of the Voronoi diagram 
consisting of the edges that are passable for the robot. 

• (A nice triangulation: the Delaunay triangulation) Let P c R2 be a finite 
point set. In many applications one needs to construct a triangulation of 
P (that is, to subdivide conv(P) into triangles with vertices at the points 
of P) in such a way that the triangles are not too skinny. Of course, for 
some sets, some skinny triangles are necessary, but we want to avoid 
them as much as possible. One particular triangulation that is usually 
very good, and provably optimal with respect to several natural criteria, 
is obtained as the dual graph to the Voronoi diagram of P. Two points 
of P are connected by an edge if and only if their Voronoi regions share 
an edge. 

If no 4 points of P lie on a common circle then this indeed defines a 
triangulation, called the Delaunay triangulation3 of P; see Exercise 5. 
The definition extends to points sets in Rd in a straightforward manner. 

• (Interpolation) Suppose that 1: R2 � R is some smooth function whose 
values are known to us only at the points of a finite set P c R2 • We 
would like to interpolate I over the whole polygon conv(P) . Of course, 
we cannot really tell what I looks like outside P, but still we want a 
reasonable interpolation rule that provides a nice smooth function with 
the given values at P. Multidimensional interpolation is an extensive 
semiempirical discipline, which we do not seriously consider here; we 
explain only one elegant method based on Voronoi diagrams. To compute 
the interpolated value at a point x E conv(P), we construct the Voronoi 
diagram of P, and we overlay it with the Voronoi diagram of P U {x}. 

3 Being a transcription from Russian, the spelling of Delaunay's name varies in 
the literature. For example, in crystallography literature he is usually spelled 
"Delane." 
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The region of the new point x cuts off portions of the regions of some of 
the old points. Let wp be the area of the part of reg (p) in the Voronoi 
diagram of P that belongs to reg ( x) after inserting x. The interpolated 
value f(x) is 

f(x) = L 2:: 
Wp 

w 
f (p) . 

pEP qE P  q 

An analogous method can be used in higher dimensions, too. 

Relation of Voronoi diagrams to convex polyhedra. We now show that 
Voronoi diagrams in Rd correspond to certain convex polyhedra in Rd+I . 

First we define the unit paraboloid in R d+ 1 :  

U { Rd+ 1 . 2 2 2 } = x E . xd+l = x1 + x2 + · · · + xd . 

For d � 1 ,  U is a parabola in the plane. 
In the sequel, let us imagine the space Rd as the hyperplane xd+l = 0 in 

R d+ 1 . For a point p = (PI , . . .  , Pd) E R d, let e(p) denote the hyperplane in 
Rd+l with equation 

Geometrically, e(p) is the hyperplane tangent to the paraboloid U at the point 
u(p) = (PI , P2 , . . .  , pd, PI + · · · + p�) lying vertically above p. It is perhaps 
easier to remember this geornetric definition of e(p) and derive its equation 
by differentiation when needed. On the other hand, in the forthcoming proof 
we start out from the equation of e(p) ,  and as a by-product, we will see that 
e(p) is the tangent to U at u(p) as claimed. 

5. 7.2 Proposition. Let p, x E R d be points and let u( x) be the point of U 
vertically above x. Then u(x) lies above the hyperplane e(p) or on it, and the 
vertical distance of u(x) to e(p) is 82 , where 8 = dist(x, p) .  

u 

e(p) 

u(p) 

X 

Proof. We just substitute into the equations of U and of e(p) . The xd+I
coordinate of u(  x) is xi + · · · + x�, while the xd+1-coordinate of the point 
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of e(p) above x is 2p1x1 + · · · + 2pdxd - PI - · · · - p�. The difference is 
(xi - Pt )2 + · · · + (xd - Pd)2 = 62 . D 

Let [ (p) denote the half-space lying above the hyperplane e(p) . Consider 
an n-point set P c Rd. By Proposition 5 .  7. 2, x E reg (p) holds if and only 
if e(p) is vertically closest to U at x among all e(q) , q E P. Here is what we 
have derived: 

5. 7.3 Corollary. The Voronoi diagram of P is the vertical projection of the 
facets of the polyhedron npEP e(p) onto the hyperplane Xd+l = 0 .  0 

Here is an illustration for a planar Voronoi diagrarn: 

5. 7.4 Corollary. The maximum total number of faces of all regions of the 
Voronoi diagram of an n-point set in Rd is O(nfd/21 ) . 

Proof. We know that the combinatorial complexity of the Voronoi diagram 
equals the combinatorial complexity of an H-polyhedron with at most n 
facets in Rd+I .  By intersecting this H-polyhedron with a large simplex we 
can obtain a bounded polytope with at most n+d+2 facets, and we have not 
decreased the number of faces compared to the original H-polyhedron. Then 
the dual version of the asymptotic upper bound theorem (Theorem 5.5.2) 
implies that the total number of faces is O(nfd/21 ) , since L(d+1)/2J = r d/21 . 

0 

The convex polyhedra in Rd+l obtained from Voronoi diagrams in Rd 
by the above construction are rather special, and so a lower bound for the 
combinatorial complexity of convex polytopes cannot be automatically trans
ferred to Voronoi diagrams. But it turns out that the number of vertices of a 
Voronoi diagram on n points in Rd can really be of order nrd/21 (Exercise 2). 

Let us remark that the trick used for transforming Voronoi diagrams 
to convex polyhedra is an example of a more general technique, called lin
earization or Veronese mapping, which will be discussed a little more in 
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Section 10.3. This method sometimes allows us to convert a problem about 
algebraic curves or surfaces of bounded degree to a problem about k-flats in 
a suitable higher-dimensional space. 
The farthest-point Voronoi diagram. The projection of the H-poly
hedron npEP f(p )0P , where ')'0p denotes the half-space Opposite to !, forms 
the farthest-neighbor Voronoi diagram, in which each point p E P is assigned 
the regions of points for which it is the farthest point. It can be shown that 
all nonempty regions of this diagram are unbounded and they correspond 
precisely to the points appearing on the surface of conv(P) . 

Bibliography and remarks. The concept of Voronoi diagrams in
dependently emerged in various fields of science, for example as the 
medial axis transform in biology and physiology, the Wigner-Seitz 
zones in chemistry and physics, the domains of action in crystallo
graphy, and the Thiessen polygons in meteorology and geography. Ap
parently, the earliest documented reference to Voronoi diagrams is a 
picture in the famous Principia Philosopiae by Descartes from 1644 
(that picture actually seems to show a power diagram, a generalization 
of the Voronoi diagram to sites with different strengths of influence). 
Mathematically, Voronoi diagrams were first introduced by Dirichlet 
[Dir50] and by Voronoi [VorOS] for the investigation of quadratic forms. 
For more information on the interesting history and a surprising va
riety of applications we refer to several surveys: Aurenhammer and 
Klein (AKOO] , Aurenhammer [Aur91 ] ,  and the book Okabe, Boots, 
and Sugihara [OBS92] . Every computational geometry textbook also 
has at least a chapter devoted to Voronoi diagrams, and most papers 
on this subject appear in computational geometry. 

The Delaunay triangulation (or, more correctly, the Delaunay tes
sellation, since it need not be a triangulation in general) was first 
considered by Voronoi as the dual to the Voronoi diagram, and later 
by Delaunay [Del34] with the definition given in Exercise 5(b) below. 
The Delaunay triangulation of a planar point set P optimizes sev
eral quality measures among all triangulations of P: It maximizes the 
minimum angle occurring in any triangle, minimizes the maximum 
circumradius of the triangles, maximizes the sum of inradii, and so 
on (see [AKOO] for references) .  Such optimality properties can usually 
be proved by local flipping. We consider an arbitrary triangulation T 
of a given finite P c R2 (say with no 4 cocircular points) . If there 
is a 4-point Q C P such that conv(Q) is a quadrilateral triangulated 
by two triangles of T but in such a way that these two triangles are 
not the Delaunay triangulation of Q, then the diagonal of Q can be 
flipped: 
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not locally 
Delaunay 

locally 
Delaunay 

It can be shown that every sequence of such local flips is finite and 
finishes with the Delaunay triangulation of P (Exercise 7) . This pro
cedure has an analogue in higher dimensions, where it gives a simple 
and practically successful algorithm for computing Delaunay trian
gulations (and Voronoi diagrams) ; see, e.g. , Edelsbrunner and Shah 
[ES96] . 
Generalizations of Voronoi diagrams. The example in the text with 
robot motion planning, as well as other applications, motivates var
ious notions of generalized Voronoi diagrams. First, instead of the 
Euclidean distance, one can take various other distance functions, say 
the fp-metrics. Second, instead of the spheres of influence of points, 
we can consider the spheres of influence of other sites, such as dis
joint polygons (this is what we get if we have a circular robot moving 
amidst polygonal obstacles) . We do not attempt to survey the numer
ous results concerning such generalizations, again referring to [AKOO] . 
Results on the combinatorial complexity of Voronoi diagrams under 
non-Euclidean metrics and/or for nonpoint sites will be mentioned in 
the notes to Section 7. 7. 

In another, very general, approach to Voronoi diagrams, one takes 
the Voronoi diagram induced by two objects as a primitive notion. So 
for every two objects we are given a partition of space into two regions 
separated by a bisector, and Voronoi diagrams for more than two ob
jects are built using the 2-partitions for all pairs. If one postulates a 
few geometric properties of the bisectors, one gets a reasonable theory 
of Voronoi diagrams {the so-called abstract Voronoi diagrams) , includ
ing efficient algorithms. So, for example, we do not even need a notion 
of distance at this level of generality. Abstract Voronoi diagrams (in 
the plane) were suggested by Klein [Kle89] . 

A geometrically significant generalization of the Euclidean Voronoi 
diagram is the power diagram: Each point p E P is assigned a real 
weight w(p) , and reg(P) = {x E Rd: l l x - Pl l 2 - w(p) < l lx - ql l 2 -
w(q) for all q E P}. While Voronoi diagrams in Rd are projections 
of certain convex polyhedra in Rd+l ,  the projection into Rd of every 
intersection of finitely many nonvertical upper half-spaces in Rd+l is 
a power diagram. Moreover, a hyperplane section of a power diagram 
is again a power diagram. Several other generalized Voronoi diagrams 
in Rd (for example, with multiplicative weights of the sites) can be 
obtained by intersecting a suitable power diagram in Rd+l with a 
simple surface and projecting into Rd, which yields fast algorithms; 
see Aurenhammer and Imai [AI88] . 

121 
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Another generalization are higher-order Voronoi diagrams. The 
kth-order Voronoi diagram of a finite point set P assigns to each k
point T C P the region reg(T) consisting of all x E Rd for which the 
points of T are the k nearest neighbors of x in P. The usual Voronoi 
diagram arises for k = 1 ,  and the farthest-point Voronoi diagram for 
k = IP I  - 1 .  The kth-order Voronoi diagram of P C  Rd is the projec
tion of the kth level facets in the arrangement of the hyperplanes e(p) , 
p E P (see Chapter 6 for these notions). Lee [Lee82] proved that the 
kth-order Voronoi diagram of n points in the plane has combinato
rial complexity O(k(n-k)) ;  this is better than the maximum possible 
complexity of level k in an arrangement of n arbitrary planes in R3 . 
Applications of Voronoi diagrams are too numerous to be listed here, 
and we add only a few remarks to those already mentioned in the 
text. Using point location in Voronoi diagrams as in the post office 
problem, several basic computational problems in the plane can be 
solved efficiently, such as finding the closest pair in a point set or the 
largest disk contained in a given polygon and not containing any of 
the given points. 

Besides providing good triangulations, the Delaunay triangulation 
contains several other interesting graphs as subgraphs, such as a min
inlum spanning tree of a given point set (Exercise 6) .  In the plane, 
this leads to an 0 ( n log n) algorithm for the minimum spanning tree. 
In R 3 , subcomplexes of the Delaunay triangulation, the so-called a
complexes, have been successfully used in molecular modeling (see, 
e.g., Edelsbrunner [Ede98] ) ;  they allow one to quickly answer ques
tions such as, "how many tunnels and voids are there in the given 
molecule?" 

Robot motion planning using Voronoi diagrams (or, more gener
ally, the retraction approach, where the whole free space for the robot 
is replaced by some suitable low-dimensional skeleton) was first con-

� , 

sidered by O'Dunlaig and Yap [OY85] . Algorithn1ic motion planning 
is an extensive discipline with innumerable variants of the problem. 
For a brief introduction from the computational-geometric point of 
view see, e.g., [dBvKOS97] ; among several monographs we mention 
Laumond and Overmars [L096] and Latombe [Lat91] . 

The spatial interpolation of functions using Voronoi diagrams was 
considered by Sibson (Sib81] .  

Exercises 

1 .  Prove that the region reg(p) of a point p in the Voronoi diagram of a 
finite point set P c R d is unbounded if and only if p lies on the surface 
of conv(P). !}] 
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2. (a) Show that the Voronoi diagram of the 2n-point set { ( � ,  0, 0): i = 
1 ,  2, . . .  , n} U { (0, 1 , * ) :  j = 1 ,  2, . . .  , n} in R3 has O(n2 ) vertices. 0 
(b) Let d = 2k+ 1 be odd, let e1 , . . .  , ed be vectors of the standard 
orthonormal basis in R d, and let e0 stand for the zero vector. For 
i = 0, 1 ,  . . .  , k and j = 1 ,  2, . . .  , n, let Pi,j = e2i + �e2i+l · Prove that 
for every choice of j0 , j1 , . . .  , jk E { 1 , 2, . . . , n} ,  there is a point in R d for 
which the nearest points among the P·i,j are exactly PO,jo , Pt,j1 , • • •  , Pk,jk . 
Conclude that the Voronoi diagram of the Pi,j has combinatorial com
plexity O(nk ) = O(nrd/21 ) . 0 

3. (Voronoi diagram of flats) Let c1 , . . . , Ed- I be small distinct positive 
numbers and for i = 1 ,  2, . . .  , d-1 and j = 1 ,  2, . . .  , n, let Fi,j be the 
(d-2)-fiat {x E Rd: xi = j, xd = ci } ·  For every choice of it , j2 , . . .  , Jd-1 E 

{ 1 ,  2, . . .  , n } ,  find a point in Rd for which the nearest sites (under the 
Euclidean distance) among the Fi,j are exactly Ft,j1 , F2,j2 , • • •  , Fd-l ,)d-l . 
Conclude that the Voronoi diagram of the Fi,j has combinatorial com
plexity O(nd-l ) .  0 
This example is from Aronov [AroOO] . 

4. For a finite point set in the plane, define the farthest-point Voronoi dia
gram as indicated in the text, verify the claimed correspondence with a 
convex polyhedron in R 3 ,  and prove that all nonempty regions are un
bounded. m 

5. (Delaunay triangulation) Let P be a finite point set in the plane with no 
3 points collinear and no 4 points co circular. 
(a) Prove that the dual graph of the Voronoi diagram of P, where two 
points p, q E P are connected by a straight edge if and only if the bound
aries of reg(p) and reg(q) share a segment, is a plane graph where the 
outer face is the complement of conv( P) and every inner face is a trian
gle. � 
(b) Define a graph on P as follows: Two points p and q are connected 
by an edge if and only if there exists a circula\ disk with both p and q 
on the boundary and with no point of P in its interior. Prove that this 
graph is the same as in (a) , and so we have an alternative definition of 
the Delaunay triangulation. � 

6. (Delaunay triangulation and minimum spanning tree) Let P C R 2 be a 
finite point set with no 3 points collinear and no 4 cocircular. Let T be a 
spanning tree of minimum total edge length in the complete graph with 
the vertex set P, where the length of an edge is just its Euclidean length. 
Prove that all edges of T are also edges of the Delaunay triangulation of 
P. 0 

7. (Delaunay triangulation by local flipping) Let P C  R2 be an n-point set 
with no 3 points collinear and no 4 cocircular. Let T be an arbitrary 
triangulation of conv( P).  Suppose that triangulations Ti ,  T2 ,  . . . are ob
tained from T by successive local flips as described in the notes above (in 
each step, we select a convex quadrilateral in the current triangulation 
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partitioned into two triangles in a way that is not the Delaunay triangu
lation of the four vertices and we flip the diagonal of the quadrilateral) .  
(a) Prove that the sequence of triangulations is always finite (and give 
as good an estimate for its maximum length as you can). 0 
(b) Show that if no local flipping is possible, then the current triangula
tion is the Delaunay triangulation of P. [!] 

8. Consider a finite set of disjoint segments in the plane. What types of 
curves may bound the regions in their Voronoi diagram? The region of a 
given segment is the set of points for which this segment is a closest one. 
lii 

9. Let A and B be two finite point sets in the plane. Choose a0 E A arbi
trarily. Having defined a0 , . . .  , ai and b1 , . . .  , bi-1 ,  define bi+ 1 as a point 
of B \ {b1 , . . .  , bi } nearest to ai, and ai+1 as a point of A \  { a0, . . •  , ai} 
nearest to bi+ 1 ·  Continue until one of the sets becomes empty. Prove that 
at least one of the pairs (ai, bi+I ) ,  (bi+I ,  ai+ I ) ,  i = 0, 1 ,  2, . . .  , realizes the 
shortest distance between a point of A and a point of B. (This was used 
by Eppstein (Epp95] in some dynamical geometric algorithms. )  0 

10. (a) Let C be any circle in the plane x3 = 0 (in R3) .  Show that there exists 
a half-space h such that C is the vertical projection of the set h n U onto 
X3 = 0,  where U = {x E R3: x3 = xi +  x�} is the unit paraboloid. ITl 
(b) Consider n arbitrary circular disks K1 , . • .  , Kn in the plane. Show that 
there exist only 0 ( n) intersections of their boundaries that lie inside no 
other Ki (this means that the boundary of the union of the Ki consists 
of 0 ( n) circular arcs). m 

1 1 .  Define a "spherical polytope" as an intersection of n balls in R 3 (such 
an object has facets, edges, and vertices similar to an ordinary convex 
polytope). 
(a) Show that any such spherical polytope in R3 has O(n2) faces. rrou 
may assume that the spheres are in general position. [!] 
(b) Find an example of an intersection of n balls having quadratically 
many vertices. m 
(c) Show that the intersection of n unit balls has 0( n) complexity only. 
[!] 
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Number of Faces in 

Arrangements 

Arrangements of lines in the plane and their higher-dimensional generaliza
tion, arrangements of hyperplanes in Rd, are a basic geometric structure 
whose significance is comparable to that of convex polytopes. In fact, ar
rangements and convex polytopes are quite closely related: A cell in a hyper
plane arrangement is a convex polyhedron, and conversely, each hyperplane 
arrangement in Rd corresponds canonically to a convex polytope in Rd+l 
of a special type, the so-called zonotope. But as is often the case with dif
ferent representations of the same mathematical structure, convex polytopes 
and arrangements of hyperplanes emphasize different aspects of the structure 
and lead to different questions. 

Whenever we have a problem involving a finite point set in Rd and parti
tions of the set by hyperplanes, we can use geometric duality, and we obtain 
a problem concerning a hyperplane arrangement. Arrangements appear in 
many other contexts as well; for example, some models of molecules give rise 
to arrangements of spheres in R3 , and automatic planning of the motion of 
a robot among obstacles involves, implicitly or explicitly, arrangements of 
surfaces in higher-dimensional spaces. 

Arrangements of hyperplanes have been investigated for a long time from 
various points of view. In several classical areas of mathematics one is mainly 
interested in topological and algebraic properties of the whole arrangement. 
Hyperplane arrangements are related to such marvelous objects as Lie alge
bras, root systems, and Coxeter groups. In the theory of oriented matroids 
one studies the systems of sign vectors associated to hyperplane arrangements 
in an abstract axiomatic setting. 

We are going to concentrate on estimating the combinatorial complexity 
(number of faces) in arrangements and neglect all the other directions. 
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General probabilistic techniques for bounding the complexity of geomet
ric configurations constitute the second main theme of this chapter. These 
methods have been successful in attacking many more problems than can 
even be mentioned in this book. We begin with a simple but powerful sanl
pling argument in Section 6.3 (somewhat resembling the proof of the crossing 
number theorem), add more tricks in Section 6.4, and finish with quite a so
phisticated method, demonstrated on a construction of optimal ; -cuttings, 
in Section 6. 5 .  

6.1 Arrangements of Hyperplanes 

We recall from Section 4 . 1  that for a finite set H of lines in the plane, the 
arrangement of H is a partition of the plane into relatively open convex 
subsets, the faces of the arrangen1ent. In this particular case, the faces are 
the vertices ( 0-faces) , the edges ( 1-faces) ,  and the cells ( 2-faces) . 1 

An arrangement of a finite set H of hyperplanes in R d is again a partition 
of Rd into relatively open convex faces. Their dimensions are 0 through d. As 
in the plane, the 0-faces are called vertices, the 1-faces edges, and the d-faces 
cells. Sometimes the ( d-1 )-faces are referred to as facets. 

The cells are the connected components of R d \ U H.  To obtain the facets, 
we consider the ( d-1 )-dimensional arrangements induced in the hyperplanes 
of H by their intersections with the other hyperplanes. That is, for each 
h E  H we take the connected components of h \ uh'EH: h'#h h'. To obtain 
k-faces, we consider every possible k-flat L defined as the intersection of sorne 
d-k hyperplanes of H. The k-faces of the arrangement lying within L are 
the connected components of L \ U(H \ HL ) ,  where HL :::= {h E H: L C h}. 
Remark on sign vectors. A face of the arrangement of H can be described 
by its sign vector. First we need to fix the orientation of each hyperplane 
h E H. Each h E H partitions Rd into three regions: h itself and the two 
open half-spaces determined by it. We choose one of these open half-spaces as 
positive and denote it by hffi, and we let the other one be negative, denoted 
by h8. 

Let F be a face of the arrangement of H. We define the sign vector of 
F (with respect to the chosen orientations of the hyperplanes) as a( F) 
(ah : h E  H),  where 

O"h :::= 
+ 1 if F c h tiJ ,  
0 if F c h, 
-1 if F C he . 

The sign vector deterrnines the face F, since we have F :::= nhEH hall ' where 
h 0 = h, h 1 = h ffi ,  and h -1  :::= he .  The following drawing shows the sign 

1 This terminology is not unified in the literature. What we call faces are sometimes 
referred to as cells ( 0-cells, 1-cells, and 2-cells) . 
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vectors of the marked faces in a line arrangement. Only the signs are shown, 
and the positive half-planes lie above their lines. 

Of course, not all possible sign vectors correspond to nonempty faces. For n 
lines, there are 3n sign vectors but only O (n2 ) faces, as we will derive below. 

Counting the cells in a hyperplane arrangement. We want to count 
the maximum number of faces in an arrangement of n hyperplanes in Rd. As 
we will see, this is rnuch sirnpler than the sirnilar task for convex polytopes! 

If a set H of hyperplanes is in general position, which means that the 
intersection of every k hyperplanes is ( d-k )-dimensional, k = 2, 3, . . .  , d+ 1 ,  
the arrangement of H is called simple. For IH I > d+ 1 it suffices to require that 
every d hyperplanes intersect at a single point and no d+1 have a common 
point. 

Every d-tuple of hyperplanes in a simple arrangement determines exactly 
one vertex, and so a simple arrangement of n hyperplanes has exactly (�) 
vertices. We now calculate the number of cells; it turns out that the order of 
magnitude is also nd for d fixed. 

6.1.1 Proposition. The number of cells (d-faces) in a simple arrangement 
of n hyperplanes in Rd equals 

�d(n) = (�) + (�) + · · · + (�) . (6. 1 )  

First proof. We proceed by induction on the dimension d and the number 
of hyperplanes n. For d =  1 we have a line and n points in it. These divide the 
line into n+ 1 one-dimensional pieces, and forrnula ( 6 .1 )  holds. (The forrnula 
is also correct for n = 0 and all d > 1 ,  since the whole space, with no 
hyperplanes, is a single cell. ) 

Now suppose that we are in dimension d, we have n-1  hyperplanes, and 
we insert another one. Since we assume general position, the n-1  previous 
hyperplanes divide the newly inserted hyperplane h into <I> d- l  ( n-1 ) cells by 
the inductive hypothesis. Each such ( d-1 )-dimensional cell within h parti
tions one d-dimensional cell into exactly two new cells. The total increase in 
the number of cells caused by inserting h is thus <I> d-l ( n- 1 ) , and so 
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Together with the initial conditions (for d = 1 and for n = 0) , this recurrence 
determines all values of <I> ,  and so it remains to check that formula (6.1) 
satisfies the recurrence. We have 

<l>d (n - 1 ) + <l>d- t (n - 1) = (no 1) + [ (n�l) + (no 1) ] 
+ ( (n;-1) + (nll) ] + . . .  + [ (nd 

1) + (�=D] 
= (no 1 )  + (�) + (�) + . .

. 

+ (�) = <l>d(n). 

0 

Second proof. This proof looks simpler, but a complete rigorous presenta
tion is perhaps somewhat more demanding. 

We proceed by induction on d, the case d =  0 being trivial. Let H be a set 
of n hyperplanes in R d in general position; in particular, we assume that no 
hyperplane of H is horizontal and no two vertices of the arrangement have 
the same vertical level ( xd-coordinate) . 

Let g be an auxiliary horizontal hyperplane lying below all the vertices. 
A cell of the arrangement of H either is bounded from below, and in this 
ca..'5e it ha..'5 a unique lowest vertex, or is not bounded from below, and then it 
intersects g. The number of cells of the former type is the same as the number 
of vertices, which is (�) . The cells of the I at ter type correspond to the cells 
in the (d-1 )-dimensional arrangement induced within g by the hyperplanes 
of H, and their number is thus <l> d-1 ( n) .  0 

What is the number of faces of the intermediate dimensions 1 ,  2, . . .  , d-1 
in a simple arrangement of n hyperplanes? This is not difficult to calculate 
using Proposition 6 . 1 . 1  (Exercise 1 ) ; the main conclusion is that the total 
number of faces is 0 ( n d) for a fixed d. 

What about nonsimple arrangements? It turns out that a simple arrange
ment of n hyperplanes maximizes the number of faces of each dimension 
among arrangements of n hyperplanes. This can be verified by a perturbation 
argument, which is considerably simpler than the one for convex polytopes 
(Lemma 5.5.4) , and which we ornit. 

Bibliography and remarks. The paper of Steiner [Ste26] from 1826 
gives formulas for the number of faces in arrangements of lines, circles, 
planes, and spheres. Of course, his results have been extended in many 
ways since then (see, e.g. , Zaslavsky [Zas75] ) . An early monograph on 
arrangements is Griinbaum [Grii72] . 

The questions considered in the subsequent sections, such as the 
combinatorial complexity of certain parts of arrangements, have been 
studied mainly in the last twenty years or so. A recent survey dis
cussing a large part of the material of this chapter and providing many 
more facts and references is Agarwal and Sharir [ASOOa] . 
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The algebraic and topological investigation of hyperplane arrange
ments {both in real and complex spaces) is reflected in the book Orlik 
and Terao [OT91] .  Let us remark that in these areas, one usually 
considers central arrangernents of hyperplanes, where all the hyper
planes pass through the origin (and so they are linear subspaces of 
the underlying vector space) . If such a central arrangement in R d is 
intersected with a generic hyperplane not passing through the origin, 
one obtains a ( d-1 )-dimensional "affine" arrangement such as those 
considered by us. The correspondence is bijective, and so these two 
views of arrangements are not very different, but for many results, the 
formulation with central arrangements is more elegant. 

The correspondence of arrangements to zonotopes is thoroughly 
explained in Ziegler [Zie94] . 

Exercises 
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1 .  (a) Count the number of faces of dimensions 1 and 2 for a simple ar
rangement of n planes in R 3 . [!] 
(b) Express the number of k-faces in a simple arrangement of n hyper
planes in Rd. � 

2. Prove that the number of unbounded cells in an arrangement of n hyper
planes in R d is 0( nd-l ) (for a fixed d) . ril 

3. (a) Check that an arrangement of d or fewer hyperplanes in Rd has no 
bounded cell. � 
(b) Prove that an arrangement of d+ 1 hyperplanes in general position in 
R d has exactly one bounded cell. 0 

4. How many d-dimensional cells are there in the arrangement of the (�) 
hyperplanes in Rd with equations {xi = xj } ,  where 1 < i < j < d? 0 

5 .  How many d-dimensional cells are there in the arrangement of the hy
perplanes in Rd with the equations {xi - Xj = 0} ,  {xi - Xj = 1 } ,  and 
{xi - Xj = -1} ,  where 1 < i < j < d? � 

6. (Flags in arrangements) 
(a) Let H be a set of n lines in the plane, and let V be the set of vertices 
of their arrangement. Prove that the number of pairs (v, h) with v E V, 
h E  H, and v E h, i.e. , the number of incidences I(V, H), is bounded by 
0( n2) .  (Note that this is trivially true for simple arrangements.) � 
(b) Prove that the maximum number of d-tuples ( F0 , F1 ,  . . .  , Fd) in an 
arrangement of n hyperplanes in Rd, where Fi is an i-dimensional face 
and Fi-I is contained in the closure of Fi, is O(nd) (d fixed) . Such d
tuples are sometimes called flags of the arrangement . 0 

7. Let P = {p1 , . . .  , Pn } be a point set in the plane. Let us say that points 
x, y have the same view of P if the points of P are visible in the same 
cyclic order from them. If rotating light rays emanate from x and from y ,  

the points of P are lit in the same order by these rays. We assume that 
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neither x nor y is in P and that neither of them can see two points of P 
in occlusion. 
(a) Show that the maximum possible number of points with mutually 
distinct views of P is 0 ( n 4) . 12] 
(b) Show that the bound in (a) cannot be improved in general. [II 

6.2 Arrangements of Other Geollletric Objects 

Arrangements can be defined not only for hyperplanes but also for other 
geometric objects. For example, what is the arrangement of a finite set H of 
segments in the plane? As in the case of lines, it is a decomposition of the 
plane into faces of dimension 0, 1 ,  2: the vertices, the edges, and the cells, 
respectively. The vertices are the intersections of the segments, the edges are 
the portions of the segments after removing the vertices, and the cells ( 2-
faces) are the connected components of R2 \ U H. (Note that the endpoints 
of the segments are not included among the vertices. )  While the cells of line 
arrangements are convex polygons, those in arrangements of segments can be 
complicated regions, even with holes: 

It is almost obvious that the total number of faces of the arrangement of n 
segments is at most O(n2 ) .  What is the maximum number of edges on the 
boundary of a single cell in such an arrangements? This seemingly innocuous 
question is surprisingly difficult, and most of Chapter 7 revolves around it . 

Let us now present the definition of the arrangement for arbitrary sets 
A1 ,  A2 , . . .  , An C Rd. The arrangement is a subdivision of space into con
nected pieces again called the faces. Each face is an inclusion-maximal con
nected set that "crosses no boundary." More precisely, first we define an 
equivalence relation � on Rd: We put x � y whenever x and y lie in the 
same subcollection of the Ai , that is, whenever { i : x E Ai} = { i : y E Ai} ·  
So for each I C {1 ,  2 ,  . . . , n } ,  we have one possible equivalence class, namely 
{x E Rd: x E Ai # i E I} (this is like a field in the Venn diagram of the Ai) ·  
But in typical geometric situations, most of the classes are empty. The faces 
of the arrangement of the Ai are the connected components of the equivalence 
classes. The reader is invited to check that for both hyperplane arrangements 
and arrangements of segments this definition coincides with the earlier ones. 

Arrangements of algebraic surfaces. Quite often one needs to con
sider arrangements of the zero sets of polynomials. Let p1 (x1 , x2 , . . .  , xd) ,  . . .  , 
Pn (x1 , x2 , . . .  , xd) be polynomials with real coefficients in d variables, and let 
Zi = { x E R d: Pi ( x) = 0} be the zero set of Pi . Let D denote the n1aximum 
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of the degrees of the Pi ; when speaking of the arrangement of Z1 , . . .  , Zn , 
one usually assumes that D is bounded by some (small) constant. Without 
a bound on D, even a single Zi can have arbitrarily many connected compo
nents. 

In many cases, the Zi are algebraic surfaces, such as ellipsoids, paraboloids, 
etc., but since we are in the real domain, sometimes they need not look like 
surfaces at all. For example, the zero set of the polynomial p( x1 , x2 ) = xi + x� 
consists of the single point (0, 0) .  Although it is sometimes convenient to think 
of the Zi as surfaces, the results stated below apply to zero sets of arbitrary 
polynomials of bounded degree. 

It is known that if both d and D are considered as constants, the maximum 
number of faces in the arrangement of Z 1 ,  Z2 , . . .  , Zn as above is at most 
O(nd) .  '"fhis is one of the most useful results about arrangements, with many 
surprising applications (a few are outlined below and in the exercises) .  In 
the literature one often finds a (formally weaker) version dealing with sign 
patterns of the polynomials Pi . A vector a E { -1 ,  0, + 1 }  n is called a sign 
pat tern of PI , P2 , . . .  , Pn if there exists an x E R d such that the sign of Pi ( x) 
is a i ,  for all i = 1, 2, . . .  , n. Trivially, the number of sign patterns for any n 
polynomials is at most 3n. For d =  1 ,  it is easy to see that the actual number 
of sign patterns is much smaller, namely at most 2nD + 1 (Exercise 1 ) .  It is 
not so easy to prove, but still true, that there are at most C(d, D) · nd sign 
patterns in dimension d. This result is generally called the Milnor-Thom 
theorem (and it was apparently first proved by Oleinik and Petrovskii, which 
fits the usual pattern in the history of mathe1natics) .  Here is a more precise 
(and more recent) version of this result, where the dependence on D and d 
is specified quite precisely. 

6.2.1 Theorem (Number of sign patterns) .  Let p1 , p2 ,  . . .  , pn be d
variate real polynomials of degree at most D.  The number of faces in the 
arrangement of their zero sets Z1 , Z2 , . . .  , Zn C R d, and consequently the 
11umber of sign ])at terns of P1 , . . .  , Pn as well is at 1110st 2(2D)d �t 0 2i (4nii) . 
For n > d > 2, this expression is bounded by 

Proofs of these results are not included here because they would require 
at least one more chapter. They belong to the field of real algebraic geometry. 
The classical, deep, and extremely extensive field of algebraic geometry mostly 
studies algebraic varieties over algebraically closed fields, such as the complex 
numbers (and the questions of combinatorial complexity in our sense are 
not among its main interests) .  Real algebraic geometry investigates algebraic 
varieties and related concepts over the real numbers or other real-closed fields; 
the presence of ordering and the missing roots of polynomials makes its flavor 
distinctly different . 
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Arrangements of pseudolines. An arrangement of pseudolines is a nat
ural generalization of an arrangement of lines. Lines are replaced by curves, 
but we insist that these curves behave, in a suitable sense, like lines: For ex
ample, no two of them intersect more than once. This kind of generalization 
is quite different from, say, arrangements of planar algebraic curves, and so it 
perhaps does not quite belong to the present section. But besides mentioning 
pseudoline arrangements as a useful and interesting concept, we also need 
them for a (typical) example of application of Theorem 6.2. 1 ,  and so we kill 
two birds with one stone by discussing them here. 

An (affine} arrangement of pseudolines can be defined as the arrangement 
of a finite collection of curves in the plane that satisfy the following conditions: 

(i) Each curve is x-monotone and unbounded in both directions; in other 
words, it intersects each vertical line in exactly one point. 

( ii) Every two of the curves intersect in exactly one point and they cross 
at the intersection. (We do not permit "parallel'' pseudolines, for they 
would complicate the definition unnecessarily. )2 

The curves are called pseudolines, but while "being a line" is an absolute no
tion, "being a pseudoline" makes sense only with respect to a given collection 
of curves. 

Here is an example of a (simple) arrangement of 5 pseudolines: 

5 
4 --�:-----....c:: 
3 ----+---
2 --�----
1 

Much of what we have proved for arrangements of lines is true for arrange
ments of pseudolines as well. This holds for the maximum number of vertices, 
edges, and cells, but also for more sophisticated results like the Szemeredi
Trotter theorem on the maximum number of incidences of m points and n 
lines; these results have proofs that do not use any properties of straight lines 
not shared by pseudolines. 

One might be tempted to say that pseudolines are curves that behave 
topologically like lines, but as we will see below, in at least one sense this is 

2 This "affine" definition is a little artificial, and we use it only because we do 
not want to assume the reader's familiarity with the topology of the projective 
plane. In the literature one usually considers arrangements of pseudolines in 
the projective plane, where the definition is very natural: Each pseudoline is a 
closed curve whose removal does not disconnect the projective plane, and every 
two pseudo lines intersect exactly once (which already implies that they cross at 
the intersection point) .  Moreover, one often adds the condition that the curves 
do not form a single pencil; i.e., not all of them have a common point, since 
otherwise, one would have to exclude the case of a pencil in the formulation of 
many theorems. But here we are not going to study pseudoline arrangements in 
any depth. 
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profoundly wrong. The correct statement is that every two of them behave 
topologically like two lines, but arrangements of pseudolines are more general 
than arrangements of lines. 

We should first point out that there is no problem with the "local" struc
ture of the pseudolines, since each pseudoline arrangement can be redrawn 
equivalently (in a sense defined precisely below) by polygonal lines, as a wiring 
diagram: 

5 

4 

3 

2 
1 

The difference between pseudoline arrangements and line arrangements is of 
a more global nature. 

The arrangement of 5 pseudolines drawn above can be realized by straight 
lines: 

5 
4 

What is the meaning of "realization by straight lines" ? To this end, we need 
a suitable notion of equivalence of two arrangements of pseudolines. There 
are several technically different possibilities; we again use an "affine" notion, 
one that is very simple to state but not the most common. Let H be a col
lection of n pseudo lines. We number the pseudolines 1 ,  2, . . . , n in the order 
in which they appear on the left of the arrangement, say from the bottom 
to the top. For each i, we write down the numbers of the other pseudolines 
in the order they are encountered along the pseudoline i from left to right. 
For a simple arrangement we obtain a permutation 1ri of { 1 ,  2, . . . , n} \ { i }  
for each i .  For the arrangement in the pictures, we have 1r1 = (2, 3 ,  5 ,  4) ,  
1r2 = ( 1 , 5, 4, 3) ,  1r3 = ( 1 , 5, 4, 2) ,  1r4 = (5, 1 , 3, 2) ,  and ?rs = (4, 1 , 3, 2) .  For 
a nonsimple arrangement, some of the 1ri are linear quasiorderings, meaning 
that several consecutive numbers can be chunked together. We call two ar
rangements affinely isomorphic if they yield the same 1r1,  . . •  , 1rn , i.e. , if each 
pseudoline meets the others in the same (quasi)order as the corresponding 
pseudoline in the other arrangement. Two affinely isomorphic pseudoline ar
rangements can be converted one to another by a suitable homeomorphism 
of the plane. 3 
3 The more usual notion of isomorphism of pseudoline arrangements is defined for 

arrangements in the projective plane. The arrangement of H is isomorphic to the 
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An arrangement of pseudolines is stretchable if it is affinely isomorphic to 
an arrangement of straight lines. 4 It turns out that all arrangements of 8 or 
fewer pseudolines are stretchable, but there exists a nonstretchable arrange
ment of 9 pseudolines: 

The proof of nonstretchability is based on the Pappus theorem in projective 
geometry, which states that if 8 straight lines intersect as in the drawing, then 
the points p, q, and r are collinear. By modifying this arrangement suitably, 
one can obtain a simple nonstretchable arrangement of 9 pseudolines as well. 

Next, we show that most of the simple pseudoline arrangements are non
stretchable. The following construction shows that the number of isomor
phism classes of simple arrangements of n pseudolines is at least 2°(n2) :  

9m 

P2 ------�����<���L--�x:�------��---
Pl 

hm 

We have m ::::::: � ,  and the lines ht , . . .  , hm and 91 , . . . , 91n form a regular grid. 
Each of the about � pseudolines Pi in the middle passes near fl(n) vertices of 

arrangement of H' if there exists a homeomorphism <p of the projective plane 
onto itself such that each pseudo line h E H is mapped to a pseudo line <p( h) E 
H' .  For affinely isomorphic arrangements in the affine plane, the corresponding 
arrangements in the projective plane are isomorphic, but the isomorphism in the 
projective plane also allows for mirror reflection and for ''relocating the infinity." 
Combinatorially, the isomorphism in the projective plane can be described using 
the (quasi )orderings 1r1 , . . .  , 1r n as well. Here the 1r t have to agree only up to 
a possible reversal and cyclic shift for each i ,  and also the numbering of the 
pseudo lines by 1 ,  2,  . . .  , n is not canonical. 

We also remark that two arrangements of lines are isomorphic if and only if 
the dual point configurations have the same order type, up to a mirror reflection 
of the whole configuration (order types are discussed in Section 9.3) . 

4 For isomorphism in the projective plane, one gets an equivalent notion of stretch
ability. 
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this grid, and for each such vertex it has a choice of going below it or above. 
This gives 2n( n2 ) possibilities in total. 

Now we use Theorem 6.2 .1  to estimate the number of nonisomorphic sim
ple arrangements of n straight lines. Let the lines be i 1 ,  . . .  , in , where ii 
has the equation y = aix + bi and a1 > a2 > · · · > an . The x-coordinate 
of the intersection fi n f1· is bt -b2 

• To determine the ordering 1ri of the in-a.J -al 
tersections along ii , it suffices to know the ordering of the x-coordinates of 
these intersections, and this can be inferred from the signs of the polynomials 
Pijk (ai , bi , aj , bj , ak, bk) = (bi - bj ) (ak - ai) - (bi - bk) (aj - ai) · So the num
ber of nonisomorphic arrangements of n lines is no larger than the number 
of possible sign patterns of the 0( n3) polynomials Pijk in the 2n variables 
a1 , b1 , . . .  , an , bn , and Theorem 6.2 .1 yields the upper bound of 2°(n logn ) .  For 
large n, this is a negligible fraction of the total number of simple pseudoline 
arrangements. (Similar considerations apply to nonsimple arrangements as 
well.) 

The problem of deciding the stretchability of a given pseudoline arrange
ment has been shown to be algorithmically difficult (at least NP-hard) . One 
can easily encounter this problem when thinking about line arrangements and 
drawing pictures: What we draw by hand are really pseudolines, not lines, 
and even with the help of a ruler it may be almost impossible to decide ex
perimentally whether a given arrangement can really be drawn with straight 
lines. But there are computational methods that can decide stretchability in 
reasonable time at least for moderate numbers of lines. 

Bibliography and remarks. A comprehensive account of real al
gebraic geometry is Bochnak, Coste, and Roy [BCR98] . Among the 
many available introductions to the "classical" algebraic geometry we 
mention the lively book Cox, Little, and O'Shea [CL092) . 

The original bounds on the number of sign patterns, less precise 
than Theorem 6.2.1 but still implying the O(nd) bound for fixed d, 
were given independently by Oleinik and Petrovskii [OP49] , Milnor 
[Mil64] , and Thorn [Tho65} . Warren [War68] proved that the number 
of d-dimensional cells in the arrangement as in Theorem 6.2 .1 ,  and 
consequently the number of sign patterns consisting of ±l 's only, is 
at most 2(2D)d �t 0 2i (7) . The extension to faces of all dimensions, 
and to sign patterns including O's, was obtained by Pollack and Roy 
[PR93] . 

Sometimes we have polynomials in many variables, but we are in
terested only in sign patterns attained at points that satisfy some 
additional algebraic conditions. Such a situation is covered by a re
sult of Basu, Pollack, and Roy [BPR96) : The number of sign patterns 
attained by n polynomials of degree at most D on a k-dimensional 
algebraic variety V C R d, where V can be defined by polynomials of 
degree at most D, is at most (�) O(D)d . 
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While bounding the number of sign patterns of multivariate poly
nomials appears complicated, there is a beautiful short proof of an 
almost tight bound on the number of zero patterns, due to R6nyai, 
Babai, and Ganapathy (RBGOl] , which we now sketch (in the sim
plest form, giving a slightly suboptimal result) .  A vector ( E {0, l}n is 
a zero pattern of d-variate polynomials p1 ,  . . .  , Pn with coefficients in a 
field F if there exists an x = x( () E pd with Pi ( x) = 0 exactly for the i 
with (i = 0. We show that if all the Pi have degree at most D, then the 
number of zero patterns cannot exceed ( D�+d) . For each zero pattern 
(, let Qc;, be the polynomial lli: (�#O Pi · We have deg Qc;, < Dn. Let us 
consider the qc;, as elements of the vector space L of all d-variate poly
nomials over F of degree at most Dn. Using the basis of L consisting 
of all monomials of degree at most Dn, we obtain dim L < ( Dr:z+d) . It 
remains to verify that the qc;, are linearly independent (assuming that 
no Pi is identically 0). Suppose that E< o:c;,qc;, = 0 with o:< E F not all 
0. Choose a zero pattern � with o:e =I= 0 and with the largest possible 
number of O's, and substitute x (�) into Ec;, o:c;,Q( ·  This yields o:e = 0, 
a contradiction. 

Pseudoline arrangements. The founding paper is Levi [Lev26] , where, 
among others, the nonstretchable arrangement of 9 lines drawn above 
was presented. A concise survey was written by Goodman [Goo97] . 

Pseudoline arrangements, besides being very natural, have also 
turned out to be a fruitful generalization of line arrangements. Some 
problems concerning line arrangements or point configurations were 
first solved only in the more general setting of pseudoline arrange
ments, and certain algorithms for line arrangements, the so-called 
topological sweep methods, use an auxiliary pseudoline to speed up 
the computation; see [Goo97] . 

Infinite families of pseudolines have been considered as well, and 
even topological planes, which are analogues of the projective plane 
but made of pseudolines. It is known that every finite configuration 
of pseudolines can be extended to a topological plane, and there are 
uncountably many distinct topological planes; see Goodman, Pollack, 
Wenger, and Zamfirescu [GPWZ94] . 

Oriented matroids. The possibility of representing each pseudoline 
arrangement by a wiring diagram makes it clear that a pseudoline ar
rangement can also be considered as a purely combinatorial object. 
The appropriate combinatorial counterpart of a pseudoline arrange
ment is called an oriented matroid of rank 3. More generally, similar to 
arrangements of pseudolines, one can define arrangements of pseudo
hyperplanes in Rd, and these are combinatorially captured by oriented 
matroids of rank d+l .  Here the rank is one higher than the space di
mension, because an oriented matroid of rank d is usually viewed as a 
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combinatorial abstraction of a central arrangement of hyperplanes in 
Rd (with all hyperplanes passing through 0). 

There are several different but equivalent definitions of an oriented 
matroid. We present a definition in the so-called covector form. An 
oriented matroid is a set V* C { - 1 ,  0, 1 }n that is symmetric ( v E V* 
implies -v E V* ) ,  contains the zero vector, and satisfies the following 
two more complicated conditions: 

• (Closed under composition) If u, v E V* , then u o v E V* , where 
( U 0 V) i = Ui if Ui =/= 0 and ( U 0 V) i = Vi if Ui = 0. 

• {Admits elimination) If u, v E V* and j E S( u, v) = { i: ui == -vi i= 
0}, then there exists w E V* such that Wj = 0 and wi = (u o v)i for 
all i tt  S(u, v). 

The rank of an oriented matroid V* is the largest r such that there is 
an increasing chain Vt -< v2 -< · · · -< Vr, vi E V* , where u -< v means 
Ui -< Vi for all i and where 0 -< 1 and 0 -< - 1 . At first sight, all this 
may look quite mysterious, but it becomes much clearer if one thinks 
of a basic example, where V* is the set of sign vectors of all faces of a 
central arrangement of hyperplanes in Rd. 

It turns out that every oriented matroid of rank 3 corresponds to 
an arrangement of pseudo lines. More generally, Lawrence 's represen
tation theorem asserts that every oriented matroid of rank d comes 
from some central arrangement of pseudo hyperplanes in R d, and so 
the purely combinatorial notion of oriented matroid corresponds, es
sentially uniquely, to the topological notion of a (central) arrangement 
of pseudohyperplanes. 5 
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Oriented matroids are also naturally obtained from configurations 
of points or vectors. In the notation of Section 5.6 (Gale transform),  if 
a is a sequence of n vectors in Rr, then both the sets sgn(LinVa l (  a) )  
and sgn(LinDep(a) ) are oriented matroids in the sense of the above 
definition. The first one has rank r, and the second, rank n-r. 

We are not going to say much more about oriented matroids, re
ferring to Ziegler [Zie94) for a quick introduction and to Bjorner, Las 
Vergnas, Sturmfels, White, and Ziegler [BVS+99) for a comprehensive 
account. 

Stretchability. The following results illustrate the surprising difficulty 
of the stretchability problem for pseudoline arrangements. They are 
analogous to the statements about realizability of 4-dimensional con
vex polytopes mentioned in Section 5.3, and they were actually found 
much earlier. 

5 The correspondence need not really be one-to-one. For example, the oriented 
matroids of two projectively isomorphic pseudoline arrangements agree only up 
to reorientation. 
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Certain (simple) stretchable arrangements of n pseudo lines require 
coefficients with 2n( n) digits in the equations of the lines, in every 
straight-line realization (Goodman, Pollack, and Sturmfels [GPS90] ) .  
Deciding the stretchability of a given pseudoline arrangement is NP
hard (Shor [Sho91]  has a relatively simple proof) , and in fact, it is 
polynomially equivalent to the problem of solvability of a systerr1 of 
polynomial inequalities with integer coefficients. This follows from re
sults of Mnev, published in Russian in 1985 (proofs were only sketched; 
see (Mne89] for an English version) .  This work went unnoticed in the 
West for some time, and so some of the results were rediscovered by 
other authors. 

Although detailed proofs of such theorems are technically demand
ing, the principle is rather simple. Given two real numbers, suitably 
represented by geometric quantities, one can produce their sum and 
their product by classical geometric constructions by ruler. (Since ruler 
constructions are invariant under projective transformations, the num
bers are represented as cross-ratios . )  By composing such constructions, 
one can express the solvability of p(x1 ,  . • .  , Xn) = 0, for a given n
variate polynomial p with integer coefficients, by the stretchability of a 
suitable arrangement in the projective plane. Dealing with inequalities 
and passing to simple arrangements is somewhat more complicated, 
but the idea is similar. 

Practical algorithms for deciding stretchability have been studied 
extensively by Bakowski and Sturmfels [BS89) and by Richter-Gebert 
(see, e.g. ,  [RG99] ) .  

Mnev [Mne89] was mainly interested in the realization spaces of ar
rangements. Let H be a fixed stretchable arrangement. Each straight
line arrangement H' affinely isomorphic to H can be represented by 
a point in R2n ,  with the 2n coordinates specifying the coefficients in 
the equations of the lines of H'. Considering all possible H' for a given 
H, we obtain a subset of R2n .  For some time it was conjectured that 
this set, the realization space of H, has to be path-connected, which 
would mean that one straight-line realization could be converted to 
any other by a continuous motion while retaining the affine isomor
phism type. 6 Not only is this false, but the realization space can have 
arbitrarily many components. In a suitable sense, it can even have 
arbitrary topological type. Whenever A C Rn is a set definable by 
a formula involving finitely many polynomial inequalities with inte
ger coefficients, Boolean connectives, and quantifiers, there is a line 
arrangement whose realization space S is homotopy equivalent to A 
(Mnev's main result actually talks about the stronger notion of sta-

6 In fact, these questions have been studied mainly for the isomorphism of arrange
ments in the projective plane. There one has to be a little careful, since a mirror 
reflection can easily make the realization space disconnected, and so the mirror 
reflection (or the whole action of the general linear group) is factored out first. 
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ble equivalence of S and A ;  see, e.g., [Goo97] or [BVS+99] ) .  Similar 
theorems were proved by Richter-Gebert for the realization spaces of 
4-dimensional polytopes [RG99] , [RG97] . 

These results for arrangements and polytopes can be regarded as 
instances of a vague but probably quite general principle: "Almost 
none of the combinatorially imaginable geometric configurations are 
geometrically realizable, and it iB difficult to decide which ones are. " 

Of course, there are exceptions, such as the graphs of 3-dimensional 
convex polytopes. 

Encoding pseudoline arrangements. The lower bound 2n(n2 )  for the 
number of isomorphism classes of pseudoline arrangements is asymp
totically tight. Felsner [Fel97] found a nice encoding of such an arrange
ment by an n x n matrix of O's and 1 's, from which the isomorphism 
type can be reconstructed: The entry ( i ,  j )  of the matrix is 1 iff the jth 
leftmost crossing along the pseudoline number i is with a pseudoline 
whose number k is larger than i .  

Exercises 
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1 .  Let p1 ( x) , . . . , Pn ( x) be univariate real polynomials of degree at most D. 
Check that the number of sign patterns of the Pi is at most 2nD+1 .  l2l 

2. (Intersection graphs) Let S be a set of n line segments in the plane. The 
intersection graph of S is the graph on n vertices, which correspond to 
the segments of S, with two vertices connected by an edge if and only if 
the corresponding two segments intersect. 
(a) Prove that the graph obtained from K5 by subdividing each edge 
exactly once is not the intersection graph of segments in the plane (and 
not even the intersection graph of any arcwise connected sets in the 
plane) . IIl 
(b) Use Theorem 6.2 . 1  to prove that most graphs are not intersection 
graphs of segments: While the total number of graphs on n given vertices 

is 2 (�) :::;:: 2n2 /2+0(n) ,  only 2°(n log n) of them are intersection graphs of 
segments (be careful about collinear segments! ) .  [I] 
(c) Show that the number of (isomorphism classes of) intersection graphs 
of planar arcwise connected sets, and even of planar convex sets, on n 
vertices cannot be bounded by 2°(n log n) .  (The right order of magnitude 
does not seem to be known for either of these classes of intersection 
graphs. )  IIl 

3. (Number of combinatorially distinct simplicial convex polytopes) Use 
Theorem 6.2.1 to prove that for every dimension d > 3 there exists Cd > 0 
such that the number of combinatorial types of simplicial polytopes in 
R d with n vertices is at most 2cdn log n . (The combinatorial equivalence 
means isomorphic face lattices; see Definition 5.3.4.) IIl 
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Such a result was proved by Alon (Alo86b] and by Goodman and Pollack 
(GP86] . 

4. (Sign patterns of matrices and rank) Let A be a real n x n matrix. The 
sign matrix a(A) is the n x n matrix with entries in {-1 , 0, +1}  given 
by the signs of the corresponding entries in A. 
(a) Check that A has rank at most q if and only if there exist n x q 

matrices U and V with A = uvr. [II 

(b) Estimate the number of distinct sign matrices of rank q using Theo
rem 6.2. 1 ,  and conclude that there exists an n x n matrix S containing 
only entries +1  and - 1  such that any real matrix A with a(A) = S has 
rank at least en, with a suitable constant c > 0. 0 
The result in (b) is from Alon, Frankl, and Rodl [AFR85] (for another 
application see [Mat96b] ) .  

5. (Extendible pseudosegments) A family of pseudosegments is a finite col
lection S = { s1 ,  s2 , . . .  , sn } of curves in the plane such that each si is 
x-monotone and its vertical projection on the x-axis is a closed interval, 
every two curves in the family intersect at most once, and whenever they 
intersect they cross (tangential contacts are not allowed) .  Such an S is 
called extendible if there is a family L = { f 1 ,  . . .  , Rn } of pseudo lines such 
that Si C fi , i = 1 ,  2, . . .  , n. 
(a) Find an example of a nonextendible family of 3 pseudosegments. 0 
(b) Define an oriented graph G with vertex set S and with an edge from 
si to s j if si n s i ¥- 0 and si is below s i on the left of their intersection. 
Check that if S is extendible, then G is acyclic. [!] 
(c) Prove that, conversely, if G is acyclic, then S is extendible. Extend 
the pseudosegments one by one, maintaining the acyclicity of G. [II 
(d) Let Ii be the projection of Si on the x-axis. Show that if for every 
i < j ,  Ii n Jj = 0 or Ji C Ij or Ij C Ii, then G is acyclic, and hence S is 
extendible . � 
(e) Given a family of closed intervals 11 , . . . , In C R, show that each in
terval in the family can be partitioned into at most O(log n) subintervals 
in such a way that the resulting family of subintervals has the property 
as in (d) .  This implies that an arbitrary family of n pseudosegments can 
be cut into a family of 0( n log n) extendible pseudosegments. 0 
These notions and results are from Chan [ChaOOa] . 

6.3 N11mber of Vertices of Level at Most k 

In this section and the next one we investigate the maximum number of faces 
in certain naturally defined portions of hyperplane arrangements. We con
sider only simple arrangements, and we omit the (usually routine) perturba
tion arguments showing that simple arrangements maximize the investigated 
quantity. 
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Let H be a finite set of hyperplanes in R d, and assume that none of them 
is vertical, i.e., parallel to the xd-axis. The level of a point x E Rd is the 
number of hyperplanes of H lying strictly below x (the hyperplanes passing 
through x, if any, are not counted) . This extends the definition for lines from 
Section 4. 7. 

We are interested in the maximum possible number of vertices of level 
at most k in a simple arrangement of n hyperplanes. The following drawing 
shows the region of all points of level at most 2 in an arrangement of lines; 
we want to count the vertices lying in the region or on its boundary. 

The vertices of level 0 are the vertices of the cell lying below all the 
hyperplanes, and since this cell is the intersection of at most n half-spaces, 
it has at most O(nld/21 ) vertices, by the asymptotic upper bound theorem 
(Theorem 5.5.2). From this result we derive a bound on the maximum number 
of vertices of level at most k. The elegant probabilistic technique used in the 
proof is generally applicable and probably more important than the particular 
result itself. 

6.3.1 Theorem (Clarkson's theorem on levels) .  The total number of 
vertices of level at most k in an arrangement of n hyperplanes in R d is at 
most 

O(nld/2J (k+l) rd/21 ) ,  
with the constant of proportionality depending on d. 

We are going to prove the theorem for simple arrangements only. The 
general case can be derived from the result for simple arrangements by a 
standard perturbation argument. But let us stress that the simplicity of the 
arrangement is essential for the forthcoming proof. 

For all k (0 < k < n - d) , the bound is tight in the worst case. To see this 
for k >  1 ,  consider a set of � hyperplanes such that the lower unbounded cell 
in their arrangement is a convex polyhedron with 0( ( �)  Ld/2J ) vertices, and 
replace each of the hyperplanes by k very close parallel hyperplanes. Then 
each vertex of level 0 in the original arrangement gives rise to 0(  kd) vertices 
of level at most k in the new arrangement. 

A much more challenging problem is to estimate the maximum possible 
number of vertices of level exactly k. This will be discussed in Chapter 1 1 .  

One of the main motivations that led to Clarkson's theorem on levels was 
an algorithmic problem. Given an n-point set P C  Rd, we want to construct 
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a data structure for fast answering of queries of the following type: For a 
query point x E Rd and an integer t ,  report the t points of P that lie nearest 
to x. 

Clarkson's theorern on levels is needed for bounding the maximum amount 
of memory used by a certain efficient algorithm. The connection is not entirely 
simple. It uses the lifting transform described in Section 5. 7, relating the 
algorithmic problem in Rd to the complexity of levels in Rd+I , and we do 
not discuss it here. 

Proof of Theorem 6.3.1 for d = 2. First we demonstrate this special 
case, for which the calculations are somewhat simpler. 

Let H be a set of n lines in general position in the plane. Let p denote a 
certain suitable number in the interval (0, 1 )  whose value will be determined 
at the end of the proof. Let us imagine the following random experiment. We 
choose a subset R C H at random, by including each line h E  H into R with 
probability p, the choices being independent for distinct lines h. 

Let us consider the arrangement of R, temporarily discarding all the other 
lines, and let f ( R) denote the number of vertices of level 0 in the arrangement 
of R. Since R is random, f is a random variable. We estimate the expectation 
of f, denoted by E [f] , in two ways. 

First, we have f(R) < IR I  for any specific set R, and hence E [f] < 
E[ IRI J  = pn. 

Now we estimate E [f] differently: We bound it from below using the 
number of vertices of the arrangement of H of level at most k .  For each 
vertex v of the arrangement of H,  we define an event Av meaning "v becomes 
one of the vertices of level 0 in the arrangement of R." That is, Av occurs 
if v contributes 1 to the value of f. The event Av occurs if and only if the 
following two conditions are satisfied: 

• Both lines determining the vertex v lie in R. 
• None of the lines of H lying below v falls into R. 

>K } these must be in R 

� } h b ' R � t ese must not e In 
. . . 

We deduce that Prob [Av] = p2 (1 - p)l(v ) ,  where f(v) denotes the level of the 
vertex v. 

Let V be the set of all vertices of the arrangement of H, and let V<k c V 
be the set of vertices of level at most k, whose cardinality we want to estimate. 
We have 

E [f] = L Prob [Av] > L Prob [AvJ 
vE V  
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vE V:::;k 

Altogether we have derived np > E [f] > IV<k l  · p2 (1 - p)k ,  and so 

Let us now choose the number p so as to minimize the right-hand side. A 
convenient value is p == k!l ; it does not yield the exact minimum, but it 

comes close. We have ( 1 - k�l ) k > e-1 > 1 for all k > 1 .  This leads to 

I V<k l  < 3(k+l)n. D 

Proof for an arbitrary dimension. The idea of the proof is the sarne 
as above. As for the technical realization, there are at least two possible 
routes. The first is to retain the same probability distribution for selecting 
the sample R (picking each hyperplane of the given set H independently with 
probability p) ; in this case, most of the proof remains as before, but we need 
a lemma showing that E ( IRI Ld/2J ]  = O((pn) Ld/2J ) .  This is not difficult to 
prove, either from a Chernoff-type inequality or by elementary calculations 
(see Exercises 6.5.2 and 6.5.3) .  

The second possibility, which we use here, is to change the probability 
distribution. Namely, we define an integer parameter r and choose a random 
r-elernent subset R C H, with all the (;) subsets being equally probable. 

With this new way of choosing R, we proceed as in the proof for d = 2.  
We define f(R) as the number of vertices of level 0 in the arrangement of R 
and estimate E [f] in two ways. On the one hand, we have f(R) == O(r ld/2J )  
for all R, and so 

E [f] == O(r ld/2J ) .  
The notation V for the set of all vertices of the arrangement of H,  V<k 

for the vertices of level at most k, and Av for the event "v is a vertex of level 
0 in the arrangement of R," is as in the previous proof. The conditions for 
Av are 

• All the d hyperplanes defining the vertex v fall into R. 
• None of the hyperplanes of H lying below v fall into R. 

So if e = f( v) is the level of v, then 

For brevity, we denote this quantity by P( f) . We note that it is a decreasing 
function of f. Therefore, 

E [f] = L Prob [Av] > IV<k l · P(k) . 
v E V  
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Combining with E (/] = O(r ldf2J ) derived earlier, we obtain 

O(rld/2J ) 
IV<k l  < 

P(k) . 
(6.2) 

An appropriate value for the parameter r is r = l k�1 J . (This is not 
surprising, since in the previous proof, the size of R was concentrated around 
pn = k�1 . )  Then we have the following estimate: 

6.3.2 Lemma. Suppose that 1 < k < � - 1 ,  which implies 2d < r < � . 
Then 

P(k) > Cd(k+l)-d 

for a suitable cd > 0 depending only on d. 

We postpone the proof of the lemma a little and finish the proof of The
orem 6.3. 1 .  We want to substitute the bound from the lemma into (6.2). In 
order to meet the assumptions of the lemma, we must restrict the range of k 
somewhat. But if, say, k > ;d , then the bound claimed by the theorem is of 
order nd and thus trivial, and for k = 0 we already know that the theorem 
holds. So we may assume 1 < k < � - 1 ,  and we have 

This establishes the theorem. 

Proof of Lemma 6.3.2. 

(n-d-k) 
P(k) = (;) 

(n-d-k) (n-d-k-1) · · · (n-k-r+l) 
. r(r-1) . . .  (r-d+1) 

n(n-1)  · · · (n-r+1)  

r(r-1)  · · · (r-d+1) n-d-k n-d-k-1 n-k-r+l 

n(n-1)  · · · (n-d+l) n-d n-d-1 n-r+1 

> (�) d (1 -
k ) (1 -

k ) 
. . .  (1 -

k ) 
2n n - d n - d - 1 n - r + 1 

r d ( k ) r  
> ( 2n ) 1 -

n - r + 1 
· 

0 

Now, � > ( k�l - 1)/n > 2(k�l} (since k < � ,  say) and 1 - n-�+1 > 1 - � 
(a somewhat finer calculation actually gives 1 - ktl here) . Since k < � ,  we 
can use the inequality 1-x > e-2x valid for x E [0, � ] ,  and we arrive at 

Lemma 6.3.2 is proved. 0 
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Levels in arrangements. Besides vertices, we can consider all faces of level 
at most k, where the level of a face is the (common) level of all of its points. 
Using Theorem 6.3. 1 ,  it is not hard to prove that the number of all faces of 
level at most k in an arrangement of n hyperplanes is O(nld/2J (k+l) rd/21 ) .  

In the literature one often speaks about the level k in an arrangement 
of hyperplanes, meaning the boundary of the region of all points of level at 
most k .  This is a polyhedral surface and each vertical line intersects it in 
exactly one point. It is a subcomplex of the arrangement; note that it may 
also contain faces of level different from k.  In Section 4 .  7 we considered such 
levels in arrangements of lines. 

Bibliography and remarks. Clarkson's theorem on levels was first 
proved in Clarkson [Cla88a] (see Clarkson and Shor (CS89) for the 
journal version) .  The elegant proof technique has many other applica
tions, and we will meet it several more times, combined with additional 
tricks into sophisticated arguments. The theorem can be formulated 
in an abstract framework outlined in the notes to Section 6.5. New 
variations on the basic method were noted by Sharir (ShaOl] (see Ex
ercises 4 and 5) .  

In the planar case, the O(nk) bound on the complexity of levels 0 
through k was known before Clarkson's paper, apparently first proved 
by Goodman and Pollack [GP84] . Alon and Gyori [AG86] determined 
the exact constant of proportionality (which Clarkson's proof in the 
present form cannot provide) .  Welzl [WelOl] proved an exact upper 
bound in R3 ; see the notes to Section 1 1 .3 for a little more about his 
method. Several other related references can be found, e.g. , in Agarwal 
and Sharir [ ASOOa) . 

Exercises 

1 .  Show that for n hyperplanes in Rd in general position, the total number 
of vertices of levels k, k+ 1 '  . . .  ' n-d is at most 0( n ld/2J ( n-k) r d/21 ) .  m 

2. (a) Consider n lines in the plane in general position (their arrangement 
is simple) . Call a vertex v of their arrangement an extreme if one of its 
defining lines has a positive slope and the other one has a negative slope. 
Prove that there are at most O((k+1)2 ) extremes of level at most k. 
Imitate the proof of Clarkson's theorem on levels. m 
(b) Show that the bound in (a) cannot be improved in general. ITl 

3. Let K 1 ,  . . . , K n be circular disks in the plane. Show that the number of 
intersections of their boundary circles that are contained in at most k 
disks is bounded by O(nk) .  Use the result of Exercise 5.7 .10 and assume 
general position if convenient. 0 

4. Let L be a set of n nonvertical lines in the plane in general position. 
(a) Let W be an arbitrary subset of vertices of the arrangement of L, 
and let X w be the number of pairs ( v, f), where v E W, R E L, and 
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f goes (strictly) below v .  For every real number p E (0, 1 ) ,  prove that 
Xw > p-1 IW I - p-2n. 0 
(b) Let W be a set of vertices in the arrangement of L such that no line 
of L lies strictly below rnore than k vertices of W, where k > 1 .  Use (a) 
to prove IW I = O(nv'k ) .  � 
(c) Check that the bound in (b) is tight for all k < � . � 
This exercise and the next one are from Sharir [ShaOl] . 

5. Let P be an n-point set in the plane in general position (no 4 points on 
a common circle) . Let C be a set of circles such that each circle in C 
passes through 3 points of P and contains no more than k points of P 
in its interior. Prove that IC I  < O(nk213 ) ,  by an approach analogous to 
that of Exercise 4. IT1 

6.4 The Zone Theorem 

Let H be a set of n hyperplanes in R d, and let g be a hyperplane that may 
or may not lie in H. The zone of g is the set of the faces of the arrangement 
of H that can see g. Here we imagine that the hyperplanes of H arc opaque, 
and so we say that a face F can see the hyperplane g if there are points 
x E F and y E g such that the open segment xy is not intersected by any 
hyperplane of H (the face F is considered relatively open) .  Let us note that 
it does not matter which point x E F we choose: Either all of them can see 
g or none can. The picture shows the zone in a line arrangement : 

g 

The following result bounds the maximum complexity of the zone. In the 
proof we will meet another interesting random sampling technique. 

6.4. 1 Theorem (Zone theorem) . The number of faces in the zone of any 
hyperplane in an arrangement of n hyperplanes in Rd is O(nd-1 ) ,  with the 
constant of proportionality depending on d. 

\Ve prove the result only for simple arrangements; the general case follows, 
as usual, by a perturbation argument. Let us also assume that g ¢ H and that 
H U {g} is in general position. 
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It is clear that the zone has O(nd-l )  cells , because each (d-1 )-dimen
sional cell of the ( d-1 )-dimensional arrangement within g is intersects only 
one d-dimensional cell of the zone. On the other hand, this information is 
not sufficient to conclude that the total number of vertices of these cells 
is O(nd-l ) : For example, as we know from Chapter 4, n arbitrarily chosen 
cells in an arrangement of n lines in the plane can together have as many as 
n( n413 ) vertices. 

Proof. We proceed by induction on the dimension d. The base case is d = 2;  
it requires a separate treatment and does not follow from the trivial case 
d -== 1 by the inductive argument shown below. 

The case d =  2 .  (For another proof see Exercise 7.1 .5 .) Let H be a set of n 
lines in the plane in general position. We consider the zone of a line g. Since 
a convex polygon has the same number of vertices and edges, it suffices to 
bound the total number of 1-faces (edges) visible from the line g. 

Imagine g drawn horizontally. We count the number of visible edges lying 
above g. Among those, at most n intersect the line g, since each line of H 
gives rise to at most one such edge. The others are disjoint from g. 

Consider an edge uv disjoint from g and visible from a point of g. Let 
h E H be the line containing uv, and let a be the intersection of h with g :  

: f  
. 
. 
0 

x .. �--... Y 
0 
. 

0 

Let the notation be chosen in such a way that u is closer to a than v ,  and 
let f E H be the �econd line (be�ide� h) defining the vertex u. Let b denote 
the intersection f n g .  Let us call the edge uv a right edge of the line f if the 
point b lies to the right of a, and a left edge of the line f if b lies to the left 
of a. 

We show that for each line f there exists at most one right edge. If it were 
not the case, there would exist two edge�, uv and xy, where u lie� lower than 
x, which would both be right edges of f, as in the above drawing. The edge 
xy should see some point of the line g,  but the part of g lying to the right of 
a is obscured by the line h, and the part left of a is obscured by the line f. 
This contradiction shows that the total number of right edges is at most n.  

Symmetrically, we �ee that the number of left edges in the zone is at 
most n. The same bounds are obtained for edges of the zone lying below g. 
Altogether we have at most O(n) edges in the zone, and the 2-dimensional 
case of the zone theorem is proved. 
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The case d > 2. Here we make the inductive step from d-1 to d. We assume 
that the total number of faces of a zone in Rd-1 is O(nd-2) ,  and we want to 
bound the total number of zone faces in Rd. 

The first idea is to proceed by induction on n, bounding the maximum 
possible number of new faces created by adding a new hyperplane to n-1 
given ones. However, it is easy to find examples showing that the number 
of faces can increase roughly by nd-1 , and so this straightforward approach 
fails. 

In the actual proof, we use a clever averaging argument. First, we demon
strate the method for the slightly simpler case of counting only the facets 
(i.e. , (d-1 )-faces) of the zone. 

Let f (n) denote the maximum possible number of (d-1 )-faces in the zone 
in an arrangement of n hyperplanes in Rd (the dimension d is not shown in 
the notation in order to keep it simple) . Let H be an arrangement and g a 
base hyperplane such that f(n) is attained for them. 

We consider the following random experiment. Color a randomly chosen 
hyperplane h E H red and the other hyperplanes of H blue. We investigate 
the expected number of blue facets of the zone, where a facet is blue if it lies 
in a blue hyperplane. 

On the one hand, any facet has probability 
n 

n 1 of becoming blue, and 
hence the expected number of blue facets is 

n
n 1 f(n) . 

We bound the expected number of blue facets in a different way. First, 
we consider the arrangement of blue hyperplanes only; it has at most f(n-1) 
blue facets in the zone by the inductive hypothesis. Next, we add the red 
hyperplane, and we look by how much the number of blue facets in the zone 

. 
can Increase. 

A new blue facet can arise by adding the red hyperplane only if the red 
hyperplane slices some existing blue facet F into two parts F1 and F2 , as is 
indicated in the picture: 

9 n h  
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This increases the number of blue facets in the zone only if both F1 and F2 are 
visible frotn g. In such a case we look at the situation within the hyperplane 
h; we claim that F n h is visible from g n h. 

Let C be a cell of the zone in the arrangement of the blue hyperplanes 
having F on the boundary. We want to exhibit a segment connecting F n h 
to g n h within C. If x1 E F1 sees a point Yt E g and x2 E F2 sees y2 E g, 
then the whole interior of the tetrahedron XtX2YtY2 is contained in C. The 
intersection of this tetrahedron with the hyperplane h contains a segment 
witnessing the visibility of g n h from F n h. 

If we intersect all the blue hyperplanes and the hyperplane g with the 
red hyperplane h, we get a (d-1 )-dimensional arrangement, in which F n h 
is a facet in the zone of the ( d-2)-dimensional hyperplane g n h. By the 
inductive hypothesis, this zone has O(nd-2 ) facets. Hence, adding h increases 
the number of blue facets of the zone by O(nd-2 ) ,  and so the total number 
of blue facets after h has been added is never more than /(n-1) + O(nd-2 ) .  

We have derived the following inequality: 

n - 1 
-- f(n) < f(n-1) + O(nd-2 ) .  n 

It implies f ( n) = 0 ( n d-l ) ,  as we will demonstrate later for a slightly more 
general recurrence. 

The previous considerations can be generalized for (d-k)-faces, where 
1 < k < d-2. Let fi (n) denote the maximum possible number of j-faces 
in the zone for n hyperplanes in dimension d. Let H be a collection of n 
hyperplanes where /d-k (n) is attained. 

As before, we color one randomly chosen hyperplane h E H red and the 
others blue. A ( d-k )-face is blue if its relative interior is disjoint from the red 
hyperplane. Then the probability of a fixed (d-k)-face being blue is 

n n k , and 
the expected number of blue (d-k)-faces in the zone is at most 

n n k !d-k (n) . 
On the other hand, we find that by adding the red hyperplane, the num

ber of blue (d-k)-faces can increase by at most O(nd-2) ,  by the inductive 
hypothesis and by an argument similar to the case of facets. This yields the 
recurrence 

n - k 
/d-k(n) < /d-k (n- 1) + O(nd-2) .  n 

We use the substitution <p(n) = n(n-{)��(��k+l) , which transforms our re

currence to <p(n) < <p(n- 1) + O(nd-k-2 ) .  We assume k < d-1 (so the con
sidered faces must not be edges or vertices) .  Then the last recurrence yields 
<p(n) = O(nd-k-l ) , and hence /d-k (n) = O(nd-l ) .  

For the case k = d-1  (edges),  we would get only the bound /1 ( n) = 

O(nd-1 log n) by this method. So the number of edges and vertices must be 
bounded by a separate argument, and we also have to argue separately for 
the planar case. 
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We are going to show that the number of vertices of the zone is at most 
proportional to the number of the 2-faces of the zone. Every vertex is con
tained in some 3-face of the zone. Within each such 3-face, the number of 
vertices is at most 3 times the number of 2-faces, because the 3-face is a 3-
dimensional convex polyhedron. Since our arrangement is simple, each 2-face 
is contained in a bounded number of 3-faces. It follows that the total number 
of vertices is at most proportional to f2 (n) = O(nd- 1 ) . The analogous bound 
for edges follows immediately from the bound for vertices. D 

Zones in other arrangements. The maximum complexity of a zone can be 
investigated for objects other than hyperplanes. We can consider two classes 
Z and A of geometric objects in Rd and ask for the maximum complexity of 
the zone of a ( E Z in the arrangement of n objects a1 , a2 , . . .  , an E A. This 
leads to a wide variety of problems. For some of them, interesting results have 
been obtained by extending the technique shown above. 

Most notably, if ( is a k-flat in Rd, 0 < k < d, or more generally, a k-di
mensional algebraic variety in R d of degree bounded by a constant, then the 
zone of ( in an arrangement of n hyperplanes has complexity at most 

0 ( nl(d+k)/2J (log n)13) , 

where {3 = 1 for d + k odd and {3 = 0 for d + k even. (The logarithmic factor 
seems likely to be superfluous in this bound; perhaps a more sophisticated 
proof could eliminate it . )  \Vith ( being a k-flat, this result can be viewed as 
an interpolation between the asymptotic upper bound theorem and the zone 
theorem: For k = 0, with ( being a single point, we consider the complexity 
of a single cell, while for k = d-1 ,  we have the zone of a hyperplane. The key 
ideas of the proof are outlined in the notes below; for a full proof we refer to 
the literature. 

A simple trick relates the zone problem to another question, the maxi
mum complexity of a single cell in an arrangement. For example, what is the 
complexity of the zone of a segment ( in an arrangement of n line segments? 
On the one hand, ( can be chosen as a single point, and so the maximum 
zone complexity is at least the maximum possible complexity of a cell in an 
arrangement of n segments. On the other hand, the complexity of the zone 
of ( is no more than the maximum cell complexity in an arrangement of 2n 
segments, since we can split each segment by making a tiny hole near the 
intersection with ( : 
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A similar reduction works for the zone of a triangle in an arrangement of 
triangles in R 3 and in many other cases. Results presented in Section 7.6 will 
show that under quite general assumptions, the zone complexity in dimension 
d is no more than O(nd-l+e) ,  for an arbitrarily small (but fixed) c > 0. 

Bibliography and remarks. The two-dimensional zone theorem 
was established by Chazelle, Guibas, and Lee [CGL85] , with the proof 
shown above, and independently by Edelsbrunner, O'Rourke, and Sei
del [EOS86] by a different method. The first correct proof of the gen
eral d-dimensional case, essentially the one presented here, is due to 
Edelsbrunner, Seidel, and Sharir [ESS93] . The main ingredients of the 
technique were previously developed by Sharir and his coauthors in 
several papers. 

Bern, Eppstein, Plassman, and Yao [BEPY91] determined the best 
constant in the planar zone theorem: The zone of a line in an arrange
ment of n lines has at most 5.5n edges. They also showed that the 
zone of a convex k-gon has complexity O(n + k2 ) .  

The extension of the zone theorem to the zone of a k-dimensional 
algebraic variety in a hyperplane arrangement, as mentioned in the 
text, was proved by Aronov, Pellegrini, and Sharir [APS93] . They also 
obtained the same bound with ( being the relative boundary of a 
( k+ 1 )-dimensional convex set in Rd. 

The problem with the zone of a curved surface that did not exist 
for the zone of a hyperplane is that a face F of the zone of ( can be 
split by a newly inserted hyperplane h into two subfaces F1 and F2 , 
both of them lying in the zone, without h n F being in the zone of 
( n h, as is illustrated below: 

h 

It turns out that each face F split by h in this way is adjacent to a 
facet in h that can be seen from ( from both sides; such a facet is called 
a popular facet of the zone. In order to set up a suitable recurrence 
for the number of faces in the zone, one needs to bound the total 
complexity of all popular facets. This is again done by a technique 
similar to the proof of the zone theorem in the text. The concept of 
popular facet needs to be generalized to a popular j -face, which is a 
j-dimensional face F that can be seen from ( in all the 2d-j "sectors" 
determined by the d - j hyperplanes defining F.  The key observation 
is that if a blue popular j-face is split into two new popular j-faces 
by the new red hyperplane, then this can be charged to a popular 
(j -1 )-face within h, as the following picture illustrates for j = 1 :  
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h 

( 

This is used to set up recurrences for the numbers of popular j-faces. 

Exercises 

1 .  (Sum of squares of cell complexities) 
(a) Let C be the set of all cells of an arrangement of a set H of n hyper
planes in Rd. For d =  2, 3, prove that EcEC /o (C)2 = O(nd) ,  where/o (C) 
is the number of vertices of the cell C. 0 
(b) Use the technique explained in this section to prove EcEC fo (C)2 = 

0( nd (log n) ld/2J - l ) for every fixed d > 3 (or a similar bound with a 
larger constant in the exponent of log n if it helps) .  � 
The result in (b) is from Aronov, Matousek, and Sharir (AMS94] . 

2 .  Define the ( <k )-zone of a hyperplane g in an arrangement of hyperplanes 
as the collection of all faces for which some point x of their relative interior 
can be connected to some point y E g so that the interior of the segment 
xy intersects at most k hyperplanes. 
(a) By the technique of Section 6.3 (Clarkson's theorem on levels), show 
that the number of vertices of the (<k)-zone is O(nd-1k). [II 
(b) Show that the bound in (a) cannot be improved in general. � 

3. In this exercise we aim at bounding K ( n, n) ,  the maximum total number 
of edges of n distinct cells in an arrangement of n lines in the plane, 
using the cutting lemma as in Section 4.5 (this proof is due to Clarkson, 
Edelsbrunner, Guibas, Sharir, and Welzl [CEQ+ go] ) .  Let L be a set of n 

lines in general position. 
(a) Prove the bound K(n, m) = O(nJffi + m) . [II 

(b) Prove K ( n, n) = 0( n413) using the cutting lemma. [!] 
4.  Consider a set H of n planes in R 3 in general position and a sphere S 

(the surface of a ball ) .  
(a) Show that S intersects at most O(n2)  cells of the arrangement of H. 
� 
(b) Using (a) and Exercise 1 ,  prove that the zone of S in the arrangement 
of H has at most O(n512) vertices. 8J (This is just an upper bound; the 
correct order of magnitude is about n2 . ) 

6.5 The Cutting Lem111a Revisited 

Here we present the most advanced version of the random sampling tech
nique. It combines the approach to the weak cutting lemma (Section 4.6) 
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with ingredients from the proof of Clarkson's theorem on levels and addi
tional ideas. 

We are going to re-prove the cutting lemma 4.5.3: For every set H of n 
lines in the plane and every r > 1 there exists a � -cutting for H of size O(r2 ) ,  
i.e., a subdivision of the plane into O(r2) generalized triangles �1 ,  . . .  , �t 
such that the interior of each �·i is intersected by at most � lines of H. The 
proof uses random sampling, and unlike the elementary proof in Section 4.7, 
it can be generalized to higher dimensions without much trouble. We first give 
a complete proof for the planar case and then we discuss the generalizations. 

Throughout this section we assume that H is in general position. A per
turbation argument mentioned in Section 4.  7 can be used to derive the cutting 
lemma for an arbitrary H. 

The first idea is as in the proof of a weaker cutting lemma by random 
sampling in Section 4.6: We pick a random sample S of a suitable size and 
triangulate its arrangement. 

The subsequent calculations become simpler and more elegant if we choose 
S by independent Bernoulli trials. That is, instead of picking s random lines 
with repetitions as in Section 4.6, we fix a probability p = � and we include 
each line h E H into S with probability p, the decisions being Inutually 
independent (this is as in the proof of the planar case of Clarkson's theorem 
on levels) . These two ways of random sampling (by s random draws with 
repetitions and by independent trials with success probability � )  can usually 
be thought of as nearly the same; although the actual calculations differ 
significantly, their results tend to be similar. 

Sampling and triangulation alone do not work. Considerations similar 
to those in Section 4.6 show that with probability close to 1 ,  none of the 
triangles in the triangulation for the random sample S as above is intersected 
by more than C � log n lines of H, for a suitable constant C. Later we will 
see that a similar statement is true with C � log s instead of C � log n. But 
it is not generally true with C�, for any C independent of s and n. So the 
most direct road to an optimal �-cutting, namely choosing const · r random 
lines and triangulating their arrangement, is impassable. 

To see this, consider a !-dimensional situation, where H = { h 1 ,  . . .  , hn} 
is a set of n points in R (or if you prefer, look at the part of a 2-dimensional 
arrangement along one of the lines) . For simplicity, let us set s = � ;  then 
p = � , and we can imagine that we toss a fair coin n times and we include hi 
into S if the ith toss is heads. The picture illustrates the result of 30 tosses, 
with black dots indicating heads: 

oeoeeooeoeooeooeoeeeoeeeoooeeo 
We are interested in the length of the longest consecutive run of tails (empty 
circles) . For k is fixed, it is very likely that k consecutive tails show up in a 
sequence of n tosses for n sufficiently large. Indeed, if we divide the tosses 
into blocks of length k (suppose for simplicity that n is divisible by k) , 
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000000000000000000000000000000 
I I I I I I I I I I I 

then in each block, we have probability 2-k of receiving all tails. The blocks 
are mutually independent, and so the probability of not obtaining all tails 
in any of the � blocks is ( 1  - 2-k)nfk . For k fixed and n � oo this goes 
to 0, and a more careful calculation shows that for k = l� log2 nJ we have 
exponentially small probability of not receiving any block of k consecutive 
tails (Exercise 1 ) .  So a sequence of n tosses is very likely to contain about log n 
consecutive tails. (Sequences produced by humans that are intended to look 
random usually do not have this property; they tend to be "too uniform." ) 
Similarly, for a smaller s ,  if we make a circle black with probability � ,  then 
the longest run typically has about ; log s consecutive empty circles. 

Of course, in the one-dimensional situation one can define much more 
uniform samples, say by making every �th circle black. But it is not clear 
how one could produce such "more uniform" samples for lines in the plane 
or for hyperplanes in Rd. 
The strategy: a two-level decomposition. Instead of trying to select 
better samples we construct a ; -cutting for H in two stages. First we take a 
sample S with probability p = � and triangulate the arrangement, obtaining 
a collection T of triangles. (The expected number of triangles is O(r2) ,  as we 
will verify later. )  Typically, T is not yet a �-cutting. Let I(�) denote the set 
of lines of H intersecting the interior of a triangle � E T and let n� = I I(�) I .  
We define the excess of a triangle � E T as t� = n� · � .  

If t� < 1 ,  then n� < � and � is a good citizen: It can be included into 
the final ; -cutting as is. On the other hand, if iD.. > 1 , then � needs further 
treatment: We subdivide it into a collection of finer triangles such that each 
of them is intersected by at most � lines of H. We do it in a seemingly 
naive way: We consider the whole arrangement of I(�), temporarily ignoring 
�' and we construct a t� -cutting for it. Then we intersect the triangles of 
this t� -cutting with �' which can produce triangles but also quadrilaterals, 
pentagons, and hexagons. Each of these convex polygons is further subdivided 
into triangles, as is illustrated below: 

� \ 
\ 

I(�) a t� -cutting restrict to � and triangulate 

Note that each triangle in the t� -cutting is intersected by at most �! = � 
lines of I ( �) . Therefore, the triangles obtained within � are valid triangles 
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of a ; -cutting for H. The final �-cutting for H is constructed by subdividing 
each � E T with excess greater than 1 in the indicated manner and taking 
all the resulting triangles together. 

How do we make the required t� -cuttings for the 1(.6.)? We do not yet 
have any suitable way of doing this unless we use the cutting lemma itself, 
which we do not want , of course. Fortunately, as a by-product of the subse
quent considerations, we obtain a method for directly constructing slightly 
suboptimal cuttings: 

6.5.1 Lemma (A suboptimal cutting lemma) . For every finite collec
tion of lines and any u > 1 ,  there exists a � -cutting consisting of at n1ost 
K(u log(u+1))2 triangles, where K is a suitable constant. 

If we employ this lemma for producing the t� -cuttings, we can estimate 
the number of triangles in the resulting ; -cutting in terms of the excesses of 
the triangles in T: The total number of triangles is bounded by 

L max { 1 ,  4K(tD. log(tD. + 1))2 } .  (6.3) 
D.ET 

The key insight for the proof of the cutting lemma is that although we 
typically do have triangles � E T with excess as large as about log r , they 
are very few. More precisely, we show that under suitable assumptions, the 
expected number of triangles in T with excess t or larger decreases exponen
tially as a function of t. This will take care of both estimating (6.3) by O(r2) 
and establishing Lemma 6.5 . 1 .  

Good and bad triangulations. Our collection T of triangles is obtained 
by triangulating the cells in the arrangement of the random sample S. Now 
is the time to specify how exactly the cells are triangulated, since not every 
triangulation works. To see this, consider a set H of n lines, each of them 
touching the unit circle, and let S be a random sample, again for simplicity 
with probability p = � .  We have learned that such a sample is very likely to 
leave a gap of about log n unselected lines (as we go along the unit circle) . 
If we maliciously triangulate the central cell in the arrangement of S by the 
diagonals from the vertex near such a large gap, 

••••••• 

•••• 
··· · ·· 

•••• 

••••••• 

••••••••• 
••• 

•• 
•• 

•• 
•• 

•• 
•• 

•• 
•• 

•• 
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all these about � triangles have excess about logn; this is way too large for 
our purposes. 

The triangulation thus cannot be quite arbitrary. For the subsequent 
proof, it has to satisfy simple axioms. In the planar case, it is actually tech
nically easier not to triangulate but to construct the vertical decomposition 
of the arrangement of S. We erect vertical segments upwards and downwards 
from each vertex in the arrangement of S and extend them until they meet 
another line (or all the way to infinity) : 

So far we have been speaking of triangles, and now we have trapezoids, but 
the difference is immaterial, since we can always split each trapezoid into 
two triangles if we wish. Let T(S) denote the set of (generalized) trapezoids 
in the vertical decomposition of S. As before, I(�) is the set of lines of H 
intersecting the interior of a trapezoid �-

6.5.2 Proposition (Trapezoids with large excess are rare).  Let H be 
a fixed set of n lines in general position, let p = � , where 1 < r < � , let S be 
a random sample drawn from H by independent Bernoulli trials with success 
probability p, and let t > 0 be a real parameter. Let T(S)>t denote the set 
of trapezoids in � E T(S) with excess at least t, i.e. , with II(�) I > t� . Then 
the expected number of trapezoids in T(S)>t is bounded as follows: 

for a suitable absolute constant C. 

First let us see how this result can be applied. 

Proof of the suboptimal cutting lemma 6.5.1 .  To obtain a !-cutting 
for H, we set r = Au log(u+l) for a sufficiently large constant A and choose 
a sample S as in Proposition 6.5.2. 

By that proposition with t = 0, we have E[IT(S) I ]  < Br2 for a suit
able constant B. By the same proposition with t = A log(u+l ) , we have 
E[I/(S)>t l ]  < � if A is sufficiently large. By linearity of expectation, we ob
tain 
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E [3�r2 
IT(S) I + IT(S)>t i] < � · 

So there exists a sample S with both 17(8) 1 < 2Br2 and IT(S)>t l = 0 .  This 
n1eans that we have a ! -cutting into 0( r2)  = 0( ( u log( u+ 1) )2)  trapezoids. 

0 

For an alternative proof of Lemma 6.5 .1  see Exercise 10.3.4. 
Proof of the cutting lemma (Lemma 4.5.3) .  Most of the proof has 
already been described. To produce a ; -cutting, we pick a random sample S 
with probability p = � ,  we let 7 = T(S) be its vertical decomposition, and 
we refine each trapezoid � E T with excess til > 1 using an auxiliary t�-
cutting. The size of the resulting ; -cutting is bounded by ( 6.3) .  So it suffices 
to estimate the expected value of that expression using Proposition 6.5.2: 

E [ L max { 1, 4K(t� log(t�+1) )2 }] 
ilET(S) 

< E[ L max { 1 , 4Kti }] 
�ET(S) 

< E [ 17(S) I + �
0 

L 4Kti] 
, �E'T(S) 

2i ::;t� <21+1 
CX) 

< E[I/(S) I ] + L E [I7(S) I >2t ] . 0(24(i+l) ) 
i=O 

CX) 

i=O 

The cutting lemma is proved. 

(as log(tLl+l) < til)  

D 

Note that it was not important that the suboptimal cutting lemma is near
optimal: Any bound subexponential in u for the size of a !-cutting would do. 
In particular, for any fixed c > 1,  the expected cth-degree average of the 
excess is only a constant. 

For the proof of Proposition 6.5.2, we need several definitions and some 
simple properties of the vertical decomposition. Let H be a fixed set of lines in 
general position, and let Reg = UscH T(S) be the set of all trapezoids that 
can ever appear in the vertical decomposition for some S C H (including 
S = 0). For a trapezoid � E Reg, let D(fl) be the set of the lines of H 
incident to at least one vertex of fl. By the general-position assumption, we 
have ID(�) I < 4 for all fl. The various possible cases, up to symmetry, are 
drawn below; the picture shows the lines of D(�) with � marked in gray: 
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The set D(  �) is called the defining set of �. Note that the same defining set 
can belong to several trapezoids. 

Now we list the properties required for the proof; some of them are obvious 
or have already been noted. 

(CO) We have ID(�) I < 4 for all � E Reg. Moreover, any set So C H is the 
defining set for at most a constant number of � E Reg (certainly no more 
than the maximum of IT(So ) l  for I So l < 4) .  

(C1) For any � E T(S) , we have D(�) C S (the defining set must be present) 
and S n I ( �) = 0 (no intersecting line may be present) .  

(C2) For any � E Reg and any S C H such that D(�) C S and J(�) n S = 0, 
we have � E T(S) . 

(C3) For every S C H, we have IT(S) I = O( IS I2 + 1) .  To see this, think of 
adding the vertical segments to the arrangement of S one by one. Each 
of them splits an existing region in two. 

The most interesting condition is (C2) , which says that the vertical de
composition is defined "locally." It implies, in particular, that � is one of the 
trapezoids in the vertical decomposition of its defining set. More generally, it 
says that � E Reg is present in T(S) whenever it is not excluded for simple 
local reasons (which can be checked by looking only at �) . Checking (C2) 
in our situation is easy, and we leave it to the reader. Also note that it is 
( C2) that is generally violated for the mischievous triangulation considered 
earlier. 

Proof of Proposition 6.5.2.  First we prove that if S C H is a random 
sample drawn with probability p = � ,  0 < r < n, then 

E [ IT(S) I ]  = O(r2 + 1 ) .  (6.4) 

This takes care of the case t < 1 in the proposition. By ( C3) , we have IT ( S) I == 

O( IS I 2 + 1 )  for every fixed S, and so it suffices to show that E [ISI2] = 

O(r2 + 1 ) .  Now, lS I  is the sum of independent random variables, each of 
them attaining value 1 with probability p and value 0 with probability 1 - p, 
and it is easy to check that E [ 18 1 2] < r2 + r (Exercise 2(a) ) .  

Next, we assume t > 1 .  Let S C H be a random sample drawn with 
probability p. We observe that the conditions (C1) and (C2) allow us to 
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express the probability p(�) that a certain trapezoid � E Reg appears in the 
vertical decomposition T(S) : Since � appears if and only if all lines of D(�) 
are selected into S and none of I (�) is selected, we have 

p(�) = piD (�) I ( l - p) I I(�) I . 

(An analogous formula appeared in the proof of the planar Clarkson's the
orem on levels, and one can say that the technique of that proof is devel
oped one step further in the present proof. ) If we write Reg>t = { � E 
Reg: I I  (�) I > t � } for the set of all potential trapezoids with excess at least 
t ,  the expected number of trapezoids in T(S) >t can be written as 

E[ I/(S)>t i J = L p(�) . (6.5) 
�EReg'?. t  

It seems difficult to estimate this sum directly; the trick is to compare it with 
a similar sum obtained for the expected number of trapezoids for another 
sample. 

We define another probability p = � ,  and we let S be a sample drawn 
from H by Bernoulli trials with success probability p. On the one hand, 
we have E ( 17(8) 1] = O(r2 /t2 + 1 )  by (6.4) . On the other hand, setting 

p(�) = _piD(�) I  (1 - _p) l1(�) 1  we have, in analogy to (6.5) , 

where 

E ( lr(B) I] = L P(l1) > L P(l1) 
�EReg �E Reg?;t 

p(�) 
L p(l1) . 

p(l1) 
> E [IT(S)>t l l . R, (6.6) 

�EReg'?.t 

. { .P(�) } R = mm 
p(l1)

: l1 E Reg>t . 

Now R can be bounded from below. For every � E Reg>t ' we have II(�) I >  
t� and ID(�) I < 4, and so -

p(�) 
= 
(.P) ID(�) I  ( 1 - p) I I (.6.) 1  

> r4 ( 1 - p) tn/r
. 

p(�) p 1 - p 1 - p 

We use 1 � p < e-P (this holds for all real p) and 1 - fj > e-2P (this is true for 
all p E (0, � ] ,  and we have p < p < � ) .  Therefore R > t-4et-2 • Substituting 
into (6.6) , we finally derive 

E[IT(S)>t l ] < � · E [ 17(8) 1] < t4e- <t-2l · 0 
( :: + 1) < C · Ttr2 

for a sufficiently large constant C (the proposition assumes r > 1 ) .  Proposi
tion 6.5.2 is proved. D 

The following can be proved by the same technique: 
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6.5.3 Theorem (Cutting lemma for arbitrary dimension). Let d > 1 
be a fixed integer, let H be a set of n hyperplanes in R d, and let r be a 
parameter, 1 < r < n. Then there exists a �-cutting for H of size 0( rd) ;  that 
is, a subdivision ofRd into O(rd) generalized simplices such that the interior 
of each simplex is intersected by at most � hyperplanes of H. 

The only new part of the proof is the construction of a suitable trian
gulation scheme that plays the role of T(S). A vertical decomposition does 
not work. More precisely, it is not known whether the vertical decomposition 
of an arrangement of n hyperplanes in Rd always has at most O(nd) cells 
(prisms) ; this would be needed as the analogue of condition ( C3) . Instead 
one can use the bottom-vertex triangulation, which we define next. 

First we specify the bottom-vertex triangulation of a k-dimensional con
vex polytope P C  Rd, 1 < k < d, by induction on k. For k =  1 ,  P is a line 
segment, and the triangulation consists of P itself. For k > 1 ,  we let v be the 
vertex of P with the smallest last coordinate (the "bottom vertex" ) ; ties can 
be broken by lexicographic ordering of the coordinate vectors. We triangu
late all proper faces of P inductively, and we add the simplices obtained by 
erecting the cone with apex v over all simplices in the triangulations of the 
faces not containing v .  

d = 2  d = 3  

v 
v 

It is not difficult to check that this yields a triangulation of P (even a simpli
cial complex, although this is not needed in the present proof) , and that if P 
is a simple polytope, then the total number of simplices in this triangulation 
is at most proportional to the number of vertices of P (with the constant of 
proportionality depending on d) ; see Exercise 4. 

All the bounded cells of the arrangement of S are triangulated in this way. 
Some care is needed for the unbounded cells, and several ways are available. 
One of the simplest is to intersect the arrangement with a sufficiently large 
box containing all the vertices and construct the �-cutting only inside that 
box. This is sufficient for most applications of �-cuttings. Alternatively (and 
almost equivalently) , we can consider the whole arrangement in the projective 
d-space instead of Rd. We omit a detailed discussion of this aspect. 

In this way we obtain a triangulation T(S) for every subset S of the given 
set of hyperplanes. The analogue of (C3) is IT(S) I = O( IS id+ 1 ) , which follows 
(assuming H in general position) because the number of simplices in each cell 
is proportional to the number of its vertices, and the total number of vertices 
is O( IS id) .  
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The set I(�) are all hyperplanes intersecting the interior of a simplex 
Ll, and D ( �) consists of all the hyperplanes incident to at least one vertex 
of �. We again need to assume that our hyperplanes are in general posi
tion. Then, obviously, JD(�) I < d(d+l) ,  and a more careful argument shows 
that ID(�) I < d(di3) . The important thing is that an analogue of (CO) 
holds, namely, that both JD(�) I  and the number of Ll with a given D(�) are 
bounded by constants. 

The condition (Cl) holds trivially. The "locality" condition (C2) does 
need some work, although it is not too difficult, and we refer to Chazelle and 
Friedman (CF90] for a detailed argument . 

With (CO)-(C3) in place, the whole proof proceeds exactly as in the planar 
case. To get the analogue of (6.4) , namely E( JT(S) I ]  = O(rd+1) ,  we need 
the fact that E [ JSJd] = O(rd) (this is what we avoided in the proof of the 
higher-dimensional Clarkson's theorem on levels by passing to another way 
of sampling) ; see Exercise 2 (b) or 3. 

Further generalizations. An analogue of Proposition 6.5.2 can be derived 
from conditions (CO)-(C3) in a general abstract framework. It provides op
timal ; -cuttings not only for arrangements of hyperplanes but also in other 
situations, whenever one can define a suitable decomposition scheme satisfy
ing (CO)-(C3) and bound the maximum number of cells in the decomposition 
(the latter is a challenging open problem for arrangements of bounded-degree 
algebraic surfaces) . The significance of Proposition 6.5.2 reaches beyond the 
construction of cuttings; its variations have been used extensively, mainly in 
the analysis of geometric algorithms. We are going to encounter a combina
torial application in Chapter 1 1 .  

Bibliography and remarks. The proof of the cutting lemma as in 
this section (with a different way of sampling) is due to Chazelle and 
Friedman (CF90] . Analogues of Proposition 6.5.2, or more precisely the 
consequence stating that the expectation of the cth-degree average of 
the excess is bounded by a constant, were first proved and applied 
by Clarkson [Cla88a] (see Clarkson and Shor (CS89] for the journal 
version) . Since then, they became one of the indispensable tools in the 
analysis of randomized geometric algorithms, as is illustrated by the 
book by Mulmuley [Mul93a] , for example, as well as by many newer 
papers. 

The bottom-vertex triangulation (also called the canonical trian
gulation in some papers) was defined in Clarkson [Cla88b] . 

Proposition 6.5.2 can be formulated and proved in an abstract 
framework, where H and Reg are some finite sets and 7: 2H ---+ 2Reg , 
I: Reg ---+ 2H , and D: Reg ---+ 2H are mappings satisfying (CO) (with 
some constants) , ( C 1 ) ,  ( C2) , and an analogue of ( C3) that bounds the 
expected size of T(S) for a random S C H by a suitable function of 
r, typically by O(rk ) for some real constant k > 1 .  The conclusion 
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is E [IT(S) >t l ]  = 0(2-trk ) .  Very similar abstract frameworks are dis
cussed in Mulmuley [Mul93a] and in De Berg, Van Kreveld, Overmars, 
and Schwarzkopf [dBv KOS97] . 

The axiom (C2) can be weakened to the following: 
(C2' ) If � E T(S) and S' c S satisfies D(�) c S' , then � E T(S') .  
That is, � cannot be destroyed by deleting elements of S unless we 
delete an element of D(�) . 

A typical situation where (C2') holds although (C2) fails is that 
in which H is a set of lines in the plane and T(S) are the trapezoids 
in the vertical decomposition of the cell in the arrangement of S that 
contains sotne fixed point, say 0. Then � can be made to disappear 
by adding a line to S even if that line does not intersect �' as is 
illustrated below: 

This weaker axiom was first used instead of (C2) by Chazelle, Edels
brunner, Guibas, Sharir, and Snoeyink [CEG+93] . For a proof of a 
counterpart of Proposition 6.5.2 under ( C2') see Agarwal, Matousek, 
and Schwarzkopf [AMS98] . 

Yet another proof of the cutting lemma in arbitrary dimension was 
invented by Chazelle [Cha93a] . An outline of the argument can also 
be found in Chazelle's book [ChaOOc] or in the chapter by Matousek 
in [SUOO] . 

Both the proofs of the higher-dimensional cutting lemma depend 
crucially on the fact that the arrangement of n hyperplanes in R d, d 
fixed, can be triangulated using O(nd) simplices. As was explained in 
Section 6.2, the arrangement of n bounded-degree algebraic surfaces 
in Rd has O(nd) faces in total, but the faces can be arbitrarily compli
cated. A challenging open problem is whether each face can be further 
decomposed into "simple" pieces (each of them defined by a constant
bounded number of bounded-degree algebraic inequalities) such that 
the total number of pieces for the whole arrangement is O(nd) or not 
much larger. This is easy for d = 2 (the vertical decomposition will 
do) ,  but dimension 3 is already quite challenging. Chazelle, Edels
brunner, Guibas, and Sharir [CEGS89] found a general argument that 
provides an O(n2d-2) bound in dimension d using a suitable vertical 
decomposition. By proving a near-optimal bound in the 3-dimensional 
case and using it as a basis of the induction, they obtained the bound 
of O(n2d-3j3(n) ) ,  where j3 is a very slowly growing function (much 
smaller than log* n) . Recently Koltun [KolOl] established a near-tight 
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bound in the 4-dinlensional situation, which pushed the general bound 
to O(n2d-4+e) for every fixed d > 4. 

This decomposition problem is the main obstacle to proving an 
optimal or near-optiinal cutting lemma for arrangements of algebraic 
surfaces. For some special cases, say for an arrangement of spheres in 
R d, optimal decompositions are known and an optimal cutting lemma 
can be obtained. In general, if one can prove a bound of O (na ) for 
the number of pieces in the decomposition, then the techniques of 
Chapter 10 yield �-cuttings of size O(ra loga r) ,  and if, moreover, the 
locality condition ( C2) can be guaranteed, then the method of the 
present section leads to ; -cuttings of size 0 ( ra ) . 

Exercises 

163 

1 .  Estimate the largest k = k( n) such that in a row of n tosses of a fair coin 
we obtain k consecutive tails with probability at least � .  In particular, 
using the trick with blocks in the text, check that for k = l � log2 n J ,  the 
probability of not getting all tails in any of the blocks is exponentially 
small (as a function of n) . m 

2. Let X = X1 + X2 + · · · + Xn, where the Xi are independent random 
variables, each attaining the value 1 with probability p and the value 0 
with probability 1 - p. 
(a) Calculate E (X2] . 0 
(b) Prove that for every integer d > 1 there exists cd such that E [ Xd] < 
(np+cd)d .  (You can use a Chernoff-type inequality, or prove by induction 
that E [(X + a)d] < (np + d + a)d for all nonnegative integers n, d, and 
a.) 0 
(c) Use (b) to prove that E [Xa ] < (np + ca )a also holds for nonintegral 
a > 1 .  0 

3. Let X = X1 + X2 + · · · + Xn be as in the previous exercise. Show that 
E[ ("'d) ]  = pd (�) (where d > 0 is an integer) and conclude that E [Xd] < 
cd (np)d for np > d and a suitable cd > 0. 0 

4. Let P be a d-dimensional simple convex polytope. Prove that the bottom
vertex triangulation of P has at most Cdfo (P) simplices, where Cd de
pends only on d and f0 (P) denotes the number of vertices of P. 0 
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Lower Envelopes 

This is a continuation of the chapter on arrangements. We again study the 
number of vertices in a certain part of the arrangement: the lower envelope. 
Already for segments in the plane, this problem has an unexpectedly subtle 
and difficult answer. The closely related combinatorial notion of Davenport
Schinzel sequences has proved to be a useful general tool, since the surprising 
phenomena encountered in the analysis of the lower envelope of segments are 
by no means rare in combinatorics and discrete geometry. 

The chapter has two rather independent parts. After a common introduc
tion in Section 7. 1 ,  lower envelopes in the plane are discussed in Sections 7.2 
through 7.4 using Davenport-Schinzel sequences. Sections 7.5 and 7.6 gently 
introduce the reader to geometric methods for analyzing higher-dimensional 
lower envelopes, finishing with a quick overview of known results in Sec
tion 7. 7. 

7.1 Segments and Davenport-Schinzel Sequences 

The following question is extremely natural: What is the maximum possible 
combinatorial complexity of a single cell in an arrangement of n segments ? 
(The arrangement of segments was defined in Section 6.2 . } 

The complexity of a cell can be measured as the number of vertices and 
edges on its boundary. It is immediate that the number of edges is at most 
proportional to the number of vertices plus 2n, the total number of endpoints 
of the segments, and so it suffices to count the vertices. 

Here we mainly consider a slightly simpler question: the maximum com
plexity of the lower envelope of n segments. Informally, the lower envelope of 
an arrangement is the part that can be seen by an observer sitting at (0, -oo) 
and looking upward. In the picture below, the lower envelope of 4 segments 
is drawn thick: 
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If we think of the segments as graphs of (partially defined) functions, the 
lower envelope is the graph of the pointwise minimum. It consists of pieces 
of the segments, and we are interested in the maximum possible number of 
these pieces (in the drawing, we have 7 pieces). Let us denote this maximum 
by a (n) . 
Davenport-Schinzel sequences. A tight upper bound for a (n) has been 
obtained via a combinatorial abstraction of lower envelopes, the so-called 
Davenport-Schinzel sequences. These are closely related to segments, but 
the most natural way of introducing them is starting from curves. Let us 
consider a finite set of curves in the plane, such as in the following picture: 

We suppose that each curve is a graph of a continuous function R --+ R; in 
other words, each vertical line intersects it exactly once. Jvlost significantly, 
we assume that every two of the curves intersect in at most s points for some 
constant s .  This condition holds, for example, if the curves are the graphs of 
polynomials of degree at most s .  

Let us number the curves 1 through n, and let us write down the sequence 
of the numbers of the curves along the lower envelope from left to right : 

1 2 3 1 2 

We obtain a sequence a1 a2a3 . . .  at with the following properties: 

(i) For all i , ai E { 1 , 2, . . .  , n} . 
(ii) No two adjacent terms coincide; i .e. , ai =I= ai+l · 
(iii) There is no (not necessarily contiguous) subsequence of the form 

. . .  a . . .  b . . .  a . . .  b . . . . . .  a . . . b . . .  , 
I I I . • • _ _ ___._I _ ___. 

s + 2 letters a and b 

where a =/=  b. In other words, there are no indices i 1 < i2 < i3 < · · · < is+2 
with ai1 # ai2 , ai1 = ai3 = ai5 = · · · ,  and ai2 = ai4 = ai6 = · · · .  
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Only (iii) needs a little thought: It suffices to note that between an occurrence 
of a curve a and an occurrence of a curve b on the lower envelope, a and b 
have to intersect. 

Any finite sequence satisfying (i)-(iii) is called a Davenport-Schinzel se
quence of order 8 over the symbols 1 ,  2, . . .  , n. It is not important that the 
terms of the sequence are the numbers 1 ,  2, . . .  , n; often it is convenient to 
use some other set of n distinct symbols. 

Let us remark that every Davenport-Schinzel sequence of order s over n 
symbols corresponds to the lower envelope of a suitable set of n curves with at 
most s intersections for each pair of curves (Exercise 1 ) .  On the other hand, 
very little is known about the realizability of Davenport-Schinzel sequences 
by graphs of polynomials of degree s ,  say. 

We will mostly consider Davenport-Schinzel sequences of order 3. This is 
the simplest nontrivial case and also the one closely related to lower envelopes 
of segments. Every two segments intersect at most once, and so it might 
seem that their lower envelope gives rise to a Davenport-Schinzel sequence 
of order 1 ,  but this is not the case! The segments are graphs of partially defined 
functions, while the discussion above concerns graphs of functions defined on 
all of R. We can convert each segment into a graph of an everywhere-defined 
function by appending very steep rays to both endpoints: 

All the left rays are parallel, and all the right ones are parallel. Then every two 
of these curves have at most 3 intersections, and so if the considered segments 
are numbered 1 through n and we write the sequence of their numbers along 
the lower envelope, we get a Davenport-Schinzel sequence of order 3 (no 
ababa) . 

Let .A8 (n) denote the maximum possible length of a Davenport-Schinzel 
sequence of order s over n symbols. Some work is needed to see that .A8 (n) is 
finite for all 8 and n; the reader is invited to try this. The bound .A1 ( n) = n is 
trivial, and .A2 ( n) = 2n-1 is a simple exercise. Determining the asymptotics 
of .A3 (n) is a hard problem; it was posed in 1965 and solved in the mid-1980s. 
We will describe the solution later, but here we start more modestly: with a 
reasonable upper bound on A3 (n) . 

7. 1 .1  Proposition. We have a(n) < .A3 (n) < 2n In n +  3n . 

Proof. Let w be a Davenport-Schinzel sequence of order 3 over n symbols. 
If the length of w is f, then there is a symbol a occurring at most � times 
in w. Let us remove all occurrences of such a from w. The resulting sequence 
can contain some pairs of adjacent equal symbols. But we claim that there 
can be at most 2 such pairs, coming from the first and last occurrences of a. 
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Indeed .. if some a which is neither the first nor the last a in w were surrounded 
by some b from both sides, we would have the situation . . . a . . .  bab . . . a . . . 
with the forbidden pattern ababa. So by deleting- all the a and at most 2 
more symbols, we obtain a Davenport-Schinzel sequence of order 3 over n-1 
symbols. 

We arrive at the recurrence 

A3 (n) < A3 (n) + 2 + A3 (n - 1 ) ,  
n 

which can be rewritten to 
.A3 (n) < .A3 (n - 1 )  + 2 

n - n - 1  n - 1  
(we saw such a recurrence in the proof of the zone theorem) . Together with 
.A3 ( 1 )  = 1 this yields 

A3 (n) 
< 1 + 2 (1 + � + � + · · · +  

1 ) n - 2 3 n - 1  ' 

and so A3 ( n) < 2n In n + 3n as claimed. 

Bibliography and remarks. A detailed account of the history of 
Davenport-Schinzel sequences and of the analysis of lower envelopes, 
with references up until 1995, can be found in the book of Sharir 
and Agarwal [SA95) . Somewhat more recent results are included in in 
their surveys [ASOOb] and [ASOOa] . We sketch this development and 
mention some newer results in the notes to Section 7 .3 .  

Exercises 

0 

1 .  Let w be a Davenport-Schinzel sequence of order s over the symbols 
1 ,  2, . . .  , n .  Construct a family of planar curves h1 , h2 , . . . , hn , each of 
them intersecting every vertical line exactly once and each two intersect
ing in at most s points, such that the sequence of the numbers of the 
curves along the lower envelope is exactly w .  � 

2. Prove that A2 ( n) = 2n-1 (the forbidden pattern is abab) . 0 
3. Prove that for every n and s ,  A8 (n) < 1 + (s+1) (�) . m 
4.  Show that the lower envelope of n rays in the plane has O(n) complexity. 

0 
5. (Planar zone theorem via Davenport-Schinzel sequences) Prove the zone 

theorem (Theorem 6.4 . 1 ) for d = 2 using the fact that A2 (n) = O(n). 
Consider only the part above the line g,  and assign one symbol to each 
side of each line. III 

6. Let 91 , 92 , . . .  , 9m C R 2 be graphs of piecewise linear functions R ---+ 
R that together consist of n segments and rays. Prove that the lower 
envelope of 91 , 92 , . . .  , 9m has complexity 0 ( � .A3 (2m)) ;  in particular, if 
m = 0(1 ) ,  then the complexity is linear. III 
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7. Let P1 , P2 , . . .  , Prn be convex polygons (not necessarily disjoint! ) in the 
plane with n vertices in total such that no vertex is common to two or 
more Pi and the vertices form a point set in general position. Prove that 
the number of lines that intersect all the Pi and are tangent to at least 
two of them is at most 0(A3 (n) ) .  0 

8. (Dynamic lower envelope of lines) Let f 1 , £2 , . . .  , ln be lines in the plane in 
general position (in particular, none of them is vertical) .  At each moment 
t of time, only a certain subset Lt of the lines is present: fi is inserted 
at tirne si and it is removed at time ti > si . We are interested in the 
maximum possible total number f(n) of vertices of the arrangement of 
the fi that appear as vertices of the lower envelope of Lt for at least one 
t E R. 
(a) Show that f(n) = f! (a(n) ) ,  where a(n) is the maximum complexity 
of the lower envelope of n segments. 0 
(b) Prove that f(n) = O(n log n) . (Familiarity with data structures like 
segment trees or interval trees may be helpful.) � 
These results are from Tamir [Tam88] , and improving the lower bound 
or the upper bound is a nice open problem. 

7.2 Segments: Superlinear Complexity of the Lower 
Envelope 

In Proposition 7 . 1 . 1 we have shown that the lower envelope of n segments 
has complexity at most O(n log n), but it turns out that the true complexity 
is still lower. With this information, the next reasonable guess would be that 
perhaps the complexity is linear in n. The truth is much subtler, though: On 
the one hand, the complexity behaves like a linear function for all practical 
purposes, but on the other hand, it cannot be bounded by any linear function: 
It outgrows the function n t---+ Cn for every fixed C. We present an ingenious 
construction witnessing this. 

7.2.1 Theorem. The function a(n), the maximum combinatorial complex
ity of the lower envelope of n segments in the plane, is superlinear. That is, 
for every C there exists an no such that a( no) > Cno. Consequently, ,X3 (n) , 
the maximum length of a Davenport-Schinzel sequence of order 3, is super
linear, too. 

Proof. For every integers k, m > 1 we construct a set S k ( m) of segments 
in the plane. Let nk (m) = ISk (m) l  be the number of segments and let ek(m) 
denote the number of arrangement vertices and segment endpoints on the 
lower envelope of Sk (m). We prove that ek (m) > �k  · nk(m). In particular, 
for m = 1 and k -t oo, this shows that the complexity of the lower envelope 
is nonlinear in the number of segments. 
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If we really need only the case m � 1 ,  then what is the parameter m 
good for? The answer is that we proceed by double induction, on both k 
and m, and in order to specify Sk ( 1 ) ,  for example, we need Sk-I  (2) .  Results 
of mathematical logic, which are beyond the scope · of this book, show that 
double induction is in some sense unavoidable: The "usual" induction on a 
single variable is too crude to distinguish a ( n) from a linear function. 

The segments in Sk (m) are usually not in general position, but they are 
aggregated in fans by m segments. A fan of m segments is illustrated below 
for m � 4: 

All the segments of a fan have a common left endpoint and positive slopes, and 
the length of the segments increases with the slope. Other than forming the 
fans, the segments are in general position in an obvious sense. For example, 
no endpoint of a segment lies inside another segment, the endpoints do not 
coincide unless the segments are in a common fan, and so on. 

Let fk (m) denote the number of fans forming Sk (m) ; we have nk (m) � 
m · !k (m) . 

First we describe the construction of Sk (m) roughly, and later we make 
precise some finer aspects. As was already mentioned, we proceed by induc
tion on k and m. One of the invariants of the construction is that the left 
endpoints of all the fans of Sk (m) always show up on the lower envelope. 

First we specify the boundary cases with k � 1 or m � 1 . For k = 1 ,  
S1 (m) is simply a single fan with m segments. For m =  1 ,  Sk ( 1 )  is obtained 
from sk-1 (2) by the following transformation of each fan (each fan has 2 
segments) : 

. .. 

The lower segment in each fan is translated by the same tiny amount to the 
left. 

Now we describe the construction of Sk (m) for general k, m > 2. First we 
construct Sk (m-1)  inductively. We shrink this Sk (m-1)  both vertically and 
horizontally by a suitable affine transform; the vertical shrinking is much 
more intensive than the horizontal one, so that all segments become very 
short and almost horizontal. Let S' be the transformed Sk (m- 1) .  We will use 
many translated copies of S' as "microscopic" ingredients in the construction 
of Sk (m). 

The "master plan" of the construction is obtained from Sk-1 ( M), where 
M � /k (m-1)  is the number of fans in S' . Namely, we first shrink Sk_ 1 (M) 
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vertically so that all segments become nearly horizontal, and then we apply 
the affine transform ( x, y) � ( x, x + y) so that the slopes of all the segments 
are just a little over 1 .  Let S* denote the resulting set. 

For each fan F in the master construction S* , we make a copy S'p of 
the microscopic construction S' and place it so that its leftmost endpoint 
coincides with the left endpoint of F. Let the segments of F be s 1 , . . .  , sM , 

numbered by increasing slopes, and let f 1 ,  . . .  , f M be the left endpoints of 
the fans in S�, numbered from left to right. The fan F is gigantic compared 
to S'p. Now we take F apart : We translate each si so that its left endpoint 
goes to l!i . The following drawing shows this schematically, since we have no 
chance to make a realistic drawing of Sk (m-1 ) .  Only a very small part of F 
near its left endpoint is shown. 

This construction yields Sk (m). It correctly produces fans of size m, by ap
pending one top (and long) segment to each fan in every S'p . If S' was taken 
sufficiently tiny, then all the vertices of the lower envelope of S* are pre
served, as well as those in each S� . Crucially, we need to make sure that the 
above transformation of each fan F in S* yields M-1 new vertices on the 
envelope, as is indicated below: 

S' F 

The new vertices lie on the right of S'p but, in the scale of the master con
struction S* , very close to the former left end point of F, and so they indeed 
appear on the lower envelope. 

This is where we need to make the whole construction more precise, 
namely, to say more about the structure of the fans in Sk (m). Let us call 
a fan r-escalating if the ratio of the slopes of every two successive segments 
in the fan is at least r. It is not difficult to check that for any given r > 1 ,  
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the construction of Sk (m) described above can be arranged so that all fans 
in the resulting set are r-escalating. 

Then, in order to guarantee that the M-1 new vertices per fan arise in 
the general inductive step described above, we make sure that the fans in the 
master construction S* are affine transforms of r-escalating fans for a suitable 
very large r. More precisely, let Q be a given number and let r = r(k, Q) be 
sufficiently large and 8 = 8(k, Q) > 0 sufficiently small: Let F arise from an 
r-escalating fan by the affine transformation described above (which makes 
all slopes a little bigger than 1 ) ,  and assume that the shortest segment has 
length 1 ,  say. Suppose that we translate the left endpoint of si , the segment 
with the ith smallest slope in F, by 81 + 82 + · · · + 8i almost horizontally to 
the right, where 8 < 8i < Q8. Then it is not difficult to see, or calculate, that 
the lower envelope of the translated segments of F looks combinatorially like 
that in the last picture and has M-1 new vertices. The reader who is not 
satisfied with this informal argument can find real and detailed calculations 
in the book [SA95] . 

We want to prove that the complexity of the lower envelope of Sk (m) is 
at least � km times the number of fans; in our notation, 

This is simple to do by induction, although the numbers involved are fright
eningly large. For k =  1 , we have /1 (m) = 1 and e1 (m) = m+1, so we are fine. 
For m =  1 , we obtain fk (l ) = 2/k- 1 (2) and ek (l )  = ek- 1 (2) + 2/k- 1 (2) > 
� (k-1) . 2 . !k- 1 (2) + 2/k- 1 (2) = (k+1) . /k- 1 (2) > �k . /k ( 1 ) .  

In the construction of Sk (m) for k, m > 2 ,  each of the fk-1 (M) fans of 
the master construction S* produces M = /k(m-1)  fans, and so 

fk (m) = fk-1 (M) · M. 
For the envelope complexity we get a contribution of ek- l ( M) from S* , 
ek(m-1)  from each copy of S' , and M-1 new vertices for each copy of S'. 
Putting this together and using the inductive assumption to eliminate the 
function e, we have 

ek (m) > ek- l (M) + fk-t (M) [ ek (m - 1) + M - 1 J 
> fk-t (M) 0 [� (k - l)M + �k(m - l)M + M - 1] 

> fk-t (M) 0 [�kM + �k(m - 1)M] 
= �km · M · fk-1 (M) = �km · !k (m) . 

Theorem 7. 2 . 1  is proved. 0 

Note how the properties of the construction Sk ( m) contradict the intuition 
gained from small pictures: Most of the segments appear many times on 
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the lower envelope, and between two successive segment endpoints on the 
envelope there is typically a concave arc with quite a large number of vertices. 

Bibliography and remarks. An example of n segments with super
linear complexity of the lower envelope was first obtained by Wiernik 
and Sharir [WS88] , based on an abstract combinatorial construction 
of Davenport-Schinzel sequences of order 3 due to Hart and Sharir 
[HS86) . The simpler construction shown in this section was found by 
Shor (in an unpublished manuscript; a detailed presentation is given 
in [SA95] ) .  

Exercises 

1 .  Construct Davenport-Schinzel sequences of order 3 of superlinear length 
directly. That is, rephrase the construction explained in this section in 
terms of Davenport-Schinzel sequences instead of segments. m 

7.3 More on Davenport-Schinzel Sequences 

Here we come back to the asymptotics of the Davenport-Schinzel sequences. 
We have already proved that >..3 (n)/n is unbounded. It even turns out that 
the construction in the proof of Theorem 7 .2 . 1  yields an asymptotically tight 
lower bound for >..3 (n), which is of order na(n) . Of course, we should explain 
what a(n) is . 

In order to define the extremely slowly growing function a, we first intro
duce a hierarchy of very fast growing functions A1 , A2 , • • • • We put 

At (n) = 2n, 

Ak(n) = Ak-1 o Ak-l o · · · o Ak-l { 1 )  (n-fold composition) , k = 2 ,  3, . . . .  

Only the first few of these functions can be described in usual terms: We have 2 
A2 (n) = 2n and A3 (n) = 22 . with n twos in the exponential tower. The 
Ackermann function1 A(  n) is defined by diagonalizing this hierarchy: 

A(n) = An(n) . 

And a is the inverse function to A: 

a(n) = min{k > 1 :  A(k) > n}. 

Since A( 4) is a tower of 2's of height 216 ,  encountering a number n with 
a(n) > 4 in any physical sense is extremely unlikely. 

1 Several versions of the Ackermann function can be found in the literature, dif
fering in minor details but with similar properties and orders of magnitude. 
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The Ackermann function was invented as an example of a function grow
ing faster than any primitive recursive function. For people familiar with 
some of the usual programming languages, the following semiformal expla
nation can be given: No function as large as A (n) can be evaluated by a 
program containing only FOR loops, where the number of repetitions of each 
loop in the program has been computed before the loop begins. For a long 
time, it was thought that A( n) was a curiosity irrelevant to "natural" math
ematical problems. Then theoretical computer scientists discovered it in the 
analysis of an extremely simple algorithm that manipulates rooted trees, and 
subsequently it was found in the backyard of elementary geometry, na1nely 
in the asymptotics of the Davenport-Schinzel sequences. 

As was already remarked above, a not too difficult analysis of the con
struction in Theorem 7 .2 . 1  shows that .X3 ( n) = 0( na( n)) . This is the correct 
order of magnitude, and we will (almost) present the matching upper bound 
in the next section. Even the constants in the asymptotics of A3 ( n) are known 
with surprising precision. Namely, we have 

� na(n) - 2n < ..\3(n) < 2na(n) + 0 ( Jna(n) ) , 

and so the gap in the main term is only a factor of 4, in spite of the complexity 
of the whole probletn! 

Higher-order Davenport-Schinzel sequences and their generaliza
tions. The asymptotics of the functions As ( n) for fixed 8 > 3, which corre
spond to forbidden patterns ababa . . .  with 8+ 2 letters, is known quite well, 
although not entirely precisely. In particular, A4 ( n) is of the (strange) order 
n · 2o(n) , and for a general fixed s ,  we have 

n . 2Ps (a{n) )  < As (n) < n . 2q.., (o(n)) ' 
where Ps ( x) is a polynomial of degree l s 2 2 J (with a positive leading coeffi
cient) and q8 ( x) is a polynomial of the same degree, for s odd multiplied by 
log x. The proofs are similar in spirit to those shown for 8 = 3 but tech
nically much more complicated. On the other hand, proving something like 
As ( n) = 0( n log* n) for every fixed 8 is not very difficult with the tricks from 
the proof of Proposition 7.4.2 below (see Exercise 7.4 .1) . 

The Davenport-Schinzel sequences have the simple alternating forbidden 
pattern ababa . . . . More generally, one can consider sequences with an arbi
trary fixed for bidden pattern v, such as abcdabcdabcd, where a, b, c, d must be 
distinct symbols. Of course, here it is not sufficient to require that every two 
successive symbols in the sequence be distinct, since then the whole sequence 
could be 121212 . . .  of arbitrary length. To get a meaningful problem, one can 
assume that if the forbidden pattern v has k distinct letters ( k � 4 in our 
example) , then each k consecutive letters in the considered sequence avoiding 
v must be distinct. Let Ex(v , n) denote the maximum possible length of such 
a sequence over n symbols. It is known that for every fixed v ,  we have 
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Ex ( v, n) < 0 ( n · 2"'( n ) c) 
1 75 

for a suitable exponent c = c(v) . In particular, the length of such sequences 
is nearly linear in n. Moreover, many classes of patterns v are known with 
Ex( v ,  n) = 0( n) , although a complete characterization of such patterns is 
still elusive. For example, for patterns v consisting only of two letters a and 
b, Ex( v ,  n) is linear in n if and only if v contains no subsequence ababa (not 
necessarily contiguous) . These results have already found nice applications 
in combinatorial geometry and in enumerative combinatorics. 

Bibliography and remarks. Davenport and Schinzel [DS65] de
fined the sequences now associated with their nan1es in 1965 , rnoti
vated by a geometric problem from control theory leading to lower 
envelopes of a collection of planar curves. They established some sim
ple upper bounds on A8 (n) . The next major progress was made by 
Szemeredi [Sze74] , who proved that A8 (n) < Csn log* n for a suitable 
Cs , where log* n is the inverse of the tower function A3 ( n) .  Over ten 
more years passed until the breakthrough of Hart and Sharir [HS86] , 
who showed that A3 (n) is of order na(n) . A recollection of Sharir 
about their discovery, after several months of trying to prove a lin
ear upper bound and then learning about Szemeredi's paper, deserves 
to be reproduced (probably imprecisely but with Micha Sharir's kind 
consent) : "We decided that if Szemeredi didn't manage to prove that 
A3 (n) is linear then it is probably not linear. We were aware of only 
one result with a nonlinear lower bound not exceeding O(n log* n) , and 
this was Tarjan's bound of 8(na(n)) for path compressions. In des
peration, we tried to relate it to our problem, and a miracle happened: 
The construction Tarjan used for his lower bound could be massaged 
a little so as to yield a similar lower bound for A3 (n) ." 

The path compression alluded to is an operation on a rooted tree. 
Let T be a tree with root r and let p be a leaf-to-root path of length 
at least 2 in T. The compression of p makes all the vertices on p, 
except for r, sons of r, while all the other father-to-son relations in T 
remain unchanged. Tarjan (Tar75] proved, as a part of an analysis of a 
simple algorithm for the so-called UNION-FIND problem, that if T is 
a suitably balanced rooted tree with n nodes, then the total length of 
all paths in any sequence of successive path compressions performed 
on T is no more than O(na(n) ) ,  and this is asymptotically tight in 
the worst case. Hart and Sharir put Davenport-Schinzel sequences of 
order 3 into correspondence with generalized path compressions (where 
only some nodes on the considered path become sons of the root, while 
the others retain the same father) and analyzed them in the spirit of 
Tarjan's proofs. Later the proofs were simplified and rephrased by 
Sharir to work directly with Davenport-Schinzel sequences. 
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The constant � in the lower bound on A3 ( n) is by Wiernik and 
Sharir [WS88) , and the 2 in the upper bound is due to Klazar 
[Kla99) (he gives a self-contained proof somewhat different from that 
in [SA95] ) .  

The most precise known bounds for A8 (n) with s > 4 were obtained 
by Agarwal, Sharir, and Shor [ASS89] , as a slight improvement over 
earlier results of Sharir. 

Davenport-Schinzel sequences are encountered in many geomet
ric and nongeometric situations. Even the straightforward bound 
A2 (n) = 2n-1 is often useful for simplifying proofs, and the asymp
totics of the higher-order sequences allow one to prove bounds involv
ing the function a(n) without too much work, although such bounds 
are difficult to derive from scratch. Numerous applications, mostly ge
ometric, are listed in [SA95) . 
Single cell. Pollack, Sharir, and Sifrony [PSS88) proved that the com
plexity of a single cell in an arrangement of n segments in the plane is 
at most O (na(n) ) ,  by a reduction to Davenport-Schinzel sequences of 
order 3 (see Exercise 1 ) .  A similar argument shows that a single cell 
in an arrangement of n curves, with every two curves intersecting at 
most s times, has complexity 0 (As+2 (n) )  (see [SA95] ) .  
Generalized Davenport-Schinzel sequences were first considered by 
Adamec, Klazar, and Valtr [AKV92). The near-linear upper bound 
Ex(v , n) = O (n · 2a(n)c ) mentioned in the text is from Klazar [Kla92] . 
The most general results about sequences u with Ex(u, n) = O(n) 
were obtained by Klazar and Valtr [KV94] . A recent survey, includ
ing applications of the generalized Davenport-Schinzel sequences, was 
written by Valtr [Val99a] . 

We mention two applications. The first one concerns Ramsey-type 
questions for geometric graphs (already considered in the notes to Sec
tion 4.3) . We consider an n-vertex graph G drawn in the plane whose 
edges are straight segments, and we ask, what is the maximum possible 
number of edges of G so that the drawing does not contain a certain 
geometric configuration? Here we are interested in the following two 
types of configurations: k pairwise crossing edges 

3 pairwise crossing edges 

and k pairwise parallel edges, where two edges are called parallel if 
they do not cross and their four vertices are in convex position: 

------·--..... .. . 
-· ---····- - · · --··----
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A graph with no two crossing edges is planar and thus has 0( n) ver
tices. It seems to be generally believed that forbidding k pairwise cross
ing edges forces O(n) edges for every fixed k. This has been proved 
for k = 3 by Agarwal, Aronov, Pach, Pollack, and Sharir [AAP+97] , 
and for all k > 4, the best known bound is O(n log n) due to Valtr 
(see [Val99a] ) .  For k forbidden pairwise parallel edges, he derived an 
O(n) bound for every fixed k using generalized Davenport-Schinzel 
sequences, and the 0( n log n) bound for k pairwise crossing edges fol
lows by a neat simple reduction. In this connection, let us mention 
a nice open question: What is the smallest n = n(k) such that any 
straight-edge drawing of the complete graph Kn always contains k 
pairwise crossing edges? The best known bound is O(k2 ) (AEG+94] , 
but perhaps the truth is 0( k) or close to it. 

The second application of generalized Davenport-Schinzel sequen
ces concerns a conjecture of Stanley and Wilf. Let a be a fixed per
mutation of { 1 ,  2, . . .  , k } .  We say that a permutation 1r of { 1 ,  2, . . .  , n} 
contains a if there are indices i1 < i2 < · · · < ik such that a( u) < a( v) 
if and only if tr{iu) < tr(iv ) ,  1 < u < v < k. Let N(a, n) de
note the number of permutations of { 1 ,  2, . . .  , n} that do not con
tain a. The Stanley-Wilf conjecture states that for every k and u 
there exists C such that N(a, n) < en for all n. Using generalized 
Davenport-Schinzel sequences, Alon and Friedgut [AFOO] proved that 
log N(a, n) < n{3(n) for every fixed a, where {3(n) denotes a very 
slowly growing function, and established the Stanley-Wilf conjecture 
for a wide class of a (previously, much fewer cases had been known) .  
Klazar [KlaOO] observed that the Stanley-Wilf conjecture is implied by 
a conjecture of Fiiredi and Hajnal [FH92] about the maximum number 
of 1 's in an nxn matrix of O's and 1's that does not contain a kxk  
submatrix having 1 's in positions specified by a given fixed k x k per
mutation matrix. Fiiredi and Hajnal conjectured that at most 0( n) 
1 's are possible. The analogous questions for other types of forbidden 
patterns of 1 's in 0/1 matrices are also very interesting and very far 
from being understood; this is another direction of generalizing the 
Davenport-Schinzel sequences. 

Exercises 

177 

1 .  Let C be a cell in an arrangement of n segments in the plane (assume 
general position if convenient) .  
(a) Number the segments 1 through n and write down the sequence of 
the segment numbers along the boundary of C, starting from an arbi
trarily chosen vertex of the boundary (decide what to do if the boundary 
has several connected components! ) .  Check that there is no ababab sub
sequence, and hence that the combinatorial complexity of C is no more 
than 0 ( A4 ( n)) .  li1 
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(b) Find an example where an ababa subsequence does appear in the 
sequence constructed in (a) . 0 
(c) Improve the argument by splitting the segments suitably, and show 
that the boundary of C has complexity O(na(n)) .  0 

2. We say that an nxn  matrix A with entries 0 and 1 is good if it contains 

no ( ! � ! � ) ; that is, if there are no indices i 1 < i2 and }I < i2 < 

j3 < j4 with ai1 j1 = ai2]2 = ai1 j3 = ai2]4 = 1 .  
(a) Prove that a good A has at most A8 (n) + O(n) ones for a suitable 
constant s .  [!] 
(b) Show that one can take s = 3 in (a) . [!] 

7.4 Towards the Tight Upper Bound for Segments 

As we saw in Proposition 7. 1 . 1 ,  it is not very difficult to prove that the 
maximum length of a Davenport-Schinzel sequence of order 3 over n symbols 
satisfies A3 ( n) = 0( n log n) .  Getting anywhere significantly below this bound 
seems much harder, and the tight bound requires double induction. But there 
is only one obvious parameter in the problem, namely the number n, and 
introducing the second variable for the induction is one of the keys to the 
proof. 

Let w = a1 a2 . . .  at be a sequence. A nonrepetitive segment in w is a 
contiguous subsequence u = aiai+l . . .  ai+k consisting of k distinct symbols. 
A sequence w is m-decomposable if it can be partitioned into at most rn 
nonrepetitive segments (the partition need not be unique) .  Here is the main 
definition for the inductive proof: Let 'lj;( m, n) denote the maximum possible 
length of an m-decomposable Davenport-Schinzel sequence of order 3 over n 

symbols. First we relate 'ljJ ( m, n) to A3 ( n) . 

7.4. 1 Lemma. Every Davenport-Schinzel sequence of order 3 over n syin
bols is 2n-decomposable, and consequently, 

Proof. Let w be the given Davenport-Schinzel sequence. We define a linear 
ordering -< on the symbols occurring in w :  We set a -< b if the first occurrence 
of the symbol a in w precedes the first occurrence of the symbol b. We par
tition w into maximal strictly decreasing segments according to the ordering 
-< .  Here is an example of such a partitioning (the sequence is chosen so that 
the usual ordering of the digits coincides with -< ) : 1 1 2 132142 1 15 16543. Clearly, 
each strictly decreasing segment is a nonrepetitive segment as well, and so it 
suffices to show that the number of the maximal strictly decreasing segments 
is at most 2n (the tight bound is actually 2n- 1) .  

Let u1 and Uj+l be two consecutive maximal strictly decreasing segments, 
let a be the last symbol of u1 , let i be its position in w, and let b be the first 
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symbol of Uj+ l  (at the (i+l)st position) . We claim that the ith position is 
the last occurrence of a or the ( i+ 1 )st position is the first occurrence of b. 
This will imply that we have at most 2n segments ui , because each of the n 
symbols has (at n1ost) one first and one last occurrence. 

Supposing that the claim is not valid ,  we find the forbidden subsequence 
ababa. We have a -< b, for otherwise the ( i+ 1 )st position could be appended 
to 'l.lj , contradicting the maximality. The b at position i+ 1 is not the first b, 
and so there is some b before the ith position. There must be another a even 
before that b, for otherwise we would have b -< a .  Finally, there is an a after 
the position i+ 1 ,  and altogether we have the desired ababa. D 

Next , we derive a powerful recurrence for 'l/;(m, n) .  It is perhaps best 
to understand the proof first, and the complicated-looking statement then 
becomes quite natural. 

7.4.2 Proposition. Let m, n > 1 and p < m be integers, and let m = 

m1 + m2 + · · · + mp be a partition of m into p nonnegative addends. Then 
there is a partition n = n 1 + n2 + · · · + np + n * such that 

p 
1/J(m, n} < 4m + 4n* + 1/J(p, n* ) + L 'lj;(mk, nk) · 

k= l  

Proof. Let w be an m-decomposable Davenport-Schinzel sequence of order 3 
over n symbols attaining 1jJ ( m, n) . Let w = u1 u2 . . .  Um. be a partition of w 

into nonrepetitive segments. Let w1 = u 1  u2 . . .  Um1 consist of the first m1 
nonrcpetitive segments, w2 = Um1 + I  . . .  Um1 +m2 of the next m2 segments, 
and so on until wP . We call w1 , w2 , . . .  , wP the parts of w. 

We divide the symbols in w into two classes: A symbol a is local if it 
occurs in (at most) one of the parts wk , and it is nonlocal if it appears in at 
least two distinct parts. We let n * be the number of distinct nonlocal symbols 
and nk the number of distinct local symbols occurring in Wk . 

If we delete all the nonlocal symbols from Wk , we obtain an mk-decompos
able sequence over nk symbols with no ababa. However, this sequence can 
still contain consecutive repetitions of some symbols, which is forbidden for 
a Davenport--Schinzel sequence. So we delete all symbols in each repetition 
but the first one; for example, 122232244 becomes 12324. We note that con
secutive repetitions can occur only at the boundaries of the nonrepetitive 
segments Uj , and so at most mk-l local symbols have been deleted from wk. 
The remaining sequence is already a Davenport-Schinzel sequence, and so 
the total number of positions of w occupied by the local symbols is at most 

p p 
L [mk - 1 + 1/J(rnk ,  nk)] < m + L 1/J(mk, nk ) · 
k=l k=l 

Next, we need to deal with the nonlocal symbols. Let us say that a non
local symbol a is a middle symbol in a part Wk if it occurs both before Wk 
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and after wk; otherwise, it is a nonmiddle symbol in wk. We estimate the 
contributions of middle and nonmiddle symbols separately. 

First we consider each part Wk in turn, and we delete all local symbols and 
all nonn1iddle syn1bols from it. Then we look at the sequence that remains 
from w after these deletions, and we delete all symbols but one from each 
contiguous repetition. As in the case of the local symbols, we have deleted 
at most m middle symbols. Clearly, the resulting sequence is a Davenport
Schinzel sequence of order 3 over n* symbols, and we claim that it is p
decomposable (this is perhaps the most surprising part of the proof). Indeed, 
if we consider what remained from some Wk , we see that sequence cannot 
contain a subsequence bab, because some a's precede and follDw wk and we 
would get the forbidden ababa. Therefore, the surviving symbols of Wk form 
a nonrepetitive segment. Hence the total contribution of the middle symbols 
to the length of w is at most m + 'l/J (p, n * ) . 

The nonmiddle symbols in a given wk can conveniently be divided into 
starting and ending symbols (with the obvious meaning) . We concentrate on 
the total contribution of the starting symbols; the case of the ending symbols 
is symmetric. Let n'k be the number of distinct starting symbols in wk; we have 
E�=l nk < n* , since a symbol is starting in at most one part . Let us erase 
from wk all but the starting symbols, and then we also remove all contiguous 
repetitions in each w k ,  as in the two previous cases. The remaining starting 
symbols contain no subsequence abab, since we know that there is some a 
following wk. Thus, what is left of wk is a Davenport-Schinzel sequence of 
order 2 over nk syn1bols, and as such it has length at most 2nk-1 .  Therefore, 
the total number of starting symbols in all of w is no more than 

p 

L(mk - 1 + 2nk - 1 )  < m + 2n* .  
k=l 

Summing up the contributions of local symbols, middle symbols, starting 
symbols, and ending symbols, we arrive at the bound claimed in the propo
sition. Here is a graphic summary of the proof: 

symbols 
of w 

local: 

nonlocal 

m for repetitions 
+ Ek 1/J(mk , nk) 

middle: 
m for repetitions 
+ 1/J(p, n*) (no aba in wk) 

non-middle 

m for repetitions 
starting: + Ek A2 (n'k) 

(no abab in wk) 

ending: same as starting 

D 
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How to prove good bounds from the recurrence. The recurrence just 
proved can be used to show that 1/J(m, n) = O((m+n)a(m)) ,  and Lemma 7.4 .1 
then yields the desired conclusion .X3 ( n) = 0( na( n) ) .  We do not give the full 
calculation; we only indicate how the recurrence can be used to prove better 
and better bounds starting from the obvious estimate 'lj;(m, n) < mn. 

First we prove that 1/J ( m, n) < 4m log2 m + 6n, for m a power of 2 .  From 
our recurrence with p = 2 and m1 = m,2 = r; , we obtain 

Proceeding by induction on log2 m and using 1j.;(2, n) = 2n, we estimate the 
last expression by 4m + 4n* + 2n* + 2m(log2 m - 1) + 6n1 + 2m(log2 m - 1) + 
6n2 = 4m log2 m + 6n as required. 

Next, we assume that m = A3(r) (the tower function) for an integer r 
and prove 'l/;(m, n) < 8rm + 10n by induction on r. This time we choose 
p = lo;:-m and mk = ; == log2 m == A3 (r-l ) .  For estimating 'l/J(p, n* ) we use 
the bound derived earlier. This gives 

p 
'ljJ(m, n) < 4m + 4n* + 4p log2 p + 6n* + L 'l/J(mk , nk) 

k=l 
< 4m + 4n* + 4m + 6n* + 8(r - l)m + lO(n - n*) = 8rm + IOn. 

So, by now we already know that .X3 ( n) = 0( n log* n), where log* n is the 
inverse to the tower function A3 ( n) .  This bound is as good as linear for 
practical purposes. 

In general, one proves that for rn = Ak ( r) ,  

'¢(m, n) < (4k - 4)rm + (4k - 2)n, 

by double induction on k and r. The inductive assumption for k-1 is always 
used to bound the term 'ljJ(p, n* ) .  We omit the rest of the calculation. 

Bibliography and remarks. In this section we draw mostly from 
[SA95] , with sorne changes in terrninology. 

Exercises 

1 .  For integers s > t > 1 ,  let '¢; ( m, n) denote the maximum length of a 
Davenport-Schinzel sequence of order s (no subsequence abab . . .  with 
s+2 letters) over n symbols that can be partitioned into m contiguous 
segments, each of them a Davenport-Schinzel sequence of order t. In 
particular, 1/Js (m, n) == 'lfJ! (m, n) is the maximum length of a Davenport
Schinzel sequence of order s over n symbols that consists of m nonrepet
itive segments. 
(a) Prove that A8 (n) < 1/J!-1 (n, n) . [I] 
(b) Prove that 
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0 
(c) Let w be a sequence witnessing 'l/Js ( m, n) and let m = m1 + m2 + 
· · · + mp be some partition of m. Divide 'UJ into p parts as in the proof of 
Proposition 7.4.2, the kth part consisting of mk nonrepetitive segments. 
With the tern1inology and notation of that proof, check that the local 
symbols contribute at most m+  I:�=l 1/Js (mk , nk) to the length of w, the 
middle symbols at most m + 1/J!-2 (p, n* ) ,  and the starting symbols no 
more than m + 'l/Js-t (m, n* ) .  0 
(d) Prove by induction that 'l/J.� (n, m) < C8 • (m + n) logs-� (m+l) and 
As ( n) < C� n logs-2 ( n+ 1 ) ,  for all s > 2 and suitable Cs and C� depending 
only on s (set p = 2 in (c) ) .  0 

7.5 Up to Higher Dimension: Triangles in Space 

As we have seen, lower envelopes in the plane can be handled by means of 
a simple combinatorial abstraction, the Davenport-Schinzel sequences. Un
fortunately, so far, no reasonable combinatorial model has been found for 
higher-dimensional lower envelopes. The known upper bounds are usually 
much cruder than those in the plane, but their proofs are quite complex and 
technical. We start with almost the simplest possible case: triangles in R 3 . 

Here is an example of the lower envelope of triangles viewed from below: 

It is actually the vertical projection of the lower envelope on a horizontal plane 
lying below all the triangles. The projection consists of polygons, both convex 
and nonconvex, and the combinatorial complexity of the lower envelope is the 
total number of these polygons plus the number of their edges and vertices. 
Simple arguments, say using the Euler relation for planar graphs, show that 
if we do not care about constant factors, it suffices to consider the vertices of 
the polygons. 

It turns out that the worst-case complexity of the lower envelope is of 
order n2a(n) . Here we prove a simpler, suboptimal bound: 
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7.5.1 Proposition. The combinatorial complexity of the lower envelope of 
n triangles in R3 is at most O(na(n) log n) = O(n2a(n) log n), where a(n) 
stands for the maximum complexity of the lower envelope of n segments in 
the plane. 

It is convenient , although not really essential, to work with triangles in 
general position. As usual, a perturbation argument shows that this is where 
the n1aximum complexity of the lower envelope is attained. The precise gen
eral position requirements can be found by inspecting the forthcoming proof, 
and we leave this to the reader. 

Walls and boundary vertices. Let H be a set of n triangles in R3 in 
general position. We need to bound the total number of vertices in the pro
jection of the lower envelope. The vertices arc of two types: those that lie on 
the vertical projection of an edge of sorne of the triangles ( boundary vertices) ,  
and those obtained from intersections of 3 triangles (inner vertices) .  In the 
above picture there are many boundary vertices but only two inner vertices. 
Yet the boundary vertices are rather easy to deal with, while the inner ver
tices present the real challenge. 

We claiin that the total number of boundary vertices is at most 0 ( na ( n)) .  
To see this, let a be an edge of a triangle h E H and let 1r a be the "vertical 
wall" through a, i .e . , the union of all vertical lines that intersect a. Each 
triangle of H intersects 7ra in a (possibly empty) segment . The following 
drawing shows the triangle h, the wall 7ra , and the segments within it: 

1ra 

� · · · · · · · · 

a _: . . . - - - - -� h 

Essentially, the boundary vertices lying on the vertical projection of a cor
respond to breakpoints of the lower envelope of these segments within 1ra · 
Only the segment a needs special treatment, since on the one hand, its inter
sections with other segments can give rise to boundary vertices, but on the 
other hand, it does not obscure things lying above it . To take care of this, 
we can consider two lower envelopes, one for the arrangement including a 
and another without a. So each edge a contributes at most 2a( n) boundary 
vertices, and the total number of boundary vertices is 0( nu( n) ) .  

Levels. Each inner vertex of the projected lower envelope corresponds to a 
vertex of the arrangement of H lying on the lower envelope, i.e. , of level 0 
(recall that according to our definitioQ. of arrangement , the vertices are inter
sections of 3 triangles) . The level of a vertex v is defined in the usual way: It 
is the number of triangles of H that intersect the open ray emanating from 
v vertically downwards. Let fk (H) denote the nurnber of vertices of level k, 
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k = 0, 1 ,  . . . . Further, let fk (n) be the maximum of fk (H) over all sets H of 
n triangles (in general position) . So our goal is to estimate fo (n) . 

The first part of the proof of Proposition 7.5.1 employs a probabilistic 
argument, very similar to the one in the proof of the zone theore1n (Theo
rem 6.4 . 1) , to relate fo (H) and /1 (H) to fo(n-1) .  

7.5.2 Lemma. For every set H of n triangles in general position, we have 

n - 3  1 
-- fo(H) < fo(n-1) - - !1 (H). n n 

Proof. We pick one triangle h E H at random and estimate E [/o ( H \ { h})] , 
the expected number of vertices of the lower envelope after removing h. Every 
vertex of the lower envelope of H is determined by 3 triangles, and so its 
chances of surviving the removal of h are n 

n 3 . For a vertex v of level 1 ,  the 
probability of its appearing on the lower envelope is � ,  since we must remove 
the single triangle lying below v .  Therefore, 

n - 3 1 
E [fo (H \ {h} )] = fo (H) + - ft (H) . 

n n 
The lemma follows by using fo (H \ {h}) < /o (n-1 ) .  D 

Before proceeding, let us inspect the inequality in the lennna just proved. 
Let H be a set of n triangles with f0 (H) = fo (n). If we ignored the term 
� ft (H), we would obtain the recurrence n 

n 3 fo (n) < /o(n-1 ) .  This yields 
only the trivial estimate fo (n) = O(n3 ) , which is not surprising, since we 
have used practically no geometric information about the triangles. In order 
to do better, we now want to show that /1 (H) is almost as big as fo (H), 
in which case the term .� f 1 (H) decreases the right-hand side significantly. 
Namely, we prove that 

/1 (H) > fo (H) - O(na(n)) .  

Substituting this into the inequality in Lemma 7.5 .2, we arrive at 
n - 2  
-- fo(n) < fo (n-1 )  + O(a(n) ) .  

n 

(7. 1 )  

We practiced this kind of recurrences in Section 6.4: The substitution cp( n) = 
n{��h quickly yields f0 (n) = O(na(n) log n) . So in order to prove Proposi
tion 7.5 . 1 ,  it remains to derive (7. 1 ) ,  and this is the geometric heart of the 
proof. 
Making someone pay for the level-0 vertices. We are going to relate 
the number of level-0 vertices to the number of Ievel-l vertices by a local 
charging scheme: From each vertex v of level 0, we walk around a little and 
find suitable vertices of level 1 to pay for v ,  as follows. 

The level-0 vertex v is incident to 6 edges, 3 of them having level 0 and 3 
level 1 :  
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The picture shows only a small square piece from each of the triangles incident 
to v .  The lower envelope is on the bottom, and the edges of Ievel l emanating 
from v are marked by arrows. Let e be one of the Ievel-l edges going from v 

away from the lower envelope. We follow it until one of the following events 
occurs: 

(i) We reach the intersection v' of e with a vertical wall 7ra erected from an 
edge a of some triangle. This v' pays 1 unit to v .  

(ii) We reach the intersection v' of e with another triangle; i .e . ,  v' is a vertex 
of the arrangement of H. This v' pays � of a unit to v.  

This is done for all 3 level-1 edges emanating from v and for all vertices v of 
level 0.  Clearly, every v receives at least 1 unit in total. It remains to discuss 
what kind of vertices the v' are and to estimate the total charge paid by 
thern. 

Since there is no other vertex on e between v and v
'

, a particular v' can 
be reached from at most 2 distinct v in case (i) and from at most 3 distinct 
v in case (ii) . So a v' is charged at most 2 according to case (i) or at most 1 
according to case (ii) (because of the general position of H, these cases are 
never combined, since no intersection of 3 triangles lies in any of the vertical 
walls 7ra ) · 

Next, we observe that in case (i) , v' has level at most 2, and in case (ii ) ,  it 
has level exactly 1 .  This is best seen by considering the situation within the 
vertical plane containing the edge e. As we move along e,  just after leaving 
v we are at level 1 ,  with exactly one triangle h below, as is illustrated next: 

e 

case (i) case (ii) 

The level does not change unless we enter a vertical wall 1r a or another triangle 
h' E H. If we first enter some 1r a ,  then case ( i) occurs with v' = e n 1r a ,  and 
the level cannot change by more than 1 by entering 1r a .  If we first reach a 
triangle h', we have case (ii) with v' = e n  h', and v' has level 1 .  

Each v' reached in case (i) is a vertex in the arrangement of segments 
within one of the walls 7ra , and it has level at most 2 there. It is easy to show 
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by the technique of the proof of Clarkson's theorem on levels (Theorem 6.3.1) 
that the number of vertices of level at most 2 in an arrangement of n segments 
is 0( u( n)) (Exercise 2) . Since we have 3n walls 1r a ,  the total amount paid 
according to case (i) is 0( na( n)) .  

As for case (ii) , all the v' are at level 1 ,  and each pays at most 1 ,  so the 
total charge is at most /1 (H). 

Therefore, fo(H) < f1 (H) + O(na(n) ) ,  which establishes (7.1) and con-
cludes the proof of Proposition 7.5. 1 .  D 

Bibliography and remarks. The sharp bound of O(n2a(n)) for 
the lower envelope of n triangles in R 3 was first proved by Pach and 
Sharir [PS89] using a divide-and-conquer argument. A tight bound of 
O(nd-1a(n)) for (d-1 )-dimensional simplices in Rd was established a 
little later by Edelsbrunner [Ede89] . Tagansky [Tag96] found a consid
erably simpler argument and also proved some new results. We used 
his method in the proof of Proposition 7.5 . 1 ,  but since we omitted 
a subtler analysis of the charging scheme, we obtained a suboptimal 
bound. To improve the bound to O(n2a(n)) ,  the charging scheme is 
modified a little: The v' reached in case (i) pays � instead of 1 ,  and the 
v' reached in case (ii) pays k if it was reached from k < 3 distinct v.  

Then it can be shown, with some work, that every vertex of the lower 
envelope receives a charge of at least � (and not only 1 ) ;  see [Tag96] . 
Hence f1 (H) > :fo (H) - O(na(n) ) ,  and the resulting recurrence be-
comes n-;,13 fo (n) < fo (n- l) +O(a(n)) .  It implies fo (n) = O(na(n)) ; 
proving this is somewhat complicated, since the simple substitution 
trick does not work here. 

Exercises 

1 .  Given a construction of a set of n segments in the plane with lower 
envelope of complexity a(n) , show that the lower envelope of n triangles 
in R3 can have complexity O(na(n) ) .  0 

2.  Show that the number of vertices of level at most k in the arrangement of 
n segments (in general position) in the plane is at most O(k2u( l k�1 J ) ) .  
The proof of the general case of Clarkson's theorem on levels (Theo
rem 6.3 .1) applies almost verbatim. [!] 

7.6 Curves in the Plane 

In the proof for triangles shown in the previous section, if we leave a vertex on 
the lower envelope along an edge of Ievel l ,  we cannot come back to the lower 
envelope before one of the events ( i) or ( ii) occurs. Once we start considering 
lower envelopes of curved surfaces, such as graphs of polynomials of degree 
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s for some fixed s, this is no longer true: The edge can immediately go back 
to another vertex on the lower envelope. Then we would be trying to charge 
one vertex of the lower envelope to another. This can be done, but one must 
define an "order" for each vertex, and charge envelope vertices of order i only 
to vertices of order smaller than i or to vertices of significantly higher levels. 

We show this for the case of curves in the plane. This example is artifi
cial, since using Davenport-Schinzel Hequences leadH to much sharper bounds. 
But we can thus demonstrate the ideas of the higher-dimensional proof, while 
avoiding n1any technicalities. We rernark that this proof is not really an up
grade of the one for triangles: Here we aim at a much cruder bound, and so 
some of the subtleties in the proof for triangles can be neglected. 

We consider n planar curves as discussed in Section 7. 1 :  They are graphs 
of continuous functions R ---7 R, and every two intersect at most s times. 
1\lloreover, we assu1ne for convenience that the curves cross at each intersec
tion and no 3 curves have a common point. 

7.6. 1 Proposition. The maximum possible number of vertices on the lower 
envelope of a set H of n curves as above is at most O(n1+e) for every fixed 
E > 0. That is, for every s and every E > 0 there exists C such that the bound 
is at most Cn1+e for all n. 

Proof. Let v be a vertex of the arrangement of H. We say that v has order i 
if it is the ith leftrnost intersection of the two curves defining it. So the order 
is an integer between 1 and s. 

Let f�ik (H) denote the number of vertices of order i and level at most k in 
the arrangement of H. Let f�ik (n) be the maximum of this quantity over all 
n-element sets H of curves as-in the proposition. Further, we write f < k (H) = 
L::-l f�ik (H) for the total number of vertices of level at most k. For k == 0 

we write just f instead of f <o and similarly for j( i) .  
Let v be a vertex of order i on the lower envelope. We define a charging 

Hcheme; that iH, we describe who is going to pay for v. We start walking from 
v to the left along the curve h passing through v and not being on the lower 
envelope on the left of v. If ki vertices are encountered, without returning 
to the lower envelope or escaping to -oo, then we charge each of these ki 
vertices �"' units. Here kt , k2 , . • •  , ks are integer pararneters whose values will 
be fixed later, but one can think of them as very large constants. 

If we end up at -oo before encountering ki vertices, we charge 1 to the 
curve h itself. Finally, if we are back at the lower envelope without having 
passed at least ki vertices, then, crucially, we must have crossed the second 
curve h' defining the vertex v again, at a vertex v' of order i-1 ,  and this v' 

payH 1 for v .  A picture illuHtrates these three cases of charging: 

h' 

v h h 
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We see that v can charge a curve or a vertex of a smaller order significantly, 
or it can charge many vertices of arbitrary orders, but each of them just a 
little. 

We do this charging for all vertices v of order i on the lower envelope. 
A given vertex v' of the arrangement can be charged only if it has level 
at most ki , and it can be charged at most twice: The vertices of the lower 
envelope that might possibly charge v' can be found by following the two 
curves passing through v' to the right . So if v' has order different from i - 1 ,  
then it pays at most �t , and if it has order i-1 ,  then it can be charged 1 
extra. Finally, each curve pays at most 1 .  Since at least 1 unit was paid for 
each vertex of order i on the lower envelope, we obtain 

(7.2) 

Next , we want to convert this into a recurrence involving only f and f( i) . 
To this end, we estimate f�ik by following the proof of Clarkson's theorem 
on levels almost literally (as for the case of segments in Exercise 7.5.2) .  We 
obtain 

f�ik (n) = 0 ( k2 f(i) ( L �J )) · 
By substituting this bound (and its analogue for f<k ) into the right-hand 

side of (7 .2) , we arrive at the system of inequalities 

where C is a suitable constant and where we put f(O) = 0. We also have 
f < j(l ) + . . .  + j(s) .  

It remains to derive the bound f(n) = O(n1+c) from this recurrence, 
which is not really difficult but still somewhat interesting. It is essential that 
f ( l � J ) appear� only with the coefficient ki on the right-hand side, in contrast 
to j(i-I ) ( lk:J ) ,  which has coefficient k[ . 

Let c > 0 be small but fixed. Let us see what happens if we try to prove 
the bounds f(i) (n) < Ainl+c and f(n) < An1+c: by induction on n using 
(7.3) , where the Ai are suitable (large) constants and A = L: 1 Ai . The 
term n on the right-hand side of ( 7.3) is small compared to n 1 +c: , and so we 
ignore it for the moment . We also neglect the floor functions. By substituting 
the inductive hypothesis JC i) ( l ;: J ) < Ai ( ;� ) 1 +c: into the right-hand side of 
( 7. 3), we obtain roughly 

n1+c(CAkic: + CAi- t kf-c:)  < n1+c: (CAkic: + CAi- lki ) · 

For the induction to work, Ai must be larger than the expression in paren
theses. To make Ai bigger than the second term in parentheses, we can set 
Ai = 3C kiAi- l , �ay (the con�tant 3 i� chosen to leave enough room for the 
other terms) .  Then Ai = A1c�- 1 k2k3 · · · ki , with C1 = 3C . These Ai grow 
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fast, and so A � A8 • Then the requirement that Ai be larger than the first 
term in parentheses yields, after a little simplification, 

k€ > cs-i+1k k k i - 1 i+ 1 i+2 . . . s .  

Therefore, the ki should decrease very fast with i .  We can set ks = c{le 
and ki = (Cf-i+Iki+lki+2 · · · ks) l /e . Now setting At , which is still a free 
parameter, sufficiently (enormously) large, we can make sure that the desired 
bounds j< i) ( n) < Ain 1 +e hold at least up to n = k1 , so that we can really 
use the recurrence (7.3) in the induction with the ki defined above. These 
considerations indicate that the induction works; to be completely sure, one 
should perform it once more in detail. But we leave this to the reader's 
diligence and declare Proposition 7.6. 1 proved. D 

Bibliography and remarks. The method shown in this section 
first appeared in Halperin and Sharir [HS94] , who considered lower 
envelopes of curved objects in R3 . 

7. 7 Algebraic Surface Patches 

Here we state, without proofs, general bounds on the complexity of higher
dimensional lower envelopes. We also discuss a far-reaching generalization: an 
analogous bound for the complexity of a cell in a d-dimensional arrangement. 

Roughly speaking, the lower envelope of any n "well-behaved" pieces of 
(d-1)-dimensional surfaces in Rd has complexity close to nd-l .  While for 
planar curves it is simple to say what "well-behaved" means, the situation 
is 1nore problematic in higher din1ensions. The known proofs are geometric, 
and listing as axioms all the geometric properties of "well-behaved pieces of 
surfaces" actually used in them seems too cumbersome to be useful. Thus, the 
most general known results, and even conjectures, are formulated for families 
of algebraic surface patches, although it is clear that the proofs apply in more 
general settings. 

First we recall the definition of a semialgebraic set. This is a set in 
Rd definable by a Boolean combination of polynomial inequalities. More 
formally, a set A C R d is called semialgebraic if there are polynomials 
PI , P2 , . . .  , Pr E R [x 1 , . . . , xd] (i.e. , polynomials in d variables with real coef
ficients) and a Boolean formula <I>(Xt , X2, . . .  , Xr ) (such as X1&(X2 V X3) ) ,  
where X 1 ,  • • •  , Xr are variables attaining values "true" or "false" , such that 

Note that the formula <I> rnay involve negations, and so the sets { x E 
Rd: p1 (x) > 0} and {x E Rd: p1 (x) = 0} are semialgebraic, for example. 
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One might want to allow for quantifiers, that is, to admit sets like 
{ (x1 , x2 ) E R2 : =:3yl \ly2 p(xi , x2 , Yt , Y2 ) > 0}  for a 4-variate polynomial p. 
As is useful to know, but not very easy to prove (and we do not attempt it 
here) , each such set is semialgebraic, too: According to a famous theorem of 
Tarski, it can be defined by a quantifier-free formula. 

Let D be the maximum of the degrees of the polynomials p1 , . . .  , Pr ap
pearing in the definition of a semialgebraic set A. Let us call the number 
max( d, r, D) the description complexity2 of A. The results about lower en
velopes concern �emialgebraic �et� whose de�cription complexity is bounded 
by a constant. 

An algebraic surface patch is a special case of a semialgebraic set: It 
can be defined as the intersection of the zero set of some polynornial q E 
R[x1 ,  . . .  , xd] with a closed semialgebraic set B. Intuitively, q(x) = 0 defines 
a "surface" in Rd, and B cuts off a closed patch from that surface. Note 
that B can be all of R d , and so the forthcoming results apply, arnong others, 
to graphs of polynomials or, more generally, to surfaces defined by a single 
polynomial equation. 

Let us remark that in the papers dealing with algebraic surface patches, 
the definition is often rnore restrictive, and certainly the proofs tnakc several 
extra assumptions. Most significantly, they usually suppose that the patches 
are smooth and they intersect transversally; that is, near each point com
mon to the relative interior of k patches, these k patches look locally like k 
hyperplanes in general position, 1 < k < d. These conditions follow from a 
suitable general position assumption, nan1ely, that the coefficients of all the 
polynomials appearing in the descriptions of all the patches are algebraically 
independent numbers. 3 This can be achieved by a perturbation, but a rigor
ous argument, showing that a sufficiently small perturbation cannot decrease 
the complexity of the lower envelope too much, is not entirely easy. 

The algebraic surface patches are also typically required to be xd-mono
tone (every vertical line intersects them only once) . This can be guaranteed 
by partitioning each of the original patches into smaller pieces, slicing them 
along the locus of points with vertical tangent hyperplanes (and eliminating 
the vertical pieces) . 

After these prelin1inaries, we can state the 1nain theore1n. 

7.7. 1 Theorem. For every integers b and d > 2 and every c > 0, there 
exists C = C ( d, b, c) such that the following holds. Whenever ')'1 , 12 , . . . , 'Yn 
are algebraic surface patches in Rd, each of description complexity at most 
b, the lower envelope of the arrangement of /I , 12 , . . .  , In has combinatorial 
complexity at most Cnd- l+c:. 

2 This terminology is not standard. 
3 Real numbers a1 , a2 , . . . , am are algebraically independent if there is no nonzero 

polynomial p with integer coefficients such that p(a1 , a2 , . . .  , am) = 0. 
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How is the combinatorial complexity of the lower envelope defined in this 
general case, by the way? For each /i , we define Mi C Rd-1 as the region 
where /i is on the bottom of the arrangement; formally, Mi consists of all 
( x 1 ,  x2 , . . .  , Xd-l )  E R d-1 such that the lowest intersection of the vertical line 
{ (xl ' X2 , . . .  ' Xd-1 ' t ) :  t E R} with u; 1 /j lies in /i · The arrangement of the 
Mi is often called the minimization diagram of the /i , and the number of its 
faces is the complexity of the lower envelope. 

The proof of Theorem 7.7. 1 is quite similar to the one shown in the pre
ceding section. Each lower-envelope vertex is charged either to a vertex of 
lower order (the intersection of the same d patches but lying more to the 
left) ,  or to some ki vertices, or to a vertex within the vertical wall erected 
from the boundary of some patch (all the charged vertices lying at level at 
most ki ) .  The number of vertices of the last type is estimated by using the 
(d-1)-dimensional case of Theorem 7.7.1 (so the whole proof goes by induc
tion on the dimension) . To this end, one needs to show that the situation 
within the ( d- 1 )-dimensional vertical wall, which in general is curved, can 
be mapped to a situation with algebraic surface patches in R d-l . Here the 
fact that we are dealing with semialgebraic sets is used most heavily. 

Theore1n 7. 7. 1 is a powerful result and it provides nontrivial upper bounds 
on the complexity of various geometric configurations. Sometimes the bound 
can be improved by a problem-specific proof, but the general lower-envelope 
result often quickly yields roughly the correct order of magnitude. For exam
ples see Exercise 1 and [SA95] or [ASOOa] . 

Single cell. Bounding the maximum complexity of a single cell in an ar
rangement is usually considerably more demanding than the lower envelope 
question, mainly because a cell can have a complicated topology: It can have 
holes, tunnels, and so on (cells in hyperplane arrangements, no more com
plicated than the lower envelope, are an honorable exception) . The following 
theorem provides a bound analogous to that of Theorem 7.7. 1 .  It was proved 
by similar methods but with several new ideas, especially for the topological 
complexity of the cell. 

7.7.2 Theorem. For every integers b and d > 2 and every e > 0,  there 
exist Co = Co ( d, b) and C = C ( d, b, c) such that the following holds. Let K 
be a cell in the arrangement of n algebraic surface patches in R d in general 
position, each of description complexity at most b. Then the combinatorial 
complexity of K (the number of faces in its closure) is at most Cnd-l+e: , and 
its topological complexity (the sum of the Betti numbers) is no more than 
11 d- 1 von . 

The general position assumption can probably be removed, but I am aware 
of no explicit reference, except for the special case d = 3. 

Bibliography and remarks. For a thorough discussion of semialge
braic sets and quantifier elimination we refer to books on real algebraic 
geometry, such as Bochnak, Coste, and Roy [BCR98] . 
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An old conjecture of Sharir asserts that the combinatorial com
plexity of the lower envelope in the situation of Theorem 7. 7.1 is at 
most O(nd-2 A8(n)) for a suitable s depending on the description com
plexity of the patches. The best known lower bound is O(nd-1a(n) ) ,  
which applies even for simplices. 

The decisive advance towards proving Theorem 7.7.1 was made by 
Halperin and Sharir [HS94] , who established the 3-dimensional case. 
The general case was proved, as a culmination of a long development, 
by Sharir [Sha94] . A discussion of the general position assumption 
and the perturbation argument can also be found there. Interestingly, 
it is not proved that the maximum complexity is attained in general 
position; rather, it is argued that the expected complexity after an 
appropriate random perturbation is always at least a fixed fraction of 
the original complexity minus O(nd- l+c- ) .  

Some applications lead to the following variation of the lower en
velope problem: We have two collections F and Q of algebraic surface 
patches in Rd, we project the lower envelopes of both F and g into 
Rd-l , and we are interested in the complexity of the superimposed 
projections (where, for d == 3, a vertex of the superimposed projec
tions can arise, for example, as the intersection of an edge coming 
from F with an edge obtained from Q) .  In R3 , it is known that this 
complexity is O(n2+E ) ,  where n = IFI + 191 (Agarwal, Sharir, and 
Schwarzkopf [ASS96] ) ;  this is similar to the bound for the lower en
velopes themselves. The problem remains open in dimensions 4 and 
higher. 

The combinatorial complexity of a Voronoi diagram can also be 
viewed as a lower-envelope problem. Namely, let s 1 ,  s2 , . . .  , sn be ob
jects in R d (points, lines, segments, polytopes) ,  and let p be a metric 
on Rd. Each si defines the function /i : Rd ---+ R by fi (x) == p(x, s i ) ,  
and the Voronoi diagram of the Si is exactly the minimization diagram 
of the graphs of the /i (i.e. , the projection of their lower envelope). If 
the /i are algebraic of bounded degree (or can be converted to such 
functions by a monotone transform of the range) , the general lower 
envelope bound implies that the complexity of the Voronoi diagram 
in Rd is no more than O(nd+c- ) .  This result is nontrivial, but it is 
widely believed that it should be possible to improve it by a factor of 
n (and even more in some special cases) . Several nice partial results 
are known, mostly obtained by methods similar to those for lower 
envelopes. Most notably, Chew, Kedem, Sharir, Tagansky, and Welzl 
[CKS+98] proved that if the si are lines in R3 and the metric p is 
given by a norm whose unit ball is a convex polytope with a constant
bounded number of vertices (this includes the e 1 and £00 metrics, but 
not the Euclidean metric) , then the Voronoi diagram has complexity 
O(n2a(n) log n) .  On the other hand, Aronov [AroOO] constructed, for 
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every p E [ 1 ,  oo] , a set of n (d-2)-fiats in Rd whose Voronoi diagram 
under the fp metric ha..� complexity O(nd-l ) (Exercise 5.7.3) . 
Single cell. For a single cell in the arrangement of n simplices 
in Rd, Aronov and Sharir [AS94) obtained the complexity bound 
O(nd-1 log n). Halperin and Sharir [HS95) managed to prove Thea
rein 7.7.2 in dimension 3. The effort was crowned by Basu [Bas98J , 
who showed by an argument inspired by Morse theory that the topo
logical complexity of a single cell in R d , assuming general position, is 
O(nd-l ) ; the Halperin-Sharir technique then implies the O(nd- I+c: ) 
bound on the combinatorial complexity. 

The research of Sharir and his colleagues in this problern (and 
many other problems discussed in this chapter) has been motivated 
by questions about automatic motion planning for a robot. For exam
ple, let us consider a square-shaped robot in the plane moving among 
n pairwise disjoint segment obstacles. The placement of the robot can 
be specified by three coordinates: the position ( x, y) of the center and 
the angle a of rotation. Each obstacle excludes some placements of 
the robot. With suitable choice of coordinates, say (x, y, tan �) , the 
region of excluded placements is bounded by a few algebraic surface 
patches. Hence all possible placements of the robot reachable from a 
given position by a continuous obstacle-avoiding Inovement correspond 
to a single cell in the arrangement of O(n) algebraic surface patches in 
R 3 .  Consequently, the set of reachable placements has combinatorial 
complexity at most O(n2+c: ) .  Similar reduction works for more gen
eral shapes of the robot and of the obstacles (the robot may even have 
movable parts) , as long as the robot and each of the obstacles can be 
described by a bounded number of algebraic surface patches. Unfor
tunately, even in quite simple settings, the combinatorial complexity 
of the reachable region can be very large. For example, a cube robot 
in R3 has 6 degrees of freedom, and so its placements correspond to 
points in R 6 . Exact motion planning algorithms thus becorne rather 
impractical, and faster approximate algorithms are typically used. 

The complexity of unions. This is another type of problem that often 
occurs in the analysis of geometric algorithms. Let A1 ,  A2 , . • •  , An be 
sets in the plane, each of them bounded by a closed Jordan curve, and 
suppose that the boundaries of every Ai and Aj intersect in at most 
s points. For s = 2, the Ai arc called pseudodisks, and the primary 
example is circular disks. 

pseudo disks not pseudodisks 

193 
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For this case Kedem, Livne, Pach, and Sharir [KLPS86] proved that 
the complexity of U� 1 Ai is O(n), where the complexity is measured 
as the sum of the complexities of the "exterior" cells of the arrange
ment, i .e. , the cells that are not contained in any of the Ai . 

For s 2: 4, long and skinny sets can form a grid pattern and have 
union complexity about n2 , but linear or near-linear bounds were 
proved under additional assumptions. One type of such additional 
assumption is metric, namely, that the objects are "fat ." A rather 
complicated proof of Efrat and Sharir (ESOO] shows that if each Ai 
is convex, the ratio of the circumradius and inradius is bounded by 
some constant K, and every two boundaries intersect at most s times, 
then the union complexity is at most O(n1+e) for any c > 0, with the 
constant of proportionality depending on s, K, c. Earlier, Matousek, 
Pach, Sharir, Sifrony, and Welzl [MPS+94] gave a simpler and more 
precise bound of 0( n log log n) for fat triangles. Pach, Safruti, and 
Sharir [PSSOI) showed that the union of n fat wedges in R3 (intersec
tions of two half-spaces with angle at least some no > 0) ,  as well as the 
union of n cubes in R3 , has complexity O(n2+e ) .  Various extensions of 
these results to nonconvex objects or to higher diinensions seen1 easy 
to conjecture but quite hard to prove. 

Several results are known where one assumes that the Ai have 
special shapes or bounded complexity. Aronov, Sharir, and Tagansky 
[AST97] proved that the complexity of the union of k convex polygons 
in the plane with n vertices in total is O(k2+na(k)) and that the union 
of k convex polytopes in R3 with n vertices in total has complexity 
0( k3 + kn log k) .  Boissonnat, Sharir, Tagansky, and Yvinec [BSTY98] 
showed that the union of n axis-parallel cubes in R d has 0( n f d/21 ) 
complexity, and O(nld/2J )  complexity if the cubes all have the same 
size; both these bounds are tight . 

Agarwal and Sharir [ASOOc] proved that the union of n infinite 
cylinders of equal radius in R3 has complexity O(n2+c) (here O(n2) 
is a lower bound) , and more generally, if A 1 ,  . . . , An are pairwise dis
joint triangles in R3 and B is a ball, then Ui (Ai + B) has complexity 
O(n2+c ) ,  where Ai + B = {a + b: a E Ai, b E  B} is the Minkowski 
sum. The proof relies on the result mentioned above about two super
imposed lower envelopes. 

Exercises 

1 .  Let p1 , . . .  , Pn be points in the plane. At time t = 0, each Pi starts moving 
along a straight line with a fixed velocity Vi · Use Theorem 7. 7.1 to prove 
that the convex hull of the n moving points changes its combinatorial 
structure at most O(n2+c) times during the time interval [0, oo ) . 0 
The tight bound is O(n2 ) ;  it was proved, together with many other related 
results, by Agarwal, Guibas, Herschberger, and Veach [AGHVOl] . 
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Intersection Patterns of 

Convex Sets 

In Chapter 1 we covered three simple but basic theorems in the theory of 
convexity: Belly's, Radon's, and Caratheodory's. For each of them we present 
one closely related but more difficult theorem in the current chapter. These 
n1ore advanced relatives are selected, among the vast number of variations 
on the Helly-Radon-Caratheodory theme, because of their wide applicability 
and also because of nice techniques and tricks appearing in their proofs. 

The development started in this chapter continues in Chapters 9 and 10. 
One of the culrninations of this route is the (p, q)-theorern of Alon and Kleit
rnan, which we will prove in Section 10.5. The proof ingzniously combines 
many of the tools covered in these three chapters and illustrates their power. 

Readers who do not like higher dimensions may want to consider dimen
sions 2 and 3 only. Even with this restriction, the results are still interesting 
and nontri via] . 

8.1 The Fractional Belly Theorem 

Belly's theorem says that if every at most d+ 1 sets of a finite family of 
convex sets in Rd intersect , then all the sets of the farnily intersect . What 
if not necessarily all, but a large fraction of ( d+ 1 )-tuples of sets, intersect? 
The following theorem states that then a large fraction of the sets must have 
a point in common. 

8.1 .1  Theorem (Fractional Helly theorem) .  For every dimension d > 1 
and every a > 0 there exists a {3 = {3( d, a) > 0 with the following property. 
Let F1 , . . .  , Fn be convex sets in R d , n > d+ 1 ,  and suppose that for at least 
a (d�l) of the (d+1)-point index sets I c { 1 ,  2, . . .  ' n} , we have niEI Fi t= 0. 
Then there exists a point contained in at least f3n sets arnong tlle Fi . 
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Although simple, this is a key result , and many of the subsequent devel
opments rely on it. 

The best possible value of j3 is j3 = 1 - (1 - a) I/(d+l) .  We prove the weaker 
estirnate j3 > d� 1 . 

Proof. For a subset I C { 1 ,  2 ,  . . .  , n } ,  let us write F1 for the intersection 

niEI Fi . 
First we observe that it is enough to prove the theorem for the Fi closed 

and hounded (and even convex polytopes) . Indeed, given sorne arbitrary 
F1 , . . .  , Fn , we choose a point PI E F1 for every (d+1}-tuple I with F1 f=- 0 
and we define Ff = conv{p1 : F1 -=/= 0, i E I} ,  which is a polytope contained in 
Fi· If the theorem holds for these Ff, then it also holds for the original Fi · 
In the rest of the proof we thus assume that the Fi , and hence also all the 
non empty F1, are compact. 

Let <Iexdenote the lexicographic ordering of the points of Rd by their 
coordinate vectors. It is easy to show that any compact subset of Rd has a 
unique lexicographically minimum point (Exercise 1 ) .  We need the following 
consequence of Helly's theorem. 

8. 1 .2  Lemma. Let I C { 1 ,  2, . . . , n} be an index set with F1 # 0, and let v 

be the (unique) lexicographically minimum point of Fr . Then there exists an 
at most d-element subset J C I such that v is the lexicographically minimum 
point of FJ as well. 

In other words, the minimum of the intersection F1 is always enforced by 
some at most d "constraints" Pi , as is illustrated in the following drawing 
(note that the two constraints determining the minimum are not determined 
uniquely in the picture) : 

Proof. Let C = {x E Rd: x <zex v } . It is easy to check that C is 
convex. Since v is the lexicographic minimum of F1 , we have CnF1 = 
0. So the family of convex sets consisting of C plus the sets Pi with 
i E I has an empty intersection. By Helly's theorem there are at most 
d+ 1 sets in this family whose intersection is ernpty as well. The set 
C must be one of them, since all the others contain v. The remaining 
at most d sets yield the desired index set J. D 

Let us remark that instead of taking the lexicographically Ininimuin point , 
one can consider a point minimizing a generic linear function. That formula
tion is perhaps more intuitive, but it appears slightly more complicated for 
rigorous presentation. 
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We can now finish the proof of the fractional Helly theorem. For each of 
the a(

d
�1) index sets I of cardinality d+1 with F1 =/= 0, we fix a d-element 

set J = J(I) c I such that FJ has the same lexicographic minimum as F1 . 
The theoren1 follows by double counting. Since the number of distinct 

d-tuples J is at most (�) , one of them, call it Jo, appears as J(I) for at least 
a(

d
�1) / (�) = a�+¥ distinct I. Each such I has the form Jo U {i} for some 

i E { 1 ,  2, . . .  , n } .  The lexicographic minimum of FJ0 is contained in at least 
d + a  �+1 > a d�I sets among the Fi . Hence we may set f3 = 

d�l . D 

Bibliography and remarks. The fractional Helly theorem is due 
to Katchalski and Liu [KL 79] . The quantitatively sharp version with 
/3 = 1- ( 1 -a)

1
/(d

+l) was proved by Kalai [Kal84] (and the main result 
needed for it was proved independently by Eckhoff [Eck85J , too) . Ac
tually, there is an exact result: If the maximum size of an intersecting 
subfamily in a family of n convex sets in Rd is m, then the smallest 
possible number of intersecting ( d+ 1 )-tuples is attained for the family 
consisting of n - m + d hyperplanes in general position and m - d 
copies of Rd. But there are many other essentially different examples 
attaining the same bound. 

These assertions are consequences of considerably more general re
sults about the possible intersection patterns of convex sets in Rd. 

For explaining some of them it is convenient to use the language of 
simplicial complexes. Let F = { F1 , F2 , . . .  , Fn} be a family of con
vex sets in Rd. The nerve N(F) of :F is the simplicial complex with 
vertex set { 1 ,  2, . . .  , n} whose simplices are all I C { 1 ,  2, . . . , n} such 
that niEJ Fi =I= 0. A simplicial complex obtainable as N(F) for some 
family of convex sets in Rd is called d-representable. A characteri
zation of d-representable simplicial complexes for a given d is most 
likely out of reach. There are several useful necessary conditions for 
d-representability. One certainly worth mentioning is d-collapsibility, 
which means that a given simplicial complex IC can be reduced to the 
void complex by a sequence of elementary d-collapsings, where an ele
mentary d-collapsing consists in deleting a face S E IC of dimension at 
most d- 1 that lies in a unique rnaxiinal face of IC and all the faces of IC 
containing S. The proof of the d-collapsibility of every d-representable 
complex (Wegner [Weg75] ) uses an idea quite similar to the proof of 
the fractional Helly theorem. 

While no characterization of d-representable complexes is known, 
the possible !-vectors of such complexes (where fi is the number of 
i-dimensional simplices, which correspond to ( i+ 1 )-wise intersections 
here) are fully characterized by a conjecture of Eckhoff, which was 
proved by Kalai [Kal84] , [Kal86] by an impressive combination of sev
eral methods. The same characterization applies to d-collapsible com
plexes as well (and even to the rnore general d-Leray cornplexes; these 
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are the complexes where the homology of dimension d and larger van
ishes for all induced subcomplexes) . We do not formulate it but men
tion one of its consequences, the upper bound theorem for families of 
convex sets: If fr (N(F) ) = 0 for a family F of n convex sets in Rd and 
some r, d < r < n, then fk (N(F) ) < �� 0 (k

r 
1!1) 

(n-j+d) ; equality 

holds, e.g. , in the case mentioned above (several copies of R d and hy
perplanes in general position) . 

Exercises 

1 .  Show that any compact set in Rd has a unique point with the lexico
graphically smallest coordinate vector. GJ 

2.  Prove the following colored Helly theorern: Let C1 , . . .  , Cd+l he finite farn
ilies of convex sets in Rd such that for any choice of sets C1 E C1 , . . .  , 
Cd+t E Cd+ t ,  the intersection Ct n · · · n Cd+l is nonemp(y. Then for 
some i ,  all the sets ofCi have a nonempty intersection. Apply a method 
similar to the proof of the fractional Helly theorem; i .e . ,  consider the lex
icographic minima of the intersections of suitable collections of the sets. 
0 
The result is due to Lova.sz ( [Lov74] ; also see [Bar82] ) . 

3. Let Ft , F2 , . . .  , Fn be convex sets in Rd. Prove that there exist convex 
polytopes P1 , P2 , . . .  , Pn such that dim(niEJ Fi) = dim(niEJ Pi ) for ev
ery I C {1 ,  2, . . . , n} (where dim(0) = -1 ) .  � 

8.2 The Colorful Caratheodory Theorem 

Caratheodory 's theorem asserts that if a point x is in the convex hull of a set 
X C  Rd, then it is in the convex hull of sorne at rnost d+1 points of X.  Here 
we present a "colored version" of this statement. In the plane, it shows the 
following: Given a red triangle, a blue triangle, and a white triangle, each of 
them containing the origin, there is a vertex r of the red triangle, a vertex b of 
the blue triangle, and a vertex w of the white triangle such that the tricolored 
triangle rbw also contains the origin. (In the following pictures, the colors of 
points are distinguished by different shapes of the point markers.) 

•• • 

' . 

• 

The d-dimensional statement follows. 

• 
,' : .. .. � . 

,•''"" -.: ... 
� / : .. 
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8.2.1 Theorem (Colorful Caratheodory theorem) . Consider d+l fi
nite point sets M1 , . . .  , Md+l in Rd such that the convex hull of each 
Mi contains the point 0 (the origin) . Then there exists a (d+l )-point set 
S C M1 U · · · U Md+l with IMi n S l = 1 for each i and such that 0 E conv (S) . 
(If we imagine that the points of Mi have "color" i ,  then we look for a "rain
bow" ( d+ 1 ) -point S with 0 E conv( S) , where "rainbow" = "containing all 
colors. ") 

Proof. Call the convex hull of a (d+l )-point rainbow set a rainbow simplex. 
We proceed by contradiction: We suppose that no rainbow simplex contains 0, 
and we choose a (d+l )-point rainbow set S such that the distance of conv (S) 
to 0 is the smallest possible. Let x be the point of conv( S) closest to 0. 
Consider the hyperplane h containing x and perpendicular to the segment 
Ox, as in the picture: 

. 

> 

/ II y 

conv(S) 

o +  h 

Then all of S lies in the closed half-space h- bounded by h and not contain
ing 0. We have conv(S) n h = conv(S n h) , and by Caratheodory's theorem, 
there exists an at most d-point subset T c S n h such that x E conv(T) . 

Let i be a color not occurring in T (i .e. , Mi n T = 0) .  If all the points 
of Mi lay in the half-space h- , then 0 would not be in conv(Mi ) , which we 
assume. Thus, there exists a point y E Mi lying in the complement of h
(strictly, i .e. , y ¢ h). 

Let us form a new rainbow set S' from S by replacing the (unique) point 
of Mi n S by y. We have T C S', and so x E conv(S') . Hence the segment 
xy is contained in conv(S') , and we see that conv(S') lies closer to 0 than 
conv(S) , a contradiction. The colorful Caratheodory theorem is proved. D 

This proof suggests an algorithm for finding the rainbow simplex as in 
the theorem. Nantely, start with an arbitrary rainbow simplex, and if it does 
not contain 0, switch one vertex as in the proof. It is not known whether the 
number of steps of this algorithm can be bounded by a polynomial function 
of the dimension and of the total number of points in the Mi . It would be 
very interesting to construct configurations where the number of steps is very 
large or to prove that it cannot be too large. 

Bibliography and remarks. The colorful Caratheodory theorem 
is due to Barany (Bar82] . Its algorithmic aspects were investigated by 
Barany and Onn [B097] . 



200 Chapter 8: Intersection Patterns of Convex Sets 

Exercises 

1 .  Let S and T be ( d+ 1 )-point sets in R d, each containing 0 in the convex 
hull. Prove that there exists a finite sequence So = S, 81 , 82 , . . .  , Sm = T 
of (d+l)-point sets with Si C S U T and 0 E conv(Si )  for all i ,  such 
that si+l is obtained from si by deleting one point and adding another. 
Assume general position of S U T if convenient . Warning: better do not 
try to find a ( d+ 1 )-term sequence. m 

8.3 Tverberg's Theorem 

Radon's lemma states that any set of d+2 points in Rd has two disjoint 
subsets whose convex hulls intersect. Tverberg's theorem is a generalization of 
this statement, where we want not only two disjoint subsets with intersecting 
convex hulls but r of them. 

It is not too difficult to show that if we have very many points, then such r 
subsets can be found. For easier formulations, let T( d, r) denote the smallest 
integer T such that for any set A of T points in R d there exist pairwise 
disjoint subsets A1 , A2 , . • .  , Ar c A with n� 1 conv(Ai) =/= 0. Radon's lemma 
asserts that T(d, 2) = d+2. 

It is not hard to see that T(d, r1 r2) < T(d, r1 )T(d, r2 ) (Exercise 1 ) .  To
gether with Radon's lemma this observation shows that T( d, r) is finite for 
all r, but it does not give a very good bound. 

Here is another, more sophisticated, argument, leading to the (still subop
timal) bound T(d, T) < n = (r-1) (d+1)2 + 1 .  Let A be an n-point set in Rd 
and let us set s =  n - (r- l ) (d+l ) .  A simple counting shows that every d+1 
subsets of A of size s all have a point of A in common. Therefore, by Helly's 
theorem, the convex hulls of all s-tuples have a common point x (typically 
not in A anymore) . By Carathedory's theorem, x is contained in the convex 
hull of so1ne (d+1}-point set A1 C A. Since A \  A1 has at least s points, x 

is still contained in conv( A \ A1 ) ,  and thus also in the convex hull of some 
( d+ 1 )-point A2 C A \  A1 , etc. We can continue in this manner and select the 
desired r disjoint sets A 1 , . . .  , Ar, all of them containing x in their convex 
hulls. 

It is not difficult to see that T(d, r) cannot be smaller than (r-l) (d+1) + 1  
(Exercise 2) .  Tverberg's theorem asserts that this smallest conceivable value 
is always sufficient. 

8.3.1 Theorem (Tverberg's theorem) . Let d and r be given natural 
numbers. For any set A C R d of at least ( d+ 1)  ( r-1)  + 1 points there exist r 
pairwise disjoint subsets A1 , A2 , . . .  , Ar c A such that n� 1 conv(Ai) =I= 0. 

The sets A 1 ,  A2,  . . .  , Ar as in the theorem are called a Tverberg partition 
of A (we may assume that they form a partition of A), and a point in the 
intersection of their convex hulls is called a Tverberg point. The following 
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illustration shows what such partitions can look like for d = 2 and r = 3;  
both the drawings use the same 7-point set A: 

(Are these all Tverberg partitions for this set, or are there more?) 
As in the colorful Caratheodory theorem, a very interesting open problem 

is the existence of an efficient algorithm for finding a Tverberg partition of 
a given set. There is a polynomial-time algorithm if the dimension is fixed, 
but some NP-hardness results for closely related problems indicate that if 
the dimension is a part of input then the problem might be algorithmically 
difficult. 

Several proofs of Tverberg's theorem are known. The one demonstrated 
below is maybe not the simplest, but it shows an interesting "lifting" tech
nique. We deduce the theorem by applying the colorful Caratheodory theorem 
to a suitable point configuration in a higher-dimensional space. 

Proof of Tverberg's theorem. We begin with a reformulation of Tver
berg's theorem that is technically easier to handle. For a set X C R d , the 
convex cone generated by X is defined as the set of all linear combinations of 
points of X with nonnegative coefficients; that is, we set 

cone( X) = {t aixi: Xl , . . .  ' Xn E X, 0!1 , • • •  ' an E R, O!i > o} . 
t=1 

Geometrically, cone(X) is the union of all rays starting at the origin and 
passing through a point of conv(X). The following statement is equivalent to 
Tverberg's theorem: 

8.3.2 Proposition (Tverberg's theorem: cone version) . Let A be a set 
of ( d+ 1 )  ( r-1) + 1 points in R d+ 1 such that 0 ¢ conv (A) . Then there exist r 
pairwise disjoint subsets A1 , A2 , . . .  , Ar c A such that n: 1 cone(Ai) =/= {0} . 

Let us verify that this proposition implies Tverberg's theorem. En1bed 
Rd into Rd+l as the hyperplane xd+l = 1 (as in Section 1 . 1 ) .  A set A c 
Rd thus becomes a subset of Rd+l ; moreover, its convex hull lies in the 
Xd+l = 1 hyperplane, and thus it does not contain 0. By Proposition 8.3.2, the 
set A can be partitioned into groups A 1 ,  . . .  , Ar with n: 1 cone(Ai) =/= {0} . 
The intersection of these cones thus contains a ray originating at 0. It is 
easily checked that such a ray intersects the hyperplane xd+l = 1 and that 
the intersection point is a Tverberg point for A. Hence it suffices to prove 
Proposition 8.3.2. 
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Proof of Proposition 8.3.2. Let us put N = (d+l ) (r-l ) ; thus, A has N +l 
points. First we define linear maps cp j : R d+ 1 ---+ R N, j = 1 ,  2 ,  . . .  , r .  We group 
the coordinates in the image space R N into r -l  blocks by d+ 1 coordinates 
each. For j = 1 ,  2,  . . .  , r-1 ,  ({)j (x) is the vector having the coordinates of x 
in the jth block and zeros in the other blocks; symbolically, 

'Pi (X) = ( 0 I 0 I · . . I 0 I X I 0 I . . .  I 0 ) . 
' ,I v 

(j -1) X 

The last mapping, <pr, has -x in each block: 'Pr (x) = (-x I - x I · ·  · I - x ) .  
These maps have the following property: For any r vectors u1 ,  . . .  , Ur E 

Rd+1 
' 

r 
L cpj (ui ) = 0 holds if and only if u1 = u2 = · · · = Ur · (8. 1 )  
j=1 

Indeed, this can be easily seen by expressing 

r 
L 'Pi ( Uj } = ( U1 - Ur I U2 - Ur I · ·  · I Ur-1 - Ur) . 
j=1 

Next, let A =  { a1 , . . .  , aN+ t }  C Rd+l be a set with 0 rl conv(A) . We con
sider the set M = <p1 (A) U cp2 (A) U · · · U <pr (A) in RN consisting of r copies of 
A. The first r-1 copies are placed into mutually orthogonal coordinate sub
spaces of R N . The last copy of each ai sums up to 0 with the other r-1 copies 
of ai . Then we color the points of M by N + 1 colors; all copies of the same 
ai get the color i .  In other words, we set Mi = {'PI ( ai ) ,  <p2 ( ai ) ,  . . .  , 'Pr ( ai ) } .  
As we have noted, the points in each Mi sum up to 0, which means that 
0 E conv(Mi) , and thus the assumptions of the colorful Caratheodory theo
rem hold for M1 , . . .  , MN+1 · 

Let S C M be a rainbow set (containing one point of each Mi) with 
0 E conv( S) .  For each i ,  let f ( i) be the index of the point of Mi contained 
in S; that is, we have S =  { 'P/(l ) (at ) ,  'P!(2) (a2 ) , . . .  , 'PJ(N+l) (aN+t )  } .  Then 
0 E conv( S) nteans that 

N+l 
L ai<p f(i) ( ai) = 0 
i=l 

for some nonnegative real numbers a1 , . . .  , aN+l sumrning to 1 .  Let Ij be the 
set of indices i with f (i) = j,  and set Aj = {ai :  i E Ij } .  The above sum can 
be rearranged: 

(the last equality follows from the linearity of each 'Pi ) .  Write Uj = LiEIJ aiai . 
This is a linear combination of points of Aj with nonnegative coefficients, and 
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hence Uj E cone(Aj ) · Above we have derived L;=l 'Pi (uJ )  = 0, and so by 
(8. 1 ) we get u1 = u2 = · · · = ur . Hence the common value of all the Uj 
belongs to n;=l cone(AJ ) . 

It remains to check that Uj =/= 0. Since we assume 0 � conv(A) , the only 
nonnegative linear con1bination of points of A equal to 0 is the trivial one, 
with all coefficients 0. On the other hand, since not all the ai are 0, at least 
one Uj is expressed as a nontrivial linear combination of points of A. This 
proves Proposition 8.3.2 and Tverberg's theorem as well. D 

The colored Tverberg theorem. If we have 9 points in the plane, 3 of 
them red, 3 blue, and 3 white, it turns out that we can always partition them 
into 3 triples in such a way that each triple has one red, one blue, and one 
white point, and the 3 triangles determined by the triples have a nonempty 
intersection. 

• • 

• 

• 

• • 

The colored Tverberg theorem is a generalization of this statement for ar
bitrary d and r .  We will need it in Section 9.2, for a result about many 
simplices with a common point. In that application, the colored version is 
essential (and Tverberg's theorem alone is not sufficient) .  

8.3.3 Theorem (Colored Tverberg theorem) . For any integers r, d > 2 
there exists an integer t such that given any t(d+1 )-point set Y C Rd par
titioned into d+ 1 color classes Y� , . . . , Yd+l with t points each, there ex-
ist r pairwise disjoint sets A1 ,  . . .  , Ar such that each Ai contains exactly 
one point of each lj, j = 1 ,  2, . . .  , d+ 1 (that is, the Ai are rainbow), and 
n� 1 conv(Ai) � 0. 

Let Tcol ( d, r) denote the s1nallest t for which the conclusion of the theorem 
holds. It is known that Tcoi (2, r) = r for all r .  It is possible that Tcol (d, r) = r 
for all d and r, but only weaker bounds have been proved. The strongest 
known result guarantees that Tcol (d, r) < 2r-1 whenever r is a prime power. 

Recall that in Tverberg's theorem, if we need only the existence of T( d, r ) ,  
rather than the precise value, several simple arguments are available. In con
trast, for the colored version, even if we want only the existence of Tcol ( d, r ) ,  
there is essentially only one type of proof, which is not easy and which uses 
topological methods. Since such methods are not considered in this book, we 
have to omit a proof of the colored Tverberg theorem . 

. 
Bibliography and remarks. Tverberg's theorem was conjectured 
by Birch and proved by Tverberg (really! )  [Tve66] . His original proof is 
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technically complicated, but the idea is simple: Start with some point 
configuration for which the theorem is valid and convert it to a given 
configuration by moving one point at a time. During the movement, 
the current partition rnay stop working at some point, and it must be 
shown that it can be replaced by another suitable partition by a local 
change. 

Later on, Tverberg found a simpler proof [Tve81] . For the proof 
presented in the text above, the main idea is due to Sarkaria [Sar92] , 
and our presentation is based on a simplification by Onn (see [B097] ) .  
Another proof, also due to Tverberg and inspired by the proof of the 
colorful Caratheodory theorem, was published in a paper by Tverberg 
and Vrecica [TV93) . Here is an outline. 

Let 1r = (A1 , A2 , . . .  , Ar) be a partition of (d+1 ) (r-1}+1 given 
points into r disjoint nonempty subsets. Consider a ball intersect
ing all the sets conv(Aj ) ,  j = 1 , 2, . . .  , r, whose radius p = p(1r) is 
the smallest possible. By a suitable general position assumption, it 
can be assured that the smallest ball is always unique for any par
tition. (Alternatively, among all balls of the smallest possible radius, 
one can take the one with the lexicographically smallest center, which 
again guarantees uniqueness. )  If p( 1r) = 0, then 1r is a Tverberg parti
tion. Supposing that p( 1r) > 0, it can be shown that 1r can be locally 
changed (by reassigning one point from one class to another) to an
other partition 1r1 with p(1r') < p(1r) . Another proof, based on a similar 
idea, was found by Roudneff [Rou01a] .  Instead of p(1r) ,  he considers 
w(1r) = minxERd w(1r, x), where w(1r, x) = 2:� 1 dist(x, conv(Ai ) )2 . 
He actually proves a "cone version" of Tverberg's theorem (but dif
ferent from our cone version and stronger) . 

Several extensions of Tverberg's theorem are known or conjectured. 
Here we ntention only two conjectures related to the dimension of the 
set of Tverberg points. For X c Rd, let Tr (X) denote the set of all 
Tverberg points for r-partitions of A (the points of Tr (X) are usually 
called r-divisible) . Reay [Rea68] conjectured that if X is in general 
position and has k more points than is generally necessary for the 
existence of a Tverberg r-partition, i .e . ,  lX I  = (d+1 ) (r - 1 )  + 1 + k, 
then dim Tr (X) > k. This holds under various strong general position 
assumptions, and special cases for small k have also been established 
(see Roudneff (Rou01a] ,  [Rou01b] ) .  Kalai asked the following sophis-

ticated question in 1974: Does L�X I1 dim Tr (X) > 0 hold for every 
finite X c Rd? Here dim 0 = -1 ,  and so the nonexistence of Tverberg 
r-partitions for large r must be compensated by sufficiently large di
mensions of Tr (X) for small r. Together with other interesting aspects 
of Tverberg's theorem, this is briefly discussed in Kalai's lively sur
vey [KalOl ] .  There he also notes that edge 3-colorability of a 3-regular 
graph can be reformulated as the existence of a Tverberg 3-partition 
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of a suitable high-dimensional point set. This implies that deciding 
whether T3(X) = 0 for a (2d+3)-point X c Rd is NP-complete. 

It is interesting to note that Tverberg's theorem implies the center
point theorem (Theorem 1 .4 .2) .  More generally, if x is an r-divisible 
point of a finite X C Rd, then each closed half-space containing x 
contains at least r points of X (at least one from each of the r parts); 
in particular' if I X I = n and r = r d� 1 l ' we get that every r-divisi ble 
point is a centerpoint. On the other hand, as an example of A vis 
(Avi93] in R3 shows, a point x such that each closed half-space h con
taining x satisfies lh  n X I  > r need not be r-divisible in general; these 
two properties are equivalent only in the plane. 

A conjecture of Sierksma asserts that the number of Tverherg par
titions for a set of ( r-1) ( d+ 1)  + 1 points in R d in general position is at 
least ( ( r-1 ) ! )d . A lower bound of (r�l) !  ( ; )  

(r-l ) (d+l)/2 , provided that 
r > 3 is a prime number, was proved by Vucic and Zivaljevic [VZ93] 
by an ingenious topological argument. 

The colored Tverberg theorem was conjectured by Barany, Fiiredi, 
and Lova.sz [BFL90] , who also proved the planar case. The general 
case was established by Zivaljevic and Vrecica (ZV92] ; simplified proofs 
were given later by Bjorner, Lovasz, Zivaljevic, and Vrecica [BLZV94J 
and by Matousek [Mat96a] (using a method of Sarkaria). As was men
tioned in the text, all these proofs are topological. They show that 
Tcol ( d, r) < 2r-1 for r a prime. Recently, this was extended to all 
prime powers r by Zivaljevic .(Ziv98] (a similar approach in a different 
problem was used earlier by Ozaydin, by Sarkaria, and by Volovikov) .  
Barany and Larman (BL92] proved that T(2, r) = r for all r. 

We outline a beautiful topological proof, due to Lovasz (reproduced 
in [BL92] ) ,  showing that Tcot (d, 2) = 2 for all d. Let X be the surface of 
the ( d+ 1 )-dimensional crosspolytope. We recall that the crosspolytope 
is the convex hull of V = {et , -e1 , e2 ,  -e2 , . . .  , ed+l , -ed+t} ,  where 
e1 , e2, . . .  , ed+l is the standard orthonormal basis in R d+l . Note that 
X consists of 2d+l simplices of dimension d, each of them the convex 
hull of d+l points of V. Let Yi = {ui , vi } c Rd, i = 1 ,  2, . . .  , d+1 ,  be 
the given two-point color classes. Define the mapping f: V --+ Rd by 
setting f(ei) = ui , f(-ei) = vi . This mapping has a unique extension 
1: X --+  Rd such that f is affine on each of the d-dimensional simplices 
mentioned above. This 1 is a continuous mapping of X --+ Rd. Since 
X is homeomorphic to the d-dimensional sphere Sd, the Borsuk-Ulam 
theorem guarantees that there is an x E X  such that /(x) = J(-x) . If 
Vi c V is the vertex set of a d-dimensional simplex containing x, then 
Vi n ( -V1 ) = 0, -x E co�v(-Vt ) ,  and as is easy to check, S1 = f(V1 ) 
and S2 = f(-V1 ) are vertex sets of intersecting rainbow simplices 
(](x) = f(-x) is a common point) .  

205 
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Exercises 

1 .  Prove (directly, without using Tverberg's theorem) that for any integers 
d, r1 , r2 > 2, we have T(d, r1r2 ) < T(d, rt )T(d, r2 ) .  0 

2. For each r > 2 and d > 2, find (d+1 ) (r-1)  points in Rd with no Tverberg 
r-partition. m 

3. Prove that Tverberg's theorem implies Proposition 8.3.2. Why is the 
assumption 0 tJ_ conv(A) necessary in Proposition 8 .3 .2? OJ 

4. (a) Derive the following Radon-type theorem (use Radon's lemma) : For 
every d > 1 there exists f = f( d) such that every £ points in R d in general 
position can be partitioned into two disjoint subsets A, B such that not 
only conv(A) n conv(B) =!= 0, but this property is preserved by deleting 
any single point; that is, conv(A \ {a}) n conv(B) =1- 0 for each a E A and 
conv(A) n conv(B \ {b}) :/= 0 for each b E  B. 0 
(b) Show that £(2) > 7. l2J 
Remark. The best known value of f(d) is 2d+3; this was established by 
Lar1nan [Lar72] , and his proof is difficult. The original question is, What 
is the largest n = n( k) such that every n points in R k in general position 
can be brought to a convex position by some projective transform? Both 
formulations are related via the Gale transform. 

5. Show that for any d, r > 1 there is an (N +I)-point set in Rd in general 
position, N == (d+1 ) (r-1) ,  having no more than ( (r·-1 ) ! )d Tverberg· 
partitions. 0 . 

6. Why does Tverberg's theorem imply the centerpoint theorem (Theo
rem 1 .4 .2)? OJ 
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Geometric Selection 

Theorems 

As in Chapter 3, the cornmon theme of this chapter is geometric Ramsey 
theory. Given n points, or other geometric objects, where n is large, we want 
to select a not too srnall subset forrning a configuration that is "regular" in 
some sense. 

As was the case for the Erdos-Szekeres theorem, it is not difficult to prove 
the existence of a "regular" configuration via Ramsey's theorem in some of 
the subsequent results, but the size of that configuration is very small. The 
proofs we are going to present give Inuch better bounds. In many cases we 
obtain "positive-fraction theorems" : The regular configuration has size at 
least en, where n is the number of the given objects and c is a positive 
constant independent of n. 

In the proofs we encounter important purely combinatorial results: a weak 
version of the Szemeredi regularity lemrna and a theorern of Erdos and Si
monovits on the number of complete k-partite subhypergraphs in dense k
uniform hypergraphs. We also apply tools from Chapter 8, such as Tverberg's 
theorem. 

9.1 A Point in Many Simplices: The First Selection 
Lemma 

Consider n points in the plane in general position, and draw all the (�) 
triangles with vertices at the given points. Then there exists a point of the 
plane common to at least � ('�) of these triangles. Here � is the optimal 
constant; the proof below, which establishes a similar statement in arbitrary 
dimension, gives a considerably smaller constant. 
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For easier formulations we introduce the following terminology: If X c Rd 

is a finite set , an X -simplex is the convex hull of some ( d+ 1 )-tuple of points 
of X. We make the convention that X-simplices are in bijective correspon
dence with their vertex sets. This means that two X-simplices determined by 
two distinct ( d+ 1 )-point subsets of X are considered different even if they 
coincide as subsets of Rd. Thus, the X -simplices form a multiset in general. 
This concerns only sets X in degenerate positions; if X is in general position, 
then distinct ( d+ 1 )-point sets have distinct convex hulls. 

9.1 . 1  Theorem (First selection lemma) . Let X be an n-point set in Rd. 
Then there exists a point a E R d (not necessarily belonging to X) contained 
in at least cd (d� 1 ) X-simplices, where cd > 0 is a constant depending only 
on the dimension d. 

The best possible value of cd is not known, except for the planar case. The 
first proof below shows that for n very large, we may take cd � ( d+ 1 )- ( d+ 1 ) .  

The first proof: from Tverberg and colorful Caratheodory. We may 
suppose that n is sufficiently large ( n > n0 for a given constant n0 ) , for 
otherwh;e, we can �et cd to be sufficiently sn1all and choose a point cont�ined 
in a single X -simplex. 

Put r = r nj(d + 1 )1 . By Tverberg's theorem (Theorem 8.3. 1 ) ,  there exist 
r pairwise disjoint sets M1 , . . .  , Mr C X whose convex hulls all have a point -
in common; call this point a. (A typical Mi has d+ 1 points, but some of them 
may be �mailer. ) 

We want show that the point a is contained in many X-simplices (so far we 
have canst · n and we need const · nd+ l ) .  

Let J == {j0 , . . .  , jd} C { 1 ,  2, . . . , r} be a set of d+ 1 indices. We apply the 
colorful Caratheodory's theorem (Theorem 8.2 .1) for the (d+1 )  "color" sets 
Mjo ,  . . .  , MJd , which all contain a in their convex hull. This yields a rainbow 
X -simplex S J containing a and having one vertex from each of the Mji ,  as 
illustrated below: 

. 

•· - . 

If J' =!= J are two ( d+ 1 )-tuples of indices, then S J =!= S J' . Hence the 
number of X -simplices containing the point a is at least 
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( r ) 
= 
( ln/(d+l)l) > 1 n(n - (d+I) ) · · · (n - d(d+I) )

_ d+l d+l - (d+1)d+l (d+1 ) !  

For n sufficiently large, say n > 2d(d+1 ) ,  this is at least (d+l ) - (d+l ) 2-d (d� l) . 
D 

The second proof: from fractional Helly. Let :F denote the family of 
all X -simplices. Put N = IFI = (d�1) .  We want to apply the fractional Helly 
theore1n (Theorem 8. 1 . 1 )  to F. Call a (d+1)-tuple of sets of F good if its 
d+ 1 sets have a common point. To prove the first selection lemma, it suffices 
to show that there are at least a (d�1) good (d+1)-tuples for some a > 0 
independent of n, since then the fractional Helly theorem provides a point 
common to at least f3N members of F. 

Set t = (d+1)2  and consider a t-point set Y C X.  Using Tverberg's 
theorem, we find that Y can be partitioned into d+ 1 pairwise disjoint 
sets, of size d+ 1 each, whose convex hulls have a common point. (Tver
berg's theorem does not guarantee that the parts have size d+l ,  but if they 
don't, we can move points from the larger parts to the smaller ones, us
ing Qaratheodory's theorem.) Therefore, each t-point Y c X provides at 

• 

least one good (d+1)-tuple of members of F. Moreover, the members of this 
good ( d+ 1 )-tuple are pairwise vertex-disjoint, and therefore the ( d+ 1 )-tuple 
uniquely determines Y. It follows that the number of good (d+1 )-tuples is at 
least (7) = O(n{d+l )2 ) > a (d�1) .  D 

In the first proof we have used Tverberg's theorem for a large point set, 
while in the second proof we applied it only to configurations of bounded size. 
For the latter application, if we do not care about the constant of propor
tionality in the first selection lemma, a weaker version of Tverberg's theorem 
suffices, namely the finiteness of T( d, d+ 1 ) ,  which can be proved by quite 
sin1ple arguments, as we have seen. 

�he .relation of Tverberg's theorem to the first selection lemma in the 
second proof somewhat resembles .. the derivation of macroscopic properties 
in physics (pressure, temperature, etc.) from microscopic properties (laws of 
motion of molecules, say).  F.rom the information about small (microscopic) 

I 

configurations we obtained a global (macroscopic) result, saying that a sig-
nificant portion of the X-simplices have a common point. 

A point in the interior of many X-simplices. In applications of the 
first selection len1ma (or its relatives) we often need to know that there is a 
point contained in the interior of many of the X -simplices. To assert anything 
like that, we have to assume some kind of nondegenerate position of X.  The 
following lemma helps in most cases. 

9.1.2 Lemma. Let X C  Rd be a set of n > d+1 points in general position, 
meaning that no d+ 1 points of X lie on a common hyperplane, and let 1l be 
the set of the (�) hyperplanes determined by the points of X. Then no point 



210 Chapter 9: Geon1etric Selection Theorerns 

a E Rd is contained in more than dnd- l hyperplanes of 1i. Consequently, at 
most O (nd ) X-simplices have a on their boundary. 

Proof. For each d-tuple S whose hyperplane contains a, we choose an 
inclusion-minimal set K(S) C S whose affine hull contains a. We claim that 
if IK(SI ) I  = IK(S2 ) I  = k, then either K(S1 ) = K(S2 )  or K(S1 )  and K(S2) 
share at most k-2 points. 

Indeed, if K(S1 ) = {xi ,  . . .  , Xk-1 , xk } and K(S2) = {x1 , . . .  , Xk-1 , Yk} ,  
Xk =I= Yk , then the affine hulls of K(S1 ) and K(S2) are distinct, for otherwise, 
we would have k+1 points in a common (k-1)-flat, contradicting the general 
position of X.  But then the affine hulls intersect in the (k-2)-flat generated 
by x1 , . . .  , Xk- 1 and containing a, and K(S1 ) and K(S2 )  are not inclusion
minimal. 

Therefore, the first k-1 points of K ( S) determine the last one uniquely, 
and the number of distinct sets of the form K(S) of cardinality k is at most 
nk-l . The number of hyperplanes determined by X and containing a given 
k-point set K C X is at most nd-k , and the leinina follows by suinining 
over k. o 

Bibliography and remarks. The planar version of the first selec
tion lemma, with the best possible constant � ,  was proved by Boros 
and Fiiredi [BF84) . A generalization to an arbitrary dimension, with 
the first of the two proofs given above, was found by Barany [Bar82] . 
The idea of the proof of Lemma 9 . 1 . 2  was communicated to me by 
Janos Pach. 

Boros and Fiiredi [BF84] actually showed that any centerpoint of 
X works; that is, it is contained in at least � (�) X -triangles. Wag
ner and Welzl (private communication) observed that a centerpoint 
works in every fixed dimension, being common to at least cd (d�1) 
X -simplices. This follows from known results on the face numbers of 
convex polytopes using the Gale transform, and it provides yet another 
proof of the first selection lemma, yielding a slightly better value of 
the constant cd than that provided by Barany's proof. Moreover, for 
a centrally symmetric point set X this method implies that the origin 
is contained in the largest possible number of X -simplices. 

As for lower bounds, it is known that no n-point X c Rd in gen
eral position has a point common to more than 2

1d (d�1) X-simplices 
(Bar82] . It seems that suitable sets might provide stronger lower 
bounds, but no results in this direction are known. 

9.2 The Second Selection Lemma 

In this section we continue using the term X-simplex in the sense of Sec
tion 9 . 1 ;  that is, an X -simplex is the convex hull of a ( d+ 1 )-point subset 
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of X. In that section we saw that if X is a set in R d and we consider all the 
X -simplices, then at least a fixed fraction of them have a point in common. 

What if we do not have all, but many X-simplices, some a-fraction of all? 
It turns out that still many of them must have a point in common, as stated 
in the second selection lemma below. 

9.2.1 Theorem {Second selection lemma) . Let X be an n-point set 
in Rd and let :F be a famil.r of a (d�1) X-simplices, where a E (0, 1] is a 
parameter. Then there exists a point contained in at least 

X -simplices of :F, where c = c( d) > 0 and sd are constants. 

This result is already interesting for a fixed. But for the application that 
n1otiva.ted the discovery of the second selection lemma, namely, trying to 
bound the number of k-sets (see Chapter 1 1 ) ,  the dependence of the bound 
on a is important , and it would be nice to determine the best possible values 
of the exponent sd . 

For d = 1 it is not too difficult to obtain an asymptotically sharp bound 
(see Exercise 1 ) .  For d = 2 the best known bound (probably still not 
sharp) is as follows: If IFI = n3-v ,  then there is a point contained in at 
least 0( n3-3v / log5 n) X -triangles of :F. In the parameterization as in The
orem 9.2. 1 ,  this means that s2 can be taken arbitrarily close to 3, provided 
that a is sufficiently small, say a < n-8 for some 6 > 0. For higher dimen
sions, the best known proof gives sd :::::: ( 4d+ 1 )d+l . 

Hypergraphs. It is convenient to formulate some of the subsequent con
siderations in the language of hypergraphs. Hypergraphs are a generalization 
of graphs where edges can have more than 2 points (from another point of 
view, a hypergraph is synonymous with a set system). A hypergraph is a pair 
H = (V, E), where V is the vertex set and E C 2v is a system of subsets of 
V, the edge set. A k-uniform hypergraph has all edges of size k (so a graph is 
a 2-uniform hypergraph). A k-partite hypergraph is one where the vertex set 
can be partitioned into k subsets vl ' v2 ' . . .  ' vk ' the classes, so that each edge 
contains at most one point from each Vi .  The notions of subhypergraph and 
isomorphism are defined analogously to these for graphs. A subhypergraph 
is obtained by deleting some vertices and some edges (all edges containing 
the deleted vertices, but possibly more) . An isomorphism is a bijection of the 
vertex sets that maps edges to edges in both directions (a renaming of the 
vertices) .  

Proof of the second selection lemma. The proof is somewhat similar 
to the second proof of the first selection lemma (Theorem 9 . 1 . 1 ) .  We again 
use the fractional Helly theorem. We need to show that many ( d+ 1 )-tuples 
of X -simplices of :F are good (have nonempty intersections) . 
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We can view F as a (d+1 )-uniform hypergraph. That is, we regard X as 
the vertex set and each X-simplex corresponds to an edge, i.e. , a subset of X 
of size d+ 1 .  This hypergraph captures the "combinatorial type" of the family 
F, and a specific place1nent of the points of X in Rd then gives a concrete 
"geometric realization" of F. 

First, let us concentrate on the simpler task of exhibiting at least one good 
(d+1)-tuple; even this seems quite nontrivial. Why cannot we proceed as in 
the second proof of the first selection lemma? Let us give a concrete example 
with d == 2. Following that proof, we would consider 9 points in R2 , and 
Tverberg's theorem would provide a partition into triples with intersecting 
convex hulls: 

But it can easily happen that one of these triples, say {a, b, c} , is not an edge 
of our hypergraph. Tverberg's theorem gives us no additional information on 
which triples appear in the partition, and so this argument would guarantee 
a good triple only if all the triples on the considered 9 points were contained 
in F. Unfortunately, a 3-uniform hypergraph on n vertices can contain more 
than half of all possible (�) triples without containing all triples on some 9 
points (even on 4 points) . This is a "higher-dimensional" version of the fact 
that the complete bipartite graph on � + � vertices has about ! n2 edges 
without containing a triangle. 

Hypergraphs with many edges need not contain complete hypergraphs, 
but they have to contain complete multipartite hypergraphs. For example, a 
graph on n vertices with significantly more than n312 edges contains K2,2 , 
the complete bipartite graph on 2 + 2 vertices (see Section 4.5) .  Concerning 
hypergraphs, let Kd+1 (t) denote the co1nplete (d+l )-partite (d+l )-uniform 
hypergraph with t vertices in each of its d+ 1 vertex classes. The illustration 
shows a K3(4) ; only three edges are drawn as a sample, although of course, 
all triples connecting vertices at different levels are present. 

If t is a constant and we have a (d+l )-uniform hypergraph on n vertices 
with sufficiently many edges, then it has to contain a copy of Kd+ 1 ( t) as a 
subhypergraph. We do not formulate this result precisely, since we will need 
a stronger one later. 
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In geometric language, given a family :F of sufficiently many X -simplices, 
we can color some t points of X red, some other t points blue, . . . , t points 
by color (d+l ) in such a way that all the rainbow X-simplices on the (d+ 1 )t 
colored points are present in :F. And in such a situation, if t is a sufficiently 
large constant, the colored Tverberg theorem (Theorem 8.3.3) with r = d+l 
claims that we can find a (d+1 )-tuple of vertex-disjoint rainbow X-simplices 
whose convex hulls intersect , and so there is a good ( d+ 1 )-tuple! In fact, these 
are the considerations that led to the formulation of the colored Tverberg 
theorem. 

For the fractional Helly theorem, we need not only one but many good 
( d+ 1 )-tuples. We use an appropriate stronger hypergraph result, saying that 
if a hypergraph has enough edges, then it contains many copies of Kd+I (t) : 

9.2.2 Theorem (The Erdos-Simonovits theorem). Let d and t be pos
itive integers. Let 1-l be a (d+l )-uniform hypergraph on n vertices and with 
a (d� 1) edges, where a > Cn-lftd for a certain sufficiently large constant C. 
Then 1-l contains at least 

copies of Kd+I (t) , where c = c(d, t) > 0 is a constant. 

For completeness, a proof is given at the end of this section. 
Note that in particular, the theorem implies that a (d+l )-uniform hy

pergraph having at least a constant fraction of all possible edges contains at 
least a constant fraction of all possible copies of Kd+I (t) .  

We can now finish the proof of the second selection lemma by double 
counting. The given family F, viewed as a (d+1 )-uniform hypergraph, has 

a (d� 1) edges, and thus it contains at least catd+I n<d+I) t copies of Kd+l (t) 
by Theorem 9.2.2. As was explained above, each such copy contributes at 
least one good (d+l )-tuple of vertex-disjoint X-simplices of F. On the other 
hand, d+ 1 vertex-disjoint X -simplices have together ( d+ 1 )2 vertices, and 
hence their vertex set can be extended to a vertex set of some Kd+t (t) (which 
has t(d+1 )  vertices) in at most nt(d+l )- (d+l) 2  = n<t-d- l ) (d+I ) ways. This is 
the rnaxirnurn nurnber of copies of Kd+I (t) that can give rise to the same 

d+l (d ) 2  
good (d+1)-tuple. Hence there are at least ca

t n +I good (d+l )-tuples 
of X-simplices of :F. By the fractional Helly theorem, at least c' atd+I nd+l 
X -simplices of :F share a common point, with c' = c' (d) > 0. This proves the 
second selection lemma, with the exponent sd < (4d+l )d+t . D 

Proof of the Erdos-Simonovits theorem (Theorem 9.2.2) .  By induc
tion on k, we are going to show that a k-uniform hypergraph on n vertices 
and with m edges contains at least fk (n, m) copies of Kk (t) , where 
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with ck > 0 and Ck suitable constants depending on k and also on t (t is 
not shown in the notation, since it remains fixed) .  This claim with k = d+ 1 
implies the Erdos-Simonovits theorem. 

For k = 1 ,  the claim holds. 
So let k > 1 and let 1i be k-uniform with vertex set V, lV I  = n, and edge 

set E, lE I  = m. For a vertex v E V, define a (k-1 )-uniform hypergraph Hv 
on V, whose edges are all edges of 1l that contain v, but with v deleted; that 
is, 1-lv = (V, {e \ {v} : e E E, v E e} ) .  Further, let tl' be the (k-1)-uniform 
hypergraph who�e edge set is the union of the edge sets of all the 1iv . 

Let /C denote the set of all copies of the complete (k-1 )-partite hyper
graph Kk-1 ( t) in 1i'. The key notion in the proof is that of an extending 
vertex for a copy K E K: A vertex v E V is extending for a K E K if K is 
contained in 1-lv , or in other words, if for each edge e of K, eU{ v} is an edge 
in 1l. The picture below shows a K2(2) and an extending vertex for it (in a 
3-regular hypergraph) . 

The idea is to count the number of all pairs (K, v) , where K E K and v is an 
extending vertex of K, in two ways. 

On the one hand, if a fixed copy K E K has QK extending vertices, then 
it contributes (qf )  distinct copies of Kk (t) in 11. .  We note that one copy of 
Kk (t) comes from at most 0(1 )  distinct K E K in this way, and therefore it 
suffices to bound L:KEK (qf) from below. 

On the other hand, for a fixed vertex v, the hypergraph 1-lv contains at 
least fk- 1 ( n, mv ) copies K E K by the inductive assumption, where mv is 
the number of edges of Hv . Hence 

L QK > L fk- 1 (n, mv) · 
KEK vEV 

Using EvEV mv = km, the convexity of fk-1 in the second variable, and 
Jensen's inequality (see page xvi) ,  we obtain 

L QK > n fk- l (n, km/n) . (9. 1 )  
KEK 

To conclude the proof, we define a convex function extending the binomial 
coefficient (�) to the domain R: 

g(x} = { � (x- 1) · . . (x-t+l ) t! 

for x < t - 1 ,  
for x > t - 1 .  
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We want to bound �KEJC g(QK ) from below, and we have the bound (9 . 1 )  for 
�KEJC QK · Using the bound IK I  < nt(k- 1 )  (clear, since Kk- 1 (t) has t(k-1 )  
vertices) and Jensen's inequality, we derive that the number of copies of Kk (t) 
in 1-l is at least 

t(k-1 )  (n fk-1 (n, kmjn) ) en g nt(k- 1 )  . 

A calculation finishes the induction step; we omit the details. 

Bibliography and remarks. The second selection lemma was 
conjectured, and proved in the planar case, by Baniny, Fiiredi, and 
Lovasz [BFL90] . The missing part for higher dimensions was the col
ored Tverberg theorern (discussed in Section 8.3) . A proof for the 
planar case by a different technique, with considerably better quanti
tative bounds than can be obtained by the method shown above, was 
given by Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, and Wenger 
[ACE+91] (the bounds were mentioned in the text ) .  The full proof of 
the second selection lemma for arbitrary di1nension appears in Alon, 
Barany, Fiiredi, and Kleitman [ABFK92] . 

Several other "selection lemmas," sometimes involving geometric 
objects other than simplices, were proved by Chazelle, Edelsbrunner, 
Guibas, Herschberger, Seidel, and Sharir [CEG+94] . 

Theorem 9.2.2 is from Erdos and Sirnonovits [ES83] . 

Exercises 

0 

1 .  (a) Prove a one-dimensional selection lemma: Given an n-point set X C 
R and a family F of a (�) X-intervals, there exists a point common 
to n( a2 (�) ) intervals of :F. What is the best value of the constant of 
proportionality you can get? m 
(b) Show that this result is sharp (up to the value of the multiplicative 
constant) in the full range of a. � 

2. (a) Show that the exponent 82 in the second selection lemma in the plane 
cannot be smaller than 2. � 
(b) Show that 83 > 2. m Can you also show that Sd > 2? 
(c) Show that the proof method via the fractional Helly theorem cannot 
give a better value of s2 than 3 in Theorem 9.2 . 1 .  That is, construct an 
n-point set and a (�) triangles on it in such a way that no more than 
O(a5n9) triples of these triangles have a point in common. � 

9.3 Order Types and the Same-Type Lemma 

The order type of a set. There are infinitely many 4-point sets in the 
plane in general position, but there are only two "combinatorially distinct" 
types of such sets: 
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• 
• • 

and 
• • 

• • • 

What is an appropriate equivalence relation that would capture the intuitive 
notion of two finite point sets in R d being "combinatorially the same"? We 
have already encountered one suitable notion of combinatorial isomorphism 
in Section 5.6. Here we describe an equivalent but perhaps more intuitive 
approach based on the order type of a configuration. First we explain this 
notion for planar configurations in general position, where it is quite simple. 
Let p = (Pt , p2 , . . .  , Pn) and q = (qt , q2 , . . .  , qn ) be two sequences of points 
in R 2 , both in general position (no 2 points coincide and no 3 are collinear) . 
Then p and q have the same order type if for any indices i < j < k we turn 
in the same direction (right or left) when going from Pi to Pk via Pj and when 
going from qi to qk via qj : 

or 

Pk 

~ 
Pi Pj 

We say that both the triples (Pi, Pj , Pk) and ( qi , qj , qk) have the same orien
tation. 

If the point sequences p and q are in R d, we require that every ( d+ 1 )

element subsequence of p have the same orientation as the corresponding 
subsequence of q. The notion of orientation is best explained for d-tuples of 
vectors in Rd. If v1 , . . . , vd are vectors in R d, there is a unique linear rnapping 
sending the vector ei of the standard basis of R d to Vi , i = 1 ,  2, . . . , d. The 
matrix A of this mapping has the vectors v1 , . . .  , vd as the columns. The 
orientation of (v1 , . . .  , vd) is defined as the sign of det(A) ; so it can be +1 
(positive orientation) , -1 (negative orientation) , or 0 (the vectors are linearly 
dependent and lie in a (d- 1 )-dimensional linear subspace) . For a (d+1 )-tuple 
of points (p1 , p2 , . • .  , Pd+ 1 ) , we define the orientation to be the orientation of 
the d vectors P2 - PI ,  P3 - Pt , . . .  , Pd+ 1 - Pt · Geometrically, the orientation of 
a 4-tuple (PI , P2 , P3, P4) tells us on which side of the plane PIP2P3 the point 
P4 lies (if Pt , P2 , P3 , P4 are affinely independent) . 

Returning to the order type, let p = (Pt , P2 , . . .  , Pn) be a point sequence 
in Rd. The order type of p (also called the chirotope of p) is defined as the 
mapping assigning to each (d+1 )-tuple (it , i2 , . . .  , id+ t )  of indices, 1 < it < 
i2 < · · · < id+ 1 < n, the orientation of the ( d+ 1 )-tuple (Pi 1 ,  Pi2 , 

• • •  
, Pid+ 1 ) • 

Thus, the order type of p can be described by a sequence of +1 's, -1 's, and 
O's with (d�1) terms. 

The order type makes good sense only for point sequences in Rd con
taining some d+ 1 affinely independent points. Then one can read off various 
properties of the sequence from its order type, such as general position, con
vex position, and so on; see Exercise 1 .  
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In this section we prove a powerful Ramsey-type result concerning order 
types, called the same-type lemma. 

Same-type transversals. Let (Y1 ,  Y2 , • . .  , Ym) be an m-tuple of finite sets 
in Rd. By a transversal of this m-tuple we mean any m-tuple (yt , y2 , . . .  , Ym) 
such that Yi E Yi for all i .  We say that (Yt ,  Y2 , . . .  , Ym) has same-type 
transversals if all of its transversals have the same order type. Here is an 
example of 4 planar sets with same-type transversals: 
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If (X1 , X2 , . . .  , Xm) are very large finite sets such that XtU · · · UXm 
is in general position, 1 we can find not too small subsets Y1 C X 1 ,  . . .  , 
Y;n C Xrn such that (Y1 ,  . . .  , Ym) has same-type transversals. To see this, 
color each transversal of (X1 , X2 , . . .  , Xm) by its order type. Since the num
ber of possible order types of an m-point set in general position cannot ex-

ceed r = 2(d�1 ) , we have a coloring of the edges of the complete m-partite 
hypergraph on (X1 , . . .  , X.,,) by r colors. By the Erdos-Simonovits theorem 
(Theoren1 9.2.2) , there are sets Yi C Xi , not too small, such that all edges 
induced by Y1 U · · · U �n have the same color, i.e. , (Y1 , . . .  , Ym) has same-type 
transversals. 

As is the case for many other geometric applications of Ramsey-type theo
rems, this result can be quantitatively improved tremendously by a geometric 
argument: For m, and d fixed, the size of the sets li can be made a constant 
fraction of IXi l · 

9.3. 1 Theorem (Same-type lemma) . For any integers d, m > 1 ,  there 
exists c = c( d, m) > 0 such that the following holds. Let X 1 ,  X 2 , . . .  , X m be 
finite sets in R d such that X 1 U · · · UXm is in general position. Then there are 
Y1 C X1 , . . .  , �n C X.,, such that the m-tuple (Y1 ,  Y2 , . . . , �,) has same-type 
transversals and l li I > c iXi I for all i = 1 ,  2 ,  . . .  , m. 

Proof. First we observe that it is sufficient to prove the same-type lemma 
for m =  d+1 .  For larger m, we begin with (X1 , X2 , . . .  , Xm) as the current m
tuple of sets. Then we go through all ( d+ 1 )-tuples ( i 1 ,  i2 , . . .  , id+ t )  of indices, 
and if (Z1 , . . .  , Zm) is the current m-tuple of sets, we apply the same-type 
lemma to the (d+l )-tuple (Zi1 , • • •  , Zid+ t  ) . These sets are replaced by smaller 

1 This is a shorthand for saying that Xi n X1 = 0 for all i =/= j and X1 U · · · u Xm 
is in general position. 
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sets ( z:l ' . . .  ' z:d+l ) such that this ( d+ 1 )-tuple has same-type transversals. 
After this step is executed for all (d+l )-tuples of indices, the resulting current 
m-tuple of sets has same-type transversals. 

This tnethod gives the rather small lower bound 

To handle the crucial case m = d+ 1 ,  we will use the following criterion 
for a ( d+ 1 )-tuple of sets having same-type transversals. 

9.3.2 Lemma. Let 01 , 02 , . . .  , Cd+l c Rd be convex sets. The following two 
conditions are equivalent: 

( i) There is no hyperplane simultaneously intersecting all of C 1 ,  C2 , . . .  , C d+ 1 . 
(ii) For each nonempty index set I C { 1 ,  2 ,  . . . , d+l } , the sets UiEI Ci and 

Ui�I Ci can be strictly separated by a hyperplane. 

Moreover, if X1 , X2, . . .  , Xd+l c Rd are finite sets such that the sets Ci = 
conv(Xi) have property (i) (and (ii)), then (X1 , . . •  , Xd+l ) has same-type 
transversals. 

In particular, planar convex sets C 1 , C2 , C3 have no line transversal if and 
only if each of them can be separated by a line from the other two. The proof 
of this neat result is left to Exercise 3. We will not need the assertion that 
(i) implies (ii) . 

Same-type lemma for d+l sets. To prove the same-type lemma for the 
case m = d+l ,  it now suffices to choose the sets Yi C Xi in such a way 
that their convex hulls are separated in the sense of (ii) in Lernma 9.3.2. 
This can be done by an iterative application of the ham-sandwich theorem 
(Theorem 1.4.3) . 

Suppose that for some nonempty index set I c { 1, 2, . . . , d + 1 } ,  the sets 
conv (UiEI Xi ) and conv (Uj�J XJ ) cannot be separated by a hyperplane. For 
notational convenience, we assume that d+ 1 E I. Let h be a hyperplane 
simultaneously bisecting xl ' x2 , . . .  ' xd , whose existence is guaranteed by 
the ham-sandwich theorem. Let r be a closed half-space bounded by h and 
containing at least half of the points of Xd+l · For all i E I, including i = d+l ,  
we discard the points of Xi not lying in 'Y, and for j � I we throw away the 
points of Xi that lie in the interior of "Y (note that points on h are never 
discarded) ;  see Figure 9 . 1 .  

We claim that union of the resulting sets with indices in I is now strictly 
separated from the union of the remaining sets. If h contains no points of the 
sets, then it is a separating hyperplane. Otherwise, let the points contained 
in h be a1 , . . .  , at ; we have t < d by the general position assu1nption. For 
each aj , choose a point aj very near to ai . If ai lies in some Xi with i E J, 
then aj is chosen in the complement of 'Y, and otherwise, it is chosen in the 
interior of 'Y. We let h' be a hyperplane passing through a� , . . .  , a� and lying 
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Figure 9.1.  Proof of the same-type lemma for d =  2,  m = 3 .  
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result 

very close to h. Then h' is the desired separating hyperplane, provided that 
the aj are sufficiently close to the corresponding aj , as in the picture below: 
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Thus, we have "killed" the index set I, at the price of halving the sizes 
of the current sets; more precisely, the size of a set Xi is reduced from JXi l 
to f iXi l /21 (or larger) . We can continue with the other index sets in the 
same manner. After no more than 2d-l halvings, we obtain sets satisfying 
the separation condition and thus having same-type transversals. The same
type lemma is proved. The lower bound for c( d, d+ 1 ) is doubly exponential, 

d 
roughly 2-2 

• 0 

A simple application. We recall that by the Erdos-Szekeres theorem, for 
any natural number k there is a natural number n = n ( k) such that any 
n-point set in the plane in general position contains a subset of k points 
in convex position (forming the vertices of a convex k-gon) . The same-type 
lemma immediately gives the following result: 
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9.3.3 Theorem (Positive-fraction Erdos-Szekeres theorem) . For ev
ery integer k > 4 there is a constant Ck > 0 such that every sufficiently large 
finite set X C R2 in general position contains k disjoint subsets Y1 , . . .  , Yk , 
of size at least Ck lX I  each, such that each transversal of (Y1 ,  . . .  , Yk) is in 
convex position. 

Proof. Let n = n(k) be the number as in the Erdos-Szekeres theorem. We 
partition X into n sets X 1 , . . .  , Xn of almost equal sizes, and we apply the 
same-type lemma to them, obtaining sets Y1 , . . .  , Yn , Yi C Xi , with same
type transversals. Let (y1 , . . .  , Yn ) be a transversal of (Y1 ,  . . .  , Yn) .  By the 
Erdos-Szekeres theorem, there are i 1 < i2 < · · · < ik such that Yi1 , • • •  , Yi,.. 
are in convex position. Then }i1 , • • •  , Yik arc as required in the theorem. 0 

Bibliography and remarks. For more information on order types, 
the reader can consult the survey by Goodman and Pollack [GP93]. 
The same-type lemma is from Barany and Valtr [llV98] , and a very 
similar idea was used by Pach [Pac98] . Barany and Valtr proved the 
positive-fraction Erdos-Szekeres theorern (the case k = 4 was estab
lished earlier by Nielsen) ,  and they gave several more applications of 
the same-type lemma, such as a positive-fraction Radon lemma and a 
positive-fraction Tverberg theorem. 

Another, simple proof of the positive-fraction Erdos-Szekeres the
orem was found by Pach and Solyrnosi [PS98b] ; see Exercise 4 for an 
outline. 

The equivalence of (i) and (ii) in Lemma 9.3.2 is fron1 Goodman, 
Pollack, and Wenger [GPW96] . 

A nice strengthening of the same-type lemma was proved by P6r 
[P6r02] : Instead of just selecting a Yi frorn each Xi , the Xi can be 
completely partitioned into such Yi.  That is, for every d and m there 
exists n == n( d, m) such that whenever Xt , X2 , . . .  , Xrn C Rd are finite 
sets with lXI I  = IX2 1  = . . .  = IXm l  and with uxi in general position, 

there are partitions Xi = Yit UYi2U · · · UYin , i = 1 ,  2, . . .  , m, such that 
for each j == 1 ,  2 ,  . . . , n ,  the sets Ytj ,  Y2,j , . . .  , Y mj have the same size 
and same-type transversals. Schematically: 

. 
J = 1 2 3 n 

��--��--�� Xt 
��--��--�� x2 
��--��--�� x3 
��--��--�� x4 

(the sets in each column have same-type transversals) .  For the proof, 
one first observes that it suffices to prove the existence of n( d, d+ 1 ) ;  
the larger m follow as in the proof of the san1e-type lemma, by re
fining the partitions for every ( d+ 1 )-tuple of the indices i .  The key 
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step is showing n(d, d+1 )  < 2n(d-1 ,  d+1) .  The Xi are projected on 
a generic hyperplane h and the appropriate partitions are found for 
the projections by induction. Let x: c h be the projection of Xi , let 
Y{, . . .  , Y('d+l) be one of the "columns" in the partitions of the x: (we 
omit the index j for simpler notation) , let k = I Y/ I , and let Yi C Xi be 
the preimage of Y/. As far as separation by hyperplanes is concerned, 
the �� behave like d+ 1 points in general position in R d-l , and so there 
is only one inseparable (Radon) partition (see Exercise 1 .3 .9) , i.e. , an 
I c { 1 '  2, . . . ' d+ 1 }  (unique up to complementation) such that uiEJ �/ 
cannot be separated from ui�I �'. By an argument resernbling proofs 
of the ham-sandwich theorem, it can be shown that there is a half
space 1 in Rd and a number k1 such that I'Y n Yi l  = k1 for i E I and 
I'Y n Yi I = k - kl for i ¢ I. Letting zi = Yi n 'Y for i E I and zi = Yi \ 'Y 
for i rj. 1 and Ti = Yi \ Zi , one obtains that (Z1 ,  . . . , Zd+l ) satisfy 
condition (ii) in Lemma 9.3.2, and so they have same-type transver
sals, and similarly for the Ti . A 2-dimensional picture illustrates the 
construction: 

Y' 1 Y:' 2 Y' 3 

I =  { 1 ,  3} 

h 

The problem of estin1ating n(d, m) (the proof produces a doubly ex
ponential bound) is interesting even for d =  1 ,  and there P6r showed, 
by ingenious arguments, that n( 1 ,  m) = 8(m2) .  

Exercises 

221 

1 .  Let p = (PI , P2 , . . .  , Pn ) be a sequence of points in R d containing d+ 1 
affinely independent points. Explain how we can decide the following 
questions, knowing the order type of p and nothing else about it: 
(a) Is it true that for every k points among the Pi , k = 2,  3, . . . , d+l ,  the 
affine hull has the maximum dimension k-1? 0 
(b) Does Pd+2 lie in conv( {PI , . . . , Pd+ 1 } )?  0 
(c) Are the points p1 , . . .  , Pn convex independent (i.e., is each of them a 
vertex of their convex hull)?  [I] 

2. Let p = (PI , P2 , . . .  , Pn) be a sequence of points in Rd whose affine hull 
is the whole of Rd. Explain how we can determine the order type of p, 
up to a global change of all signs, from the knowledge of sgn(AfNal (p)) 
(the signs of affine functions on the Pi ; see Section 5 .6) .  l:il 
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(Conversely, sgn(AfNal (p) ) can be reconstructed from the order type, 
but the proof is more complicated; see, e .g . ,  [BVS+99] . )  

3 .  (a) Prove that in the setting of Lemma 9.3.2, if the convex hulls of the 
Xi have property (i) , then (XI , . . .  , Xd+l ) has san1e-type transversals. 
Proceed by contradiction. 0 
(b) Prove that property ( ii) (separation) implies property (i) (no hyper
plane transversal) .  Proceed by contradiction and use Radon's lemma. 0 
(c) Prove that (i) implies (ii) . [I] 

4. Let k > 3 be a fixed integer. 
(a) Show that for n sufficiently large, any n-point set X in general position 
in the plane contains at least en 2k convex independent subsets of size 2k, 
for a suitable c = c( k) > 0. 0 
(b) Let S = {p1 , P2 , . . .  , P2k } be a convex independent subset of X,  
where the points are nun1bered along the circurr1ference of the con
vex hull in a clockwise order, say. The holder of S is the set H ( S) = 
{PI , P3 , . . .  , P2k-I } .  Show that there is a set H that is the holder of at 
least 0( nk) sets S. lil 
(c) Derive that each of the indicated triangular regions of such an H 
contain 0 ( n) points of X :  

Infer the positive-fraction Erdos ·· -Szekeres theorem in the plane. 0 
(d) Show that the positive-fraction Erdos-Szekeres theorem in higher 
dimensions is implied by the planar version. [I] 

5.  (A Ramsey-type theorem for segments) 
(a) Let L be a set of n lines and P a set of n points in the plane, both 
in general position and with no point of P lying on any line of L. Prove 
that we can select subsets L' C L, IL' I > an, and P' C P, IP' I  > an, 
such that P' lies in a single cell of the arrangement of L' (where a > 0 
is a suitable absolute constant) .  You can use the san1e-type lemma for 
m = 3 (or an elementary argument) . 0 
(b) Given a set S of n segments and a set L of n lines in the plane, both 
in general position and with no endpoint of a segment lying on any of 
the lines, show that there exist S' C S and L' C L, IS' I ,  IL' I  > {3n, with 
a suitable constant j3 > 0, such that either each segment of S' intersects 
each line of L' or all segments of S' are disjoint fron1 all lines of L'. 0 
(c) Given a set R of n red segments and a set B of n blue segments 
in the plane, with RUB in general position, prove that there are sub�et� 
R' C R, IR' I  > 1n, and B' C B, IB' I  > "fn, such that either each segment 
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of R' intersects each segment of B' or each segment of R' is disjoint from 
each segn1ent of B' ( 7 > 0 is another absolute constant) .  0 
The result in (c) is due to Pach and Solymosi [PS01] . 

9.4 A Hypergraph Regularity Lemma 

Here we consider a fine tool from the theory of hypergraphs, which we will 
need for yet another version of the selection lemma in the subsequent section. 
It is a result inspired by the famous Szemeredi regularity lemma for graphs. 
Very roughly speaking, the Szemeredi regularity lemma says that for given 
c > 0, the vertex set of any sufficiently large graph G can be partitioned 
into some number, not too small and not too large, of parts in such a way 
that the bipartite graphs between "most" pairs of the parts look like random 
bipartite graphs, up to an "error" bounded by €. An exact formulation is 
rather complicated and is given in the notes below. The result discussed here 
is a hypergraph analogue of a weak version of the Szemeredi regularity lemma. 
It is easier to prove than the Szemeredi regularity lemma. 

Let 1-l = (X, E) be a k-partite hypergraph whose vertex set is the union 
of k pairwise disjoint n-element sets X 1 ,  X 2 , . . .  , X k , and whose edges are 
k-tuples containing precisely one element from each Xi . For subsets Yi C Xi , 
i = 1,  2, . . . , k, let e(Y1 , . . .  , Yk) denote the number of edges of 1i contained 
in Y1 U · · · U Yk . In this notation, the total number of edges of 1i is equal to 
e (X1 , . . .  , Xk ) · Further, let 

denote the density of the subhypergraph induced by the }i .  

9.4. 1 Theorem (Weak regularity lemma for hypergraphs) .  Let 1i be 
a k-partite hypergraph as above, and suppose that p(1-£) > {3 for some {3 > 0. 
Let 0 < c < � .  Suppose that n is sufficiently large in terms of k, {3, and c. 

Then there exist subsets Yi c xi of equal size IYi l  = s > {31/e
k 
n, i = 

1 ,  2, . . .  , k, such that 

(i) (High density) p(Yi , . . .  , Yk )  > {3, and 
(ii) (Edges on all large subsets) e(Z1 ,  . . . , Zk) > 0 for any Zi C Yi with 

I zi I > c s ,  i = 1 , 2,  . . . , k .  

The following scheme illustrates the situation (but of course, the vertices 
of the Yi and Zi need not be contiguous) .  
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for all Z1 , . . .  , Zk there exists an edge 

Proof. Intuitively, the sets Yi should be selected in such a way that the 
subhypergraph induced by them is as dense as possible. We then want to 
show that if there were Z 1 , • • .  , Z k of size at least c s with no edges on them, 
we could replace the Yi by sets with a still larger density. But if we looked at 
the usual density p(Y1 , . . .  , Yk) ,  we would typically get too small sets Yi.  The 
trick is to look at a modified density parameter that slightly favors larger 
sets. Thus, we define the magical density tt(Yt ,  . . .  , Yk) by 

We choose Yi , . . .  , Yk , Yi C Xi, as sets of equal size that have the maxin1um 
possible magical density tt(Y1 , • • •  , Yk) .  We denote the common size IYt l  = 
. . .  = IYk l  by s .  

First we derive the condition (i) in the theorem for this choice of the }i.  
We have 

e(Yt ,  . . .  , Yk) 
( ) ( ) ek {3 ek 

sk-ck = J.t Y1 , . . .  , Yk > J.t X1 , . . .  , Xk = {3n > s , 

and so e(Y1 , • • •  , Yk) > {3sk , which verifies (i) . Since obviously e(Y1 , . . .  , Yk) < 
sk , we have tt(Y1 , . . .  , Yk) < sek . Combining with tt(Yt ,  . . .  , Yk) 2: f3ne:k de
rived above, we also obtain that s > (31/ek n. 

It remains to prove (ii ) .  Since cs is a large number by the assumptions, 
rounding it up to an integer does not matter in the subsequent calculations 
(as can be checked by a simple but somewhat tedious analysis) . In order 
to simplify matters, we will thus assume that c s is an integer, and we let 
Z1 C Yt , . . .  , Zk C Yk be cs-element sets. We want to prove e(  Zt , . . .  , Zk) > 0. 
We have 
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e ( Z 1 , . . . , Z k) = e ( Yt , . . . , Yk ) (9.2) 

- e(Yt \ Zt , Y2 ,  Y3 , . . .  , Yk ) 
- e(Zt ,  Y2 \ Z2 , Y3 , . . .  , Yk ) 
- e(Zt , Z2 , Y3 \ Z3 , . . .  , Yk ) 

We want to show that the negative terms are not too large, using the as
sumption that the magical density of Y1 , . . .  , Yk is maximum. The problem 
is that Y1 , . . .  , Yk maximize the magical density only among the sets of equal 
size, while we have sets of different sizes in the tertns. To get back to sets of 
equal size, we use the following observation. If, say, R1 is a randon1ly chosen 
subset of Y1 of some given size r, we have 

E [p ( R 1 , Y2 , . . . , Yk)] = p ( Yi , . . . , Yk) , 

where E[  · ] denotes the expectation with respect to the random choice of an r
element R1 C Y1 . This preservation of density by choosing a random subset is 
quite intuitive, and it is not difficult to verify it by counting (Exercise 1 ) .  For 
estimating the term e (Y1 \ Z 1 ,  Y2 ,  . . .  , Yk) ,  we use random subsets R2 ,  . . .  , Rk 
of size (1-c:)s of Y2 ,  . . .  , Yk , respectively. Thus, 

Now for any choice of R2 , . . .  , Rk , we have 

p(Yi \ Zt , R2 ,  . . .  , Rk) = ( ( 1 - c:)s)-ek �-t(Yt \ Zt , R2 ,  . . .  , Rk) 
< ( ( 1 - c) S) -ek JL( Yl , Y2 ,  · · · ' Yk) 

Therefore, 

= ( 1 - c) -e k p(Yt , . . .  , Yk) . 

To estimate the term e(Z1 ,  Z2 , . . .  , Zi- 1 , Yi \ Zi , Yi+t ,  . . .  , Yk) ,  we use random 
subsets Ri c Yi \ Zi and Ri+ 1 c Yi+ 1 ,  . . .  , Rk c Yk, this time all of size c s. 
A sin1ilar calculation as before yields 

(This estimate is also valid for i = 1 ,  but it is worse than the one derived 
above and it would not suffice in the subsequent calculation. ) From (9.2) we 
obtain that e(Zt ,  . . .  , Zk) is at least e(Y1 , • . .  , Yk) multiplied by the factor 
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k 
1 - (1 - c) - ( 1 - c)c-ek Lci-1 = c - c1-ek ( 1 - ck-l) 

i=2 
= c ( 1 + c-ek (ck-1 - 1)) 
= c ( 1 + eek In(1/el (ck-1 _ 1 )) 
> c ( 1  + ( 1  + ck In ! ) (ek- l  - 1) ) 
= ek+l ( 1  - ln 1 + ek In 1) E E E 

> Ek+ 1 ( 1 _ ln 1 )  
- E c 

> 0. 

Theorem 9.4 . 1  is proved. 

Bibliography and remarks. The Szemeredi regularity lemma is 
from [Sze78] , and in its full glory it goes as follows: For every e > 0 and 
for every ko , there exist K and no such that every graph G on n > no 
vertices has a partition (V0 ,  V1 , . . .  , Vk) of the vertex set into k+l parts, 
ko < k < K, where !Vo l < en, I V1 I = IV2 I = · · · = IVk l = m, and all but 
at most c:k2 of the (�) pairs {Vi ,  Vj }  are c:-regular, which means that 
for every A C Vi and B C Vj with I A I ,  IB I  > em we have Jp(A, B) -
p(\li , Vj ) I  < £ .  Understanding the idea of the proof is easier than 
understanding the statement. The regularity lemn1a is an extremely 
powerful tool in modern combinatorics. A survey of applications and 
variations can be found in Koml6s and Simonovits (KS96J . 

Our presentation of Theorem 9.4 .1  essentially follows Pach (Pac98] , 
whose treatment is an adaptation of an approach of Koml6s and S6s. 

One can formulate various hypergraph analogues of the Szemeredi 
regularity len1ma in its full strength. For instance, for a 3-uniform 
hypergraph, one can define a triple vl ' v2 ' v2 of disjoint subsets of 
vertices to be c:-regular if lp(A1 , A2 , A3) - p(V1 , V2 , V3) 1  < c for every 
Ai C Vi with IAi l > c: l\li l ,  and formulate a statement about a parti
tion of the vertex set of every 3-regular hypergraph in which almost 
all triples of classes are c:-regular. Such a result indeed holds, but this 
formulation has significant shortcomings. For example, the Szemeredi 
regularity len1ma allows approximate counting of small subgraphs in 
the given graph (see Exercise 3 for a simple example) , which is the 
key to many applications, but the notion of c:-regularity for triple sys
tems just given does not work in this way (Exercise 4) . A technically 
quite complicated but powerful regularity lemma for 3-regular hyper
graphs that does admit counting of small subhypergraphs was proved 
by Frankl and Rodl [FROl] . The first insight is that for triple systems, 
one should not partition only vertices but also pairs of vertices. 

Let us mention a related innocent-looking problem of geometric 
flavor. For a point c E S = { 1 ,  2,  . . . , n} d, we define a jack with center 

D 
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c as the set of all points of S that differ from c in at most 1 coordinate. 
The problem, formulated by Szekely, asks for the maximum possible 
cardinality of a system of jacks in S such that no two jacks share a line 
(i.e. , every two centers differ in at least 2 coordinates) and no point 
is covered by d jacks. It is easily seen that no more than nd- l jacks 
can be taken, and the problem is to prove an o(nd- l ) bound for every 
fixed d. The results of Frankl and Rodl [FROl] imply this bound for 
d = 4,  and recently Rodl and Skokan announced a positive solution 
for d = 5 as well; these results are based on sophisticated hypergraph 
regularity lemmas. A positive answer would imply the famous theorem 
of Szemeredi on arithmetic progressions (see, e.g. , Gowers (Gow98] for 
recent work and references) and would probably provide a "purely 
combinatorial" proof. 

Exercises 

227 

1. Verify the equality E [p(R1 , Y2 , . . .  , Yk)] = p(Y1 , . . .  , Yk ) ,  where the ex
pectation is with respect to a random choice of an r-element R1 C Y1 . 
Also derive the other similar equalities used in the proof in the text. @J 

2. (Density Ramsey-type result for segments) 
(a) Let c > 0 be a given positive constant. Using Exercise 9.3.5( c) and 
the weak regularity leinma, prove that there exists f3 == /3( c) > 0 such 
that whenever R and B are sets of segments in the plane with RUB in 
general position and such that the number of pairs ( r, b) with r E R, 
b E B, and r n b i= 0 is at least en 2 , then there are subsets R' C R and 
B' C B such that IR' I > {3n, JB' I > f3n, and each r E R' intersects each 
b E  B'. 0 
(b) Prove the analogue of (a) for non crossing pairs. Assuming at least en 2 
pairs ( r, b) with r n b :=:: 0, select R' and B' of size f3n such that r n b == 0 
for each r E R' and b E  B' . CD 
These results are from Pach and Solymosi [PSOl] . 

3. (a) Let G = (V, E) be a graph, and let V be partitioned into classes 
V1 , V2 , V3 of size m each. Suppose that there are no edges with both 
vertices in the same Vi,  that I p(Vi , Vj) - � I < c for all i < j, and that 
each pair (Vi, ltj ) is c-regular (this means that Jp(A, B) - p(Vi, ltj ) j  < E 

for any A C Vi and B C Vj with IA I ,  IB I  > em) .  Prove that the number 
of triangles in G is ( ! + o ( 1 ) )  m 3 , where the o( 1 )  notation refers to c � 0 
(while m is considered arbitrary but sufficiently large in terms of c) .  [I] 
(b) Generalize (a) to counting the number of copies of K4 , where G has 
4 classes vl ' . . .  ' v4 of equal size (if all the densities are about � '  then the 
number should be (2-6 + o(I))m4) .  0 

4. For every c > 0 and for arbitrarily large m, construct a 3-uniforrn 4-
partite hypergraph with vertex classes vl ' . . .  ' v4 ' each of size m, that 
contains no Ki3) (the system of all triples on 4 vertices) , but where 
Jp(\li, Vj , Vk) - � I < c for all i < j < k and each triple (Vi, Vj ,  Vk) is 
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£-regular. The latter condition means lp(A,i ,  Aj , Ak) - p(Vi, Yj , Vk) l  < E 
for every Ai c Vi,  Aj c ltj ' Ak c vk of size at least Em. � 

9.5 A Positive-Fraction Selection Lemma 

Here we discuss a stronger version of the first selection lemma (Theo
rem 9 . 1 . 1 ) .  Recall that for any n-point set X c R d, the first selection lemma 
provides a "heavily covered" point, that is, a point contained in at least a 
fixed fraction of the (d� 1 ) simplices with vertices in points of X. The the
orem below shows that we can even get a large collection of simplices with 
a quite special structure. For example, in the plane, given n red points, n 
white points, and n blue points, we can select � red, � white, and � blue 
points in such a way that all the red-white-blue triangles for the resulting 
sets have a point in common. Here is the d-dimensional generalization. 

9.5.1 Theorem (Positive-fraction selection lemma). For all natural 
numbers d, there exists c = c(d) > 0 with the following property. Let d . . . 
Xt , X2 , . . .  , Xd+t c R be finite sets of equal size, with Xt UX2U · · · UXd+t 
in general position. Then there is a point a E Rd and subsets Z1 C X1 , . . .  , 
zd+l c xd+l '  with I Zi l > c iXi I ,  such that the convex hull of every transver
sal of (Zt , . . .  , Zd+ I )  contains a. 

As was remarked above, for d = 2, one can take c = 112 • There is an 
elementary and not too difficult proof (which the reader is invited to discover) .  
In higher dimensions, the only known proof uses the weak regularity lemma 
for hypergraphs. 

Proof. Let X = X1 U · · · U Xd+ t ·  We may suppose that all the Xi are 
large (for otherwise, one-point Zi will do) . Let F0 be the set of all "rainbow" 
X-simplices, i .e. , of all transversals of (Xt , . . .  , Xd+t ) ,  where the transversals . 
are formally considered as sets for the moment . The size of F0 is, for d fixed, 
at least a constant fraction of (�� l) (here we use the assumptions that the X 1 

are of equal size) . Therefore, by the second selection lemma (Theorem 9.2. 1 ) ,  
there is a subset J=i C Fo of at least f3nd+t X-simplices containing a common 
point a,  where j3 = j3(d) > 0. (Note that we do not need the full power of the 
second selection lemma here, since we deal with the complete ( d+ 1 )-partite 
hypergraph.) 

For the subsequent argument we need the common point a to lie in the 
interior of many of the X -simplices. One way of ensuring this would be 
to assume a suitable strongly general position of X and use a perturba
tion argument for arbitrary X. Another, perhaps simpler, way is to apply 
Lemma 9 . 1 .2, which guarantees that a lies on the boundary of at most O(nd) 
of the X -simplices of .F1 . So we let F2 C F1 be the X -simplices containing a 
in the interior, and for a sufficiently large n we still have IF2 1 > f3'nd+t . 

Next, we consider the (d+l)-partite hypergraph 1-l with vertex set X and 
edge set F2 • We let E = c(d, d + 2) , where c(d, m) is as in the same-type 
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lemma, and we apply the weak regularity lemma (Theorem 9.4. 1 )  to H. This 
yields sets Yt C Xt ,

· . .  , Yd+t C Xd+t , whose size is at least a fixed fraction of 
the size of the Xi , and such that any subsets Z1 c Y1 , . . . , Zd+t c Yd+t of size 
at least c iYi l induce an edge; this means that there is a rainbow X-simplex 
with vertices in the Zi and containing the point a. 

The argument is finished by applying the same-type lemma with the d+2 
sets Yt , Y2 , . . .  , Yd+t and Yd+2 == {a}. We obtain sets Z1 C Y1 , . . .  , Zd+l C 
yd+l and zd+2 = {a} with same-type transversals, and with IZi l  > E IYi l  
for 'i = 1 ,  2, . . .  , d+l .  (Indeed, the san1e-type len1ma guarantees that at least 
one point is selected even from an 1-point set. )  Now either all transversals 
of ( Z1 , . . .  , Zd+l ) contain the point a in their convex hull or none does (use 
Exercise 9.3. 1 (  d) ) .  But the latter possibility is excluded by the choice of the 
Yi (by the weak regularity lemma) . The positive-fraction selection lemma is 
proved. D 

It is amazing how many quite heavy tools are used in this proof. It would 
be nice to find a more direct argument. 

Bibliography and remarks. The planar case of Theorem 9 .5 . 1  was 
proved by Barany, Fiiredi, and Lovasz [BFL90] (with c(2) > 1

1
2 ) , and 

the result for arbitrary dimension is due to Pach [Pac98] . 
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Transversals and Epsilon Nets 

Here we are going to consider problems of the following type: We have a 
family F of geometric shapes satisfying certain conditions, and we would like 
to conclude that F can be "pierced" by not too many points, meaning that 
we can choose a bounded number of points such that each set of F contains at 
least one of them. Such questions are sometimes called Gallai-type problems, 
because of the following nice problem raised by Gallai: Let :F be a finite family 
of closed disks in the plane such that every two disks in :F intersect. What 
is the smallest number of points needed to pierce F? For this problem, the 
exact answer is known: 4 points always suffice and are sometimes necessary. 

We will not cover this particular (quite difficult) result; rather, we con
sider general methods for proving that the number of piercing points can be 
bounded. These methods yield numerous results where no other proofs are 
available. On the other hand, the resulting estimates are usually quite large, 
and in some simpler cases (such as Gallai's problem mentioned above) , spe
cialized geometric arguments provide much better bounds. 

Some of the tools introduced in this chapter are widely applicable and 
sometimes more significant than the particular geometric results. Such im
portant tools include the transversal and matching numbers of set systems, 
their fractional versions (connected via the duality of linear programming) , 
the Vapnik-Chervonenkis dimension and ways of estimating it, and epsilon 
nets. 

10.1 General Preliminaries: Transversals and 
Matchings 

Let :F be a system of sets on a ground set X ;  both F and X may generally 
be infinite. A subset T C X is called a transversal of F if it intersects all the 
sets of F. 
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The transversal number of :F, denoted by r(:F) , is the smallest possible car
dinality of a transversal of :F. 

Many combinatorial and geometric problems, some them considered in 
this chapter, can be rephrased as questions about the transversal number of 
suitable set systems. 

Another important parameter of a set system :F is the packing number 
(or matching number) of :F, usually denoted by v(:F) . This is the maximum 
cardinality of a system of pairwise disjoint sets in :F: 

A subsystem M C :F of pairwise disjoint sets is called a packing (or a match
ing; this refers to graph-theoretic n1atching, which is a system of pairwise 
disjoint edges) . 

Any transversal is at least as large as any packing, and so always 

v(:F) < r(:F) . 

In the reverse direction, very little can be said in general, since r(:F) can be 
arbitrarily large even if v(:F) = 1 .  As a simple geometric example, we can 
take the plane as the ground set X and let the sets of :F be n lines in general 
position. Then v( :F) = 1 ,  since every two lines intersect, but r( :F) > � n, 

because no point is contained in more than two of the lines. 

Fractional packing and transversal numbers. Now we introduce an
other parameter of a set system, which always lies between v and r and which 
has proved extremely useful in arguments estimating r or v. First we restrict 
ourselves to set systems on finite ground sets. 

Let F be a system of subsets of a finite set X.  A fractional transversal for 
:F is a function c.p: X ---+ [0, 1] such that for each S E F, we have :I: x E S  <p( x) > 
1 .  The size of a fractional transversal c.p is L:xEX c.p( x) , and the fractional 
transversal number r* (:F) is the infimum of the sizes of fractional transversals. 
So in a fractional transversal, we can take one-third of one point , one-fifth 
of another, etc . ,  but we must put total weight of at least one full point into 
every set. 
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Similarly, a fractional packing for :F is a function 'lj;: :F ---+ [0, 1 ]  such that 
for each x E X, we have 'EsEF: xES 'lf;(S} < 1 .  So sets receive weights and the 
total weight of sets containing any given point must not exceed 1 .  The size 
of a fractional packing '¢ is 'EsEF 'lf;(S), and the fractional packing nurnber 
v* (:F) is the supremum of the sizes of all fractional packings for :F. 

It is instructive to consider ·the "triangle" system of 3 sets on 3 points, 

and check that v = 1 ,  T = 2, and v* = r* = � .  
Any packing M yields a fractional packing (by assigning weight 1 to the 

sets in M and 0 to others) ,  and so v < v* . Similarly, r* < T. 
\Ve promised one parameter but introduced two: r* and v* . But they 

happen to be the same. 

10.1 . 1  Theorem. For every set system F on a finite ground set, we have 
v* (F) = r* (F) . Moreover, the comn1on value is a rational number, and 
there exist an optimal fractional transversal and an optimal fractional packing 
attaining only rational values. 

This is not a trivial result; the proof is a nice application of the duality 
of linear programming. Here is the version of the linear programming duality 
we need. 

10.1 .2 Proposition (Duality of linear programming) .  Let A be an 
m x n real Inatrix, b E Rm a (column) vector, and c E Rn a (column) vector. 
Let 

P = {x E Rn : x > 0, Ax > b} 

and 
D = {y  E Rm: y > 0, yT A <  cT } 

(the inequalities between vectors should hold in every component). If both 
P i= 0 and D =I= 0, then 

min {cTx: x E P} = max {yTb : y E D} ;  

in particular, both the minimum and the maximum are well-defined and 
attained. 

This result can be quickly proved by piecing together a larger matrix from 
A, b, and c and applying a suitable version of the Farkas lemma (Lemma 1 .2 .5) 
to it (Exercise 6) .  It can also be derived directly from the separation theorem. 



234 Chapter 10: Transversals and Epsilon Nets 

Let us remark that there are several versions of the linear programming 
duality (differing, for example, in including or omitting the requirement x > 
0, or replacing Ax > b by Ax = b, or exchanging minima and maxima) , and 
they are easy to mix up. 

Proof of Theorem 10.1 .1 .  Set n = lX I  and m = IF I ,  and let A be the 
m x n incidence matrix of the set system F: Rows correspond to sets, columns 
to points, and the entry corresponding to a point p and a set S is 1 if p E S 
and 0 if p fl. S. It is easy to check that v* (F) and r* (F) are solutions to the 
following optimization problems: 

r* (:F) = min { 1�x: x > 0, Ax > 1m} , 

v* (:F) == max {yT1m: y > 0, yT A <  1; } , 

where 1n E Rn denotes the (column) vector of all 1's of length n. Indeed, the 
vectors :1.� E R n satisfying x > 0 and Ax > 1m correspond precisely to the 
fractional transversals of F, and similarly, the y E Rn with y > 0 and yT A < 
1� correspond to the fractional packings. There is at least one fractional 
transversal, e.g . ,  x = 1n , and at least one fractional packing, namely, y = 0� 
and so Proposition 10 .1 .2 applies and shows that v* (F) = r* (:F) . 

At the same tin1e, r* (F) is the minimum of the linear function x t--7 1?; x 
over a polyhedron, and such a minimum, since it is finite, is attained at a 
vertex. The inequalities describing the polyhedron have rational coefficients, 
and so all vertices are rational points. 0 
Remark about infinite set systems. Set systems encountered in geome
try are usually infinite. In almost all the considerations concerning transver
sals, the problem can be red need to a problem about finite sets, usually by 
a simple ad hoc argument. Nevertheless, we include here a few remarks that 
can aid a simple consistent treatment of the infinite case. However, they will 
not be used in the sequel in any essential way. 

There is no problem with the definitions of v and T in the infinite case, but 
one has to be a little careful with the definition of v* and r* to preserve the 
equality v* = r* . Everything is still fine if we have finitely many sets on an · 

infinite ground set: The infinite ground set can be factored into finitely many 
equivalence classes, where two points are equivalent if they belong to the 
same subcollection of the sets. One can choose one point in each equivalence 
class and work with a finite system. 

For infinitely many sets, some sort of compactness condition is certainly 
needed. For example, the system of intervals { [i, oo ) : i = 1 ,  2, . . .  } has, ac
cording to any reasonable definition, v* = 1 but r* = oo. 

If we let :F be a farnily of closed sets in a co1npact 1netric space X ( cotnpact 
Hausdorff space actually suffices) , we can define v* (:F) as sup,p LSE:F '¢(8), 
where the supremum is over all '¢: F ---+ [0, 1] attaining only finitely many 
nonzero values and such that 'LsE:F: xEs 'l/J(S) < 1 for each x E X. 
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For the definition of r* ,  the first attempt might be to consider all functions 
<p: X ---+ [0, 1] attaining only finitely many nonzero values and summing up to 
at least 1 over every set. But this does not work very well: For example, if we 
let F be the system of all compact subsets of [0, 1} of Lebesgue measure � ,  
say, then v* < 2 but r* would be infinite, since any finite subset is avoided 
by some member of F. It is better to define a fractional transversal of F as 
a Borel measure J-L on X such that J-L ( S) > 1 for all S E F, and r* (F) as 
the infimum of J-.t( X) over all such J-L· With this definition, the validity of the 
first part Theorem 10. 1 . 1  is preserved; i .e . ,  v* (:F) = r* (F) for all systems F 
of closed sets in a compact X. The proof uses a little of functional analysis, 
and we omit it; it can be found in [KM97a] . The rationality of v* and r* no 
longer holds in the infinite case. 

Bibliography and remarks. Gallai's problem about pairwise in
tersecting disks mentioned at the beginning of this chapter was first 
solved by Danzer in 1956, but he hasn't published the solution. For 
another solution and a historical account see Danzer [Dan86] . 

Attempting to summarize the contemporary knowledge about the 
transversal number and the packing number in combinatorics would 
mean taking a much larger bite than can be swallowed, so we restrict 
ourselves to a few sketchy remarks. An excellent source for many com
binatorial results is Lovasz's problem collection [Lov93] . 

A quite old result relating v and T is the famous Konig's edge
covering theorem from 1912, asserting that v(F) = r (F) if F is the 
system of edges of a bipartite graph (this is also easily seen to be 
equivalent to Hall's marriage theorem, proved by Frobenius in 1917; 
see Lovasz and Plummer [LP86) for the history) . On the other hand, 
an appropriate generalization to systems of triples, namely, T < 2v 
for any tripartite 3-uniforrn hypergraph, is a celebrated recent result 
of Aharoni [AhaOl] (based on Aharoni and Haxell [AHOO] ) ,  while the 
generalization T < (k-1)v for k-partite k-uniform hypergraphs, known 
as Ryser's conjecture, remains unproved for k > 4. 

While computing v or T for a given F is well known to be NP
hard, r* can be computed in ti1ne polynornial in lX I  + IFI by linear 
programming (this is another reason for the usefulness of the frac-

. tional parameter) . The problem of approximating T is practically very 
important and has received considerable attention. More often it is 
considered in the dual form, as the set cover problem: Given F with 
U F = X, find the smallest subcollection :F' C :F that still covers X. 
The size of such F' is the transversal number of the set system dual 
to (X, F) , where each set S E F is assigned a point Ys and each point 
x E X  gives rise to the set {ys: x E S}. 

For the set cover problem, it was shown by Chvatal and indepen
dently by Lovasz that the greedy algorithn1 (always take a set covering 
the maximum possible number of yet uncovered points) achieves a so-
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lution whose size is no more than (1 + ln lX I )  times larger than the 
optimal one. 1 Lova.sz actually observed that the proof implies, for any 
finite set system F, 

r (F) < r* (F) · ( 1  + ln Ll(F) ) ,  

where .d(F) is the maximum degree ofF, i .e . ,  the maximum number of 
sets with a common point (Exercise 4) . The weaker bound with Ll(F) 
replaced by IFI is easy to prove by probabilistic argument (Exercise 3) .  
It shows that in order to have a large gap between r* and r, the set 
system must have very many sets. 

Exercises 

1 .  (a) Find examples of set systems with r* bounded by a constant and r 
arbitrarily large. ITl 
(b) Find examples of set systems with v bounded by a constant and v* 
arbitrarily large. ITJ 

2. Let :F be a system of finitely many closed intervals on the real line. Prove 
that v(:F) == r(F) . 0 

3. Prove that 
r(F) < r* (F) · ln( IF I+l)  

for all (finite) set systems F. Choose a transversal as a random sample. 
0 

4. (Analysis of the greedy algorithm for transversal) Let F be a finite set 
system. We choose points x1 , x 2 ,  . . .  , Xt of a transversal one by one: Xi is 
taken as a point contained in the maximum possible number of uncovered 
sets (i .e . , sets of F containing none of x1 , • • •  , Xi_ 1 ) . 

(a) Prove that the size t of the resulting transversal satisfies 

where d == Ll(F) is the maximum degree of F and vk (:F) is the maximum 
size of a simple k-packing in :F. A subsystem M C F is a simple k-packing 
if Ll(M) < k (so v1 (F) = v(F) ) .  0 
(b) Conclude that r(F) < t < r* (F) · E%=1 ! · 0 

5. Konig's edge-covering theorem asserts that if E is the set of edges of a 
bipartite graph, then v(E) = r(E). Hall's marriage theorem states that if 
G is a bipartite graph with color classes A and B such that every subset 
S C A has at least lS I  neighbors in B, then there is a matching in G 
containing all vertices of A. 

1 As a part of a very exciting development in complexity theory, it was re
cently proved that no polynomial-time algorithm can do better in general unless 
P == NP; see, e.g., [Hoc96) for proofs and references. 
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(a) Derive Konig's edge-covering theorem from Hall's marriage theorem. 
� 
(b) Derive Hall's marriage theorem from Konig's edge-covering theorem. 
� 

6. Let A, b, c, P, and D be as in Proposition 10 .1 .2 .  
(a) Check that cT x > yTb for all x E P and all y E D. ITl 
(b) Prove that if P ¥- 0 and D ¥- 0, then the system Ax < b, 
yT A > c, cT x > yTb has a nonnegative solution x, y (which implies 
Proposition 10. 1 . 2 ) .  Apply the version of the Farkas lemma as in Exer
cise 1 .  2. 7 (b) . � 

10.2 Epsilon Nets and VC-Dimension 

Large sets should be easier to hit by a transversal than small ones. The notion 
of c-net and the related theory elaborate on this intuition. We begin with a 
special case, where the ground set is finite and the size of a set is simply 
measured as the cardinality. 

10.2.1 Definition (Epsilon net, a special case) .  Let (X, F) be a set 
system with X finite and let c E [0, 1] be a real number. A set N C X (not 
necessarily one of the sets of F) is called an c-net for {X, F) if N n S i- 0 for 
all S E F with lS I  > c iX I .  

So an c-net is a transversal for all sets larger than c iXI .  Sometimes it is 
convenient to write � instead of c, with r > 1 a real parameter. A beautiful 
result (Theorem 10.2.4 below) describes a simple combinatorial condition 
on the structure of F that guarantees the existence of �-nets of size only 
O(r log r) for all r > 2. 

If we want to deal with infinite sets, measuring the size as the number 
of points is no longer appropriate. For example, a "large" subset of the unit 
square could naturally be defined as one with large Lebesgue measure. So 
in general we consider an arbitrary probability measure J.L on the ground 
set. In concrete situations we will most often encounter J.L concentrated on 
finitely many points. This means that there is a finite set Y C X and a 
positive function w: Y -4 {0, 1] with EyEY w(y) = 1 ,  and J.L is given by 
J.L(A) = EyEAnY w(y). In particular, if the weights of all points y E Y are 
the same, i .e. , 1�1 , we speak of the uniform measure on Y. Another common 
example of J.L is a suitable multiple of the Lebesgue measure restricted to 
some geometric figure. 

10.2.2 Definition (Epsilon net) .  Let X be a set, let J.-t be a probability 
measure on X, let :F be a system of J.L-measurable subsets of X, and let 
c E [0, 1) be a real number. A subset N C X is called an c-net for (X, :F) 
with respect to J.-t if N n S ¥- 0 for all S E F with J.-t( S) > c .  
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VC-dimension. In order to describe the result promised above, about ex
istence of small c--nets, we need to introduce a parameter of a set system 
called the Vapnik-Chervonenkis dimension, or VC-dimension for short . Its 
applications are much wider than for the existence of c--nets. 

Let :F be a set system on X and let Y C X. We define the restriction of 
:F on Y (also called the trace of :F on Y) as 

:Fly = {S n Y: S E :F} . 

It may happen that several distinct sets in :F have the same intersection with 
Y;  in such a case, the intersection is still present only once in Fly . 

10.2.3 Definition (VC-dimension) . Let :F be a set system on a set X. 
Let us say that a subset A C X is shattered by F if each of the subsets of A 
can be obtained as the intersection of some S E :F with A, i.e., if :FIA = 2A . 
We define the VC-dimension of :F, denoted by dim(:F) , as the supremum of 
the sizes of all finite shattered subsets of X. If arbitrarily large subsets can 
be sl1attered, tl1e VC-dimension is oo. 

Let us consider two examples. First, let 1l be the system of all closed 
half-planes in the plane. We claim that dim(1-l) = 3. If we have 3 points in 
general position, each of their subsets can be cut off by a half-plane, and so 
such a 3-point set is shattered. Next, let us check that no 4-point set can be 
shattered. Up to possible degeneracies, there are only two essentially different 
positions of 4 points in the plane: 

• 0 • 

0 
0 • • 

• 

In both these cases, if the black points are contained in a half-plane, then 
a white point also lies in that half-plane, and so the 4 points are not shat
tered. This is a rather ad hoc argument, and later we will introduce tools 
for bounding the VC-dimension in geometric situations. We will see that 
bounded VC-dimension is rather common for families of simple geometric 
objects in Euclidean spaces. 

A rather different example is the system K2 of all convex sets in the plane. 
Here the VC-dimension is infinite, since any finite convex independent set A 
is shattered: Each B C A can be expressed as the intersection of A with a 
convex set, namely, B = A n conv(B) . 

\ 
'<\ 

< 
' 

\:-,_ 

. 
· ·· · ·· ·0· - ... 

'• 
'• . 

. .. . .... 
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We can now formulate the promised result about small c--nets. 

10.2.4 Theorem (Epsilon net theorem) . If X is a set with a probability 
111easure J-l, F is a system of J.t-measurable subsets of X with dim(F) < d, 
d > 2, and r > 2 is a parameter, then there exists a ; -net for (X, F) with 
respect to J-L of size at most Cdr In r, where C is an absolute constant. 

The proof below gives the estimate C < 20, but a more accurate calcula
tion shows that C can be taken arbitrarily close to 1 for sufficiently large r .  
1v1ore precisely, for any d > 2 there exists an r0 > 1 such that for all r > r0 , 
each set system of VC-dimension d admits a ; -net of size at most dr ln r .  
1V1oreover, this bound is tight in the worst case up to smaller-order terms. 

For the proof (and also later on) we need a fundamental lemma bounding 
the number of distinct sets in a system of given VC-dimension. First we define 
the shatter function of a set system F by 

tr.r(m) = max IFIY I · YCX, IY I=m 

In words, 1r .r( m) is the maxin1um possible number of distinct intersections of 
the sets of :F with an m-point subset of X .  

10.2.5 Lemma (Shatter function lemma) . For any set system F of 
VC-dimension at most d, we have tr.r(m) < �d(m) for all m, where �d(m) = 
(7{) + (7) + . . .  + (r;I) . 

Thus, the shatter function for any set system is either 2m for all m (the 
case of infinite VC-dimension) or it is bounded by a fixed polynomial. 

For d fixed and m ---+ oo ,  <Pd(m) can be simply estimated by O(md) .  For 
more precise calculations, where we are interested in the dependence on d, 
we can use the estimate <P d ( m) < ( 

e
;r)  

d
, where e is the basis of natural 

logarithms. This is valid for all m, d > 1 .  

Proof of Lemma 10.2.5. Since VC-dimension does not increase by passing 
to a subsystem, it suffices to show that any set system of VC-dimension 
at most d on an n-point set has no more than <Pd (n) sets. We proceed by 
induction on d, and for a fixed d we use induction on n. 

Consider a set system (X, F) with lX I  == n and dim( F) == d, and fix some 
x E X. In the induction step, we would like to remove x and pass to the 
set system Ft = :Fix \ {x} on n-1 points. This :fi has VC-dimension at 

most d, and hence JF1 J  < �d(n- 1 ) by the inductive hypothesis. How many 
more sets can F have compared to :fi? The only way that the number of sets 
decreases by removing x is when two sets S, S' E :F give rise to the same set 
in :F1 , which means that S' = S U { x} ,  x ¢ S, or the other way round. This 
suggests that we define an auxiliary set system F2 consisting of all sets in F1 
that correspond to such pairs S, S' E :F: F2 = { S E F: x ¢ S, S U { x} E F}. 

By the above discussion, we have IFJ = IFt l  + IF2 l · Crucially, we observe 
that dim(F2) < d-1,  since if A C X \  { x} is shattered by F2 , then A U  {x} is 
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shattered by F. Therefore, IF2 I < <I> d- 1 ( n-1} .  The resulting recurrence has 
already been solved in the first proof of Proposition 6 .1 . 1 .  0 

The rest of the proof of the epsilon net theorem is a clever probabilistic 
argument; one might be tempted to believe that it works by some magic. 
First we need a technical lemma concerning the binomial distribution. 

10.2.6 Lemma. Let X =  X1 +X2 + ·  · · +Xn , where the Xi are independent 
random variables, Xi attaining the value 1 with probability p and the value 
0 with probability 1-p. Then Prob [X > � np] > � ,  provided that np > 8. 

Proof. This is a routine consequence of Chernoff-type tail estimates for the 
binomial distribution, and in fact , considerably stronger estimates hold. The 
simple result we need can be quickly derived from Chebyshev,s inequality 
for X, stating that Prob [ IX - E(X] I > t] < Var [X] jt2 , t > 0. Here E(X] = 
np and Var [X] == E:" 1 Var [Xi] < np. So 

4 
Prob [X < �np] < Prob [ IX - E [X] I >  �np] < - < � 

np 

0 

Proof of the epsilon net theorem. Let us put s = Cdr ln r (assuming 
without harm that it is an integer) ,  and let N be a random sample picked by 
s independent random draws, where each element is drawn from X according 
to the probability distribution J.l· (So the same element can be drawn several 
times; this does not really matter much, and this way of random sampling is 
chosen to make calculations simpler.) The goal is to show that N is a �-net 
with a positive probability. 

To simplify formulations, let us assume that all S E :F satisfy J-L( S) > ; ; 
this is no loss of generality, since the smaller sets do not play any role. The 
probability that the random sample N misses any given set S E F is at most 
( 1 - ; )8 < e-s/r , and so if s were at least r ln( IFI+1 ) ,  say, the conclusion 
would follow immediately. But r is typically much smaller than IF I (it can 
be a constant, say),  and so we need to do something more sophisticated. 

Let Eo be the event that the random sample N fails to be a �-net, i.e. , 
misses some S E F. We bound Prob [Eo] from above using the following 
thought experiment. 

By s more independent random draws we pick another random sample 
M.2 We put k = ;r , again assuming that it is an integer, and we let E1 be 
the following event : 

There exists an S E :F with N n S = 0 and IM n Sl > k. 

2 This double sampling resembles the proof of Proposition 6.5.2, and indeed these 
proofs have a lot in common, although they work in different settings. 
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Here an explanation concerning repeated elements is needed. Formally, we 
regard N and M as sequences of elements of X, with possible repetitions, so 
N = (xi , x2 , . . .  , x8 ) , M = (yi , y2 , . . .  , y8 ) .  The notation jM n S j then really 
n1eans I { i E 1 ,  2 ,  . . .  , s:  Yi E S} I ,  and so an element repeated in M and lying 
in S is counted the appropriate number of times. 

Clearly, Prob [E1 ) < Prob (Eo) , since E1 requires Eo plus something more. 
We are going to show that Prob [E1 ] > � Prob [E0] . Let us investigate the 
conditional probability Prob [E1 I N] , that is, the probability of E1 when 
N is fixed and M is rando1n. If N is a �-net, then E1 cannot occur, and 
Prob [Eo I N] = Prob [E1 I N] = 0. 

So suppose that there exists an S E :F with N n S = 0. There may 
be many such S, but let us fix one of them and denote it by SN . We have 
Prob [EI I N] > Prob [ IM n SN I > k] . The quantity IM n SN I behaves like 
the random variable X in Lemma 10.2.6 with n = s and p = � ,  and so 
Prob [ IM n SN I > k] > � · Hence Prob [Eo i N] < 2 Prob [EI I N] for all N, 
and thus Prob [Eo] < 2 Prob [E1 ] . 

Next, we are going to bound Prob [E1 ] differently. Instead of choos
ing N and M at random directly as above, we first make a sequence 
A = ( z1 , z2 , . . .  , Z2s )  of 2s independent random draws from X. Then, in the 
second stage, we randomly choose s positions in A and put the elements at 
these positions into N, and the remaining elements into M (so there are (2

8
8) 

possibilities for A fixed) . The resulting distribution of N and M is the same 
as above. We now prove that for every fixed A, the conditional probabil
ity Prob (E1 I A] is small. This implies that Prob [E1 ] is small, and therefore 
Prob [Eo] is small as well. 

So let A be fixed. First let S E :F be a fixed set and consider the con
ditional probability Ps = Prob [N n s = 0, IM n S l > k I A] . If l A  n S l < k, 
then Ps = 0. Otherwise, we bound Ps < Prob [N n S = 0 1  A] . The latter is 
the probability that a random sample of s positions out of 2s in A avoids the 
at least k positions occupied by clements of S.  This is at most 

es;k) 
< (1 _ �) 8 

< e-(k/2s)s = e-k/2 = e-(Cd ln r)/4 = r-Cd/4 . (2ss) - 2s -

This was an estimate of Ps for a fixed S E F. Now, finally, we use the 
assumption about the VC-dimension of F, via the shatter function lemma: 
The sets of :F have at most <Pd (2s) distinct intersections with A. Since the 
event "N n S = 0 and IM n S l > k" depends only on A n  S, it suffices to 
consider at most <Pd (2s ) distinct sets S, and so for every fixed A, 

Prob [E1 I A] < <l>d (2s) · r-Cd/4 < ( 2�8) d r-Cd/4 = ( 2er In r · r-C/4 t < � 
if d, r > 2 and C is sufficiently large. So Prob [Eo] < 2 Prob [E1 ] < 1 ,  which 
proves Theorem 10.2.4. D 
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The epsilon net theorem implies that for set systems of small VC-dimen
sion, the gap between the fractional transversal number and the transversal 
number cannot be too large. 

10.2. 7 Corollary. Let :F be a finite set system on a ground set X with 
dim(:F) < d. Then we have 

where C is as in the epsilon net theorem. 

Proof. Let r = r* (:F) . Since :F is finite, we may assume that an optimal 
fractional transversal r.p: X --t [0, 1] is concentrated on a finite set Y. This r.p, 
after rescaling, defines a probability measure 11 on X, by letting J-L( { y}) = 
� r.p(y) , y E Y. Each S E F has M(S) > � by the definition of fractional 
transversal, and so a ; -net for (X, :F) with respect to 1-l is a transversal. By 
the epsilon net theorem, there exists a transversal of size at most Cdr In r. 

0 

We mention a concrete application of the corollary in the next section, 
where we collect examples of set systems of bounded VC-dimension. 

Bibliography and remarks. The notion of VC-dimension orig
inated in statistics. It was introduced by Vapnik and Chervonenkis 
[VC71] .  Under different names, it has also appeared in other papers 
(Sauer (Sau72] and Shelah [She72] ) ,  but the work [VC71] was probably 
the most influential for subsequent developments. The name VC-di
mension and some other, by now more or less standard, terminology 
were introduced by Haussler and Welzl [HW87] . VC-dimension and the 
related theory play an important role in several mathematical fields, 
such as statistics (the theory of empirical processes) ,  computational 
learning theory, con1putational geometry, discrete gcon1etry, cornbina
torics of hypergraphs, and discrepancy theory. 

The shatter function lemma was independently discovered in the 
three already mentioned papers [VC71 ] ,  [Sau72] , [She72] . 

The shatter function, together with the dual shatter function (de
fined as the shatter function of the dual set system) was introduced 
and applied by Welzl [Wel88] . Implicitly, these notions were used much 
earlier, and they appear in the literature under various names, such 
as growth functions. 

The notion of c--net and the epsilon net theorem (with X finite 
and J-L uniform) are due to Haussler and Welzl [HW87] . Their proof 
is essentially the one shown in the text, and it closely follows an ear
lier proof by Vapnik and Chervonenkis [VC71] concerning the related 
notion of £-approximations. In the same setting as in the definition of 
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£-nets, a set A C X is an £-approximation for (X, F) with respect to 
IL if for all S E F, 

! A n SI J-L(S) - IA I 
< E. 

So while an £-net intersects each large set at least once, an €-ap
proximation provides a "proportional representation" up to the er
ror of £. Vapnik and Chervonenkis [VC71] proved the existence of 
; -approximations of size 0( dr2 log r) for all set system of VC-dimen
sion d. 

Koml6s, Pach, and Woginger [KPW92] improved the dependence 
on d in the Hausslcr-Welzl bound on the size of E-ncts. The improve
ment is achieved by choosing the second sample M of size t somewhat 
larger than s and doing the calculations more carefully. They also 
proved an almost matching lower bound using suitable random set 
systems. The proofs can be found in [PA95] as well. 

The proof in the Vapnik-Chcrvonenkis style, while short and 
clever, does not seem to convey very well the reasons for the existence 
of small £-nets. Somewhat longer but more intuitive proofs have been 
found in the investigation of deterministic algorithms for constructing 
£-approximations and €-nets; one such proof is given in [Mat99a] , for 
instance. 

Exercises 

1 .  Show that for any integer d there exists a convex set C in the plane such 
that the family of all isometric copies of C has VC-dimension at least d. 
0 

2. Show that the shatter function lemma is tight. That is, for all d and n 
construct a system of VC-dimension d on n points with <I> d ( n) sets. [I] 

10.3 Bounding the VC-Dimension and Applications 

The VC-dimension can be determined without great difficulty in several sim
ple cases, such as for half-spaces or balls in Rd, but for only slightly more com
plicated families its computation becomes challenging. On the other hand, a 
few simple steps explained below show that the VC-dimension is bounded for 
any family whose sets can be defined by a formula consisting of polynomial 
equations and inequalities combined by Boolean connectives (conjunctions, 
disjunctions, etc.) and involving a bounded number of real parameters. This 
includes families like all ellipsoids in R d, all boxes in R d, arbitrary intersec
tions of pairs of circular disks in the plane, and so on. On the other hand, 
arbitrary convex polygons are not covered (since a general convex polygon 
cannot be described by a bounded number of real parameters) and indeed, 
this family has infinite VC-dimension. 



244 Chapter 1 0: Transversals and Epsilon Nets 

We begin by determining the VC-dimension for half-spaces. 

10.3.1 Lemma. The VC-dimension of the system of all (closed) half-spaces 
in Rd equals d+l .  

Proof. Obviously, any set of d+ 1 affinely independent points can be shat
tered. On the other hand, no d+2 points can be shattered by Radon's lemma. 

0 
Next, we turn to the family Pd,D of all sets in Rd definable by a single 

polynomial inequality of degree at most D. 

10.3.2 Proposition. Let R[x 1 , x2 , . . •  , xd] <D denote the set of all real poly
nomials in d variables of degree at most D, and let 

Pd,D = { { x E Rd : p(x) > 0} :  p E R[x1 . x2 , . . .  , xdi<D } · 
Then dim(Pd,D ) < (d�D) . 

Proof. The following simple but powerful trick is known as the Veronese 
mapping in algebraic geometry (or as linearization; it is also related to the 
reduction of Voronoi diagrams to convex polytopes

· 
in Section 5.7) .  Let M 

be the set of all possible nonconstant monomials of degree at most D in 
x1 ,  . . .  , xd . For example, for D =  d = 2, we have M = {x1 , x2 , x1x2 , xr , x� } .  
Let m = J M J  and let the coordinates in Rm be indexed by the monomials 
in M. Define the map <p: Rd --+ Rm by cp(x)11 = J..t(x) , where the monomial J..t 
serves as a formal symbol (index) on the left-hand side, while on the right
hand side we have the number obtained by evaluating J.l at the point x E Rd. 
For example, for d = D = 2, the map is 

<p: (x1 , x2 ) E R2 1---1- (xl , x2 , XIX2 , x� , x�) E R5 . 

We claim that if A c Rd is shattered by Pd,D , then <p(A) is shattered by 
half-spaces in Rm. To see this, let B C A, and let p E Pd,D be a polynomial 
that is nonnegative at the points of B and negative at A \ B. We let a11 
be the coefficient of J.L in p and a0 the constant term of p, and we define 
the half-space hp E Rm as {y E Rm: ao + I:�-tEM allyll > 0} .  For example, 
if p(xi , X2 ) = 7 + 3x2 - X!X2 + xr E P2,2 , the corresponding half-space is 
hp = {y E R5 :  7 + 3y2 - Y3 + Y4 > 0} .  Then we get hp n cp(A) = <p(B). 
Since, finally, <p is injective, we obtain a set of size JAJ in Rm shattered by 
half-spaces. By Lemma 10.3. 1 ,  we have dim(Pd,D) < IM I+l  = (Ddd) . D 

Geometrically, the Veronese map embeds Rd into Rm as a curved man
ifold in such a way that any subset of R d definable by a single polynomial 
inequality of degree at most D can be cut off by a half-space in R m. Except 
for few simple cases, this is hard to visualize, but the formulas work in a 
really simple way. 
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By Proposition 10.3.2, any subfamily of some Pd,D has bounded VC-di
mension; this applies, e.g. , to balls in Rd (D = 2) and ellipsoids in Rd (D = 2 
as well) . For concrete families, the bound from Proposition 10.3.2 is often very 
weak. First , if we deal only with special polynomials involving fewer than 
( Ddd) monomials, then we can use an embedding into R m with a smaller m. 
We also do not have to use only coordinates corresponding to monomials 
in the embedding. For example, for the family of all balls in Rd , a suitable 
embedding is <p: Rd � Rd+l given by (xt , . . .  , xd) ........r (xi , x2 , . . .  , xi + x� + 
· · · + x�) .  It is closely related to the "lifting" transforming Voronoi diagrams 
in Rd to convex polytopes in Rd+l discussed in Section 5 .7. Estimates for the 
VC-dimension can also be obtained from Theorem 6.2. 1 about the number 
of sign patterns of polynomials or from similar results. 

Combinations of polynomial inequalities. Families like all rectangular 
boxes in R d or l unes (differences of two disks in the plane) can be handled 
using the following result . 

10.3.3 Proposition. Let F(X1 , X2 , . . .  , Xk ) be a fixed set-theoretic expres
sion (using tl1e operations of union, intersection, and difference) with variables 
X 1 ,  . . .  X k standing for sets; for instance, 

Let S be a set system on a ground set X with dim(S) = d < oo. Let 

T =  {F(St , . . .  , Sk ) :  St , . . .  , Sk E S} . 

Then dim(T) = O(kd ln k) . 

Proof. The trick is to look at the shatter functions. Let A C X be an 
m-point set. It is easy to verify by induction on the structure of F that 
for any 81 , 82 , . . . , Sk, we have F(St , . . .  , Sk) n A = F(St n A, . . . , Sk n A).  
In particular, F(S1 , • • .  , Sk) n A depends only on the intersections of the Si 
with A. Therefore, 1r7(m) < 1rs (m)k . By the shatter function lemma, we have 
1rs (m) < <I>d(m) . If A is shattered by T, then 1r7(m) = 2

m. From this we have 
the inequality 2m < <I>d(m)k . Calculation using the estimate <I>d (m) < ( e;F)d 
leads to the claimed bound. D 

Propositions 10.3.3 and 10.3.2 together show t.hat families of geometric 
shapes definable by formulas of bounded size involving polynomial equations 
and inequalities have bounded VC-dimension. (In the terminology introduced 
in Section 7. 7, families of semialgebraic sets of bounded description complex
ity have bounded VC-dimension. )  In the subsequent example we will en
counter a family of quite different nature with bounded VC-dimension. First 
we present a general observation. 

VC-dimension of the dual set system. Let (X, F) be a set system. 
The dual set system to (X, F) is defined as follows: The ground set is Y = 
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{ys : S E F} , where the Ys are pairwise distinct points, and for each x E X 
we have the set {ys: S E F, x E S} (the same set may be obtained for several 
different x, but this does not matter for the VC-dimension) .  

10.3.4 Lemma. Let (X, F) be a set system and let (Y, Q)  be the dual set 
system. Then dim(Q) < 2dim(F)+ l . 

Proof. We show that if dim(Q) > 2d , then dim(F) > d. Let A be the inci
dence matrix of (X, F) , with columns corresponding to points of X and rows 
corresponding to sets of F. Then the transposed matrix AT is the incidence 
matrix of (Y, Q) .  If Y contains a shattered set of size 2d , then A has a 2d x 22d 

submatrix M with all the possible 0/1 vectors of length 2d as columns. We 
claim that M contains as a submatrix the 2d x d matrix M1 with all pos
sible 0/1 vectors of length d as rows. This is simply because the d columns 
of M1 are pairwise distinct and they all occur as columns of M. This M1 
corresponds to a shattered subset of size d in (X, :F) . Here is an example for 
d = 2:  

M =  

0 0 0 0 0 0 0 0 1 1 1 1 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 
0 0 1 1 0 0 1 1 0 0 1 1 0 
0 1 0 1 0 1 0 1 0 1 0 1 0 

the submatrix M1 is marked bold. 

1 1 1 
1 1 1 
0 1 1 
1 0 1 

0 

An art gallery problem. An art gallery, for the purposes of this section, is 
a compact set X in the plane, such as the one drawn in the following picture: 

The set X is the lightly shaded area, while the black regions are walls that 
are not part of X.  We want to choose a small set G c X of guards that 
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together can see all points of X, where a point x E X sees a point y E X if 
the segment xy is fully contained in X. The visibility region V ( x) of a point 
x E X is the set of all points y E X seen by x, as is illustrated below: 

It is easy to construct galleries that require arbitrarily many guards; it 
suffices to include many small niches so that each of them needs an individual 
guard. To forbid this cheap way of making a gallery difficult to guard, we 
consider only galleries where each point can be seen from a reasonably large 
part of the gallery. That is, we suppose that the gallery X has Lebesgue 
measure 1 and that J.t(V(x)) > E for every x E X, where E > 0 is a parameter 
(say 110 ) and J.t is the Lebesgue measure restricted to X.  Can every such 
gallery be guarded by a number of guards that depends only on c? 

The answer to this question is still no, although an example is not entirely 
easy to construct . The problem is with galleries with many "holes," i .e . ,  many 
connected components of the complement (corresponding to pillars in a real
world gallery, say) . But if we forbid holes, then the answer becomes yes. 

10.3.5 Theorem. Let X be a simply connected art gallery (i.e. , with R2 \X 
connected) of Lebesgue measure 1 ,  and let r > 2 be a real number such that 
J.t(V ( x)) > � for all x E X. Then X can be guarded by at most Cr log r 
points, where C is a suitable absolute constant. 

Proof. The bound O (r log r) for the number of guards is obtained from the 
epsilon net theorem (Theore1n 10.2.4) . Na1nely, we introduce the set system 
V = {V(x) : x E X} ,  and note that G is a set guarding all of X if and only 
if it is a transversal of V. Further, an E-net for (X, V) with respect to J.t is a 
transversal of V, since by the assumption, J.t(V) > E = � for each V E V. So 
the theorem will be proved if we can show that dim(V) is bounded by some 
constant (independent of X). 

Tools like Proposition 10.3.2 and Proposition 10.3.3 seem to be of little 
use, since the visibility regions can be arbitrarily complicated. We thus need 
a different strategy, one that can make use of the simple connectedness. We 
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proceed by contradiction: Assuming the existence of an extremely large set 
A c X shattered by V, we find, by a sequence of Ramsey-type steps, a 
configuration forcing a hole in X. 

Let d be a sufficiently large nu1nber, and suppose that there is a d-point 
set A C X shattered by V. This means that for each subset B C A there 
exists a point aB E X that can see all points of B but no point of A \  B. We 
put E ::;;:::; {a B :  B C A}.  In such a situation, we say that A is shattered by E .  

Starting with A and E ,  we find a smaller shattered set in a special position. 
We draw a line through each pair of points of A. The arrangement of these 
at most (;) lines has at most O(d4 ) faces (vertices, edges, and open convex 
polygons) ,  so there is one such face F0 containing a subset E' C E of at least 
2d /O(d4) points of E. 

These points correspond to subsets of A, and so they define a set systen1 
V1 on A. If d1 = dim(V1 ) were bounded by a constant independent of d, 
then the number of sets in V1 would grow at most polynomially with d (by 
Lemma 10.2.5) .  But we know that it grows exponentially, and so d1 ---7 oo 
as d ---+ oo .  Thus, we may assume that some subset A1 C A is shattered by 
a subset �1  C E', with d1 = IA1 I large, and the whole of E1 lies in a single 
face of the arrangement of the lines determined by points of A1 . 

Next , we would like to ensure a similar condition in the reverse direction, 
that is, all the points being shattered lying in a single cell of the arrangement 
of the lines determined by the shattering points. 

A simple, although wasteful, way is to apply Lemtna 10.3.4 about the 
dimension of the dual set system. This means that we can select sets A2 C E1 
and E2 C A1 such that A2 is shattered by E2 and d2 � IA2 I  is still large 
(about log2 d1 ) .  

Now we can repeat the procedure from the first step of the proof, this 
time selecting a set A3 C A2 of size d3 (still sufficiently large) and E3 C E2 
such that A3 is shattered by E3 and all of E3 lies in a single face of the 
arrangement of the lines determined by the pairs of points of A3 . This face 
must be 2-dimensional, since if it were an edge, all the points of A3 and E3 
would be collinear, which is impossible. 

We thus have all points of A3 within a single 2-face of the arrangement of 
the lines determined by E3 and vice versa. In other words, no line determined 
by two points of A3 intersects conv(E3) ,  and no line determined by two points 
of E3 intersects conv(A3 ) .  In particular, conv(A3) n conv(E3) ::;;:::; 0. It follows 
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that each point of �3 sees all points of A3 within an angle smaller than 1r 
and in the same clockwise angular order; let <A be this linear order of the 
points of A3. Similarly, we have a common counterclockwise angular order 
<E of points of E3 around any point of A3.  

Suppose that the initial d was so large that d3 = I A3 I  = 5 .  For each 
a E A3, we consider the point a (a) E �3 that sees all points of A3 but a. 
Let these 5 points form a set E4 C �3· We have a situation indicated below, 
where dashed connecting segments correspond to invisibility and they form 
a rnatching between A3 and E4 . 

•··. .-·· 

Since we have 5 points on each side, we may choose an a E A3 such that 
a is neither the first nor the last point of A3 in <A,  and at the same time 
a = a( a) E E4 is not the first or last point in <:E.  Then we have the following 
situation (full segments indicate visi hili ty, and the dashed segment means 
invisibility) : 

a' 

a'' .--------

The segments aa' and a' a both lie above the line aa, and they intersect as 
indicated (a' cannot line in the triangle aaa' , because the line aa' would go 
between a and a' , and neither can the segment a a' be outside that triangle, 
because then the line a a' would separate a from a') . Similarly, the segments 
aa" and a" a intersect as shown. The four segments aa', a' a, aa", and a" a are 
contained in X,  and since X is simply connected, the shaded quadrilateral 
bounded by them must be a part of X.  Hence a and a can see each other. 
This contradiction proves Theorem 10.3 .5 . D 

The bound on the VC-dimension obtained from this proof is rather large: 
about 1012 . By a more careful analysis, avoiding the use of Lemma 10.3.4 on 
the dual VC-dimension where one loses the most, the bound has been im
proved to 23. Determining the exact VC-dimension in the worst case might 
be quite challenging. The art gallery drawn in the initial picture is not chosen 
only because of the author's liking for several baroque buildings with pentag
onal symmetry, but also because it is an example where V has VC-dimension 
at least 5 (Exercise 2) . A more complicated example gives VC-dimension 6, 
and this is the current best lower bound. 
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Bibliography and remarks. As was remarked in the text, for 
bounding the VC-dimension of set systems defined by polynomial in
equalities, we can use the linearization method (as in the proof of 
Proposition 10.3.2) or results like Theorem 6.2.1 on the nurnber of sign 
patterns. The latter can often provide asymptotically sharp bounds on 
the shatter functions (which are usually the more important quantita
tive parameters in applications) ;  for linearizations, this happens only 
in quite simple cases. 

There are fairly general results bounding the VC-di1nension for 
families of sets defined by functions more general than polynomials; 
see, e.g., Wilkie [Wil99] and Karpinski and Macintyre [KM97b] . 

Considerations similar to the proof of Proposition 10.3.3 appear in 
Dudley [Dud78] . Lemma 10.3.4 about the VC-dimcnsion of the dual 
set system was noted by Assouad [Ass83] . 

The art gallery problem considered in this section was raised by 
Kavraki, Latombe, Motwani, and Raghavan [KLl\1R98] in connection 
with automatic motion planning for robots. Theorem 10.3.5, with the 
proof shown, is from Kalai and Matousek [Kl\197a] . That paper also 
proves that for galleries with h holes, the nu1nber of guards can be 
bounded by a function of E and h, and provides an example showing 
that one may need at least O(log h) guards in the worst case for a suit
able fixed c. Valtr [Val98J greatly improved the quantitative bounds, 
obtaining the lower bound of 6 and upper bound of 23 for dim(V) for 
sirnply connected galleries, as well as a bound of O(log2 h) for galleries 
with h holes. In another paper [Val99b] , he constructed contractible 
3-dimensional galleries where the visibility region of each point occu
pies almost half of the total volume of the gallery but the number 
of guards is unbounded, which shows that Theorem 10.3.5 has no 
straightforward analogue in dimension 3 and higher. Here is another 
result from [KM97aJ : If a planar gallery X is such that among every k 
points of X there are 3 that can be guarded by a single guard, then all 
of X can be guarded by 0( k3 log k) guards. Let us stress that our ex
ample was included mainly as an illustration to VC-dimension, rather 
than as a typical specirnen of the extensive subject of studying guards 
in art galleries from the mathematical point of view. This field has a 
large number results, some of them very nice; see, e.g., the handbook 
chapter [UrrOO] for a survey. 

Exercises 

1 . (a) Determine the VC-dimension of the set system consisting of all tri
angles in the plane. [I] 
(b) What is the VC-dimension of the system of all convex k-gons in the 
plane, for a given integer k? 0 
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2. Show that dim(V) > 5 for the art gallery shown above Theorem 10.3.5 .  
12] 
Can you construct an example with VC-dimension 6, or even higher? 

3. Show that the unit square cannot be expressed as { (x, y) E R2: p(x, y) > 
0} for any polynomial p(x, y) .  0 

4. (a) Let H be a finite set of lines in the plane. For a triangle T, let HT be 
the set of lines of H intersecting the interior of T, and let T C 2H be the 
system of the sets HT for all triangles T. Show that the VC-dimension 
of T is bounded by a constant . I2J 
(b) Using (a) and the epsilon net theorem, prove the suboptimal cut
ting lemma (Lemma 6.5. 1 ) :  For every finite set H of lines in the plane 
and for every r, 1 < r < IH I ,  there exists a �-cutting for L consisting 
of 0( r2 log2 r) generalized triangles. Use the proof in Section 4.6 as an 
inspiration. 0 
(c) Generalize (a) and (b) to obtain a cutting lemma for circles with the 
same bound O(r2 log2 r) (see Exercise 4.6.3) . IT] 

5. Let d > 1 be an integer, let U = { 1 ,  2, . . .  , d} and V = 2u . Let the 
shattering graph SG d have vertex set U U V and edge set { {a, A} :  a E 
U, A E V, a E A}.  Prove that if H is a bipartite graph with classes R and 
S, IR I  = r and lS I  = s, such that r+log2 s < d, then there is an r-element 
subset R1 C U and an s-element S1 C V such that the subgraph induced 
in SGd by R1 u 81 is isomorphic to H. Thus, the shattering graph is 
"universal" : It contains all sufficiently small bipartite su bgraphs. 0 

6. For a graph G, let N(G) = {Nc (v) :  v E V(G)} be the system of vertex 
neighborhoods (where Nc(v) = {u E V(G) : {u, v} E E(G)}) .  
(a) Prove that there is a constant do such that dim (N (G) ) < do for all 
planar G. 0 
(b) Show that for every C there exists d = d( C) such that if G is a 
graph in which every subgraph on n vertices has at most Cn edges, for 
all n > 1 ,  then dim(N(G) ) < d. (This implies (a) and, more generally� 
shows that bounded genus of G implies bounded dim(N(G) ) . )  0 
(c) Show that for every k there exists d = d(k) such that if dim(N(G)) > 
d, then G contains a subdivision of the complete graph Kk as a subgraph. 
(This gives an alternative proof that if dim(N( G)) is large, then the genus 
of G is large, too.) 0 

10.4 Weak Epsilon Nets for Convex Sets 

Weak e-nets. Let 1-l be the system of all closed half-planes in the plane, 
and let J.-t be the planar Lebesgue measure restricted to a (closed) disk D of 
unit area. What should the smallest possible €-net for (R2 , 1-l) with respect 
to J.-t look like? A natural idea would be to place the points of the E-nct 
equidistantly around the perimeter of the disk: 
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Is this the best way? No; according to Definition 10.2.2, three points placed 
as in the picture below form a valid c-net for every c > 0,  since any half-plane 
cutting into D necessarily contains at least one of them! 
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One may feel that this is a cheating. The problem is that the points of this 
£-net are far away from where the measure is concentrated. For some applica
tions of c-nets this is not permissible, and for this reason, c-nets of this kind 
are usually called weak c-nets in the literature, while a "real" €-net in the 
above example would be required to have all of its points inside the disk D. 

For £-nets obtained using the epsilon net theorem (Theorem 10.2.4) , this 
presents no real problem, since we can always restrict the considered set 
system to the subset where we want our c-net to lie. In the above exa1nple 
we would simply require an £-net for the set system (D, Hln) · The restriction 
to a subset does not increase the VC-dimension. 

On the other hand, there are set systems of infinite VC-dimension, and 
there we cannot require small £-nets to exist for every restriction of the ground 
set. Indeed, if (X, F) has infinite VC-dimension, then by definition, there is 
an arbitrarily large A C X that is shattered by F, meaning that Fl A = 2A . 
And the complete set system (A, 2A) certainly does not admit small £-nets: 
Any �-net, say, for (A, 2A) with respect to the uniform measure on A must 
have at least � IA I  elements! In this sense, the epsilon net theorem is an "if 
and only if" result: A set system (X, F) and all of its restrictions to smaller 
ground sets admit £-nets of size depending only on £ if and only if dim( F) is 
finite. 

As was mentioned after the definition of VC-dimension, the (important) 
system K2 of convex sets in the plane has infinite VC-dimension. Therefore, 
the epsilon net theorem is not applicable, and we know that restrictions of 
K2 to some bad ground sets (convex independent sets, in this case) provide 
arbitrarily large complete set systems. But yet it turns out that not too 
large (weak) c-nets exist if the ground set is taken to be the whole plane 
(or, actually, it can be restricted to any convex set) . These are much less 
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understood than the E-nets in the case of finite VC-dimensions, and many 
interesting questions remain open. 

As has been done in the literature, we will restrict ourselves to measures 
concentrated on finite point sets, and first we will talk about uniform mea
sures. To be on the safe side, let us restate the definition for this particular 
case, keeping the traditional terminology of "weak E-nets." 

10.4.1 Definition {Weak epsilon net for convex sets) . Let X be a 
finite point set in Rd and E > 0 a real number. A set N C Rd is called a 
weak E-net for convex sets with respect to X if every convex set containing 
at least E IX I  points of X contains a point of N. 

In the rest of this section we consider exclusively E-nets with respect to 
convex sets, and so instead of "weak E-net for convex sets with respect to X" 
we simply say "weak E-net for X." 

10.4.2 Theorem {Weak epsilon net theorem) .  For every d > 1 ,  E > 0, 
and finite X C Rd, there exists a weak E-net for X of size at most f(d, E) ,  
where f(d, E) depends on d and c but not on X. 

The best known bounds are /(2, ; ) = O(r2) in the plane and j (d, ;) = 

O(rd (log r)b(d) ) for every fixed d, with a suitable constant b(d) > 0. The proof 
shown below gives f ( d, ; ) ;;;;; 0 ( rd+ 1 ) . On the other hand, no lower bound 
superlinear in r is known (for fixed d) . 

Proof. The proof is simple once we have the first selection lemma (Theo
rem 9 . 1 . 1 )  at our disposal. 

Let an X C Rd be an n-point set. The required weak E-net N is con
structed by a greedy algorithm. Set No = 0. If Ni has already been con
structed, we look whether there is a convex set C containing at least En 
points of X and no point of Ni . If not, Ni is a weak E-net by definition. If 
yes, \Ve set xi = X n c, and we apply the first selection lemma to xi. This 
gives us a point ai contained in at least cd (�-:ti) = 0(Ed+l nd+1 ) Xi-simplices. 
We set Ni+I = Ni U { ai } and continue with the next step of the algorithm. 

Altogether there are (
d
:

1
) X-simplices. In each step of the algorithm, at 

least n (Ed+ 1 n d+ 1 ) of them are "killed," meaning that they were not inter
sected by Ni but are intersected by Ni+l · Hence the algorithm takes at most 
O(E- (d+ l ) ) steps. D 

In a forthcoming application, we also need weak E-nets for convex sets 
with respect to a nonuniform measure (but still concentrated on finitely many 
points) . 

10.4.3 Corollary. Let J-L be a probability measure concentrated on finitely 
many points in Rd. Then weak E-nets for convex sets with respect to J-t exist, 
of size bounded by a function of d and E. 
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Sketch of proof. By taking c a little smaller, we can make the point weights 
rational. Then the problem is reduced to the weak epsilon net theorem with 
X a multiset. One can check that all ingredients of the proof go through in 
this case, too. D 

10.4.4 Corollary. For every finite system F of convex sets in Rd, we have 
r(:F) < f(d, 1/r* (:F) ) ,  where f(d, c-) is as in the weak epsilon net theorem. 

The proof of the analogous consequence of the epsilon net theorem, Corol-
lary 10.2. 7, can be copied almost verbatim. 

Bibliography and remarks. Weak £-nets were introduced by Haus
sler and Welzl [HW87] . The existence of weak £-nets for convex sets 
was proved by Alon, Barany, Fiiredi, and Kleitman [ABFK92] by the 
rnethod shown in the text but with a slight quantitative irnprovcrnent, 
achieved by using the second selection lemma (Theorem 9.2. 1 )  instead 
of the first selection lemma. 

The estimates for f(d, ; ) mentioned after Theorem 10.4.2 have the 
following sources: The bound O(r2 ) in the plane is from [ABFK92] (see 
Exercise 1 ) ,  and the best general bound in Rd, close to O(rd) ,  is due to 
Chazelle, Edelsbrunner, Grini, Guibas, Sharir, and Welzl [CEG+95] . It 
seems that these bounds are quite far from the truth. Intuitively, one 
of the "worst" cases for constructing a weak E-net should be a convex 
independent set X.  For such sets in the plane, though, near-linear 
bounds have been obtained by Chazelle et al. [CEG+95] ; they are 
presented in Exercises 2 and 3 below. The original proof of the result in 
Exercise 3 was formulated using hyperbolic geometry. A simple lower 
bound for the size of weak E-nets was noted in [MatOl] ; it concerns 

the dependence on d for e fixed and shows that f(d, 5� )  = n (eJd/2) 
as d -t oo. 

Exercises 

1 .  Complete the following sketch of an alternative proof of the weak epsilon 
net theorem. 
(a) Let X be an n-point set in the plane (assume general position if 
convenient) .  Let h be a vertical line with half of the point� of X on each 
side, and let X1 , X2 be these halves. Let M be the set of all intersections 
of segments of the form X t X2 with h, where Xl E XI and X2 E x2. 
Let No be R weak c-'-net for M (this is a one-dimensional situation ! ) .  
Recursively construct weak s"-nets N1 , N2 for X1 and X2, respectively, 
and set N = N0 U N1 U N2 . Show that with a suitable choice of E1 and 
€11

' N is a weak €-net for X of size O(c-2 ) .  m 
(b) Generalize the proof from (a) to R d (use induction on d) . Estimate 
the exponent of E in the resulting bound on the size of the constructed 
weak €-net . 0 
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2. The airn of this exercise is to show that if X is a finite set in the plane 
in convex position, then for any E > 0 there exists a weak E-net for X of 
size nearly linear in .! . 

• £ 
(a) Let an n-point convex independent set X C R2 be given and let 
e < n be a parameter. Choose points po , PI , · · · , P£-1 of X, appearing in 
this order around the circumference of conv(X),  in such a way that the 
set Xi of points of X lying (strictly) between Pi-I and Pi has at most njf 
points for each i. Construct a weak E'-net Ni for each Xi (recursively) 
with E1 == RE /3, and let lvf be the set containing the intersection of the 
segment POPJ-1 with PJPi , for all pairs i , j , 1 < i < j-1  < f-2. Show 
that the set N == {po, . . .  , P£- I }  U N1 U · · · U Nt. U JVI is a weak E-net for 
x. m 
(b) If f (E) denotes the minimum necessary size of a weak E-net for a 
finite convex independent point set in the plane, derive a recurrence for 
j(E) using (a) with a suitably chosen R, and prove the bound for /(c) == 
0 ( !  (log ! ) c) . What is the srnallest c you can get? 0 

3. In this exercise we want to show that if X is the vertex set of a regular 
convex n-gon in the plane, then there exists a weak E-net for X of size 
0(!  ) .  
Suppose X lies on the unit circle u centered at 0 .  For an arc length o: < 1r 

radians, let r( a) be the radius of the circle centered at 0 and touching a 
chord of u connecting two points on u at arc distance o: .  For i == 0, 1 ,  2, . . .  , 
let Ni be a set of l c(i.�� ) �  J points placed at regular intervals on the circle 

of radius r(c ( 1 .01)'i /10) centered at 0 (we take only those i for which 
thiH is well-defined) .  Show that 0 u ui Ni is a weak E-net of size 0( � )  
for X (the constants 1 .01 ,  etc. ,  are rather arbitrary and can be greatly 
improved) .  0 

10.5 The Hadwiger-Debrunner (p, q )-Problem 

Let F be a finite family of convex sets in the plane. By Helly's theorem, if 
every 3 sets from :F intersect , then all sets of :F intersect (unless :F has 2 sets, 
that is) .  What if we know only that out of every 4 sets of :F, there are some 3 
that intersect? Let us say that :F satisfies the (4, 3)-condition. In such a case, 
:F may consist , for instance, of n-1 sets sharing a common point and one 
extra set lying somewhere far away from the others. So we cannot hope for 
a nonempty intersection of all sets. But can all the sets of F be pierced by a 
bounded nurnber of points? That is, does there exist a constant C such that 
for any family :F of convex sets in R2 satisfying the ( 4, 3)-condition there are 
at moHt C points such that each set of F contains at least one of them? 

This is the simplest nontrivial case of the so-called (p, q)-problem raised 
by Hadwigcr and Dcbrunncr and solved, many years later, by Alon and Kleit
man. 
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10.5.1 Theorem (The (p, q)-theorem). Let p, q, d be integers with p > 
q > d+l.  Then there exists a number HDd(p, q) such that the following is true: 
Let F be a finite family of convex sets in Rd satisfying the (p, q)-condition; 
that is, among any p sets of F there are q sets with a common point. Then 
:F has a transversal consisting of at most HDd (P, q) points. 

Clearly, the condition q > d+ 1 is necessary, since n hyperplanes in gen
eral position in R d satisfy the ( d, d)-condition but cannot be pierced by any 
bounded number of points independent of n. 

It has been known for a long time that if p(d-1 ) < (q-1 )d, then HDd(p, q) 
exists and equals p-q+ 1 (Exercise 2) .  This is the only nontrivial case where 
exact values, or even good estimates, of HDd(P, q) are known. 

The reader might (rightly) wonder how one can get interesting examples of 
families satisfying the ( 4 ,  3 )-condition, say. A large collection of examples can 
be obtained as follows: Choose a probability measure J..t in the plane (J..t(R2) = 

1 ) , and let F consist of all convex sets S with J..t( S) > 0.5. The ( 4, 3 )-condition 
holds, because 4 sets together have measure larger than 2, and so some point 
has to be covered at least 3 times. The proof below shows that every family 
:F of planar convex sets fulfilling the ( 4, 3)-condition somewhat resembles this 
example; namely, that there is a probability measure J-l such that tt( S) > c 
for all S E F, with sorne srnall positive constant c > 0 (independent of :F). 
Note that the existence of such J.-L implies the (p, 3) condition for a sufficiently 
large p � p(c) . 

The Alon-Kleitman proof combines an amazing number of tools. The 
whole structure of the proof, starting from basic results like Helly's theorem, 
is outlined in Figure 10 .1 .  The emphasis is on simplicity of the derivation 
rather than on the best quantitative bounds (so, for example, Tverberg's 
theorem is not required in full strength) . The most prominent role is played 
by the fractional Helly theorem and by weak c--nets for convex sets. An unsat
isfactory feature of this method is that the resulting estimates for HDd(P, q) 
are enorn1ously large, while the truth is probably much smaller. 

Since we have prepared all of the tools and notions in advance, the proof 
is now short. We do not attempt to optimize the constant resulting from the 
proof, and so we may as well assume that q = d+1 .  

By Corollary 10.4.4, we know that T is bounded by a function of r* for 
any finite system of convex sets in Rd . So it ren1ains to show that if F satisfies 
the (p, d+ 1 )-condition, then r* (F) = v* (F) is bounded. 

10.5.2 Lemma (Bounded v* ) . Let F be a finite family of convex sets in 
Rd satisfying the (p, d+1)-condition. Then v* (F) < C, where C depends on 
p and d but not on F. 

Proof. The first observation is that if F satisfies the (p, d+ 1 )-condition, then 
many ( d+ 1 )-tuples of sets of F intersect. This can be seen by double counting. 
Every p-tuple of sets of F contains (at least) one intersecting ( d+ 1 )-tuple, 
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Helly's theorem 

• 
The lexicographic mini
mum of the intersection of 
d+l convex sets in Rd is 
determined by d sets 

double 
counting 

Radon's lemma 

• 

Tverberg's theorem 
(finiteness of T( d, r) suffices) 

257 

fractional Helly theorem 

� double �nting 

alternative direct proof 
(Exercise 10.4.2) 

double 
counting 

with much worse bound 

�--------�------� 

. . . . . . . ' 
I 

first selection lemma 1 ' ' . 
greedy algorithm"" 1 

�-----��----------·-· --------� 
(p, d+ 1 )-condition 
=> v* bounded 

weak £-nets for convex sets of 
size depending only on d and £ 

linear programming 
duality => v* = r* 

T bounded by a function 
of d and r* for systems of 
convex sets 

(p, q )-theorem : 
(p, d+l )-condition => T bounded 

Figure 10.1 .  Main steps in the proof of the (p, q)-theorem. 

and a single (d+l )-tuple is contained in (;=;��) p-tuples (where n = IFI ) .  
Therefore, there are at least 
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intersecting ( d+ 1 )-tuples, with a > 0 depending on p, d only. The fractional 
Helly theorem (Theorem 8. 1 . 1 )  implies that at least (3n sets of :F have a 
common point, with f3 = j3(d, a) > 0 a constant.3 

How is this related to the fractional packing nu1nber? It shows that a 
fractional packing that has the same value on all the sets of :F cannot have 
size larger than 1 ,  for otherwise, the point lying in j3n sets would receive 
weight greater than 1 in that fractional packing. The trick for handling other 
fractional packings is to consider the sets in F with appropriate multiplicities. 

Let '¢: :F ---7 [0, 1] be an optimal fractional packing (�SEF: xE S  '¢(8) < 1 
for all x) .  As we have noted in Theorem 10. 1 . 1 ,  we may assume that the 
values of 'ljJ are rational numbers. \iVrite '¢(8) = mg) , where D and the m(S) 
are integers (D is a common denominator) .  Let us form a new collection Fm 
of sets, by putting m(S) copies of each S into Fm; so Fm is a multiset of sets. 

Let N = IFm l = �SEF m(S) = D·v* (:F) . Suppose that we could conclude 
the existence of a point a lying in at least (3N sets of Fn" (counted with 
multiplicity) .  Then 

1 > I: V;(S) = I: m;;) = � · (3N = (3v* (F) , 
SEF: aE S  SEF: aE S  

and so v* (:F) < 1 · 
The existence of a point a in at least {3 N sets of Frn follows from the 

fractional Helly theorem, but we must be careful: The new family Frn does 
not have to satisfy the (p, d+ 1 )-condition, since the (p, d+ 1 )-condition for :F 
speaks only of p-tuples of distinct sets from :F, while a p-tuplc of sets from 
Fm may contain multiple copies of the same set. 

Fortunately, :F m does satisfy the (p', d+ 1 )-condition with p' = d(p-l) + 1 .  
Indeed, a p' -tuple of sets of Frn contains at least d+ 1 copies of the same set or 
it contains p distinct sets, and in the latter case the (p, d+ 1 )-condition for :F 
applies. Using the fractional Helly theorem (which does not require the sets 
in the considered family to be distinct) as before, we see that there exists a 
point a common to at least (3N sets of Fm for some (3 = j3(p, d) . Lemma 10.5.2 
is proved, and this also concludes the proof of the (p, q)-theorcm. D 

Bibliography and remarks. The (p, q)-problem was posed by 
Hadwiger and Debrunner in 1957, who also solved the special case in 
Exercise 2 below. The solution described in this section follows Alan 
and Kleitman [AK92] . 

Much better quantitative bounds on HDd(p, q) were obtained by 
Kleitman, Gyarfas, and Toth [KGT01] for the smallest nontrivial val
ues of p, q, d: 3 < HD2 (4, 3) < 13. 

3 By removing these {3n sets and iterating, we would get that :F can be pierced by 
O(log n) points. The main point of the (p, q)-theorem is to get rid of this log n 
factor. 
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Exercises 

1 .  For which values of p and ·r does the following hold? Let :F be a finite 
family of convex sets in Rd, and suppose that any subfamily consisting 
of at most p sets can be pierced by at most r points. Then :F can be 
pierced by at most C points, for some C = Cd(p, r ) .  0 

2. Let p > q > d+1 and p(d-1 )  < (q-1)d. Prove that HDd(P, q) < p-q+1.  
You n1ay want to start with the case of HD2 (5, 4) .  0 

3. Let X c R2 be a (4k+l)-point set, and let :F =::= {conv(Y):  Y c X, IY I  =::= 

2k+l} .  
(a) Verify that :F has the ( 4 ,  3)-property, and show that if X is in convex 
position� then T(:F) > 3. 0 
(b) Show that T(:F) < 5 (for any X) .  III 
These results are due to Alan and Rosenfeld (private contmunication) . 

10.6 A (p, q)-Theorem for Hyperplane Transversals 

The technique of the proof of the (p, q )-theorem is quite general and allows 
one to prove (p, q )-t heore1ns for various families. That is, if we have some basic 
family B of sets, such as the family K of all convex sets in Theorem 10.5. 1 ,  a 
(p, q)-theorem for B means that if :F C B satisfies the (p, q)-condition, then 
r(:F) is bounded by a function of p and q (depending on B but not on the 
choice of :F) . 

To apply the technique in such a situation, we first need to bound v* (:F) 
using the (p, q )-condition. ·To this end, it suffices to derive a fractional Helly
type theorem for B. Next, we need to bound T(:F) as a function of T* (:F) . If 
the VC-dimension of :F is bounded, this is just Corollary 10.2. 7, and other
wise, we need to prove a "weak E-net theorem'' for :F. Here we present one 
sophisticated illustration. 

10.6.1 Theorem (A (p, q)-theorem for hyperplane transversals) .  
Let p > d+l and let :F be a finite family of convex sets in Rd such that 
among every p In embers of :F, there exist d+ 1 tl1at l1ave a corr1111on hyper
plane transversal (i.e., there is a hyperplane intersecting all of them) . Then 
there are at most C === C(p, d) h.yperplanes whose union intersects all mem
bers of :F. 

Note that here the piercing is not by points but by hyperplanes. Let 
Thyp (:F) , T�YP (F) , and vhyp (F) be the notions corresponding to the transversal 
number, fractional transversal number, and fractional packing number in this 
setting.4 We prove only the planar case, since some of the required auxiliary 
results beco1ne more complicated in higher dimensions. 

4 We could reformulate everything in terms of piercing by points if we wished to 
do so, by assigning to every S E :F the set Ts of all hyperplanes intersecting S. 
Then, e.g. , 7hyp {:F) = r( {Ts :  S E :F} ) . 
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To prove Theorem 10.6 .1 for d = 2, we first want to derive a fractional 
Helly theorem. 

10.6.2 Lemma (Fractional Helly for line transversals) .  IfF is a family 
of n convex sets in the plane such that at least a (�) triples have line transver
sals, then at least (3n of the sets have a line transversal, (3 = (3( a) > 0. 

Proof. Let :F be a family as in the lemma. We distinguish two cases de
pending on the number of pairs of sets in F that intersect. 

First, suppose that at least � (�) pairs { S, S'} E (�) satisfy S n S' -:1 0. 
Project all sets of F vertically on the x-axis. The projections form a family of 
intervals with at least � (�) intersecting pairs, and so by the one-dimensional 
fractional Helly theorem, at least {3'n of these have a common point x. The 
vertical line through x intersects (3' n sets of F. 

Next, it remains to deal with the case of at most � (�) intersecting pairs 
in :F. Call a triple {81 , 82 , 83 } good if it has a line transversal and its three 
members are pairwise disjoint. Since each intersecting pair gives rise to at 
most n triples whose members are not pairwise disjoint, there are at most 
n · � (�) < � (�) nondisjoint triples, and so at least � (�) good triples remain. 

Let {81 ,  S2 , S3} be a good triple; we claim that its sets have a line 
transversal that is a common tangent to (at least) two of them. To see this, 
start with an arbitrary line transversal, translate it until it becomes tangent 
to one of the si ' and then rotate it while keeping tangent to si until it be
comes tangent to an s1 , i =J. j .  

Let L denote the set of all lines that are common tangents to at least 
two disjoint me1nbers of F. Since two disjoint convex sets in the plane have 
exactly 4 common tangents, IL l < 4 (�) . 

First, to see the idea, let us make the simplifying assumption that no 3 
sets of F have a common tangent . Then each line f E L has a unique defining 
pair of disjoint sets for which it is a common tangent. As we have seen, for 
each good triple { S1 , S2 , S3} there is a line f E L such that two sets of the 
triple are the defining pair of f and the third is intersected by f. Now, since 
we have � (�) good triples and IL l < 4 (�) , there is an fo E L playing this role 
for at least <Sn of the good triples, 6 > 0. Each of these <5n triples contains 
the defining pair of £0 plus some other set, so altogether £0 intersects at least 
6n sets. (Note the similarity to the proof of the fractional Helly theorem. )  

Now we need to relax the simplifying assumption. Instead of working with 
lines, we work with pairs ( f, { S, S'} ) ,  where S, S' E :F are disjoint and f is 
one of their common tangents, and we let L be the set of all such pairs. We 
still have IL l < 4 (�) , and each good triple {S1 , S2 , S3 } gives rise to at least 
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one (f, {8, 8'} )  E L, where {8, 8'} C {81 , 82 , 83} .  The rest of the argument 
is as before. 0 

The interesting feature is that while this fractional Helly theorem is valid, 
there is no Helly theorem for line transversals! That is, for all n one can 
find farnilies of n disjoint planar convex sets (even segments) such that any 
n-1 have a line transversal but there is no line transversal for all of them 
(Exercise 5. 1 .9} . 

Lemma 10.6.2 implies, exactly as in the proof of Lemma 10.5.2, that vhyp 
is bounded for any family satisfying the (p, d+ 1 )-condition. It remains to 
prove a weak €-net result. 

10.6.3 Lemma. Let L be a finite set (or multiset) of lines in the plane and 
let r > 1 be given. Then there exists a set N of O(r2 ) lines (a weak E-net) 
such that whenever 8 C R 2 is an ( arcwise) connected set intersecting more 
than 1;1 lines of L ,  then it intersects a line of N. 

Proof. Recall from Section 4 .5 that a �-cutting for a set L of lines is a 
collection {A 1 , . . .  , At } of generalized triangles covering the plane such that 

the interior of each �i is intersected by at most gj lines of L. The cutting r 
lemma (Lemma 4.5.3) guarantees the existence of a �-cutting of size O(r2) . 

The cutting lemma docs not directly cover multisets of lines. Nevertheless, 
with some care one can check that the perturbation argument works for 
multisets of lines as well. 

Thus, let {�1 , . . .  , �t }  be a ;-cutting for the considered L ,  t == O(r2 ) . 
The weak E-net N is obtained by extending each side of each �i into a line. 
Indeed, if an arcwise connected set 8 intersects more than 1;1 lines of L, 
then it cannot be contained in the interior of a single Ai , and consequently, 
it intersects a line of N. 0 

Conclusion of the proof of Theorem 10.6.1 .  Lemma 10.6.3 is now 
used exactly as the E-nets results were used before, to show that Thyp (F) = 
O(rhyp (F)2) in this case. This proves the planar version of Theorem 10.6 . 1 .  

Bibliography and remarks. Theorem 10.6 . 1  was proved by Alon 
and Kalai (AK95] , as well as the results indicated in Exercises 3 
and 4 below. It is related to the following conjecture of Griinbaum 
and 1\fotzkin: Let F be a family of sets in Rd such that the intersec
tion of any at most k sets of F is a disjoint union of at most k closed 
convex sets. Then the Helly number ofF is at most k(d+1 ) .  So here, 
in contrast to Exercise 4, the Helly number is determined exactly. I 
mention this mainly because of a neat proof by Amenta [Ame96] using 
a technique originally developed for algorithmic purposes. 

D 
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It is not completely honest to say that there is no Helly theorem for 
line (and hyperplane) transversals, since there are very nice theorerr1s 
of this sort, but the assumptions must be strengthened. For example, 
Hadwiger's transversal theorem asserts that if :F is a finite fan1ily of 
disjoint convex sets in the plane with a linear ordering < such that 
every 3 members of F can be intersected by a directed line in the order 
given by <,  then :F has a line transversal. This has been generalized 
to hyperplane transversals in Rd , and many related results are known; 
see, e.g. , the survey Goodman, Pollack, and Wenger [GPW93] . 

The application of the Alon---Kleitman technique for transversals 
of d-intervals in Exercise 2 below is due to Alon [Alo98] . Earlier, a 
similar result with the slightly stronger bound r < (d2 - d)v was 
proved by Kaiser [Kai97] by a topological method, following an initial 
breakthrough by Tardos [Tar95] , who dealt with the case d = 2. By 
the Alon--Kleitman method, Alon [Alo] proved analogous bounds for 
families whose sets are subgraphs with at most d components of a 
given tree, or, more generally, subgraphs with at most d components 
of a graph G of bounded tree-width. In a sense, the latter is an "if 
and only if" result, since for every k there exists w( k) such that every 
graph of tree-width w(k) contains a collection of subtrees with v = 1 
and r > k. 

Alon, Kalai, lVIatousek, and 1\feshulam [AKMMOl] investigated 
generalizations of the Alon-Kleitman technique in the setting of ab
stract set systerns. They showed that (p, d+ 1 )-theorems for all p fol
low from a suitable fractional Helly property concerning ( d+ 1 )-tuples, 
and further that a set system whose nerve is d-Leray (see the notes to 
Section 8 . 1 )  has the appropriate fractional Helly property and conse
quently satisfies (p, d+ 1 )-theorems. 

Exercises 

1 .  (a) Prove that if :F is a finite family of circular disks in the plane such 
that every two members of :F intersect, then r(F) is bounded by a con
stant (this is a very weak version of Gallai's problem mentioned at the 
beginning of this chapter) . 0 
(b) Show that for every p > 2 there is an n0 such that if a family of 
n0 disks in the plane satisfies the (p, 2)-condition, then there is a point 
common to at least 3 disks of the family. 0 
(c) Prove a {p, 2 )-theorem for disks in the plane (or for balls in R d) .  0 

2. A d-interval is a set J C R of the form J = J1 U /2 U · · · U Id, where 
the Ij C R are closed intervals on the real line. (In the literature this is 
customarily called a homogeneous d-interval. )  
(a) Let :F be a finite family of d-intervals with v(:F) = k. The family 
may contain multiple copies of the same d-interval. Show that there is a 
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{3 == {3( d, k) > 0 such that for any such F, there is a point contained in 
at least {J · IFI n1embers of F. 0 Can you prove this with f3 == 2!k ? 0 
(b) Prove that T(:F) < dT* (F) for any finite family of d-intervals. 0 
(c) Show that T(:F) < 2d2v(:F) for any finite family of d-intervals, or at 
least that T is bounded by a function of d and v. 0 

3. Let JC� denote the family of all unions of at most k convex sets in R d 
(so the d-intervals from Exercise 2 are in JCt) . Prove a (p, d+ 1 )-theorem 
for this family by the Alon-Kleitman technique: Whenever a finite fam
ily F C JC� satisfies the (p, d+1)-condition, r(F) < f(p, d, k) for some 
function f. 0 

4.  (a) Show that the farnily /(� as in Exercise 3 has no finite Helly number. 
That is, for every h there exists a subfamily :F C JC� of h+ 1 sets in which 
every h members intersect but n :F == 0. 0 
(b) Use the result of Exercise 3 to derive that for every k, d > 1 ,  there 
exists an h with the following property. Let F c JC� be a finite family 
such that the intersection of any subfamily of :F lies in JC� (i .e. , is a union 
of at most k convex sets) .  Suppose that every at most h members of :F 
have a common point. Then all the sets of :F have a common point. (This 
is expressed by saying that the family JC� has Helly order at most h.) � 
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Attempts to Count k- Sets 

Consider an n-point set X c Rd, and fix an integer k. Call a k-point subset 
S C X a k-set of X if there exists an open half-space 1 such that S = X n 1; 
that is, S can be "cut off" by a hyperplane. In this chapter we want to 
estimate the maximum possible number of k-sets of an n-point set in Rd, as 
a function of n and k. 

This question is known as the k-set problem, and it seems to be extremely 
challenging. Only partial results have been found so far, and there is a sub
stantial gap between the upper and lower bounds even for the number of 
planar k-sets, in spite of considerable efforts by many researchers. So this 
chapter presents work in progress, much more so than the other parts of this 
book. I believe that the k-set problem deserves to be such an exception, since 
it has stimulated several interesting directions of research, and the partial 
results have elegant proofs. 

11 .1  Definitions and First Estimates 

For technical reasons, we are going to investigate a quantity slightly different 
from the number of k-sets, which turns out to be asymptotically equivalent, 
however. 

First we consider a planar set X C R 2 in general position. A k-facet of 
X is a directed segment xy, x, y E X, such that exactly k points of X lie 
(strictly) to the left of the directed line determined by x and y. 

• • 

a 4-facet 
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Similarly, for X C Rd, a k-facet is an oriented (d-1)-dimensional simplex 
with vertices x1 ,  x2 , . . . , Xd E X such that the hyperplane h determined by 
x1 ,  x2 , • • •  , xd has exactly k points of X (strictly) on its positive side. (The 
orientation of the simplex 1neans that one of the half-spaces determined by 
h is designated as positive and the other one as negative.) 

Let us stress that we consider k-facets only for sets X in general position 
(no d+l points on a common hyperplane) . In such a case, the 0-facets are 
precisely the facets of the convex hull 

·
of X, and this motivates the name 

k-facet (so k-facets are not k-dimensional! ) .  
A special case of k-facets are the halving facets. These exist only if n - d 

is even, and they are the n 2 d -facets; i .e . ,  they have exactly the same nurnber 
of points on both sides of their hyperplane. Each halving facet appears as 
an n 2 d_facet with both orientations, and so halving facets can be considered 
unoriented. In the plane, instead of k-facets and halving facets, one often 
speaks of k-edges and halving edges. The drawing shows a planar point set 
with the halving edges: 

We let KFAC (X, k) denote the number of k-facets of X, and KFACd(n, k) 
is the maximum of KFAC (X, k) over all n-point sets X C Rd in general 
position. 

Levels, k-sets, and k-facets. The maximum possible number of k-sets is 
attained for point sets in general position: Each k-set is defined by an open 
half-space, and so a sufficiently small perturbation of X loses no k-scts (while 
it may create some new ones) .  

Next, we want to show that for sets in general position, the number of 
k-facets and the number of k-sets are closely related (although the exact 
relations are not simple) .  ·The best way seems to be to view both notions in 
the dual setting. 

Let X C Rd be a finite set in general position. Let H = {V(x) : x E X} be 
the collection of hyperplanes dual to the points of X ,  where V is the duality 
"with the origin at xd = -oo" as defined in Section 5 . 1 .  

We may assume that each k-set S of X is cut off by a nonvertical hy
perplane hs that docs not pass through any point of X. If S lies below hs , 
then the dual point Ys = V(hs) is a point lying on no hyperplane of H and 
having exactly k hyperplanes of H below it . So Ys lies in the interior of a 
cell at level k of the arrangement of H. Similarly, if S lies above hs , then Ys 
is in a cell at level n-k. Moreover, if Ys1 and Ys2 lie in the same cell, then 
81 = S2 , and so k-sets exactly correspond to cells of level k and n-k. 

Similarly, we find that the k-facets of X correspond to vertices of the 
arrangement of H of levels k or n-k-d (we need to subtract d because of 



1 1 . 1  Definitions and First Estimates 267 

the d hyperplanes passing through the vertex that are not counted in its 
level) .  

The arrangement of H has at most O(nd-1 ) unbounded cells (Exer
cise 6.1 .2) .  Therefore, all but at n1ost O(nd-1 ) cells of level k have a top
most vertex, and the level of such a vertex is between k-d+ 1 and k. On 
the other hand, every vertex is the topmost vertex of at most one cell 
of level k. A similar relation exists between cells of level n-k and ver
tices of level n-k-d. Therefore, the number of k-sets of X is at most 
O(nd-1 ) + 2:;-� KFAC (X, k-j) .  Conversely, KFAC(X, k) can be bounded 
in terms of the number of k-sets; this we leave to Exercise 2. From now on, 
we thus consider only estimating KFACd(n� k) . 

Viewing KFACd(n, k) in terms of the k-level in a hyperplane arrangement , 
we obtain some immediate bounds from the results of Section 6.3. The k-level 
has certainly no more vertices than all the levels 0 through k together, and 
hence 

KFACd(n, k) = 0 ( nld/2J (k+ 1)  r d/21 ) 
by Theorem 6.3. 1 .  On the other hand, the arrangements showing that Theo
rem 6.3.1 is tight (constructed using cyclic polytopes) prove that for k < n /2, 
we have 

KFACd( n, k) = n ( n ld/2J (k+l )  r d/21 - 1) ; 
this determines KFACd(n, k) up to a factor of k. 

The levels 0 through n together have O(nd) vertices, and so for any par
ticular arrangement of n hyperplanes, if k is chosen at random, the expected 
k-level complexity is O(nd-1 ) .  This means that a level with a substantially 
higher complexity has to be exceptional, much bigger than most other levels. 
It seems hard to imagine how this could happen. Indeed, it is widely believed 
that KFACd(n, k) is never much larger than nd-l . On the other hand, levels 
with somewhat larger con1plexity can appear, as we will see in Section 1 1 .2 .  

Halving facets versus k-facets.  In the rest of this chapter we will mainly 
consider bounds on the halving facets; that is, we will prove estimates for the 
function 

HFACd(n) = � KFACd(n, n 2 
d ) ,  n-d even. 

It is easy to see that for all k, we have KFACd(n, k) < 2 · HFACd(2n+d) (Ex
ercise 1 ) .  Thus, for proving asymptotic bounds on maxo<k<n-d KFACd(n, k) ,  
it suffices to estimate the number of halving facets. It turns out that even 
a stronger result is true: The following theorem shows that upper bounds 
on HFACd(n) automatically provide upper bounds on KFACd (n, k) sensitive 
to k. 

11 .1 .1  Theorem. Suppose that for some d and for all n, HFACd(n) can 
be bounded by O(nd-cr1 ) ,  for some constant cd > 0. Then we have, for all 
k < n-d 

- 2 ' 
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Proof. We use the method of the probabilistic proof of the cutting lemma 
from Section 6.5 with only small modifications; we assume familiarity with 
that proof. We work in the dual setting, and so we need to bound the number 
of vertices of level k in the arrangement of a set H of n hyperplanes in general 
position. Since for k bounded by a constant, the complexity of the k-level is 
asymptotically determined by Clarkson's theorem on levels (Theorem 6.3. 1 ) ,  
we can assume 2 < k < � . 

We set r = � and p = : = ! ,  and we let S C H be a random sample 
obtained by independent Bernoulli trials with success probability p. This tirne 
we let T(S) denote the bottom-vertex triangulation of the bottom unbounded 
cell of the arrangement of S (actually, in this case it seems simpler to use the 
top-vertex triangulation instead of the bottom-vertex one) ; the rest of the 
arrangement is ignored. (For d = 2,  we can take the vertical decomposition 
instead. )  Here is a schematic illustration for the planar case: 

lines of S 
T(S) 

� level k of H 

The conditions (CO)-(C2) as in Section 6.5 are satisfied for this T(S) 
(in (CO) we have constants depending on d, of course) ,  and as for ( C3) ,  
we have IT(S) I = O( !S i ld/2J + 1 )  for all S C H by the asyrnptotic upper 
bound theorem (Theorem 5.5.2) and by the properties of the bottom-vertex 
triangulation. Thus, the analogy of Proposition 6.5.2 can be derived: :For 
every t > 0, the expected number of simplices with excess at least t in T(S) 
is bounded as follows: 

( 1 1 . 1 )  

Let Vk denote the set of the vertices of level k in the arrangement of H, 
whose size we want to estimate, and let Vk (S) be the vertices in Vk that 
have level 0 with respect to the arrangement of S; i.e. , they are covered by a 
simplex of T(S). 

First we claim that, typically, a significant fraction of the vertices of Vk 
appears in Vk(S) , namely, E [IVk (S) I ] > ! IVk l · For every v E Vk , the proba
bility that v E Vk ( S) ,  i .e. , that none of the at most k hyperplanes below v 
goes into S, is at least (1 - p)k = ( 1 - ! )k > ! , and the claim follows. 

It rerpains to bound E [IVk (S) I ] from above. Let Ll E T(S) be a simplex 
and let HA be the set of all hyperplanes of H intersecting Ll. Not all of these 
hyperplanes have to intersect the interior of � (and thus be counted in the 
excess of 6.), but since H is in general position, there are at most a constant 
number of such exceptional hyperplanes. We note that all the vertices in 
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Vk(S) n � have the same level in the arrangement of HLl (it is k minus the 
number of hyperplanes below �) .  By the assumption in the theorem, we thus 
have I Vk (S) n �I = O( IHLl ld-cd ) = O((t� �)d-cd ) = O((t�k)d-cd ) ,  where t� 
is the excess of �. Therefore, 

E[IVk (S) I ] < O(kd-cd ) .  L ti-ed . 
�ET(S) 

Using ( 1 1 . 1 ) ,  the sum is bounded by (J( ( � ) ld/2J ) ; this is as in Section 6.5 . 
We have shown that 

I Vk l < 4E [ IVk (S) I J = 0 ( n ld/2J k rd/2l -cd) , 
and Theorem 1 1 . 1 . 1  is proved. 

Bibliography and remarks. We summarize the bibliography of k
sets here, and in the subsequent sections we only mention the origins 
of the particular results described there. In the following we always 
assume k > 1 ,  which allows us to write k instead of k+l in the bounds. 

The first paper concerning k-sets is by Lovasz [Lov71] , who proved 
an O(n312) bound for the number of halving edges. Straus (unpub
lished) showed an 0( n log n) lower bound. This appeared, together 
with the bound O(nJk) for planar k-sets, in Erdos, Lovasz, Simmons, 
and Straus [ELSS73) . The latter bound was independently found by 
Edelsbrunner and Welzl [EW85] . It seems to be the natural bound to 
come up with if one starts thinking about planar k-sets; there are nu
merous variations of the proof (see Agarwal, Aronov, Chan, and Sharir 
[AACS98] ) ,  and breaking this barrier took quite a long time. The first 
progress was made by Pach, Steiger, and Szemeredi [PSS92) , who im
proved the upper bound by the tiny factor of log* k. A significant 
breakthrough, and the current best planar upper bound of O(nk1 13 ) , 

was achieved by Dey [Dey98) . A simpler version of his proof, involving 
new insights, was provided by Andrzejak, Aronov, Har-Peled, Seidel, 
and Welzl [AAHP+98] . 

An iinprovement over the 0( n log k) lower bound [ELSS73) was 
obtained by Toth [T6t01b] , namely, KFAC2 (n, k) > n exp(cy"!!g"7C ) 
for a constant c > 0 (a similar bound was found by Klawe, Paterson, 
and Pippenger in the 1980s in an unpublished manuscript, but only 
for the number of vertices of level k in an arrangement of n pseudolines 
in the plane) . 

The first nontrivial bound on k-sets in higher dimension was 
proved by Baxany, Fiiredi, and Lovasz [BFL90] . They showed that 
HFAC3(n) = O(n2·998) . Their method includes the main ingredients 
of most of the subsequent improvements; in particular, they proved a 
planar version of the second selection lemma (Theorem 9.2. 1 )  and con
jectured the colored Tverberg theorem (see the notes to Sections 8.3 

D 
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and 9.2) . Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, and Wenger 
[ACE+91] improved the bound for the planar second selection lemma 
(with a new proof) and showed that HFAC3 (n) = O(n813 log513 n) . 
A nontrivial upper bound for every fixed dimension d, HFACd(n) = 

0( nd-cd ) for a suitable cd > 0, was obtained by Alon, Baniny, 
Fi.iredi, and Kleitman [ABFK92] , following the method of [BFL90] 
and using the recently established colored Tverberg theorem. Dey and 
Edelsbrunner [DE94] proved a slightly better 3-dimensional bound 
HFAC3 (n) = O(n813 ) by a direct and simple 3-dimensional argument 
avoiding the use of a planar selection lemma (see Exercise 11 .3 .8) . A 
new significant improvement to HFAC3 (n) = O(n2·5) was achieved by 
Sharir, Smorodinsky, and Tardos (SST01] ; their argument is sketched 
in the notes to Section 1 1 .4. 

Theorem 1 1 . 1 . 1  is due to Agarwal et al. [AACS98] . Their proof 
uses a way of random sampling different from ours, but the idea is the 
same. 

Another interesting result on planar k-sets, due to Welzl [Wel86] , is 
LkEK KFAC (X, k) = 0 (nJL:kEK k ) for every n-point set X c R2 
and every index set K C { 1 ,  2, . . .  , ln/2J } (see Exercise 11 .3 .2) . Using 
identities derived by Andrzejak et al. [AAHP+98] (based on Dey's 
method) , the bound can be improved to 0 ( n( IK I  · L:kEK k) 113) ; this 
was communicated to me by Emo Welzl. 

Edelsbrunner, Valtr, and Welzl [EVW97] showed that "dense" sets 
X,  i.e. , n-point X C Rd such that the ratio of the n1axin1um to nlini
mum interpoint distance is O(n11d) ,  cannot asymptotically maximize 
the number of k-sets. For example, in the plane, they proved that a 
bound of HFAC2 (n) == O(n1+0) for arbitrary sets implies that any 
n-point dense set has at most O(n1+a/2) halving edges. Alt, Felsner, 
Hurtado, and Noy [AFH+oo] showed that if X c R2 is a set contained 
in a union of C convex curves, then KFAC (X, k) = O(n) for all k, with 
the constant of proportionality depending on C. 

Several upper bounds concern the maximum combinatorial com
plexity of level k for objects other than hyperplanes. For segments in 
the plane, the estimate obtained by combining a result of Dey [Dey98] 
with the general tools in Agarwal et al. (AACS98J is O(nk113a(�) ) . 
Their method yields the same result for the level k in an arrangement 
of n extendible pBeudosegments (defined in Exercise 6.2 .5) .  For arbi
trary pseudosegments, the result of Chan mentioned in that exercise 
( n pseudosegments can be cut into 0( n log n) extendible pseudoseg-
ments) gives the slightly worse bound O(nk113a (� )  log213 (k+1) ) .  

The study of levels in arrangements of curves with more than one 
pairwise intersection was initiated by Tamaki and Tokuyama [TT98] , 
who considered a family of n parabolas in R2 (here is a neat motiva
tion: Given n points in the plane, each of them moving along a straight 
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line with constant velocity, how many times can the pair of points with 
median distance change? ) . They showed that n parabolas can be cut 
into O(n513 ) pieces in total so that the resulting collection of curves 
is a family of pseudosegments (see Exercise 6) .  This idea of cutting 
curves into pseudosegments proved to be of great importance for other 
problems as well; see the notes to Section 4.5 .  Tamaki and Tokuyama 
obtained the bound of O (n2-11 12) for the maximum complexity of the 
k-level for n parabolas. Using the tools from [AACS98] and a cutting 
into extendible pseudosegments, Chan [ChaOOa] improved this bound 
to 0( nk1-219 log213 (k+ 1 ) ) . 

All these results can be transferred without much difficulty from 
parabolas to pseudocircles, which are closed planar Jordan curves, ev
ery two intersecting at most twice. Aronov and Sharir [AS01a] proved 
that if the curves are circles, then even cutting into 0 ( n 3 /2+c ) pseu
dosegments is possible (the best known lower bound is f2 (n413 ) ; see 
Exercise 5) . This upper bound was extended by Nevo, Pach, Pinchasi, 
and Sharir [NPPSO 1] to certain families of pseudo circles: The pseudo
circles in the family should be selected from a 3-parametric family of 
real algebraic curves and satisfy an additional condition; for example, 
it suffices that their interiors can be pierced by 0( 1 )  points (also see 
Alon, Last, Pinchasi, and Sharir [ ALPS01 ] for related things) . 

Tamaki and Tokuyama constructed a family of n curves with at 
most 3 pairwise intersections that cannot be cut into fewer than O (n2 ) 
pseudosegmcnts, demonstrating that their approach cannot yield non
trivial bounds for the complexity of levels for such general curves (Ex
ercise 5) .  However, for graphs of polynomials of degree at most s ,  

Chan [ChaOOa] obtained a cutting into roughly O (n2-1/3s- l ) pseu
dosegments and consequently a nontrivial upper bound for levels. His 
bound was improved by Ncvo et al. [NPPS01] . 

As for higher-dimensional results, Katoh and Tokuyama [KT99] 
proved the bound O(n2k213 ) for the complexity of the k-level for n 
triangles in R 3 .  

Bounds on k-sets have surprising applications. For example, Dey's 
results for planar k-sets mentioned above imply that if G is a graph 
with n vertices and m edges and each edge has weight that is a linear 
function of time, then the minimum spanning tree of G changes at 
most O(mn113 ) times; see Eppstein [Epp98] . The number of k-sets 
of the infinite set (Zci )d (lattice points in the nonnegative orthant) 
appears in computational algebra in connection with Grobner bases 
of certain ideals. The bounds of 0 ( ( k log k) d- I ) and f2 ( kd-l log k) for 
every fixed d, as well as references, can be found in Wagner [Wag01] . 

271 
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Exercises 

1 .  Verify that for all k and all dimensions d, KFACd (n , k) < 2 · HFACd (2n+ 
d). � 

2. Show that every vertex in an arrangement of hyperplanes in general po
sition is the topmost vertex of exactly one cell. For X C Rd finite and in 
general position, bound KFAC(X, k) using the numbers of j-sets of X,  
k < j < k+d-1 .  � 

3. Suppose that we have a construction that provides an n-point set in the 
plane with at least f ( n) halving edges for all even n. Show that this 
implies KFAC2 (n, k) = fl( ln/2kj j(2k)) for all k < � - � 

4. Suppose that for all even n, we can construct a planar n-point set with at 
least f(n) halving edges. Show that one can construct n-point sets with 
O(nf(n) ) halving facets in R3 (for infinitely many n, say). [i] Can you 
extend the construction to Rd, obtaining f2 (nd-2f(n)) halving facets? 

5. (Lower bounds for cutting curves into pseudosegments) In this exercise, r 
is a family of n curves in the plane, such as those considered in connection 
with Davenport-Schinzel sequences: Each curve intersects every vertical 
line exactly once, every two curves intersect at most s times, and no 3 
have a common point. 
(a) Construct such a family r with s = 2 (a family of pseudoparabolas) 
whose arrangement has O(n413 ) empty lenses, where an empty lens is 
a bounded cell of the arrangement of r bounded by two of the curves. 
(The number of empty lenses is obviously a lower bound for the number 
of cuts required to turn r into a family of pseudosegments.) 121 
(b) Construct a family r with s = 3 and with O(n2) empty lenses. [!] 

6. (Cutting pseudoparabolas into pseudosegments) Let r be a family of n 
pseudoparabolas in the plane as in Exercise 5(a) .  For every two curves 
"(, "(1 E r with exactly two intersection points, the lens defined by "f and 
"(1 consists of the portions of 1 and "(1 between their two intersection 
points, as indicated in the picture: 

(a) Let A be a family of pairwise nonoverlapping lenses in the arrange
ment of r, where two lenses are nonoverlapping if they do not share any 
edge of the arrangement (but they may intersect, or one may be enclosed 
in the other) . The goal is to bound the maximum size of A. We define a 
bipartite graph G with V(G) = r x {0, 1 } and with E(G) consisting of all 
edges { ( 'Y, 0) ,  ( 1' , 1 ) }  such that there is a lens in A whose lower portion 
comes from "( and upper portion from "(1• Prove that G contains no K3,4 
and hence IA I  = O(n513 ) .  Supposing that K3,4 were present, correspond-. t "1 " d " " I I • d tng o ower curves /1 , 'Y2 , 'Y3 an upper curves 'Yt , . . .  , 'Y 4 ,  const er 
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the upper envelope U of /'l , /'2 , /'3 and the lower envelope L of 1'� , . . .  , 1'� . 
(A more careful argument shows that even K3,3 is excluded. )  m 
(b) Show that the graph G in (a) can contain a K2,r for arbitrarily large r. 
ITJ 
(c) Given r, define the lens set system (X, .C) with X consisting of all 
bounded edges of the arrangement of r and the sets of .C corresponding 
to lenses (each lens contributes the set of arrangement edges contained 
in its two arcs) .  Check that r( .C) is the smallest number of cuts needed 
to convert r into a collection of pseudosegrnents, and that the result of 
(a) implies v(.C) = O(n513 ) .  II] 
(d) Using the method of the proof of Clarkson's theorem on levels and 
the inequality in Exercise 10 .1 .4(a) , prove that r(.C) = O(n513) .  0 

7. (The k-set polytope) Let X c Rd be an n-point set in general position 
and let k E { 1 ,  2, . . .  , n-1 } .  The k-set polytope Qk (X) is the convex hull 
of the set 

{LX :  s c X, lS I  = k} 
xES 

in Rd. Prove that the vertices of Qk(X) correspond bijectively to the 
k-sets of X. [!] 
The k-set polytope was introduced by Edelsbrunner, Valtr, and Welzl 
[EVW97] . It can be used for algorithmic enumeration of k-sets, for ex
ample by the reverse search method mentioned in the notes to Section 5.5. 

11.2  Sets with Many Halving Edges 

Here we are going to construct n-point planar sets with a superlinear number 
of halving edges. It seems more intuitive to present the constructions in the 
dual setting, that is, to construct arrangements of n lines with many vertices 
of level n 2 2 . 
A simpler construction. \Ve begin with a construction providing 0(  n log n) 
vertices of the rniddle level. 

By induction on m, we construct a set Lm of 2m lines in general posi
tion with at least fm = (m+1)2m-2 vertices of the middle level (i .e. , level 
2m- 1-l ) .  We note that each line of Lm contains at least one of the middle
level vertices. 

For m = 1 we take two nonvertical intersecting lines. 
Let m > 1 and suppose that an Lm satisfying the above conditions has 

already been constructed. First, we select a subset M c Lm of 2m-l lines, 
and to each line of i E M we assign a vertex v(f) of the middle level lying 
on £, in such a way that v ( f) =1- v( f') for f =1- f'. The selection can be done 
greedily: We choose a line into M, take a vertex of the middle level on it, and 
exclude the other line passing through that vertex from further consideration. 
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Next, we replace each line of Lrn by a pair of lines, both almost parallel 
to the original line. For a line f E l'v/, we let the two lines replacing f intersect 
at v (f) . Each of the remaining lines is replaced by two almost parallel lines 
whose intersection is not near to any vertex of the arrangement of Lrn . This 
yields the set Lm+ I ·  

As the following picture shows, a middle-level vertex of the form v(f) 
yields 3 vertices of the new middle level (level 2rn - 1  in the arrangement of 
Lrn+I ) : 

Each of the other middle-level vertices yields 2 vertices of the new middle 
level: 

Hence the number of Iniddle-level vertices for Lm+l is at least 2/.,, + 2rn-l = 
2 [(·m + 1 )2m-2] + 2m- l = frn+l ·  D 

A better construction. This construction is more complicated, but it 
shows the lower bound 

n · en (�) 

for the number of vertices of the middle level (and thus for the number of 
halving edges) . This bound is smaller than n1+8 for every � > 0 but much 
larger than n (log n )c for any constant c. 

For simplicity, we will deal only with values of n of a special form, thus 
providing a lower bound for infinitely many n. Simple considerations show 
that HFAC2 (n) is nondecreasing, and this gives a bound for all n. 

The construction is again inductive. We first explain the idea, and then 
we describe it more formally. 

In the first step, we let Lo consist of two intersecting nonvertical lines. 
Suppose that after m steps, a set of lines Lrn in general position has already 
been constructed, with many vertices of the middle level. First we replace 
every line f E Lrn by a.,n parallel lines; let us call these lines the bundle of f. 
So if v is a vertex of the middle level of L.,, , we get am vertices of the middle 
level near v after the replacement. 

£' 
bundle of R 

bundle of I!' 
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·Then we add two new lines Av and J.-Lv as indicated in the next picture, and 
we obtain 2arn vertices of the middle level: 

. 
. . 1-lv 

If nm == J Lrn J and frn is the number of vertices of the middle level in Lm, 

the construction gives roughly nrn+l � amnrn + 2frn and fm+l � 2amfm ·  

·This recurrence is good: With a suitable choice of the multiplicities am , it 
leads to the claimed bound. But the construction as presented so far is not 
at all guaranteed to work, because the new lines Av and J.-Lv might mess up 
the levels of the other vertices. We must make some extra provisions to get 
this under control. 

First of all, we want the auxiliary lines Av and ILv to be nearly parallel to 
the old line f' in the picture. This is achieved by letting the vertical spacing 
of the am lines in the bundle of £' be much smaller than the spacing in the 
bundle of R: 

Namely, if the lines of Lrn are € 1 ,  €2 , . . . , Rnm , then the vertical spacing in the 
bundle of fi is set to ci , where c > 0 is a suitable very small number. 

Let .ei be a line of Lrn ,  and let di denote the number of indices j < i such 
that f i intersects fi in a vertex of the middle level. In the new arrangement 
of Lm+l we obtain am lines of the bundle of fi and 2di lines of the form Av 
and J-lv ' which are almost parallel to ei ' and di of them go above the bundle 
and di below. Thus, for points not very close to fi, the effect is as if fi were 
replicated ( a,n + 2di) times. This is still not good; we would need that all lines 
have the same multiplicities. So we let D be the maximum of the di , and for 
each i, we add D - di more lines parallel to fi below fi and D - di parallel 
lines above it. 
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How do we control D? We do not know how many middle-level vertices 
can appear on the lines of Lm+ 1 ;  some vertices are necessarily there by the 
construction, but some might arise "just by chance," say by the interaction of 
the various auxiliary lines Av and Jlv , which we do not really want to analyze. 
So we take a conservative attitude and deal only with the middle-level vertices 
we know about for sure. 

Here is the whole construction, this time how it really goes. Suppose that 
we have already constructed a set Lm = { f 1 ,  . . . , fnm } of lines in general po
sition (which includes being nonvertical) and a set Vm of rniddle-level vertices 
in the arrangement of Lm, such that the number of vertices of V.m. lying on 
fi is no more than Drn , for all i == 1 ,  2, . . .  , nrrt · We let c = Ern be sufficiently 
small, and we replace each fi by am parallel lines with vertical spacing c:i . 
Then for each v E Vm , we add the two lines Av and Jlv as explained above, 
and finally we add, for each 'i , the 2(Dm - di ) lines parallel to fi , half above 
and half below the bundle, where di is the number of vertices of Vm lying 
on ei . 

Since Lm+l is supposed to be in general position, we should not forget 
to apply a very small perturbation to Lm,+l after completing the step just 
described. 

For each old vertex v E Vm , we now really get the 2am new middle-level 
vertices near v as was indicated in the drawing above, and we put these into 
Vm+l · So we have 

What about Dm+l , the maximum number of points of Vm+l lying on a single 
line? Each line in the bundle of fi has exactly di vertices of V m+ 1 .  The lines 
Av get 2am vertices of Vrn+ 1 ,  and the remaining auxiliary lines get none. So 

It remains to define the am , which are free parameters of the construction. 
A good choice is to let am == 4Dm . Then we have Do = 1 ,  Dm = sm , and 
am = 4 · 8m . From the recurrences above, we further calculate 

_ 2 6m 81+2+· · ·+(m-1 ) nm - . . ' fm = 8m . st+2+ . .  ·+(m- 1) . 

So log nm is O(m2) ,  while log(fm/nm ) = log ( � ( �rn) = O(m) . We indeed 

have fm > nm · en ( y'Iog nm ) as prornised. D 

Bibliography and remarks. The first construction is from Erdos 
et al. [ELSS73] and the second one from T6th [T6t01b] . In the original 
papers, they are phrased in the primal setting. 
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11.3  The Lovasz Lemma and Upper Bounds in All 
Dimensions 

In this section we prove a basic property of the halving facets, usually called 
the Lovasz lemma. It implies nontrivial upper bounds on the number of 
halving facets, by a simple self-contained argument in the planar case and 
by the second selection lennna (Theorem 9 .2 . 1 )  in an arbitrary dimension. 
We prove a slightly more precise version of the Lovasz lemma than is needed 
here, since we will use it in a subsequent section. On the other hand, we 
consider only halving facets, although similar results can be obtained for k
facets as well. Sticking to halving facets simplifies matters a little, since for 
other k-facets one has to be careful about the orientations. 

Let X c Rd be an n-point set in general position with n - d even. Let T 
be a (d-1 )-point subset of X and let 

Vr = {x E X \  T: T U {x} is a halving facet of X} .  

In the plane, T has a single point and Vr are the other endpoints of the 
halving edges emanating from it. In 3 dimensions, conv(T) is a segment, and 
a typical picture might look as follows: 

where T = { t1 , t2 } and the triangles are halving facets. 
Let h be a hyperplane containing T and no point of X \  T. Since IX \ Tl 

is odd, one of the open half-spaces determined by h,  the larger half-space ,  
contains more points of X than the other, the smaller half-space. 

11 .3.1 Lemma (Halving-facet interleaving lemma) . Every hyperplane 
h as above "almost l1alves" the halving facets containing T. More precisely, if 
r is the number of points of VT in the smaller half-space of h, then the larger 
half-space contains exactly r+ 1 points of Vr . 

Proof. To get a better picture, we project T and VT to a 2-dimensional 
plane p orthogonal to T. (For dimension 2, no projection is necessary, of 
course. )  Let the projection of T, which is a single point, be denoted by t and 
the projection of Vr by V,f. Note that the points of Vr project to distinct 
points. The halving facets containing T project to segments emanating from t .  
The hyperplane h is projected to a line h', which we draw vertically in the 
following indication of the situation in the plane p: 
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smaller half-space larger half-space 

We claim that for any two angularly consecutive segments, such as at and bt, 
the angle opposite the angle atb contains a point of Vf (such as z) . Indeed, 
the hyperplane passing through t and a has exactly n 2 d points of X in 
both of its open half-spaces. If we start rotating it around T towards b, the 
point a enters one of the open half-spaces (in the picture, the one below the 
rotating hyperplane). But just before we reach b, that half-space again has 
n 2 d points. Hence there was a moment when the number of points in this 
half-space went from n 2 d + 1 to n 2 d , and this must have been a moment of 
reaching a suitable z. 

This means that for every two consecutive points of Vf, there is at least 
one point of VT in the corresponding opposite wedge. There is actually exactly 
one, for if there were two, their opposite wedge would have to contain another 
point . Therefore, the numbers of points of VT in the half-spaces determined 
by h differ exactly by 1 .  

To finish the proof of the lemma, it remains to observe that if we start 
rotating the hyperplane h around T in either direction, the first point of Vr 
encountered must be in the larger half-space. So the larger half-space has 
one Inore point of VT than the smaller half-space. (Recall that the larger 
half-space is defined with respect to X, and so we did not just parrot the 
definition here. )  • D 

11 .3.2 Corollary (Lovasz lemma) .  Let X c Rd be an n-point set in 
general position, and let f be a line that is not parallel to any of the halving 
facets of X.  Then f intersects the relative interior of at most 0( nd-l ) halving 
facets of X. 

Proof. We can move f a  little so that it intersects the relative interiors of the 
same halving facets as before but intersects no boundary of a halving facet. 
Next, we start translating f in a suitably chosen direction. (In the plane there 
are just two directions, and both of them will do. )  The direction is selected 
so that we never cross any (d - 3)-dimensional flat determined by the points 
of X. To this end, we need to find a two-dimensional plane passing through 
f and avoiding finitely many (d - 3)-dimensional flats in Rd, none of them 
intersecting I!; this is always possible. 



1 1 .3 The Lovasz Lemma and Upper Bounds in All Dimensions 279 

As we translate the line R., the number of halving facets currently inter
sected by f may change only as f crosses the boundary of a halving facet F, 
i .e., a (d-2)-dimensional face of F. By the halving-facet interleaving lemma, 
by crossing one such face T, the number of intersected halving facets changes 
by 1 .  After moving far enough, the translated line € intersects no halving 
facet at all. On its way, it crossed no more than O(nd-1 ) boundaries, since 
there are only O(nd-1 ) simplices of dimension d-2 with vertices at X.  This 
proves the corollary. D 

11 .3.3 Theorem. For each d > 2, the maximum number of halving facets 
satisfies 

HFACd(n) = O(nd-1/sd- l ) , 

where sd- l is an exponent for which the statement of the second selection 
lemma (Theorem 9.2.1) holds in dimension d-1 .  In particular, in the plane 
we obtain HFAC2 (n) == O(n312 ) .  

For higher dimensions, this result shows that HFACd(n) is asymptotically 
somewhat smaller than nd , but the proof method is inadequate for proving 
bounds close to n d- l . 

Theorem 11 .3 .3 is proved from Corollary 1 1.3 .2 using the second selection 
lemma. Let us first give a streamlined proof for the planar case, although 
later on we will prove a considerably better planar bound. 

Proof of Theorem 1 1 .3.3 for d = 2. Let us project the points of X ver
tically on the x-axis, obtaining a set Y.  The projections of the halving edges 
of X define a system of intervals with endpoints in Y. By Corollary 1 1 .3 .2, 
any point is contained in the interior of at most 0 ( n) of these intervals, for 
otherwise, a vertical line through that point would intersect too many halving 
edges. 

Mark every qth point of Y (with q a parameter to be set suitably later) . 
Divide the intervals into two classes: those containing some marked point 
in their interior and those lying in a gap between two marked points. The 
number of intervals of the first class is at most O(n) per marked point, i .e . ,  
at most O(n2 jq) in total. The number of intervals of the second class is no 
more than ( q! 1 ) per gap, i.e. , at most ( � + 1 ) ( q; 1) in total. Balancing both 
bounds by setting q == I yin l , we get that the total number of halving edges 
is 0( n312 ) as claimed. D 

Note that we have implicitly applied and proved a one-dimensional second 
selection lemma (Exercise 9 .2 .1 ) .  
Proof of Theorem 11 .3.3. We consider an n-point X c Rd. We project 
X vertically into the coordinate hyperplane xd == 0, obtaining a point set Y, 
which we regard as lying in Rd-1 . If the coordinate system is chosen suitably, 
Y is in general position. 

Each halving facet of X projects to a (d-1 )-dimensional Y-simplex in 
R d-l ; let F be the family of these Y -simplices. If we write IFI == a(�) , then 
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by the second selection lemma, there exists a point a contained in at least 
co:8d- l  (�) simplices of F. Only at most O(nd-1 ) of these contain a in their 
boundary, by Lemma 9. 1 .2 ,  and the remaining ones have a in the interior. 
By the Lovasz lentma (Corollary 1 1 .3.2) applied on the vertical line in Rd 
passing through the point a, we thus get co:8d- l (�) = 0( nd- 1 ) .  We calculate 
that IFI = a (�) = O(nd-1/sd- l )  as claimed. D 

Bibliography and remarks. The planar version of the Lovasz 
lemma (Corollary 1 1 .3 .2) originated in Lovasz [Lov71 ] ; the proof 
implicitly contains the halving-facet interleaving lemma. A higher
dimensional version of the Lovasz lemma appeared in Barany, Fiiredi, 
and Lovasz (BFL90] . 

Welzl [Wel01] proved an exact version of the Lovasz lemma, as is 
outlined in Exercises 5 and 6 below. This question ifi equivalent to 
the upper bound theorem for convex polytopes, via the Gale trans
form. The connection of k-facets and h-vectors of convex polytopes 
was noted earlier by several authors (Lee [Lee91] , Clarkson [Cla93] , 
and Mulmuley [Mul93b] ) , sometimes in a slightly different but essen
tially equivalent form. Using this correspondence and the generalized 
lower bound theorem mentioned in Section 5.5, Welzl also proved that 
the n1axiinuin total nuntber of j-facets with j < k for an n-point set in 
R 3 (or, equivalently, the maximum possible number of vertices of level 
at most k in an arrangement of n planes in general position in R3) is 
attained for a set in convex position, from which the exact maximum 
can be calculated. It also implies that in R 3 ,  a set in convex position 
n1inin1izes the nuntber of halving facets (triangles) . 

An interesting connection of this result to another problem was dis
covered by Sharir and Welzl [SW01 ] . They quickly derived the follow
ing theorem, which was previously established by Pach and Pinchasi 
[PP01] by a difficult elementary proof: If R, B c R2 are n-point sets 
( "red" and "blue" ) with RUB in general position, then there are at 
least n balanced lines, where a line f is balanced if IRnfl = !B n fl = 1 
and on both sides of f the number of red points equals the number of 
blue points (for odd n, the existence of at least one balanced line fol
lows from the ham-sandwich theorem) . A proof based on Welzl's result 
in R3 mentioned above is outlined in Exercise 4. Let us remark that 
conversely, the Pach-Pinchasi theorem implies the generalized lower 
bound theorem for (d+4)-vertex polytopes in Rd. 

Exercises 

1 .  (a) Prove the following version the Lovasz lemma in the planar case: 
For a set X C R 2 in general position, every vertical line i intersects the 
interiors of at most k+ 1 of the k-edges. 8J 
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(b) Using (a) , prove the bound KFAC2 (n, k) = O(nJk+I) (without 
appealing to Theorem 1 1 . 1 . 1 ) .  0 

2. Let K C { 1 ,  2, . . .  , ln/2J } .  Using Exercise 1 ,  prove that for any n-point 
set X c R2 in general position, the total number of k-edges with k E 
K (or equivalently, the total number of vertices of levels k E K in an 
arrangement of n lines) is at most 0 (nJEkEK k ) . (Note that this is 
better than applying the bound KFAC2 (n, k) = O(nv'k ) for each k E K 
separately.) 0 

3. (Exact planar Lovasz lemma) Let X C R2 be a 2n-point set in general 
position, and let f be a vertical line having k points of X on the left 
and 2n-k points on the right. Prove that f crosses exactly min(k, 2n-k) 
halving edges of X. � 

4. Let X be a set of 2n+ 1 points in R 3 in general position, and let 
Pt , P2 , . . .  , P2n+ 1 be the points of X listed by increasing height ( z-co
ordinate) . 
(a) Using Exercise 3, check that if Pk+l is a vertex of conv(X) ,  then there 
are exactly min( k, 2n-k) halving triangles having Pk+ 1 as the middle
height vertex (that is, the triangle is PiPk+lPi with i < k+I < j) .  0 
(b) Prove that every (2n+l)-point convex independent set X C R3 in 
general position has at least n2 halving triangles. m 
(c) Assuming that each (2n+1)-point set in R3 in general position 
has at least n2 halving triangles (which follows from (b) and the re
sult mentioned in the notes above about the number of halving trian
gles being minimized by a set in convex position), infer that if X = 

{Pl , . . .  , P2n+l } C R3 is in general position, then for every k, there are 
always at least min(k, 2n-k) halving triangles having Pk+l as the middle
height vertex (even if Pk+t is not extremal in X) .  0 
(d) Derive from (c) the result about balanced lines mentioned in the notes 
to this section: If R, B C R 2 are n-point sets (red and blue points) ,  with 
R U B in general position, then there are at least n balanced lines I! (with 
IR n f l  = IB n £1 = 1 and such that on both sides of f the number of red 
points equals the number of blue points) . Embed R2 as the z = 1 plane 
in R3 and use a central projection on the unit sphere in R3 centered at 0. 
ill 
See [SWOl] for solutions and related results. 

5. (Exact Lovasz lemma) Let X c Rd be an n-point set in general position 
and let f be a directed line disjoint from the convex hulls of all ( d-1 )
point subsets of X.  We think of f as being vertical and directed upwards. 
We say that I! enters a j-facet F if it passes through F from the positive 
side (the one with j points) to the negative side. Let hj = hj ( 1!, X) 
denote the number of j-facets entered by £, j = 0 ,  1 ,  . . .  , n - d. Further, 
let sk (f!, X) be the number of (d + k)-element subsets S C X such that 
f n conv(S) # 0. 

d . -(a) Prove that for every X and f as above, Sk = E7 k (�) hi . li1 
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(b) Use (a) to show that ho , . . .  , hn-d are uniquely determined by 
So ,  St , . . . , Sn-d . � 
(c) Infer from (b) that if X' is a set in general position obtained from 
X by translating each point in a direction parallel to i, then hj ( f, X) = 
hi (£, X') for all j .  Derive hi = hn-d-j .  0 
(d) Prove that for every x E X and all .i ,  we have hj (f, X \ {x}) < 
hj (f, X) . 0 
(e) Choose x E X uniformly at random. Check that E ( hj ( /!,, X \ { x}) 1 = 
n-d-j h ·  + j+l h ·  0 n J n J + l · 

(f) From (d) and (e) , derive hj+ l < 1!� hj , and conclude the exact Lovasz 
lemma: 

� 

h 
. < . { (j + d - 1) (n - j - 1) } 
J - min 

d - 1 ' d - 1  
. 

6. (The upper bound theorem and k-facets) Let a = (a1 , a2 , . . . , an) be a 
sequence of n > d+ 1 convex independent points in R d in general position, 
and let P be the d-dimensional simplicial convex polytope with vertex set 
{ a 1 ,  . . .  , an } · Let g = (9t , . . .  , 9n) be the Gale transform of a, 9t , . . .  , 9n E 

Rn-d- l , and let bi be a point in Rn-d obtained from 9i by appending 
a number ti as the last coordinate, where the ti are chosen so that X == 
{ b1 , . . .  , bn} is in general position. 
(a) Let f be the Xn-d-axis in Rn-d oriented upwards, and let Sk 
sk (f, X}  and hi == hj (£, X) be as in Exercise 5. Show that !k (P) 
Sd-k-t (f, X) ,  k == 0, 1 , . . .  , d  - 1. 0  
(b) Derive that hi (P) = hj (£, X) ,  j == 0, 1 ,  . . .  , d, where hj is as at the 
end of Section 5.5 , and thus (f) of the preceding exercise implies the 
upper bound theorem in the formulation with the h-vector (5.3) . IIJ 
If (a) and (b) are applied to the cyclic polytopes, we get equality in 
the bound for h1 in Exercise 5(f) . In fact, the reverse passage (fro1n an 
X c R n-d in general position to a simplicial polytope in R d) is possible 
as well (see [WelOl] ) ,  and so the exact Lovasz lemma can also be derived 
from the upper bound theorem. 

7. This exercise shows limits for what can be proved about k-scts using 
Corollary 1 1 .3.2 alone. 
(a) Construct an n-point set X c R2 and a collection of !1(n312 ) segments 
with endpoints in X such that no line intersects more than O(n) of these 
segments. 0 
(b) Construct an n-point set in R3 and a collection of !1(n512 ) triangles 
with vertices at these points such that no line intersects more than O(n2 ) 
triangles. 0 

8. (The Dey-Edelsbrunner proof of HFAC3 (n) = O(n813 ) )  Let X be an 
n-point set in R3 in general position (make a suitable general position 
assumption) , and let T be a collection of t triangles with vertices at points 
of X. By a crossing we mean a pair (T, e) , where T E T is a triangle 
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and e is an edge of another triangle from T, such that e intersects the 
interior of T in a single point (in particular, e is vertex-disjoint from T). 
(a) Show that if t > Cn2 for a suitable constant C, then two triangles 
sharing exactly one vertex intersect in a segment , and conclude that at 
least one crossing exists. 0 
(b) Show that at least t - Cn2 crossings exist . 0 
(c) Show that for t > C' n2 , with C' > C being a sufficiently large con
stant, at least n(t3 jn4) crossings exist. Infer that there is an edge crossing 
0( t3 jn6) triangles. (Proceed as in the proof of the crossing number the
orem.)  0 
(d) Use Corollary 1 1 .3 .2 to conclude that HFAC3 (n) = O(n813 ) .  III 

11.4 A Better Upper Bound in the Plane 

Here we prove an improved bound on the number of halving edges in the 
plane. 

11 .4.1 Theorem. The maximum possible number of ha.lving edges of an n
point set in the plane is at most O(n413 ) .  

Let X be an n-point set in the plane in general position, and let us draw 
all the halving edges as segments. In this way we get a drawing of a graph 
(the graph of halving edges) in the plane. Let deg( x) denote the degree of x 

in this graph, i.e. , the number of halving edges incident to x, and let cr(X) 
denote the number of pairs of the halving edges that cross. In the following 
example we have cr(X) = 2, and the degrees are ( 1 ,  1 ,  1 ,  1 ,  1 ,  3) . 

Theorem 1 1 .4 .1 follows frorn the crossing nurnber theorern (Theorern 4.3. 1 )  
and the following remarkable identity. 

11 .4.2 Theorem. For each n-point set X in the plane in general position, 
where n is even, we have 

( 1 1 .2) 

Proof of Theorem 11.4.1 .  Theorem 1 1 .4.2 implies, in particular, that 
cr(X) = O(n2) .  The crossing nutnber theorern shows that cr(X) = O(t3 jn2 ) -
0(n) , where t is the number of halving edges, and this implies t = O(n413) .  

D 
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Proof of Theorem 11 .4.2. First we note that by the halving-facet in
terleaving lemma, deg(x) is odd for every x E X, and so the expression 
� (deg(x)+1) in the identity (1 1 .2) is always an integer. 

For the following arguments, we forrnally regard the set X as a sequence 
(xi , x2 , . . .  , xn ) · From Section 9.3 we recall the notion of orientation of a 
triple (xi ,  Xj , xk ) : Assuming i < j < k, the orientation is positive if we make 
a right turn when going from Xi to Xk via Xj , and it is negative if we make 
a left turn. The order type of X describes the orientations of all the triples 
(xi , Xj , xk ) , 1 < i < j < k < n .  We observe that the order type uniquely 
determines the halving edge graph: Whether {xi , Xj } is a .halving edge or 
not can be deduced from the orientations of the triples involving Xi and Xj · 
Similarly, the orientations of all triples determine whether two halving edges 
cross. 

The theorern is proved by a continuous motion argument. We start with 
the given point sequence X,  and we move its points continuously until we 
reach some suitable configuration X0 for which the identity (11 .2) holds. For 
example, Xo can consist of n points in convex position, where we have � 
halving edges and every two of them cross. 

The continuous motion transforming X into X0 is such that the current 
sequence remains in general position, except for finitely many moments when 
exactly one triple (xi ,  Xj , xk ) changes its orientation. The points Xi ,  Xj , Xk 
thus become collinear at such a moment, but we assume that they always 
remain distinct, and we also assume that no other collinearities occur at that 
rnornent. Let us call such a moment a mutation at {xi , x j ,  x k } .  

We will investigate the changes of the graph of halving edges during the 
motion, and we will show that mutations leave the left-hand side of the 
identity ( 1 1 . 2) unchanged. 

Both the graph and the crossings of its edges remain combinatorially 
unchanged between the mutations. Moreover, some thought reveals that by 
a mutation at {x, y, z} ,  only the halving edges with both endpoints among 
x, y, z and their crossings with other edges can be affected; all the other 
halving edges and crossings remain unchanged. 

Let us first assume that { x, y} is a halving edge before the mutation at 
{ x, y, z}  and that z lies on the segment xy at the moment of collinearity: 

y y 

X X 
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Figure 1 1 . 1 .  Welzl's Little Devils. 

We note that { x, z} and {y, z} cannot be halving edges before the mutation. 
After the mutation, { x, y}  ceases to be halving, while { x, z} and {y, z} become 
halving. 

Let deg(z) = 2r+1  (before the mutation) and let h be the line passing 
through z and parallel to xy. The larger side of h, i.e. , the one with more 
points of X,  is the one containing x and y ,  and by the halving-facet inter
leaving lemma, r+ 1 of the halving edges emanating from z go into the larger 
side of h and thus cross xy. So the following changes in degrees and crossings 
are caused by the mutation: 

• deg(z), which was 2r+1 ,  increases by 2, and 
• cr(X) decreases by r+1 .  

It is easy to check that the left-hand side of the identity ( 1 1 .2) remains the 
same after this change. 

What other mutations are possible? One is the mutation inverse to the 
one discussed above, with z moving in the reverse direction. We show that 
there are no other types of mutations affecting the graph of halving edges. 
Indeed, for any mutation, the notation can be chosen so that z crosses over 
the segment xy. Just before the mutation or just after it, it is not possible for 
{ x, z} to be a halving edge and {y, z} not. The last remaining possibility is a 
mutation with no halving edge on {x, y , z } ,  which leaves the graph unchanged. 
Theorem 1 1 .4.2 is proved. D 

Tight bounds for small n. Using the identity ( 1 1 .2) and the fact that 
all vertices of the graph of halving edges must have odd degrees, one can 
determine the exact maximum number of halving edges for small point con
figurations (Exercise 1 ) .  Figure 1 1 . 1  shows examples of configurations with 
the maximum possible number of halving edges for n = 8, 10, and 12 .  These 
small examples seem to be misleading in various respects: For example, we 
know that the number maximum of halving edges is superlinear, and so the 
graph of halving edges cannot be planar for large n, and yet all the stnall 
pictures are planar. 

Bibliography and remarks. Theorem 1 1 .4 .1  was first proved by 
Dey [Dey98] , who discovered the surprising role of the crossings of 
the halving edges. His proof works partially in the dual setting, and 
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it relies on a technique of decomposing the k-level in an arrangement 
into convex chains discussed in Agarwal et al. [AACS98] . The identity 
( 1 1 .2 ) ,  with the resulting considerable simplification of Dey's proof, 
were found by Andrzejak et al. [AAHP+98] . They also computed the 
exact maximum number of halving edges up to n = 12 and proved 
results about k-facets and k-sets in dimension 3. 
Improved upper bound for k-sets in R3 . We outline the argument of 
Sharir et al. [SSTOl] proving that an n-point set X c R 3 in general 
position has at most 0( n2·5 ) halving triangles. Let T be the set of 
halving triangles and let t = 171 .  We will count the number N of 
crossing pairs of triangles in T in two ways, where a crossing pair 
looks like this: 

The triangles share one vertex p, and the edge of T1 opposite to p 
intersects the interior of T2 . 

The Lovasz lemma (Corollary 1 1 .3 .2 : no line intersects more than 
O(n2) halving triangles) implies N = O(n4) .  To see this, we first 
consider pairs ( f, T) , where f is a line spanned by two points p, q E X, 
t E 7, and R intersects the interior of T. Each of the (�) lines C 
contributes at most O(n2) pairs, and each pair (£, T) yields at most 3 
crossing pairs of triangles, one for each vertex of T. 

Now we are going to show that N = O(t2 /n) - O(tn) , which to
gether with N = O(n4) implies t = O(n2 ·5 ) .  Let p be a horizontal 
plane lying below all of X .  For a set A c R 3 ,  let A* denote the cen
tral projection of A from p into p. To bound N from below, we consider 
each p E X in turn, and we associate to it a graph Gp drawn in p. Let 
'Yp be the open half-space below the horizontal plane through p. The 
vertex set of the geometric graph Gp is Vp = (X n /'p)* .  Let 1ip C T 
be the set of the halving triangles having p as the highest vertex, and 
let Mp C T be the triangles with p as the middle-height vertex. Each 
T E 1ip contributes an edge of Gp, namely, the segment T* : 

Each T E Mp gives rise to an unbounded ray in Gp, namely, (Tn/v)* :  



1 1 .4 A Better Upper Bound i11 tl1e Plane 

. . . . . . .  . - - - - ·
·

· · · · 
.

.

.
. .  

....... 

- ·  . . . . .. 

... ;.-: . -.. 
u -.. .. . 

I -"" • ; 

... 
-

.. ..
.. .... ..... .. .

. .. .. . 
... 

Formally, we can interpret such a ray as an edge connecting the vertex 
q* E Vp to a special vertex at infinity. 

Let rnp == 1 1-lp l + IMp I be the total number of edges of Gp , including 
the rays, and let 'rp == IMP I be the nu1nber of rays. Write Xp for the 
number of edge crossings in the drawing of Gp . We have 

L mp == 2t and L rp == t, 
pEX pEX 

because each T E T contributes to one 1-lp and one Mp· We note that 
N > L::pEx· Xp, since an edge crossing in Gp corresponds to a crossing 
pair of triangles with a common vertex p. 

A lower bound for Xp is obtained using a decomposition of GP into 
convex chains, which is an idea from Agarwal et al. [AACS98] (used in 
Dey's original proof of the O(n413 ) bound for planar halving edges) . 
We fix a vertical direction in p so that no edges of Gp are vertical. Each 
convex chain is a contiguous sequence of (bounded or unbounded) 
edges of Gp that together forn1 a graph of a convex function defined 
on an interval. Each edge lies in exactly one convex chain. Let e be 
an edge of Gp whose right end is a (finite) vertex v. We specify how 
the convex chain containing e continues to the right of v: It follows an 
edge e' going from v to the right and turning upwards with respect 
to v but as little as possible. 

If there is no e' like this, then the considered chain ends at v: 

By the halving-facet interleaving lemma, the fan of edges emanating 
frorn v has an "antipodal'' structure: For every two angularly consecu
tive edges, the opposite wedge contains exactly one edge. This implies 
that e is uniquely determined by e' , and so we have a well-defined de
composition of the edges of Gp into convex chains. Moreover, exactly 

287 
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one convex chain begins or ends at each vertex. Thus, the number cp 
of chains equals � ( np + r P ) . 

A lower bound for the number of edge crossings Xp is the number 
of pairs {Ct , C2} of chains such that an edge of Ct crosses an edge of 
C2. The trick is to estimate the number of pairs { C1 , C2} that do not 
cross in this way. There are two possibilities for such pairs: C1 and C2 
can be disjoint or they can cross at a vertex: 

The number of pairs { C 1 , C2} crossing at a vertex is at most mp np, 
because the edge e1 of C1 entering the crossing determines both C1 
and the crossing vertex, and C2 can be specified by choosing one of 
the at most np edges incident to that vertex. Finally, suppose that C1 
and C2 are disjoint and C2 is above Ct . If we fix an edge e1 of Ct , then 
c2 is determined by the vertex where the line parallel to el translated 
upwards first hits C2 : 

We obtain Xp > (cf) - 2m,pnp , and a calculation leads to N >  L: xp == 

O(t2 /n) - O(nt) . This concludes the proof of the O(n2·5 )  bound for 
halving facets in R 3 •  

Having already introduced the decomposition of the graph of halv
ing edges into convex chains as above, one can give an extremely sim
ple alternative proof of Theorem 1 1 .4. 1 .  Namely, the graph of halving 
edges is decomposed into at most n convex chains and, similarly, into 
at 1nost n concave chains. Any convex chain intersects any concave 
chain in at most 2 points, and it follows that the number of edge 
crossings in the graph of halving edges is 0( n2) .  The application of 
the crossing number theorem finishes the proof. 

Exercises 1 . (a) Find the maximum possible number of halving edges for n = 4 and 
n = 6, and construct the corresponding configurations. � 
(b) Check that the three graphs in Figure 1 1 . 1 are graphs of halving 
edges of the depicted point sets. [!] 
(c) Show that the configurations in Figure 1 1 . 1 maximize the nurnber of 
halving edges. 8J 
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Two Applications of 

High-Dimensional Polytopes 

From this chapter on, our journey through discrete geometry leads us to the 
high-dimensional world. Up until now, although we have often been consid
ering geometric objects in arbitrary dimension, we could mostly rely on the 
intuition from the familiar dimensions 2 and 3. In the present chapter we can 
still use dimensions 2 and 3 to picture examples, but these tend to be rather 
trivial. For instance, in the first section we are going to prove things about 
graphs via convex polytopes, and for an n-vertex graph we need to consider 
an n-dimensional polytope. It is clear that graphs with 2 or 3 vertices cannot 
serve as very illuminating examples. In order to underline this shift to high 
dimensions, from now on we mostly denote the dimension by n instead of d 
as before, in agreement with the habits prevailing in the literature on high
dimensional topics. 

In the first and third sections we touch upon polyhedral combinatorics. 
Let E be a finite set , for example the edge set of a graph G, and let F be 
some interesting system of subsets of E, such as the set of all matchings in 
G or the set of all Hamiltonian circuits of G. In polyhedral combinatorics 
one usually considers the convex hull of the characteristic vectors of the sets 
of :F; the characteristic vectors are points of { 0, 1 }E c R E . For the two 
examples above, we thus obtain the matching polytope of G and the traveling 
salesman polytope of G. The basic problem of polyhedral combinatorics is to 
find, for a given :F, inequalities describing the facets of the resulting polytope. 
So1netiines one succeeds in describing all facets, as is the case for the matching 
polytope. This may give insights into the combinatorial structure of :F, and 
often it has algorithmic consequences. If we know the facets and they have 
a sufficiently nice structure, we can optimize any linear function over the 
polytope in polynomial time. This means that given some real weights of the 
elernents of E, we can find in polynomial time a maxiinum-weight set in F 
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(e.g. , a maximum-weight matching) . In other cases, such as for the traveling 
salesman polytope, describing all facets is beyond reach. The knowledge of 
some facets may still yield interesting consequences, and on the practical 
side, it can provide a good approxi1nation algoritlnn for the Inaximuin-weight 
set. Indeed, the largest traveling salesman problems solved in practice, with 
thousands of vertices, have been attacked by these methods. 

We do not treat polyhedral combinatorics in any systematic manner; 
rather we focus on two gems (partially) belonging to this area. The first one 
is the celebrated weak perfect graph conjecture, stating that the complement 
of any perfect graph is perfect, which is proved by combining combinatorial 
and polyhedral arguments. The second one is an algorithmically motivated 
problem of sorting with partial information, discussed in Section 12.3. We 
associate a polytope with every finite partially ordered set, and we reduce 
the question to slicing the polytope into two parts of roughly equal volume 
by a hyperplane. A key role in this proof is played by the Brunn-Minkowski 
inequality. This fundamental geometric inequality is explained and proved in 
Section 12.2 .  

1 2 . 1  The Weak Perfect Graph Conjecture 

First we recall a few notions from graph theory. Let G = (V, E) be a finite 
undirected graph on n vertices. By G we denote the complement of G, that 
is, the graph (V, (�) \ E) .  An induced subgraph of G is any graph that can 
be obtained from G by deleting some vertices and all edges incident to the 
deleted vertices (but an edge must not be deleted if both of its vertices remain 
in the graph) . Let w(  G) denote the clique number of G, which is the maximum 
size of a complete subgraph of G, and let a( G) = w(G) be the independence 
number of G. Explicitly, a(G) is the maximum size of an independent set 
in G, where a set S C V(G) is independent if the subgraph induced by S 
in G has no edges. The chromatic number of G is the smallest number of 
independent sets covering all vertices of G, and it is denoted by x( G).  

Both the problems of finding w( G) and finding x( G) are computationally 
hard. It is NP-complete to decide whether w(G) > k, where k is a part of 
the input, and it is NP-complete to decide whether x(G) = 3. Even approxi
mating x(G) or w(G) is hard. So classes of graphs where the clique number 
and/or the chromatic number are computationally tractable are of great in
terest. 

Perfect graphs are one of the most important such classes, and they in
clude many other classes found earlier. A graph G = (V, E) is called perfect 
if w(  G') = x( G') for every induced subgraph G' of G (including G' � G). 

For every graph G we have x(G) > w(G), so a high clique number is a 
"reason" for a high chromatic number. But in general it is not the only pos
sible reason, since there are graphs with w( G) = 2 but x(  G) arbitrarily large. 
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Perfect graphs are those whose chromatic number is exclusively controlled by 
the cliques, and this is true for G and also for all of its subgraphs. 

For perfect graphs, the clique number, and hence also the chromatic num
ber, can be computed in polynornial tin1e by a sophisticated algorithrn (re
lated to semidefinite programming briefly discussed in Section 15.5) . It is not 
known how hard it is to decide perfectness of a given graph. No polynomial
time algorithm has been found, but neither has any hardness result (such as 
coNP-hardness) been proved. But for graphs arising in many applications we 
know in advance that they are perfect. 

Typical non perfect graphs are the odd cycles C2k+ 1 of length 5 and larger, 
since w(C2k+ l )  = 2 for k >  2, while x(C2k+ l )  = 3. 

The following two conjectures were formulated by Berge at early stages 
of research on perfect graphs. Here is the stronger one: 

Strong perfect graph conjecture. A graph G is perfect if and 
only if neither G nor its complement contain an odd cycle of length 
5 or larger as an induced subgraph. 

This is still open, in spite of considerable effort. The second conjecture is this: 

Weak perfect graph conjecture. A graph is perfect if and only 
if its complement is perfect. 

This was proved in 1972. We reproduce a proof using convex polytopes. 

12 .1 .1  Definition. Let G = (V, E) be a graph on n vertices. We assign a 
convex polytope P(G) C Rn to G. Let the coordinates in Rn be indexed by 
the vertices of G; i.e., if V = { v1 , . . . , Vn } ,  then the points of P( G) are of 
the form x = (xv1 , • • •  , Xvn ) .  For an x E Rn and a subset U C V, we put 
x(U) = LvE U  Xv · 

The polytope P( G) is defined by the following inequalities: 

(i) Xv > 0 for each vertex v E V, and 
(ii) x (K) < 1 for each clique (complete suhgraph) K in the graph G. 

Observations. 

• P( G) C [0, 1 ] n . The inequality Xv < 1 is obtained from (ii) by choosing 
K = { v } .  

• Tl1e characteristic vector of each independent set lies in P (  G) . 
• If a vector x E P(G) is integral (i.e. , it is a 0/1 vector) ,  then it is the 

characteristic vector of an independent set. 

Before we start proving the weak perfect graph conjecture, let us intro
duce some more notation. Let w :  V ---+ {0, 1 ,  2, . . .  } be a function assigning 
nonnegative integer weights to the vertices of G. We define the weighted clique 
number· w ( G, w) as the rnaxiinurn possible weight of a clique, where the weight 
of a clique is the sum of the weights of its vertices. We also define the weighted 
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chromatic number x( G, w) as the minimum number of independent sets such 
that each vertex v E V is covered by w( v) of them. 

Now we can formulate the main theorem. 

12.1.2 Theorem. The following conditions are equivalent for a graph G: 

(i) G is perfect. 
(ii) w(G, w) = x(G, w) for any nonnegative integral weight function w. 
(iii) All vertices of tl1e polytope P( G) are integral (and thus correspond to 

the independent sets in G). 
(iv) The graph G is perfect. 

Proof of ( i) � ( ii) . This part is purely graph-theoretic. For every weight 
function w :  V ---+ {0, 1 ,  2 ,  . . .  } ,  we need to exhibit a covering of V by inde
pendent sets witnessing x(G, w) = w(G, w) .  If w attains only values 0 and 1 ,  
then we can use (i) directly, since selecting an induced subgraph of G is the 
same as specifying a 0/1 weight function on the vertices. 

For other values of w we proceed by induction on w(V) .  Let w be given 
and let vo be a vertex with 'W ( vo) > 1 .  We define a new weight function w': 

' ( ) - {  w(v) - 1  w v - w(v) 
for v = vo , 
for v =I= vo . 

Since w' (V) < w(V) ,  by the inductive hypothesis we assume that we have 
independent sets It , I2 , • • •  , IN covering each v exactly w'(v) times, where 
N = w(G, w') . If w(G, 'W) > N, then we can obtain the appropriate covering 
for w by adding the independent set {vo} ,  so let us suppose w(G, w) = N. 

Let the notation be chosen so that v0 E I1 • We define another weight 
function w": 

" (  ) - {  w(v) - 1 w v - w(v) 
for v E I1 , 
for v ¢ It . 

We claim that w( G, 1.1J11) < N. If not, then there exists a clique K with 
w"(K) = N = w(G, w' ) . By the choice of the Ii , we have N < w'(K) = 

2:� 1 IIi n Kl . Since a clique intersects an independent set in at most one 
vertex, K has to intersect each Ii . In particular, it intersects I 1 , and so 
w(K) > w"(K) = N, contradicting w(G, w) = N. 

We thus have w(G, w") < N. By the inductive hypothesis, we can produce 
a covering by independent sets showing that x(G, w") < N.  By adding I1 to 
it we obtain a covering witnessing x(G, w) = N. 
Proof of {ii) � {iii) .  Let x = (xv1 , • • •  , Xvn ) be a vertex of the convex poly
tope P( G) .  Since all the inequalities defining P( G) have rational coefficients, 
x has rational coordinates, and we can find a natural number q such that 
w = qx is an integral vector. We interpret the coordinates of w as weights of 
the vertices of G. Let K be a clique with weight N = w(G, w) . One of the 
inequalities defining P(G) is x(K) < 1 ,  and hence N = w(K) < q. 
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By (ii) we have x(G, w) � w(G, w) < q, and so there are independent sets 
/1 , . . .  , Iq (some of them may be empty) covering each vertex v E V precisely 
W-v times. Let ci be the characteristic vector of Ii ; then this property of the 
sets Ii can be written as x � �i 1 �ci . Thus x is a convex combination of 
the ci, and since it is a vertex of P( G) , it must be equal to some ci , which is 
a characteristic vector of an independent set in G. 
Proof of (iii) => (iv) . It suffices to prove x(G) = w(G) for every G 
satisfying (iii) ,  since (iii) is preserved by passing to an induced subgraph 
(right?) . 

We prove that a graph G fulfilling (iii) has a clique K intersecting all 
independent sets of the maximum size a(G). Then the graph G \ K has 
independence number a( G) - 1 , and by repeating the same procedure we can 
cover G by a(G) cliques. 

To find the required K, let us consider all the independent sets of size 
a �  a( G) in G and let M C P(G) be the convex hull of their characteristic 
vectors. We note that M lies in the hyperplane h � { x: x(V) � a} .  This h 
defines a (proper) face of P( G) , for otherwise, we would have vertices of P( G) 
on both sides of h, and in particular, there would be a vertex z with z (V) > a. 
This is impossible, since by (iii) , z would correspond to an independent set 
bigger than a. 

Each facet of P( G) corresponds to an equality in some of the inequalities 
defining P( G) . The equality can be either of the form Xv � 0 or of the form 
x(K) � 1 . The face F = P(G) n h is the intersection of some of the facets. 
Not all of these facets can be of the type xv = 0, since then their intersection 
would contain 0, while 0 fj. h. Hence all x E M satisfy x( K) = 1 for a certain 
clique K, and this means that K n I -=f. 0 for each independent set I of size a. 

Proof of (iv) => (i) . This is the implication (i) ==} (iv) for the graph G. 0 

Bibliography and remarks. Perfect graphs were introduced by 
Berge [Ber6l] , [Ber62] , who also formulated the two perfect graph con
jectures. The weak perfect graph conjecture was first proved ( combi
natorially) by Lovasz [Lov72] . The proof shown in this section follows 
Grotschel, Lovasz, and Schrijver [GLS88] , whose account is based on 
the ideas of [Lov72] and of Fulkerson [Fu170] . 

Grotschel et al. [GLS88] denote the polytope P(G) by QSTAB(G) 
and call it the clique-constrained stable set polytope (another name in 
the literature is the fractional stable set polytope) .  Here stable set is 
another common name for an independent set, and the stable set poly
tope STAB( G) C RIE l  is the convex hull of the characteristic vectors of 
all independent sets in G. As we have seen, STAB(G) = QSTAB(G) 
if and only if G is a perfect graph. Polyno1nial-tin1e algorithms for 
perfect graphs are based on beautiful geometric ideas (related to the 
famous Lovasz 19-function) , and they are presented in (GLS88] or in 
Lovasz [Lov] (as well as in many other sources) .  
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Polyhedral combinatorics was initiated mainly by the results of 
Edmonds [Edm65] . For a graph G = (V, E), let M(G) denote the 
matching polytope of G, that is, the convex hull of the characteris
tic vectors of the matchings in a graph G. According to Edmonds' 
matching polytope theorem, M (G) is described by the following in
equalities: Xe > 0 for all e E E, l::eEE: vEe Xe < 1 for all v E V, and 
LeEE: eCS Xc < � ( IS I-1 )  for all S C V of odd cardinality. For bipar
tite G, the constraints of the last type are not necessary (this is an 
older result of Birkhoff) .  

A modern textbook on combinatorial optimization, with an in
troduction to polyhedral combinatorics, is Cook, Cunningham, Pul
leyblank, and Schrijver [CCPS98] . It also contains references to the
oretical and practical studies of the traveling salesman problem by 
polyhedral rnethods. 

A key step in many results of polyhedral combinatorics is prov
ing that a certain system of inequalities defines an integral polytope, 
i.e. , one with all vertices in zn. Let us mention just one important 
related concept : the total unimodularity. An m x n matrix A is to
tally unimodular if every square su b1natrix of A has determinant 0 , 1 ,  
or -1 .  Total unimodularity can be tested in polynomial time (using 
a deep characterization theorem of Seymour) .  All polyhedra defined 
by totally unimodular matrices are integral, in the sense formulated 
in Exercise 6 .  For other aspects of integral polytopes (sometimes also 
called latt·ice polytopes) see, e.g. , Barvinok [Bar97] (and Section 2.2) .  

Exercises 

1 .  What are the integral vertices of the polytope P( C5 )? Find some nonin
tegral vertex (and prove that it is really a vertex! ) .  0 

2. Prove that for every graph G and every clique K in G, the inequality 
x(K) < 1 defines a facet of the polytope P( G). In other words, there 
is an x E P(G) for which x(K) == 1 is the only inequality among those 
defining P( G) that is satisfied with equality. � 

3. (On Konig's edge-covering theorem) Explain why bipartite graphs are 
perfect, and why the perfectness of the complements of bipartite graphs is 
equivalent to Konig's edge-covering theorem asserting that the maximurn 
number of vertex-disjoint edges in a bipartite graph equals the minimum 
number of vertices needed to intersect all edges (also see Exercise 10 . 1 .5) .  
� 

4. (Comparability graphs and Dilworth's theorem) For a finite partially 
ordered set (X, < )  (see Section 12.3 for the definition), let G = (X, E) 
be the graph with E = {{u, v} E (�) : u < v or v < u} ;  that is, edges 
correspond to pairs of comparable elements. Any graph isomorphic to 
such a G is called a comparability graph. We also need the notions of a 
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chain (a subset of X linearly ordered by <) and an antichain (a subset 
of X with no two elements comparable under <) .  
(a) Prove that any finite (X, <) is the union of at most c antichains, 
\vhere c is the length of the longest chain, and check that this implies the 
perfectness of comparability graphs. � 
(b) Derive from (a) the Erdos-Szekeres lemma: If a1 , a2 , • • .  , an are ar
bitrary real numherH, then there exist indices it < i2 < · · · < ik with 
k2 > n and such that the subsequence ai1 ,  ai2 , • • •  , aik is monotone (non
decreasing or decreasing) . � 
(c) Check that the perfectness of the complements of comparability 
graphs is equivalent to the following theorem of Dilworth [Dil50] : Any 
finite (X, <) is the union of at most a chains, where a is the maximum 
number of elements of an antichain. OJ 

5. (Hoff1nan 's characterization of polytope integrality) Let P be a (bounded) 
convex polytope in Rn such that for every a E zn, the minimum of the 
function x M (a, x) over all x E P is an integer. Prove that all vertices 
of p are integral (i.e. ' they belong to zn) .  IT] 

6. (Kruskal-Hoffman theorem) 
(a) Show that if A is a nonsingular n x n totally uni1nod ular n1atrix 
(all square submatrices have determinant 0 or ±1) ,  then the mapping 
X M Ax maps zn bijectively onto zn. [I] 
(b) Show that if A is an m x n totally unimodular matrix and b is an 
m-dimensional integer vector such that the system Ax = b has a real 
solution x, then Ax = b has an .integral solution as well. [I] 
(c) Let A be an m X n totally unimodular matrix and let u, v E zn 
and w ,  z E zm be integer vectors. Show that all vertices of the convex 
polyhedron given by the inequalities u < x < v and w < Ax < z are 
integral. OJ 

7. (Helly-type theorem for lattice points in convex sets) 
(a) Let A be a set of 2d + 1 points in zd. Prove that there are a, b E A 
with � (a + b) E zd. [I] .. 
(b) Let {1 ' . . .  ' rn be cloHed half-Hpaces in R d' n > 2d + 1 '  and suppose 
that the intersection of every 2d of them contains a lattice point (a point 
of zd) .  Prove that there exists a lattice point common to all the 'Yi . � 
(c) Prove that the number 2d in (b) is the best possible, i .e. , there are 2d 
half-spaces such that every 2d - 1 of them have a common lattice point 
but there is no lattice point common to all of them. � 
(d) Extend the Helly-type theorem in (b) to arbitrary convex sets instead 
of half-spaces. � 
The result in (d) was proved by Doignon [Doi73] ; his proof starts \vith (a) 
and proceeds on the level of abstract convexity {while the proof suggested 
in (b) is more geometric) . 
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12.2 The Brunn-Minkowski Inequality 

Let us consider a 3-dimensional convex loaf of bread and slice it by three 
parallel planar cuts. 

As we will derive below, the middle cut cannot have area smaller than both 
of the other two cuts. Let us choose the coordinate system so that the cuts 
are perpendicular to the x1-axis and denote by v ( t) the area of the cut by the 
plane x1 = t .  Then the claim can be stated as follows: For any t1 < t < t2 we 
have v(t) > min(v(t1 ) ,  v(t2 ) ) .  Thus, there is some to such that the function 
t t--t v(t) is nondecreasing on (- oo ,  to] and nonincreasing on [to , oo ) .  Such a 
function is called unimodal. A similar result is true for any convex body C in 
Rn+I if v(t) denotes the n-dimensional volume of the intersection of C with 
the hyperplane {xi = t} .  

How can one prove such a statement? In the planar case, with n = 1 ,  
it is easy to see that v(t) is a concave function on the interval obtained by 
projecting C on the x1-axis. 
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This might tempt one to think that v(t) is concave on the appropriate interval 
in higher dimension, too, but this is false in general! (See Exercise 1 . )  There 
is concavity in the game, but the right function to look at in Rn+l is v(t) 11n. 
Perhaps a little more intuitively, we can define r( t) as the radius of the n-di
mensional ball whose volume equals v(t) . We have r(t) = Rnv(t) 11n, where 
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Rn is the radius of a unit-volume ball in R n ; let us call r ( t) the equivalent 
radius of C at t. 
12.2.1 Theorem (Brunn's inequality for slice volumes) . Let C c 
Rn+l be a compact convex body and let the interval [tmin ,  tmax] be the pro
jection of C on the x1 -axis. Then the equivalent radius function r( t) (or, 
equivalently, the function v (t) 11n) is concave on [tmin , tmax] . Consequently, 
for any t 1  < t < t2 we have v (t) > min( v (t 1 ) , v (t2 ) ) . 

Brunn's inequality is a consequence of the following more general and 
more widely applicable statement dealing with two arbitrary compact sets. 

12.2.2 Theorem (Brunn-Minkowski inequality) . Let A and B be non
empty compact sets in R n . Then 

vol(A + B) 11n > vol(A) l/n + vol(B) 1/n. 
Here A + B = {a + b: a E A, b E B} denotes the Minkowski sum of A 

and B. If A' is a translated copy of A, and B' a translated copy of B, then 
A' + B' is a translated copy of A + B. So the position of A + B with respect 
to A and B depends on the choice of coordinate system, but the shape of 
A +  B does not. One way of interpreting the Minkowski sun1 is as follows: 
Keep A fixed, pick a point bo E B, and translate B into all possible positions 
for which b0 lies in A. Then A +  B is the union of all such translates. Here is 
a planar example: 

Sometin1es it is also useful to express the Minkowski sum A+B as a projection 
of the Cartesian product A x B c R2n by the 1napping {x, y) � x+y, 
x, y E Rn . 

Proof of Brunn's inequality for slice volumes from the Brunn
Minkowski inequality. First we consider "convex combinations" of sets 
A, B C Rn of the form ( 1-t)A + tB, where t E [0, 1] and where tA stands for 
{ta: a E A}. As t goes from 0 to 1 ,  ( 1- t)A + tB changes shape continuously 
from A to B. 

Now, if A and B are both convex and we place them into Rn+l so that A 
lies in the hyperplane { x1 = 0} and B in the hyperplane { x1 = 1 } ,  it is not 
difficult to check that (1- t)A+ tB is the slice of the convex body conv(AUB) 
by the hyperplane { x1 = t } ;  see Exercise 2 :  
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Xt = 0 Xt = t 

Let us consider the situation as in Brunn's inequality, where C C Rn+l 
is a convex body. Let A and B be the slices of C by the hyperplanes { x1 = 

t1 } and {x = t2 } ,  respectively, where t1 < t2 are such that A, B =/= 0. For 
convenient notation, we change the coordinate system so that t1 = 0 and 
t2 = 1 .  To prove the concavity of the function v(t) 1 fn in Brunn's inequality, 
we need to show that for all t E (0, 1 ) ,  

( 1-t) vol(A) 1/n + t vol(B) 1/n < vol(M)1/n , (12 .1) 

where M is the slice of C by the hyperplane ht = { x 1 = t} . Let C' = 

conv(A U B) and M' = C' n ht . We have C' C C and !vi' C M. By the 
remark above, M' = ( 1-t)A + tB, and so the Brunn-11inkowski inequality 
applied to the sets ( 1-t) A and tB yields 

vol(M) 1/n > vol(M') 1/n = vol ( ( l-t)A + tB) 1fn 
> vol ( ( 1-t)A) 1fn + vol(tB) 1fn 
= ( 1-t) vol(A)l/n + t vol(B) 1fn . 

This verifies ( 12 . 1 ) . D 

Proof of the Brunn-Minkowski inequality. The idea of this proof is 
simple but perhaps surprising in this context. Call a set A C Rd a brick set if 
it is a union of finitely many closed axis-parallel boxes with disjoint interiors. 
First we show that it suffices to prove the inequality for brick sets (which is 
easy but a little technical) , and then for brick sets the proof goes by induction 
on the number of bricks. 

12.2.3 Lemma. If the Brunn-l\1inkowski inequality holds for all nonempty 
brick sets A' , B' C R n ,  then it is valid for all nonempty compact sets A, B C 
Rn as well. 

Proof. We use a basic fact from measure theory, namely, that if X1 :J X2 :J 
X3 :J · · · is a sequence of measurable sets in Rn such that X = n� 1 Xi , 
then the numbers vol(Xi) converge to vol(X). 
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Let A, B C Rn be nonempty and compact. For k ==  1 , 2, . . .  , consider the 
closed axis-parallel cubes with side length 2-k centered at the points of the 
scaled grid 2-kzn (these cubes cover Rn and have disjoint interiors) . Let Ak 
be the union of all such cubes intersecting the set A, and sin1ilarly for Bk . 

We have A 1 ::) A2 ::) · · · and nk Ak == A (since any point not belonging to A 
has a positive distance from it , and the distance of any point of Ak from A 
is at most 2-kfo) . Therefore, vol(Ak ) ---t vol(A) and vol(Bk ) ---t vol (B) . 

\Ve claim that A+ B ::) nk (Ak + Bk ) · To see this, let x E Ak + Bk for all k. 
We pick Yk E Ak and Zk E Bk with x == Yk + Zk , and by passing to convergent 
subsequences we may assume that Yk ---t y E A and zk ---t z E B. Then we 
obtain x = y + z E A +  B. Thus limk-HxJ vol (Ak + Bk ) < vol(A + B) . By 
the Brunn-Minkowski inequality for the brick sets Ak, Bk , we have vol(A + 
B) l/n > limk-+oo vol(Ak + Bk ) l /n > limk-+oc (vol(Ak ) 1/n + vol(Bk ) lfn ) 
vol(A) 11n + vol(B) 1/n .  D 

Proof of the Brunn-Minkowski inequality for brick sets. Let A 
and B be brick sets consisting of k bricks in total. If k == 2, then both 
A and B, and A + B too, are bricks. Then if x1 , . . .  , Xn are the sides of 
A and y1 , . . .  , Yn are the sides of B, it suffices to establish the inequality 
(Tin ) 1/n (Tin ) 1/n (Tin ( ) ) 1/n . . 

i=I xi + i=I Yi < i=l Xi +Yi ; we leave this to Exercise 3. 
Now let k > 2 and suppose that the Brunn-Minkowski inequality holds 

for all pairs A, B of brick sets together consisting of fewer than k bricks. Let 
A and B together have k bricks, and let the notation be chosen so that A 
has at least two bricks. Then it is easily seen that there exists a hyperplane h 
parallel to some of the coordinate hyperplanes and with at least one full brick 
of A on one side and at least one full brick of A on the other side (Exercise 4) .  
By a suitable choice of the coordinate system, we may assume that h is the 
hyperplane { x1 == 0} .  

Let A' be the part of A on one side of h and A" the part on the other side. 
More precisely, A' is the closure of A n h ffi ,  where h ffi is the open half-space 
{ x1 > 0} ,  and similarly, A" is the closure of A n he . Hence both A' and A" 
have at least one brick fewer than A. 

Next, we translate the set B in the x1-direction in such a way that the 
hyperplane h divides its volume in the same ratio as A is divided (translation 
does not influence the validity of the Brunn-Minkowski inequality) . Let B' 
and B" be the respective parts of B. 



300 Chapter 1 2: Two Applications of High-Dimensional Polytopes 

B' 
A' 

0 

D 
B" 

Putting p = vol(A')/ vol(A), we also have p = vol(B')/ vol(B). (If vol(A) = 0 
or vol(B) = 0, then the Brunn-Minkowski inequality is obvious. )  

The sets A' and B '  together have fewer than k bricks, so we can use the 
inductive assumption for them, and similarly for A" , B". 

The set A' + B' is contained in the closed half-space {x1 > 0}, and 
A" + B" lies in the opposite closed half-space { x1 < 0}. Therefore, crucially, 
vol(A + B) > vol(A' + B') + vol(A" + B") .  We calculate 

vol(A + B) > vol(A' + B') + vol(A" + B") 

( induction} > [ vol(A') 1fn + vol(B') 1 fn r + [ vol(A"?fn + vol(B")1/nr 
[pl/n vol(A) 1fn + p1fn vol(B) 1fn] n 
+ [ {1-p} 1/n vol(A) 1fn + (1-p?fn vol(B) 1fn] n 

= [vol(A) 1fn + vol(B) 1fnr . 

This concludes the proof of the Brunn-Minkowski inequality. 

Bibliography and remarks. Brunn's inequality for slice volumes 
appears in Brunn's dissertation from 1887 and in his Habilitations
schrift from 1889. Minkowski's formulation of Theorem 12.2 .2 (proved 
for convex sets) was published in the 1910 edition of his book [Min96] . 
A proof for arbitrary compact sets was given by Lusternik in 1935; 
see, e.g. , the Sangwine-Yager [SY93] for references. 

The proof of the Brunn-Minkowski inequality presented here fol
lows Appendix III in Milman and Schechtman [MS86] . Several other 
proofs are known. A modern one, explained in Ball [Bal97] , derives a 
more general inequality dealing with functions. Namely, if t E ( 0, 1 )  
and J,  g,  and h are nonnegative measurable functions Rn --t R 
such that h ( ( l-t)x + ty) > f(x) 1-tg (y) t for all x, y E Rn, then 

fRn h > (JRn f) l
-t (JRn g) t (the Prekopa-Leindler ineq'Uality) . By 

letting f, g, and h be the characteristic functions of A, B, and A +  B, 
respectively, we obtain vol (  ( 1-t)A + tB) > vol(A) l-t vol(B)t . This is 
an alternative form of the Brunn-Minkowski inequality, from which 

D 
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the version in Theorem 12 .2.2 follows quickly (see Exercise 5) .  Ad
vantageously, the dimension does not appear in the Pn§kopa-Leindler 
inequality, and it is simple to derive the general case from the !-dimen
sional case by induction; see Exercise 7. This passage to a dimension
free form of the inequality, which can be proved from the !-dimensional 
case by a simple product argument, is typical in the modern theory of 
geometric inequalities (a similar phenomenon for measure concentra
tion inequalities is mentioned in the notes to Section 14.2) . 

The Brunn-l\1inkowski inequality is just the first step in a so
phisticated theory; see Schneider [Sch93] or Sangwine-Yager [SY93] . 
Among the most prominent notions are the mixed volumes. As was 
discovered by Minkowski, if Kt , . . .  , Kr C Rn are convex bodies and 
.A1 ,  A2 , . . .  , Ar are nonnegative real parameters, then vol(A1K1 +.A2K2+ 
· · · + ArKr) is a homogeneous symmetric polynomial of degree n. 
For 1 < i 1 < i2 < · · · < i. < r the coefficient of A ·  A ·  · · · A ·  - - - - n - ' 'lt 'l2 tn 
is denoted by V ( Ki1 ,  Ki2 , • • •  , Kin } and called the mixed volume of 
Ki 1 , Ki2 , • • •  , Kin .  A powerful generalization of the Brunn-Minkowski 
inequality, the Alexandrov-Fenchel inequality, states that for any con
vex A, B, K3 , K2 , . . . , Kn C Rn , we have 

V(A, B, K2 , . . .  , Kn)2 > V(A, A, K3 , . . .  , Kn) · V(B, B, K3 , . . .  , Kn) · 

Exercises 

1 .  Let A be a single point and B the n-dimensional unit cube. What is the 
function v(t) = vol ( ( 1-t)A + tB) ? Show that v (t)fJ is not concave on 
(0, 1] for any {3 > � .  II1 

2. Let A, B C Rn be convex sets. Show that the sets conv ( ( {0} xA) U 
( { 1 }  xB) ) and UtE(O, l) 

[ { t} X ( ( 1-t)A + tB)] (in Rn+l ) are equal. m 
3. Prove that 

(g Xir/n + (g Yir/n < (g(xi + Yi )r/n 

for arbitrary positive reals Xi, Yi . 0 4. Show that for any brick set A with at least two bricks, there exists a 
hyperplane h parallel to one of the coordinate hyperplanes that has at 
least one full brick of A on each side. 0 

5. (Dimension-free form of Brunn-Minkowski) Consider the following two 
statements: 
(i) Theorem 12.2.2, i .e. , vol(A + B) 11n > vol(A) 1fn + vol(B)1/n for every 
nonempty compact A, B C Rn . 
(ii) For all compact C, D C Rn and all t E (0, 1 ) ,  vol ( ( l-t)C + tD) > 
vol( C) 1-t vol(D)t . 
(a) Derive (ii) fro1n (i) ; prove and use the inequality ( 1 -t)x+ ty > x1- tyt 
(x, y positive reals, t E (0, 1 ) ) .  0 
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(b) Prove (i) from (ii) . 0 
6. Give a short proof of the !-dimensional Brunn-Minkowski inequality: 

vol(A + B) > vol(A) + vol(B) for any nonempty measurable A, B c R. 
0 

7. (Brunn-Minkowski via Prekopa-Leindler) The goal is to establish state
ment (ii) in Exercise 5. 
(a) Let J, g, h : R ---+ R be bounded nonnegative measurable functions 
such that h( ( l-t)x+ ty) > f(x) 1 -tg(y)t for all x, y E R and all t E (0, 1) .  
Use the one-dimensional Brunn-Minkowski inequality (Exercise 6)  to 
prove J h > ( 1-t) (J f) + t (J g) (all integrals over R) ; by the inequality 

in Exercise 5 (a) , the latter expression is at least (J f) l-t (J g)
t
. First 

show that we may assume sup f = sup g = 1 .  IIJ 
(b) Prove statement (ii) in Exercise 5 by induction on the dimension, 
using (a) in the induction step. 0 

12.3 Sorting Partially Ordered Sets 

Here we present an amazing application of polyhedral combinatorics and 
of the Brunn-Minkowski inequality in a proble1n in theoretical computer 
science: sorting of partially ordered sets. We recall that a partially ordered set, 
or poset for short, is a pair (X, -< ) ,  where X is a set and -< is a binary relation 
on X (called an ordering) satisfying three axioms: reflexivity ( x -< x for all 
x) ,  transitivity (x -< y and y -< z implies x -<  z) , and weak antisymmetry (if 
x -< y and y -< x, then x = y) .  The ordering -< is linear· if every two elements 
of x, y E x·are comparable; that is, X -<  y or y -< X. 

Let X be a given finite set with some linear ordering < .  For example, 
the elements of X could be identical-looking golden coins ordered by their 
weights (assuming that no two weights exactly coincide) .  We want to sort 
X according to < ;  that is, to list the elements of X in increasing order. We 
can get information about < by pairwise comparisons: We can choose two 
elements a, b E X and ask an oracle whether a < b or a > b. In our example, 
we have precise scales such that only one coin fits on each scale, which allows 
us to make pairwise comparisons. Our sorting procedure may be adaptive: 
The elements to be con1pared next may be selected depending on the outcome 
of previous comparisons. We want to make as few comparisons as possible. 

In the usual sorting problem we begin with no information about the or
dering < whatsoever. As is well known, 8 ( n log n) comparisons are sufficient 
and also necessary in the worst case. Here we consider a different setting, 
when we start with some information already given. Namely, we obtain (ex
plicitly) some partial ordering -< on X,  and we are guaranteed that x -< y 
implies x < y; that is, < is a linear extension of -<. In the example with coins, 
some weighings have already been made for us before we start. How many 
comparisons do we need to sort? 
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Let E( -< )denote the set of all linear extensions of a partial ordering -< 
and let e( -<) == IE( -< ) 1  be the number of linear extensions. To sort means to 
select one among the e(-<)  possible linear extensions. Since a comparison of 
distinct elements a and b can have two outcomes, we need at least log2 e(  -<)  
comparisons in the worst case to distinguish the appropriate linear extension. 
Is this lower bound always asymptotically tight? Can one always sort using 
O(log2 e( -<)) comparisons, for any -<? An affirmative answer is implied by 
the following theorem: 

12.3.1 Theorem (Efficient comparison theorem) .  Let (X, -< ) be a 
poset, and suppose that -< is not linear. Then there exist elements a, b E X 
such that 

8 < 
e(� + (a, b) ) 

< 1 - 8 - e(  -<) - ' 

where 8 > 0 is an absolute constant and -< + (a, b) stands for the transitive 
closure of the relation -< U { (a, b) } ,  that is, the partial ordering we obtain 
frorn -< if we are told that a precedes b. 

How do we usc this for sorting -<? For the first comparison, we choose 
the two elements a, b as in the theorem. Depending on the outcome of this 
comparison, we pass either to the partial ordering -< +(a, b) or to -< +(b, a) .  

· In both cases, the number of linear extensions has been reduced by the factor 
1 -8: For a < b this is clear by the theorem, and for a > b this follows 
from the equality e (-< + (a, b) ) + e (-< + (b, a ) )  == e(  -<) .  Hence, proceeding by 
induction, we can sort any partial ordering -< using at most flog1 /(l -�) e(-<)1  

. comparisons. 
The conjectured "right" value of 8 in Theorem 12 .3 .1  is ; � 0.33; obvi

ously, one cannot do any better for the poset 

(meaning that (a, b) is the only pair of distinct elements in the relation -< ) .  
The proof below gives 8 == 2

1e � 0. 184, and more complicated proofs yield 
better values, although � seems still elusive. 

Order polytopes. We assign certain convex polytopes to partial orderings. 

12.3.2 Definition (Order polytope) . Let (X , -<) be an n-element poset. 
Let tl1e coordinates in R n be indexed by the elernents of X. We define a 
polytope P( -< ) , the order polytope of -< ,  as the set of all x E [0, 1 ]n  satisfying 
the following inequalities: 

Xa < Xb for every a, b E X with a -< b. 

Here is an alternative description of the order polytope: 
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12.3.3 Observation. The vertices of the order pol,ytope P( -<)  are precisely 
the characteristic vectors of all up-sets in (X, --<) ,  where an up-set is a subset 
U C X such that if a E U and a -<  b, then b E  U. 

Proof. It is easy to see that the characteristic vector of an up-set is in 
P( -<) ,  and that any 0/ 1 vector in P( -<) determines an up-set. It remains to 
check that all vertices of P( -<) are integral. Any vertex is the intersection of 
some n facet hyperplanes. Since all potential facet hyperplanes have the form 
Xa ::;:;::: Xb, or Xa ::;:;::: 0, or Xa ::;:;::: 1 ,  the integrality is obvious. D 

12.3.4 Observation. Let X be an n-element set. 

(i) If < is a linear ordering on X, then P( <) is a simplex of volume 1/n! . 
(ii) For any partial ordering -< on X ,  the simplices of the form P( <) ,  "vhere < 

is a linear extension of --< ,  cover P( -<)  and have disjoint interiors. Hence 
vol( P( -<)) = �! e (  -<) .  

Here is the order polytope of a 3-element poset: 

It is subdivided into 3 tetrahedra corresponding to linear extensions. 

Proof of Observation 12.3.4. In (i) , consider the ordering 1 < 2 < · · · < n. 
The characteristic vectors of up-sets have the form (0, 0, . . .  , 0, 1, 1 ,  . . .  , 1 ) .  
There are n+ 1 of them, and they are a:ffinely independent, so P(  <) is a 
simplex. Other linear orderings differ by a permutation of coordinates, so 
we get congruent simplices. The volume could be calculated directly, but it 
follows easily fron1 considerations below. 

As for ( ii) , any point ( x 1 ,  . . . , Xn) E P(-<) with distinct coordinates de
termines a unique linear extension of -< ,  namely the one given by the natural 
ordering of its coordinates as real numbers. Conversely, for any linear exten
sion < E E( -<) ,  we have P( <)  C P( --<) by definition. Hence the congruent 
simplices corresponding to linear extensions subdivide P( -<) .  

To see that the simplices have volume 1/n! ,  take the discrete ordering (no 
two distinct elements are comparable) for -<. The order polytope is the unit 
cube [0, 1]n , and it is subdivided into n! congruent simplices corresponding 
to the n! possible linear orderings. D 

Height and center of gravity. Let X be a finite set and < a linear 
ordering on it. For a E X, we define the height of a in < ,  denoted by h< (a) , 
as I { x E X:  x < a} I ·  For a poset (X, -< ) ,  the height of an element is defined 
as the average height over all linear extensions: 
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1 
h-< (a) = '"""' h< (a) . - e(-<) � - < E E( -<)  
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If -< is clear from context , we omit it in the subscript and we write just h(a). 
The "good" elements a, b in the efficient comparison theorem can be se

lected using the height. Namely, we show that any two distinct a, b with 
jh(a) - h(b) l < 1 will do. (It is simple to check that if -< is not a linear or
dering, then such a and b always exist ; see Exercise 1 . )  

We now relate the height to the order polytope. 

12.3.5 Lemma. For any n-element poset (X, -< ) , the center of gravity of the 
order polytope P(--<()  is c = (ca : a E X) , where Ca = n�l h-< (a) . 

Proof. The center of gravity of P( -< ) is the arithmetic average of centers 
of gravity of the simplices P( < ) with <E E ( -< ) . Hence it suffices to prove 
the lemma for a linear ordering <.  By permuting coordinates, it suffices to 
calculate that for the simplex with vertices of the form (0, . . .  , 0, 1 ,  . . .  , 1 ) , the 
center of gravity is n�l ( 1 ,  2 , . . .  , n) . This is left as Exercise 2. D 

Proof of the efficient comparison theorem. Given the poset (X, -< ) , 
we consider two elements a, b E  X with l h(a) - h(b) l < 1 .  We want to show 
that the number of linear extensions of both -< + (a, b) and -< + (b, a) is at 
least a constant fraction of e( -< ) . Consider the order polytopes P = P( -<) ,  
P< = P(-< + (a, b) ) ,  and P> = P(-< + (b, a) ) .  Geometrically, P is sliced into 
P< and P> by the hyperplane h = {x E Rn: Xa = xb} · 

By Observation 12.3.4(ii) , it suffices to show that the volumes of both P< 
and P> are at least a constant fraction of vol( P). 

For convenience, let us introduce a new coordinate system in R n , where 
the first coordinate y1 is xb -X a and the others complete it to an orthonormal 
coordinate system (y1 , . . .  , Yn) · Hence h is the hyperplane y1 = 0. Let c(P) 
denote the center of gravity of P, and let c1 = c1 ( P) be its y1-coordinate. 

What geometric information do we have about P? It is a convex body 
with the following properties: 

• The projection of P onto the y1-axis is the interval [-1 ,  1] . This is be
cause there is an up-set of -< containing a and not b, and also an up-set 
containing b but not a, and thus P has a vertex with Xa = 1 ,  Xb = 0 and 
a vertex with Xa = 0, Xb = 1 .  

• We have - n�l < Ct < n�l , since c1 = n�l (h(a) - h(b)) and l h(a) 
h(b) l < 1 .  
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The proof of Theorem 12.3. 1 is finished by showing that any compact 
convex body P C Rn with these two properties satisfies 

1 1 
vol (P< ) > - vol(P) and vol(P> ) > -2 vol(P), - 2e - e 

where P< is the part of P in the half-space {y1 < 0} and P> is the other 
part. 

For t E [-1 ,  1 ] ,  let Pt be the ( n-1 )-dimensional slice of P by the hyper
plane {y1 == t } ,  and let r(t) be the equivalent radius of Pt , i .e . ,  the radius of 
an (n-1)-dimensional ball of volume voln_ 1 (Pt) · By Brunn's inequality for 
slice volumes (Theorem 1 2.2. 1 ) ,  r(t) is concave on [- 1 ,  1] . 

The Yt-coordinate of the center of gravity of P can be expressed as 

1 {
1 

c1 (P) = 
vol(P) }_1 t voln-1 (Pt) dt 

(imagine P composed of thin plates perpendicular to the y1 -axis) .  Hence c1 is 
fully determined by the function r( t ) .  In other words, the shapes of the slices 
of P do not really matter; only their volumes do, and so we may imagine that 
P is a rotational body whose slice Pt is an ( n-1 )-dimensional ball of radius 
r(t) centered at (t, 0, . . .  , 0) . 

We want to show that if c1 (P) > - n�l ' then vol(P> ) > 21e vol(P) . The 
inequality for vol( P < )  follows by symmetry. The key step is to pass to another, 
especially simple, rotational convex body K.  The slice Kt of K has radius 
K(t) ;  the functions K(t) and r(t) are schematically plotted below: 

w 

K(t) 
y u 

-1  0 1 u 

The graph of the function K( t) consists of two linear segments, and so /( is 
a double cone. First we construct the function K( t) for t positive. Here the 
graph is a segment starting at the point V == (0, r(O)) and ending at the point 
U == (u, O) . The number u is chosen so that vol(K> ) = vol(P> ) · Since r(t) is 
concave and K(t) is linear on [0, u] , we have u > 1 .  Moreover, as t grows from 
0 to 1 ,  we first have r(t) > K(t) , and then from some point on r(t) < K,(t) . 
This ensures that the center of gravity of K > is to the right of the center of 
gravity of P> (we can imagine that P> is transformed into K > by peeling 
off son1e mass in the region labeled "-" and n1oving it right, to the region 
labeled "+" ) .  
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Next , we define K(t) for t < 0. We extend the segment UV to the left until 
the (unique) point W such that when YWV is the graph of K(t) for negative 
t ,  we have vol( K < )  = vol( P < ) . As t goes from 0 down to -1 , K( t )  is first above 
T(t) and then below it . This is because at V, the segment WU decreases 1nore 
steeply than the function T ( t ) .  Therefore, we also have c1 ( K < ) > c1 ( P < ) , and 
hence Ct (K) > c1 (P) > - n�l . So, as was noted above, it �emains to show 
that vol(K> ) > 2� vol(K), which is a more or less routine calculation. 

We fix the notation as in the following picture: 

K< K> 

- 1  u 

We note that c1 ( K) is a weighted average of c1 ( K 1 ) and c1 ( K 2 ) ;  the weights 
are the volumes of K1 and K2 whose ratio is h1 : h2 . The center of gravity of 
an n-dimcnsional cone is at n� 1 of its height, and hence c1 ( K 1 )  == - nh_; 1 - � 
and c1 (K2 ) = n';l - �- Therefore, 

h ( hl ) + h ( h2 ) 1 - n+l 2 n+l h2 - h1 Ct (K) = 
h h 

- � =  - �. 1 + 2 n + 1  

We have � = 1-ht ,  and so from the condition c1 (K} > - n�I we obtain 
h2 + nh1 > n. We substitute h1 = u - h2 + 1 and rearrange, which yields 

u 1 
- > 1 - - . h2 - n ( 12.2) 

We are interested in bounding vol( K > )  from below. The cone K > is similar 
to /(2 , with ratio tt/ h2 . So 

vol(K> )  = (:J n vol(K2) = (:J n hl � h2 
vol(K) 

= u (
h
u ) n- 1 

vol(K) . u + 1 2 

Now we substitute for u/h2 from (12 .2) , obtaining 

vol(K > )  > u (1 - _!_) n- 1 
vol(K). - u +  1 n 
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Finally, u�l > � (as u > 1 )  and ( 1 - !)n- 1 > e-1 for all n, so vol(K> ) > 

2
1e vol(K) follows. D 

Bibliography and remarks. The statement of the efficient com
parison theorem with � = � ,  known as the "�- � conjecture," was con
jectured by Kislitsyn [Kis68] and, later but independently, by Fredman 
(unpublished) and by Linial [Lin84] . In this strongest possible form it 
remains a challenging open problem in the theory of partially ordered 
sets (see Trotter [Tho92] , [Tho95] for overviews of this interesting area) . 

The problem of sorting with partial information was considered 
by Fredrnan [Fre76) , "\\'ho proved that any n-element partially ordered 
set (X, -<)  can be sorted by at most log2 (e(-<))  + 2n comparisons. 
This is optimal unless e (  -<) is only subexponential in n.  The effi
cient comparison theorem was first proved, with fJ = 131 � 0.2727, 
by Kahn and Saks [KS84] . Their proof is quite complicated, and in
stead of the Brunn-Minkowski inequality it employs the more powerful 
Aleksandrov-Fenchel inequality. The constant 131 is optimal for their 
approach, in the sense that if a and b are elements of a poset such that 
! h (a) - h(b) l < 1 ,  then the comparison of a and b generally need not 
reduce the number of linear extensions by any better ratio. 

The simpler proof presented in this section is due to Kahn and 
Linial [KL91] , and a similar one, with a slightly worse 6, was found 
by Karzanov and Khachiyan; see [Kha89] . The method is inspired 
by proofs of a result about splitting a convex body by a hyperplane 
passing exactly through the center of gravity (Exercise 3) , proved by 
Griinbaum [Grii60] (see [KL91] for more re1narks on the history) .  Ob
servation 12.3.4, on which all the proofs of Theorem 12.3. 1 are based, 
is from Linial [Lin84] . 

The current best value of fJ = (5- v's)/10 � 0.2764 was achieved by 
Brightwell, Felsner, and Thotter [BFT95] . They extend the Kahn-Saks 
method, and instead of two elements a and b with lh (a) - h(b) < 1 ,  
they consider three elements a ,  b, c with h(a) < h(b) < h(c) < h(a) + 
2 .  Interestingly, they also construct an infinite (countable) poset for 
which their value of 6 is optimal (and so the natural infinite analogue 
of the �- � conjecture is false) . In order to formulate this result, one 
needs a probability measure on the set of all linear extensions of the 
considered poset. Their poset is thin, meaning that the maximum size 
of an antichain is bounded by a constant, and the probability measure 
is obtained by taking a limit over a sequence of finite intervals in the 
poset. 

The proofs of the efficient co1nparison theoren1 do not provide 
an efficient algorithm for actually computing suitable elements a, b. 
General methods for estimating the volume of convex bodies, men
tioned in Section 13.2, yield a polynomial-time randomized algorithm. 
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Kahn and Kim [KK95] gave a deterministic polynomial-time adap
tive sorting procedure that sorts any given n-element poset (X, -<)  
by O(log( e( -<)) )  comparisons. vVe at least mention some interesting 
concepts in their algorithm. Instead of the order polytope, they con
sider the chain polytope; this the convex hull of the characteristic 
vectors of all antichains in (X, -< ) .  Equivalently, it is the stable set 
polytope STAB(G) (see Section 12 . 1 )  of the comparability graph G 
of (X, -<) ,  where G = G (-<)  = (X, { { x ,  y} :  x -< y or y -< x}) .  As 
was shown by Stanley (Sta86] , the chain polytope has the san1e vol
ume as the order polytope. The next key notion is the entropy of a 
graph. For a given graph G = (V, E) and a probability distribution 
p: V -+ [0, 1] on its vertices, the entropy H ( G,  p) can be defined as 
minxESTAB(G) (- LvEV Pv log2 Xv) (there are several equivalent defi
nitions) . Graph entropy was introduced by Korner [Kor73] , and he 
and his coworkers achieved remarkable results in extremal set theory 
and related fields using this concept (see, e.g. , Gargano, Korner, and 
Vaccaro [GKV94] ) .  The entropy can be approximated in deterministic 
polynomial time, and the adaptive sorting algorithm of Kahn and Kim 
chooses the next comparison as one that increases the entropy of the 
comparability graph as much as possible (this need not always be an 
"efficient comparison" in the sense of Theorem 12.3. 1 ) .  

Exercises 

309 

1 .  Let (X, -<) be a finite poset. Prove that if -< is not a linear ordering, then 
there always exist a, b E  X with l h(a) - h(b) l < 1 .  IIJ 

2. Show that the center of gravity of a simplex with vertices ao , a 1 ,  . . .  , ad 
is the same as the center of gravity of its vertex set. m 

3. Let K be a bounded convex body in Rn, h a hyperplane passing through 
the center of gravity of K, and K1 and K2 the parts into which K is 
divided by h.  
(a) Prove that vol(K1 ) ,  vol(K2) > ( n�l )n vol(K) .  m 
(b) Show that the bound in (a) cannot be improved in general. 0 





13 

Volumes in High Dimension 

We begin with comparing the volume of the n-dimensional cube with the 
volume of the unit ball inscribed in it, in order to realize that volumes of 
"familiar" bodies behave quite differently in high dimensions from what the 
3-dimensional intuition suggests. Then we calculate that any convex polytope 
in the unit ball Bn whose nun1ber of vertices is at most polynomial in n 

occupies only a tiny fraction of Bn in terms of volume. This has interesting 
consequences for deterministic algorithms for approximating the volume of 
a given convex body: If they look only at polynomially many points of the 
considered body, then they are unable to distinguish a gigantic ball from a 
tiny polytope. Finally, we prove a classical result , John's lemma, which states 
that for every n-dimensional symmetric convex body K there are two similar 
ellipsoids with ratio fo such that the smaller ellipsoid lies inside K and the 
larger one contains K. So, in a very crude scale where the ratio fo can be 
ignored, each symmetric convex body looks like an ellipsoid. 

Besides presenting nice and important results, this chapter could help 
the reader in acquiring proficiency and intuition in geometric computations, 
which are skills obtainable mainly by practice. Several calculations of non
trivial length are presented in detail, and while some parts do not require 
any great ideas, they still contain useful small tricks. 

13.1 Volumes, Paradoxes of High Dimension, and 
Nets 

In the next section we are going to estimate the volumes of various convex 
polytopes. Here we start, more modestly, with the volumes of the simplest 
bodies. 
The ball in the cube. Let Vn denote the volume of the n-dimensional ball 
Bn of unit radius. A neat way of calculating Vn is indicated in Exercise 2; 
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the result, which can be verified in various other ways and found in many 
books of formulas, is 

7rn/2 
Vn = 

f(�+l)  
7r Ln/2J 2 r n/21 

Tii: 0<2i<n ( n - 2i) 
. 

Here f(x) = f000 tx- te-t dt is the usual gamma function, with f(k+1) = k! 
for natural numbers k. 

Let us compare the volume of the unit cube [0, 1 ]n with that of the in
scribed ball (of radius � ) .  

(Using Exercise 1 ,  the reader may want to add the crosspolytope inscribed 
in both bodies to the comparison. )  For dimension n = 3, the volume of 
the ball is about 0.52, but for n = 1 1  it is already less than 10-3 . Using 
Stirling's formula, we find that it behaves roughly like ( 2�e )n/2 . For large n, 
the inscribed ball is thus like a negligible dust particle in the cube, as far as 
the volume is concerned. 

This can be experienced if one tries to generate random points uniformly 
distributed in the unit ball Bn . A straightforward method is first to generate 
a randorn point x in the cube [-1 ,  1 ]n , by producing n independent random 
numbers Xt , x2 , . . .  , Xn E [-1 ,  1 ] .  If l lx l l  > 1 ,  then x is discarded and the 
experiment is repeated, and if I I  x I I  < 1 ,  then x is the desired random point 
in the unit ball. This works reasonably in dimensions below 10, say, but in 
dimension 20, we expect about 40 million discarded points for each accepted 
point, and the method is rather useless. 

Another way of comparing the ball and the cube is to picture the sizes of 
the n-dimensional ball having the same volume as the unit cube: 

q 0 0 
n = 2  n = 10 n = 50 

For large n, the radius grows approximately like 0.24fo. This indicates that 
the n-dimensional unit cube is actually quite a huge body; for example, its 
diameter (the length of the longest diagonal) is fo. Here is another example 
illustrating the largeness of the unit cube quite vividly. 
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Balls enclosing a ball. Place balls of radius � into each of the 2n vertices 
of the unit cube [0, 1 ] n  so that they touch along the edges of the cube, and 
consider the ball concentric with the cube and just touching the other balls: 

Obviously, this ball is quite small, and it is fully contained in the cube, right? 
No: Already for n = 5 it starts protruding out through the facets. 
Proper pictures. If a planar sketch of a high-dimensional convex body 
should convey at least a partially correct intuition about the distribution of 
the mass, say for the unit cube, it is perhaps best to give up the convexity 
in the drawing! According to Milman [Mil98] , a "realistic" sketch of a high
dimensional convex body might look like this: 

Strange central sections: the Busemann-Petty problem. Let K and 
L be convex bodies in Rn symmetric about 0, and suppose that for every 
hyperplane h passing through 0, we have voln-t ( K n h) < voln_1 ( L n h) .  It 
seems very plausible that this should imply vol( K) < vol ( L); this conjecture 
of Busemann and Petty used to be widely believed (after all, it was known 
that if the volumes of the sections are equal for all h, then K = L). But as it 
turned out, it is true only for n < 4, while in dimensions n > 5 it can fail! In 
fact, for large dimensions, one of the counterexamples is the unit cube and 
the ball of an appropriate radius: It is known that all sections of the unit 
cube have volume at most J2, while in large dimensions, the unit-volume 
ball has sections of volume about vfe,. 

Nets in a sphere. We conclude this section by introducing a generally 
useful tool. Let sn- 1 = {x E Rn: l lx l l  = 1 }  denote the unit sphere in Rn 
(note that 82 is the 2-dimensional sphere living in R 3) .  We are given a 
number 'r/ > 0, and we want to place a reasonably small finite set N of points 
on sn- l in such a way that each X E sn- 1 has some point of N at distance 
no larger than 'f/· Such an N is called ry-dense in sn- t .  For example, the 
set N = { e1 , -e 1 , . . .  , en , -en} of the 2n orthonormal unit vectors of the 
standard basis is J2-dense. But it is generally difficult to find good explicit 
constructions for arbitrary 'r/ and n .  The following simple but clever existential 
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argument yields an 7]-dense set whose size has essentially the best possible 
order of magnitude. 

Let us call a subset N c sn-t  1}-separated if every two distinct points of 
N have (Euclidean) distance greater than 'TJ· In a sense, this is opposite to 
being 7]-dense. 

In order to construct a small 7]-dense set, we start with the empty set 
and keep adding points one by one. The trick is that we do not worry about 
7]-density along the way, but we always keep the current set 7]-separated. 
Clearly, if no more points can be added, the current set must be 17-dense. 

The result of this algorithm is called an 7]-net. 1 That is, N c sn-1 is an 
7]-net if it is an inclusion-maximal 7]-Separated subset of sn-l ; i.e. , if N is 
1]-Separated but N u {X} is not 1]-Separated for any X E sn- l \ N. (These 
definitions apply to an arbitrary metric space in place of sn-1 . )  A volume 
argument bounds the maximum size of an 17-net. 

13. 1 .1  Lemma (Size of q-nets in the sphere) . For each 17 E (0, 1 ] ,  any 
'T]-net N c sn- l satisfies 

Later on, we will check that for rJ small, no 7]-dense set can be much 
smaller (Exercise 14. 1 .3) . 
Proof. For each x E N, consider the ball of radius � centered at x. These 
balls are all disjoint, and they are contained in the ball B(O, 1 + 17) C B(O, 2) . 
Therefore, vol(B(0, 2 ) )  > INi vol(B(O, � ) ) , and since vol(B(O, r))  in Rn is 
proportional to rn ' the lemma follows. 0 

Bibliography and remarks. Most of the material of this section is 
well known and standard. As for the Busemann-Petty problern, which 
we are not going to pursue any further in this book, information can be 
found, e.g. , in Gardner, Koldobski, and Schlumprecht [ G KS99] (recent 
unified solution for all dimensions) , in Ball [Bal] , or in the Handbook 
of Convex Geometry [GW93] . 

Exercises 

1 .  Calculate the volume of the n-dimensional crosspolytope, i .e. , the convex 
hull of { e 1 ,  -e1 , . . .  , en , -en }, where ei is the ith vector in the standard 
basis of R n .  li1 

2. (Ball volume via the Gaussian distribution) 
(a) Let In = fad e- l lx l l2 dx, where l l x l l = (xf+· · ·+x;)112 is the Euclidean 
norm. Express In using !1 . @J 

1 Not to be confused with the notion of c-net considered in Chapter 10; unfortu
nately, the same name is customarily used for two rather unrelated concepts. 
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(b) Express In using Vn = vol(Bn) and a suitable one-dimensional in
tegral, by considering the contribution to In of the spherical shell with 
inner radius r and outer radius r + dr. 0 
(c) Calculate In by using (b) for n = 2 and (a) .  l2J 
(d) Integrating by parts, set up a recurrence and calculate the integral 
appearing in (b) . Compute Vr�. 0 
This calculation appears in Pisier [Pis89] (also see Ball [Bal97] ) .  

3. Let X c sn- t be such that every two points of X have (Euclidean) 
distance at least J2. Prove that lX I  < 2n. 0 

13.2 Hardness of Volume Approximation 

The theorem in this section can be regarded as a variation on one of the 
"paradoxes of high dimension" mentioned in the previous section, namely, 
that the volume of the ball inscribed in the unit cube becomes negligible as 
the dimension grows. The theorem addresses a dual situation: the volume of 
a convex polytope inscribed in the unit ball. 

13.2.1 Theorem. Let Bn denote the unit ball in R n , and let P be a convex 
polytope contained in Bn and having at most N vertices. Then 

vol(P) < (C ln�+l)) n/2 

vol(Bn) 

with an absolute constant C. 

Thus, unless the number of vertices is exponential in n, the polytope is 
very tiny compared to the ball. 

For N > nen/C, the bound in the theorem is greater than 1 ,  and so it 
makes little sense, since we always have vol(P) < vol(Bn) .  Thus, a reasonable 
range of N is n+ 1 < N < eN for some positive constant c > 0. It turns out 
that the bound is tight in this range, up to the value of C, as discussed in 
the next section. This may be surprising, since the elementary proof below 
makes seemingly quite rough estimates. 

Let us remark that the weaker bound 

vol(P) < (C ln N) n/2 

vol(Bn) - n 
(13 .1 )  

is somewhat easier to prove than the one in Theorem 13.2. 1 .  The difference 
between these two bounds is immaterial for N > n2 , say. It becomes signif
icant , for example, for comparing the largest possible volume of a polytope 
in Bn with n log n vertices with the volume of the largest simplex in Bn. 
Application to hardness of volume approximation. Computing or 
estimating the volume of a given convex body in R n , with n large, is a 
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fundamental algorithmic problem. Many combinatorial counting problems 
can be reduced to it, such as counting the number of linear extension of a 
given poset, as we saw in Section 1 2.3. Since many of these counting problems 
are computationally intractable, one cannot expect to compute the volume 
precisely, and so approximation up to some multiplicative factor is sought. 

It turns out that no polynomial-time deterministic algorithm can gener
ally achieve approximation factor better than exponential in the dimension. 
A concrete lower bound, derived with help of Theorem 13.2 . 1 ,  is (en/ log n)n . 
This can also be almost achieved: An algorith1n is known with factor (c'n)n . 

In striking contrast to this, there are randomized polynomial-time algo
rithms that can approximate the volume within a factor of ( l+e-) for each 
fixed E > 0 with high probability. Here "randomized" means that the algo
rithm makes random decisions (like coin tosses) during its computation; it 
does not imply any randomness of the input. These are marvelous develop
ments, but they are not treated in this book. We only briefly explain the 
relation of Theorem 13.2 . 1  to the deterministic volume approximation. 

To understand this connection, one needs to know how the input con
vex body is presented to an algorithm. A general convex body cannot be 
exactly described by finitely Inany paran1eters, so caution is certainly neces
sary. One way of specifying certain convex bodies, namely, convex polytopes, 
is to give them as convex hulls of finite point sets (V -presentation) or as in
tersections of finite sets of half-spaces (H-presentation) . But there are many 
other computationally important convex bodies that are not polytopes, or 
have no polynon1ial-size V-presentation or H-presentation. We will meet an 
example in Section 1 5.5, where the convex body lives in the space of n x n 
real matrices and is the intersection of a polytope with the cone consisting 
of all positive semidefinite matrices. 

In order to abstract the considerations from the details of the presentation 
of the input body, the oracle model was introduced for computation with 
convex bodies. If K C R n is a convex body, a membership oracle for K is, 
roughly speaking, an algorithm (subroutine, black box) that for any given 
input point x E Rn outputs YES if x E K and NO if x ¢ K. 

This is simplified, because in order to be able to compute with the body, 
one needs to assurne more. Namely, K should contain a ball B(O, r) and 
be contained in a ball B(O, R) , where R and r > 0 are written using at 
most polynomially many digits. On the other hand, the oracle need not (and 
often cannot) be exact, so a wrong answer is allowed for points very close to 
the boundary. These are important but rather technical issues, and we will 
ignore them. Let us note that a polynomial-time membership oracle can be 
constructed for both V-presented and H-presented polytopes, as well as for 
many other bodies. 

Let us now assume that a deterministic algorithm approximates the vol
ume of each convex body given by a suitable membership oracle. First we 
call the algorithm with K = Bn , the unit ball. The algorithm asks the or-
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acle about some points { x1 , x2 , . . .  , XN } ,  gets the correct answers, and out
puts an estimate for vol(Bn) .  Next, we call the algorithm with the body 
K = conv( { x1 , x2 , . . .  , x N } n Bn) .  The answers of the oracle are exactly the 
san1e, and since the algorithm has no other information about the body K 
and it is deterministic, it has to output the same volume estimate as it did 
for Bn. But by Theorem 13.2. 1 ,  vol(Bn)j vol(K) > (cn/ ln(N/n+1) )nf2 , and 
so the error of the approximation must be at least this factor. If N, the num
ber of oracle calls, is polynomial in n, it follows that the error is at least 
(c'n/ log n)nf2 . 

By more refined consideration, one can improve the lower bound to ap
proximately the square of the quantity just given. The idea is to input the 
dual body K* into the algorithm, too, for which it gets the same answers, and 
then use a deep result (the inverse Blaschke-Santal6 inequality) stating that 
vol(K) vol(K*) > en jn! for any centrally symmetric n-dimensional convex 
body K, with an absolute constant c > 0 (some technical steps are omit
ted here) . This improvement is interesting because, as was remarked above, 
for symmetric convex bodies it almost matches the performance of the best 
known algorithm. 
Idea of the proof of Theorem 13.2.1 .  Let V be the set of vertices of the 
polytope P c Bn, l V I = N. We choose a suitable parameter k < n and prove 
that for every x E P, there is a k-tuple J of points of V such that x is close to 
conv(J) . Then vol(P) is simply estimated as (�) times the maximum possible 
volume of the appropriate neighborhood of the convex hull of k points in Bn.  
Here is the first step towards realizing this program. 

13.2.2 Lemma. Let S in Rn be an n-dimensional simplex, i.e., the convex 
hull of n+1 aJlinely independent points, and let R = R(S) and p = p(S) be 
the circumradius and inradius of S, respectively, that is, the radius of the 
smallest enclosing ball and of the largest inscribed ball. Then � > n. 

Proof. We first sketch the proof of an auxiliary claim: Among all simplices 
contained in Bn, the regular simplex inscribed in Bn has the largest volume. 
The volume of a simplex is proportional to the (n-1)-dimensional volume of 
its base times the corresponding height. It follows that in a maximum-volume 
simplex S inscribed in Bn, the hyperplane passing through a vertex v of S 
and parallel to the facet of S not containing v is tangent to Bn,  for otherwise, 
v could be moved to increase the height: 

It can be easily shown (Exercise 2) that this property characterizes the regular 
simplex (so the regular simplex is even the unique maximum) .  
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Another, slightly more difficult , argument shows that if S is a simplex 
of minimum volume circumscribed about nn' then each facet of s touches 
Bn at its center of gravity (Exercise 3) ,  and it follows that the volume is 
minimized by the regular simplex circumscribed about nn. 

Let 80 c nn be a simplex. We consider two auxiliary regular simplices 
81 and 82 , where 81 is inscribed in nn and S2 satisfies vol(S2) = vol(S0) .  
Since vol(S1 ) > vol(S0) = vol(S2) ,  81 is at least as big as S2 , and so p(S0) < 
p( 82 ) < p( 81 ) .  A calculation shows that p( 81 ) = � (Exercise 1 (a) ) .  D 

Let F be a }-dimensional simplex in R n . We define the orthogonal p
neighborhood Fp of F as the set of all x E R n for which there is a y E F such 
that the segment xy is orthogonal to F and l lx - Y l l  < p. The next drawing 
shows orthogonal neighborhoods in R3 of a !-simplex and of a 2-simplex: 

The orthogonal p-neighborhood of F can be expressed as the Cartesian prod
uct of F with a p-ball of dimension n-j , and so voln (Fp) = volj (F) · pn-j 

· 

voln-j (Bn-J ) . 

13.2.3 Lemma. Let S be an n-dimensional simplex contained in Bn, let 
x E S, and let k be an integer parameter, 1 < k < n. Then there is a k-tuple 
J of aflinely independent vertices of S such that x lies in the orthogonal p
neighborhood of conv( J) ,  where ( n 1 ) 1/2 p = p(n , k) = 2: i2 . 

t=k 

Proof. We proceed by induction on n - k. For n = k, this is Lemma 13.2.2: 
Consider the largest ball centered at x and contained in S; it has radius at 
most � ,  it touches some facet F of S at a point y, and the segment xy is 
perpendicular to F, witnessing x E Fl/n · 

For k < n, using the case k = n, let S' be a facet of S and x' E S' a point 
at distance at n1ost � from S' with xx' j_ S' . By the inductive assun1ption, 
we find a (k-1 )-face F of S' and a point y E F with l l x' - Y l l  < p(n-1 ,  k) 
and x

'y _L F. Here is an illustration for n = 3 and k = 2: 
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Then xx' l_ x' y (because the whole of S' is perpendicular to xx' ) ,  and so 
l l x - Yl l 2 = l l x - x' l l 2 + l l x' - yJ J 2 < p(n, k)2 . Finally, xy l_ F,  since both 
the vectors x' - y and x - x' lie in the orthogonal complement of the linear 
subspace generated by F - y. D 

Proof of Theorem 13.2 .1 .  By Caratheodory's theorem and Lemma 13.2.3, 
P = conv(V) is covered by the union of all the orthogonal p-neighborhoods 
conv( J) P ' J E (�) , where p = p( n, k) is as in the lemma. The maximum 
( k-1 )-dimensional volume of conv( J) is no larger than the ( k-l )-dimensional 
volume of the regular ( k-1 )-simplex inscribed in nk-1

' which is 

( k ) (k- 1 ) /2 Vk 
M(k-l) = k - 1  (k - 1 ) ! ; 

see Exercise l (b) .  (If we only want to prove the weaker estimate (13 . 1 )  and do 
not care about the value of C, then M(k-1) can also be trivially estimated 
by volk-1 (Bk-1 ) or even by 2k-1 . )  

What remains is calculation. We have 

vol(P) < (N) . M(k-l) . (n k)n-k+l . voln-k+l (Bn-k+l )
. 

vol(Bn) - k p ' vol(Bn) 

We first estimate 

(13.2) 

2 _  - <  - - - - - - < 
n 1 n 1 n ( 1 1 ) 1 1 1 

p(n, k) - � i2 - � i (i - 1)  - � i - 1 i 
- k - 1 n - k - 1 · 

We now set 
k - l  n J - ln(�+l) 

(for obtaining the weaker estimate ( 13 . 1 ) ,  the simpler value k = l 1;N J is 
more convenient) .  We may assume that ln N is much smaller than n, for 
otherwise, the bound in the theorem is trivially valid, and so k is larger than 
any suitable constant. In particular, we can ignore the integer part in the 
definition of k .  

For estimating the various terms in ( 13 .2) ,  it is convenient to work with 
the natural logarithm of the quantities. The logarithm of the bound we are 
heading for is � (ln ln( � +1 )  - ln n + 0(1 ) ) ,  and so terms up to O(n) can 
be ignored if we do not care about the value of the constant C. Further, we 
find that k in k = k ln n - k ln ln(�+1)  = k in n  + O(n) .  This is useful for 
estimating ln(k!) = k in k - O(k) = k ln n - O(n) .  

Now, we can bound the logarithms of the terms in ( 13.2) one by one. 
We have ln (�) < k ln N - ln(k!) = k(ln( � )  + In n) - ln(k!) < n + k In n 
k In n + O(n) = O(n) ; this term is negligible. Next, In M(k-1 )  contributes 
about - In( k!) = -k In n + 0( n) . The main contribution comes from the term 
ln p(n, k)n-k+l < -(n-k) ln ..fk + O(n) = � (- ln n + ln ln (�+l) ) + � In n +  
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O(n). Finally ln(voln-k+l (nn-k+1 ) /  vol(Bn) )  = ln(r (�+1)jr( n-�+1 +1))  + 
O(n) < In nk/2 + O(n) = � In n + O(n). The term -k ln n  originating from 
M(k-1)  cancels out nicely with the two terms � In n, and altogether we 
obtain � (- In n + ln In( �  +1)  + 0(1) )  as clain1ed in the theorem. D 

Bibliography and remarks. Our presentation of Theorem 13.2.1 
n1ostly follows Barany and Fiiredi [BF87] . They pursued the hardness 
of deterministic volume approximation, inspired by an earlier result of 
Elekes [Ele86] (see Exercise 5) .  They proved the weaker bound ( 13 . 1 ) ;  
the stronger bound in Theorem 13.2. 1 ,  in a slightly different form, was 
obtained in their subsequent paper [BF88] . 

Theorem 13 .2 .1  was also derived by Carl and Pajor [CP88] from a 
work of Carl [Car85] (they provide similar near-tight bounds for fp
balls) . 

A dual version of Theorem 13.2 .1 was independently discovered by 
Gluskin [Glu89] and by Bourgain, Lindenstrauss, and Milman [BLM89] . 
The dual setting deals with the minimum volume of the intersection 
of N symmetric slabs in Rn . Namely, let u1 ,  u2 , . . .  , UN E Rn be given 
(nonzero) vectors, and let K = nf 1 {x E Rn : l (ui , x) l < 1 }  (the width 
of the ith slab is ���� l l  ) .  The dual analogue of Theorem 13.2 .1 is this: 

Whenever all l lui l l  < 1 ,  we have vol(Bn)/ vol(K) < (� In( � +l)) n12 . 
A short and beautiful proof can be found in Ball's handbook chap
ter [Bal] . There are also bounds based on the sum of norms of the 
Ui . Namely, for all p E [l , oo), we have vol(K) 11n > � , where pf2·R 
R = (!  E� 1 l lui i iP) 11P (Euclidean norms!) ,  as was proved by Ball 
and Pajor [BP90] ; it also follows from Gluskin's work [Glu89] . For 
p = 2, this result was established earlier by Vaaler. It has the follow
ing nice reformulation: The intersection of the cube [-1 ,  1] N with any 
n-ftat through 0 has n-dimensionai volume at least 2n (see [Bal] for 
more information and related results) . 

The setting with slabs and that of Theorem 13.2.1 are connected 
by the Blaschke-Santal6 inequalit'lf and the inverse Blaschke-Santal6 
inequality. The former states that vol(K) vol(K*) < vol(Bn)2  < cf jn! 
for every centrally symmetric convex body in R n (or, more gener
ally, for every convex body K having 0 as the center of gravity) . It 
allows one the passage from the setting with slabs to the setting of 
Theorem 13. 2 . 1 :  If the intersection of the slabs { x: I ( ui , x) I < 1}  has 
large volume, then conv{ u1 , . . .  , UN } has small volume. The inverse 
Blaschke-Santalo inequality, as was mentioned in the text, asserts that 
vol( K) vol( K*)  > en j n! for a suitable c > 0, and it can thus be used 

2 In the literature one often finds it as either Blaschke's inequality or Santal6's 
inequality. Blaschke proved it for n < 3 and Santal6 for all n; see, e.g., the 
chapter by Lutwak in the Handbook of Convex Geometry [GW93] . 
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for the reverse transition. It is much more difficult than the Blaschke--
Santal6 inequality and it was proved by Bourgain and Milman; see, 
e.g., [Mil98] for discussion and references. 

Let us remark that the weaker bound ( � ( ln N)) n/2 is relatively 
easy to prove in the dual setting with slabs (Exercise 14. 1 .4) , which 
together with the Blaschke-Santal6 inequality gives (13 .1) . 

Theorem 13.2 . 1  concerns the situation where vol(P) is small com
pared to vol(Bn ) . The smallest number of vertices of P such that 
vol(P) > ( 1-e) vol(Bn ) for a small E > 0 was investigated by Gor
don, Reisner, and Schlitt [GRS97] . In an earlier work they constructed 
polytopes with N vertices giving e = O(nN-2/(n-1) ) ,  and in the pa
per mentioned they proved that this is asymptotically optimal for 
N > (Cn) <n-1)12 , with a suitable constant C. 

The oracle model for computation with convex bodies was intro
duced by Grotschel, Lovasz, and Schrijver [GLS88] . A determinis
tic polynomial-time algorithm approximating the volume of a convex 
body given by a suitable oracle (weak separation oracle) achieving the 
approximation factor n! (l+e) , for every e > 0, was given by Betke 
and Henk [BH93] (the geometric idea goes back at least to Macbeath 
[Mac50] ) . The algorithm chooses an arbitrary direction v1 and finds 
the supporting hyperplanes hi and h! of K perpendicular to v1 . Let 
Pt and p} be contact points of ht and h} with K.  The next direction 
v2 is chosen perpendicular to the affine hull of {Pt ,  p} } , etc. 

-Pt 
l Vt . 

t • 

P2 I 
h+ 

1 

After n steps, the n pairs of hyperplanes determine a parallelotope 
P ::)  K, while Q = conv{pi , p} ,  . . .  , p� , Pn } C K, and it is not hard to 
show that vol(P) /  vol(Q) < n! (the extra factor ( l+e)n arises because 
the oracle is not exact) . 

The first polynomial-time randomized algorithm for approximating 
the volume with arbitrary precision was discovered by Dyer, Frieze, 
and Kannan [DFK91] . Its parameters have been improved many times 

321 
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since then; see, e.g., Kannan, Lovasz, and Simonovits (KLS97] . A re
cent success of these methods is a polynomial-time approximation al
gorithm for the permanent of a nonnegative matrix by Jerrum, Sin
clair, and Vigoda [JSV01] . 

By considerations partially indicated in Exercise 4, Barany and 
Fiiredi [BF87] showed that in deterministic polynomial time one can
not approximate the width of a convex body within a factor better 
than 0 (/n/ log n ) . Brieden, Gritzmann, Kannan, Klee, Lovasz, and 
Sin1onovits [BGK+99] provided a n1atching upper bound (up to a con
stant) ,  and they showed that in this case even randomized algorithms 
are not more powerful. They also considered a variety of other parame
ters of the convex body, such as diameter, inradius, and circumradius, 
attaining similar results and improving many previous bounds from 
[GLS88} . 

Lemma 13.2.2 appears in Fejes T6th (T6t65] . 

Exercises 

1 .  (a) Calculate the inradius and circumradius of a regular n-dimensional 
simplex. li1 
(b) Calculate the volume of the regular n-dimensional simplex inscribed 
in the unit ball Bn . 0 

2. Suppose that the vertices of an n-dimensional simplex S lie on the sphere 
sn-l and for each vertex v' the hyperplane tangent to sn-l at v is parallel 
to the facet of S opposite to v .  Check that S is regular. 0 

3. Let S c an be a simplex circumscribed about Bn and let F be a facet 
of S touching Bn at a point c. Show that if c is not the center of gravity 
of F, then there is another simplex S' (arising by slightly moving the 
hyperplane that determines the facet F) that contains Bn and has volume 
smaller than vol ( S). 111 

4. The width of a convex body K is the minimum distance of two parallel 
hyperplanes such that K lies between them. Prove that the convex hull 
of N points in Bn has width at most 0(  /(In N)/n ) . li1  

5. (A weaker but simpler estimate) Let V c an be a finite set. Prove 
that conv(V) C UvEv B( �v, � l l v l l ) ,  where B(x, r) is the ball of radius r 
centered at x. Deduce that the convex hull of N points contained in Bn 
has volume at most fn vol(Bn ) .  [!] 
This is essentially the argument of Elekes [Ele86] . 

13.3 Constructing Polytopes of Large Volume 

For all N in the range 2n < N < 4n, we construct a polytope P c Bn with 
N vertices containing a ball of radius r = n ( ( (ln �) jn) 112) .  This shows that 
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the bound in Theorem 13.2 . 1  is tight for N > 2n, since vol( P) j vol( Bn) > rn . 
We begin with two extreme cases. 

First we construct a k-dimensional polytope Po c Bk with 4k vertices 
containing the ball � Bk . There are several possible ways; the simplest is based 
on 17-nets. We choose a 1-net V c sk-l and set Po = conv(V). According to 
Lemma 13. 1 . 1 ,  we have N =  lVI < 4k . If there were an x with l lx l l = � not 
lying in Po , 

then the separating hyperplane passing through x and avoiding Po would 
define a cap (shaded) whose center y would be at distance at least 1 from V. 

Another extreme case is with N = 2q vertices in dimension n = q. Then 
we can take the cross polytope, i .e . ,  the convex hull of the vectors e1 , -e1 , . . .  , 
eq, -eq , where ( e 1 ,  • • .  , eq) is the standard orthonorntal basis. The radius of 
the inscribed ball is r = )q, which matches the asserted formula. 

Next, suppose that n = qk for integers q and k and set N = q4k . From 
N = q4k = n 4k we have N = 4k/k > ek and k < In N and so q > n/ ln N . k n - - n ' - n 
Hence it suffices to construct an N-vertex polytope P c Bn containing the 
ball rBn with r = 2-Jq . 

The construction of P is a combination of the two constructions above. 
We interpret Rn as the product Rk x Rk x · · · x Rk (q factors) . In each of 
the copies of Rk , we choose a polytope P0 with 4k vertices as above, and we 
let P be the convex hull of their union. More formally, 

P = conv{ (9, 0, .:,.· . ,  �· x1 ,  x2 ,  . . .  , Xk , 0, 0, . . .  , 0) :  (xt , . . .  , xk) E V, 
(i-l )kx 

i = 1 , 2, . . .  , q} , 

where V is the vertex set of Po . 
We want to show that P contains the ball r Bn, r = 2-Jq . Let x be a point 

of norm l lx l l  < r and let x(i) be the vector obtained from x by retaining the 
coordinates in the ith block, i .e . ,  in positions (i-1)k+l, . . .  , ik, and setting 
all the other coordinates to 0. These x(i) are pairwise orthogonal, and x lies 
in the q-dimensional subspace spanned by them. Let y(i) = 21�;;> 1 1 be the 
vector of length � in the direction of x< i) . Each y( i) is contained in P, since 
P0 contains the ball of radius � . The convex hull of the y(i) is a q-dimensional 
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crosspolytope of circumradius � ,  and so it contains all vectors of norm 2� 
in the subspace spanned by the x(i) ,  including x. 

This construction assumes that n and N are of a special form, but it 
is not difficult to extend the bounds to all n > 2 and all N in the range 
2n < N < 4n by monotonicity considerations; we omit the details. This 
proves that the bound in Theorem 13.2. 1 is tight up to the value of the 
constant C for 2n < N < 4n . D - -

Bibliography and remarks. Several proofs are known for the lower 
bound almost matching Theorem 13 .2 .1  (Baniny and Fiiredi [BF87] , 
Carl and Pajor [CP88] , Kochol [Koc94] ) .  In Barany and Fiiredi [BF87] , 
the appropriate polytope is obtained essentially as the convex hull of 
N random points on sn-t (for .technical reasons, d special vertices are 
added) ,  and the volume estimate is derived from an exact formula for 
the expected surface measure of the convex hull of N random points 
on sn-t due to Buchta, Miiller, and Tichy [BMT95] . 

The idea of the beautifully simple construction in the text is due 
to Kochol [Koc94] . His treatment of the basic case with exponentially 
large N is different, though: He takes points of a suitably scaled integer 
lattice contained in Bk for V, which yields an efficient construction 
(unlike the argument with a 1-net used in the text, which is only 
existential ) .  

Exercises 

1 .  (Polytopes in nn with polynomially many facets) 
(a) Show that the cube inscribed in the unit ball Bn, which is a convex 
polytope with 2n facets, has volume of a larger order of magnitude than 
any convex polytope in Bn with polynon1ially many vertices (and so, 
concerning volume, "facets are better than vertices" ) .  [I] 
(b) Prove that the inradius of any convex polytope with N facets con
tained in nn is at most 0 ( y' (In ( N / n + 1 ) )  / n ) (and so, in this respect, 
facets are not better than vertices) . ill 
These observations are from Brieden and Kochol [BKOO] . 

13.4 Approximating Convex Bodies by Ellipsoids 

One of the most important issues in the life of convex bodies is their ap
proximation by ellipsoids, since ellipsoids are in many respects the simplest 
imaginable compact convex bodies. The following result tells us how well 
they can generally be approximated (or how badly, depending on the point 
of view) . 
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13.4.1 Theorem (John's lemma) . Let K c Rn be a bounded closed 
convex body with nonempty interior. Then there exists an ellipsoid Ein such 
that 

Ein C K C Eout , 
where Eout is Ein expanded from its center by the factor n .  If K is symmetric 
about the origin, then we have the improved approximation 

Ein C K C Eout = Vn · Ein · 

Thus, K can be approximated from outside and from inside by similar 
ellipsoids with ratio 1 : n, or 1 : fo for the centrally symmetric case. Both 
these ratios are the best possible in general, as is shown by K being the 
regular simplex in the general case and the cube in the centrally symmetric 
case. 

In order to work with ellipsoids, we need a rigorous definition. A suitable 
one is to consider ellipsoids as affine images of the unit ball: If Bn denotes 
the unit ball in R n , an ellipsoid E is a set E = f ( Bn) ,  where f: R n ---t R n 
is an affine map of the form f: x 1---t Ax + c. Here x is regarded as a column 
vector, c E R n is a translation vector, and A is a nonsingular n x n matrix. 
A very simple case is that of c = 0 and A a diagonal matrix with positive 
entries a 1 ,  a2 , . . .  , an on the diagonal. Then 

{ 2 2 2 } n xl x2 xn E =  x E R : - + - + · · · + - < 1 , a2 a2 a2 -1 2 n 
( 13 .3) 

as is easy to check; this is an ellipsoid with center at 0 and with semiaxes 
a1 , a2 , . . .  , an . In this case we have vol(E) = a1a2 · · · an · vol(Bn) .  An arbi
trary ellipsoid E can be brought to this form by a suitable translation and 
rotation about the origin. In the language of linear algebra, this corresponds 
to diagonalizing a positive definite matrix using an orthonormal basis con
sisting of its eigenvectors; see Exercise 1 .  
Proof of Theorem 13.4. 1.  In both cases in the theorem, Ein is chosen as 
an ellipsoid of the largest possible volume contained in K. Easy compactness 
considerations show that a maximum-volume ellipsoid exists. In fact , it is 
also unique, but we will not prove this. (Alternatively, the proof can be done 
starting with the smallest-volume ellipsoid enclosing K,  but this has some 
technical disadvantages. For example, its existence is not so obvious. )  
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We prove only the centrally symmetric case of John's lemma. The non
symmetric case follows the same idea, but the calculations are different and 
more complicated, and we leave them to Exercise 2. 

So we suppose that K is symn1etric about 0, and we fix the ellipsoid 
Ein of maximum volume contained in K. It is easily seen that Ein can be 
assumed to be symmetric, too. We make a linear transformation so that Ein 
becomes the unit ball Bn. Assuming that the enlarged ball fo · Bn does not 
contain K, we derive a contradiction by exhibiting an ellipsoid E' C K with 
vol( E') > vol( Bn) . 

We know that there is a point x E K with l l x l l > fo. For convenience, we 
may suppose that x = ( s ,  0, 0, . . .  , 0), s > fo. To finish the proof, we check 
that the region R = conv( Bn U {-x, x})  

-x X 

contains an ellipsoid E' of volume larger than vol( Bn) . 
The calculation is a little unpleasant but not so bad, after all. The region 

R is a rotational body; all the sections by hyperplanes perpendicular to the 
x1-axis are balls. We naturally also choose E' with this property: The semiaxis 
in the x1-direction is some a > 1 ,  while the slice with the hyperplane { x1 = 0} 
is a ball of a suitable radius b < 1 .  We have vol(E') = abn- l vol(Bn) ,  and 
so we want to choose a and b such that abn- l > 1 and E' C R. By the 
rotational symmetry, it suffices to consider the planar situation and make 
sure that the ellipsis with semiaxes a and b is contained in the planar region 
depicted above. 

In order to avoid direct computation of a tangent to the ellipsis, we mul
tiply the x1-coordinate of all points by the factor ! . This turns our ellipsis 
into the dashed ball of radius b: 

. 
. . . 

. 

. . . 
0 

. . . . . . 

I�'
## 

. . . 

.. 
,•' 

· .. 
·· . .. . 

A bit of trigonometry yields 
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8 bs 
t =  ' 

Js2 - 1  

This leads to a2 = 82 ( 1 - b2) + b2 . We now choose b just a little smaller than 1 ;  
a suitable parameterization is b2 = 1-c for a small c > 0. We want to show 
that abn-l > 1 ,  and for convenience, we work with the square. We have 

The Maclaurin series of the right-hand side in the variable c is 1 + ( 82 - n )c + 
O(e-2) .  Since 82 > n, the expression indeed exceeds 1 for all sufficiently small 
c > 0. Theorem 13.4. 1 is proved. D 

Bibliography and remarks. Theorem 13.4. 1 was obtained by 
John [Joh48] . He actually proved a stronger statement , which can 
be quite useful in many applications. Roughly speaking, it says that 
the maximum-volume inscribed ellipsoid has many points of contact 
with K that "fix" it within K. The statement and proof are nicely 
explained in Ball [Bal97] . 

As was remarked in the text, the maximum-volume ellipsoid con
tained in K is unique. The same is true for the minimum-volume 
enclosing ellipsoid of K;  a proof of the latter fact is outlined in Exer
cise 3. The uniqueness was proved independently by several authors, 
and the oldest such results seem to be due to Lowner (see Danzer, 
Griinbaum, and Klee (DGK63] for references) . The minimum-volume 
enclosing ellipsoid is sometimes called the Lowner-John ellipsoid, but 
in other sources the same name refers to the maximum-volume in
scribed ellipsoid. 

The exact computation of the smallest enclosing ellipsoid for a 
given convex body K is generally hard. For example, it is NP-hard 
to compute the smallest enclosing ellipsoid of a given finite set if the 
dimension is a part of input (there are linear-time algorithms for ev
ery fixed dimension; see, e.g., Matousek, Sharir, and Welzl (MSW96] ) .  
But under suitable algorithmic assumptions on the way that a convex 
body K is given (weak separation oracle) ,  it is possible to compute 
in polynomial time an enclosing ellipsoid such that its shrinking by a 
factor of roughly n312 (roughly n in the centrally symmetric case) is 
contained in K (if K is given as an H-polytope, then these factors can 
be improved to the nearly worst-case optimal n+1 and Jn+T, respec
tively). Finding such approximating ellipsoids is a basic subroutine 
in other important algorithms; see Grotschel, Lovasz, and Schrijver 
[GLS88] for more information. 

There are several other significant ellipsoids associated with a given 
convex body that approximate it in various ways; see, e.g. , Linden
strauss and Milman [LM93] and Tomczak-Jaegermann [TJ89] . 



328 Chapter 1 3: Volumes in High Dimension 

Exercises 

1 .  Let E be the ellipsoid f(Bn ) ,  where f: x � Ax for an n x n nonsingular 
matrix A. 
(a) Show that E = {x E Rn: xTBx < 1 } .  What is the matrix B? 0 
(b) Recall or look up appropriate theorems in linear algebra showing that 
there is an orthonormal matrix T such that B' = T BT-1 is a diagonal 
matrix with the eigenvalues of B on the diagonal (check and use the fact 
that B is positive definite in our case) . ill 
(c) What is the geometric meaning of T, and what is the relation of the 
entries of T BT-1 to the semiaxes of the ellipsoid E? ill 

2. Prove the part of Theorem 13.4. 1 dealing with not necessarily symmetric 
convex bodies. 0 

3. (Uniqueness of the smallest enclosing ellipsoid) Let X c Rn be a bounded 
set that is not contained in a hyperplane (i.e . ,  it contains n+l affinely 
independent points) . Let £, (X) be the set of all ellipsoids in R n contain
ing X.  
(a) Prove that there exists an Eo E £(X) with vol(E0) = inf{vol(E) : E E 
£ (X) } .  (Show that the infimum can be taken over a suitable compact 
subset of £(X) . )  ill 
(b) Let E1 , E2 be ellipsoids in R n ;  check that after a suitable affine trans-2 formation of coordinates, we may assume that E1 = { x E R n :  I:� 1 � < 

� 

2 1 n x2 1 }  and E2 = {x E Rn : l l x - el l < 1 } . Define E = {x E Rn: 2 Li=l � + 
� 

� I:� 1 (Xi - ci ) 2 < 1 } .  Verify that E1 n E2 C E, that E is an ellipsoid, 
and that vol(E) > min(vol(EI ) ,  vol(E2 ) ) ,  with equality only if Et = E2 . 
Conclude that the smallest-volume enclosing ellipsoid of X is unique. 0 

4. (Uniqueness of the smallest enclosing ball) 
(a) In analogy with Exercise 3, prove that for every bounded set X c Rn, 
there exists a unique minimum-volume ball containing X .  0 
(b) Show that if X c R n is finite then the smallest enclosing ball is 
determined by at most n+ 1 points of X ;  that is, there exists an at most 
(n+l)-point subset of X whose smallest enclosing ball is the same as that 
of X.  0 

5. (a) Let P c R2 be a convex polygon with n vertices. Prove that there 
are three consecutive vertices of P such that the area of their convex hull 
is at most O(n-3 )  times the area of P. 0 
(b) Using (a) and the fact that every triangle with vertices at integer 
points has area at least � (check! ) ,  prove that every convex n-gon with 
integral vertices has area O(n3 ) .  m 
Remark. Renyi and Sulanke [RS64] proved that the worst case in (a) is 
the regular convex n-gon. 



14 

Measure Concentration and 

Almost Spherical Sections 

In the first two sections we are going to discuss measure concentration on 
a high-dimensional unit sphere. Roughly speaking, measure concentration 
says that if A c sn-1  is a set occupying at least half of the sphere, then 
almost all points of sn-1 are quite close to A, at distance about O(n-112) . 
Measure concentration is an extremely useful technical tool in high-dimen
sional geometry. From the point of view of probability theory, it provides 
tail estimates for random variables defined on sn-l , and in this respect it 
resembles Chernoff-type tail estimates for the sums of independent random 
variables. But it is of a more general nature, more like tail estimates for 
Lipschitz functions on discrete spaces obtained using martingales. 

The second main theme of this chapter is almost-spherical sections of 
convex bodies. Given a convex body K C R n ,  we want to find a k-dimen
sional subspace L of R n such that K n L is almost spherical; i .e. , it contains a 
ball of some radius r and is contained in the concentric ball of radius ( l+c-)r. 
A remarkable Ramsey-type result, Dvoretzky's theorem, shows that with k 
being about c-2 log n, such a k-dimensional almost-spherical section exists 
for every K. We also include an application concerning convex polytopes, 
showing that a high-dimensional centrally symmetric convex polytope cannot 
have both a small number of vertices and a small number of facets. 

Both measure concentration and the existence of almost-spherical sections 
are truly high-dimensional phenomena, practically meaningless in the familiar 
dimensions 2 and 3. The low-dimensional intuition is of little use here, but 
perhaps by studying many results and examples one can develop intuition on 
what to expect in high dimensions. 

We present only a few selected results from an extensive and well
developed theory of high-dimensional convexity. Most of it was built in the 
so-called local theory of Banach spaces, which deals with the geometry of 



330 Chapter 14: Measure Concentration and Almost Spherical Sections 

finite-dimensional subspaces of various Banach spaces. In the literature, the 
theorems are usually formulated in the language of Banach spaces, so instead 
of symmetric convex bodies, one speaks about norms, and so on. Here we 
introduce some rudimentary terminology concerning nornted spaces, but we 
express most of the notions in geometric language, hoping to make it more 
accessible to nonspecialists in Banach spaces. So, for example, in the formu
lation of Dvoretzky's theorem, we do not speak about the Banach-Mazur 
distance to an inner product norm but rather about almost spherical convex 
bodies. On the other hand, for a more serious study of this theory, the lan
guage of normed spaces seems necessary. 

14.1 Measure Concentration on the Sphere 

Let P denote the usual surface measure on the unit Euclidean sphere sn- 1 , 
scaled so that all of sn-1 has measure 1 (a rigorous definition will be men
tioned later) .  This P is a probability measure, and we often think of sn-1 as 
a probability space. For a set A c sn-I , P [A] is the P-measure of A and also 
the probability that a random point of sn-1 falls into A. The letter P should 
suggest "probability of," and the notation P [AJ is analogous to Prob [A] used 
elsewhere in the book. 

Measure concentration on the sphere can be approached in two steps. The 
first step is the observation, interesting but rather easy to prove, that for large 
n, most of sn-1  lies quite close to the "equator." For example, the following 
diagram shows the width of the band around the equator that contains 90% 
of the measure, for various dimensions n: 

....................... 

........ _ ....... -,.....,;/ 

n = 3  n = 1 1  n = 101 

That is, if the width of the gray stripe is 2w, then 

P [{x E sn- 1 : -w < Xn < w}] = 0.9. 

As we will see later, w is of order n -112 for large n. (Of course, one might 
ask why the measure is concentrated just around the ''equator" Xn = 0. But 
counterintuitive as it n1ay sound, it is concentrated around any equator, i.e. , 
near any hyperplane containing the origin.) 

The second, considerably deeper, step shows that the measure on sn-1 
is concentrated not only around the equator, but near the boundary of any 
(measurable) subset A c sn-l covering half of the sphere. Here is a precise 
quantitative formulation. 
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14.1 . 1  Theorem (Measure concentration for the sphere).  Let A C 
sn-l be a measurable set with P [A] > � , and let At denote the t-neighbor
hood of A, that is, the set of all X E sn- 1 whose Euclidean distance to A is 
at rnost t . Tl1en 

Thus, if A occupies half of the sphere, almost all points of the sphere 
lie at distance at most 0( n -112 ) from A; only extremely small reserves can 
vegetate undisturbed by the nearness of A. (There is nothing very special 
about measure � here; see Exercise 1 for an analogous result with P [A] == 
a E ( 0, � ) . )  To recover the concentration around the equator, it suffices to 
choose A as the northern hemisphere and then as the southern hemisphere. 

We present a simple and direct geometric proof of a slightly weaker version 
of Theorem 14. 1 . 1 ,  with -t2n/4 in the exponent instead of -t2nf2. It deals 
with both the steps mentioned above in one stroke. 

It is based on the Brunn-Minkowski inequality: vol(A) 1/n + vol(B) 1/n < 
vol(A + B) 11n for any nonempty compact sets A, B C Rn (Theorem 12 .2.2) . 
We actually use a slightly different version of the inequality, which resembles 
the well known inequality between the arithmetic and geometric means, at 
least optically: 

vol( � (A + B))  > Jvol(A) vol(B) . ( 14. 1 )  

This is easily derived from the usual version: We have vol(� (A + B)) 11n > 
vol(�A) 1/n + vol(�B) 1/n == ! (vol(A)1/n + vol(B) 11n)  > (vol(A) vol(B)) 112n 
by the inequality � (a + b) > JQh. 
Proof of a weaker version of Theorem 14.1 . 1 .  For a set A c sn-l , -
we define A as the union of all the segments connecting the points of A to 0: 
A ==  {ox: X E A, Q E [0, 1] } c nn . Then we have 

-
P [A] == JL(A) � 

\vhere JL(A) = vol(A)/ vol(Bn) is the normalized volume of A; in fact , this 
can be taken as the definition of P [A] . 

Let t E [0, 1] , let P [A] > ! ,  and let B == sn-1 \ At .  Then l l a - bl l  > t for 
all a E A, b E  B. 

14. 1 .2 Lemma. For any x E A and fJ E B, we have I I  x�y I I  < 1 - t2 /8. 

Proof of the lemma. Let x == ax, y = {3y, x E A, y E B: 
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First we calculate, by the Pythagorean theorem and by elementary 
calculus, 

x + y  g2 t2 
< 1 - - < 1 - - . 2 - 4 - 8 

For passing to x and y, we may assume that {3 = 1 .  Then 

x + :Y 
2 

ax + y x + y ( I  ) y < a  + - a  -2 - 2 2 
= a(l - t; ) + (1 - a) ( 1 - ! ) < 1 - t; . 

The lemma is proved. 

By the lemma, the set � (A +  B) is contained in the ball of radius 1 - t2 /8 -
a!ound the origin. Applying Brunn-Minkowski in the form ( 14 . 1 )  to A and 
B ,  we have 

So 

Bibliography and remarks. The simple proof of the slightly 
weaker measure concentration result for the sphere shown in this sec
tion is due to Arias-de-Reyna, Ball, and Villa [ABV98] . More about 
the history of measure concentration and related results will be men
tioned in the next section. 

Exercises 

D 

1 .  Derive the following from Theorem 14. 1 . 1 :  If A C sn-1  satisfies P [A] > 
a, 0 < a < � ,  then 1 - P[At] < 2e-(t-to)2n/2, where to is such that 
2e-t6nl2 < a. 0 

2. Let A, B c sn- 1 be measurable sets with distance at least 2t. Prove that 
min(P [AJ , P[B]) < 2e-t2n/2 • � 

3. Use Theorem 14. 1 . 1  to show that any 1-dense set in the unit sphere sn-1 
has at least � en/B points. � 

4. Let K = nf 1 {X E R n : I ( Ui ' X) I < 1 }  be the intersection of symmetric 
slabs determined by unit vectors Ul ' . . . ' UN E an . Using Theorem 14. 1 . 1 ,  
prove that vol(Bn)/ vol(K) < (�  In N)n12 for a suitable constant C. 0 
The relation to Theorem 13.2.1 is explained in the notes to Section 13.2. 
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14.2 Isoperimetric Inequalities and More on 
Concentration 

The usual proof of Theorem 14. 1 . 1  (measure concentration) has two steps. 
First , P [At] is bounded for A the hemisphere (which is elementary calculus) ,  
and second, it is shown that among all sets A of measure � ,  the hemisphere 
has the smallest P [At] · The latter result is an example of an isoperimetric 
inequality. 

Before we formulate this inequality, let us begin with the mother of all 
isoperimetric inequalities, the one for planar geometric figures. It states that 
among all planar geometric figures with a given perimeter, the circular disk 
has the largest possible area. (This is well known but not so easy to prove 
rigorously.) More general isoperimetric inequalities are usually formulated 
using the volume of a neighborhood instead of "perimeter." They claim that 
among all sets of a given volume in some metric space under consideration, 
a ball of that volume has the smallest volume of the t-neighborhood: 

(In the picture, assuming that the dark areas are the same, the light gray area 
is the smallest for the disk.) Letting t ---t 0, one can get a statement involving 
the perimeter or surface area. But the formulation with t-neighborhood makes 
sense even in spaces where "surface area" is not defined; it suffices to have a 
metric and a measure on the considered space. 

Here is this "neighborhood" form of isoperimetric inequality for the Eu
clidean space Rn with Lebesgue measure. 

14.2 .1  Proposition. For any compact set A c Rd and any t > 0, we have 
vol(At) > vol(Bt ) ,  where B is a ball of the same volume as A. 

Although we do not need this particular result in the further development, 
let us digress and mention a nice proof using the Brunn-Minkowski inequality 
(Theorem 12.2.2) . 
Proof. By rescaling, we may assume that B is a ball of unit radius. Then 
At = A + tB, and so 

vol(At) = vol(A + tB) > ( vol(A) 1/n + t vol(B) 1fn r 
= ( 1  + t)n vol(B) = vol(Bt) ·  

D 

For the sphere sn-1 with the usual Euclidean metric inherited from Rn, 
an r-ball is a spherical cap, i.e. , an intersection of sn-1 with a half-space. The 
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isoperimetric inequality states that for all measurable sets A C sn-1 and all 
t > 0, we have P [At] > P [Ct] ,  where C is a spherical cap with P [CJ == P [A] . 
We are not going to prove this; no really simple proof seems to be known. 

The measure concentration on the sphere (Theorem 14. 1 . 1) is a rather 
direct consequence of this isoperimetric inequality, by the argument already 
indicated above. If P [A] == � ,  then P [At] > P [Ct] ,  where C is a cap with 
P [ C] = � ,  i .e . ,  a hemisphere. Thus, it suffices to estimate the measure of the 
complementary cap sn-1 \ Ct . 1 

Gaussian concentration. There are many other metric probability spaces 
with measure concentration phenomena analogous to Theorem 14. 1 . 1 .  Per
haps the most important one is Rn with the Euclidean metric and with the 
n-dimensional Gaussian measure 1 given by 

This is a probability measure on Rn corresponding to the n-dimensional 
normal distribution. Let Zt , Z2 , . . .  , Zn be independent real random variables, 
each of them with the standard normal distribution N(O, 1 ) ,  i .e . ,  such that 

Prob [Z· < z ] = -1- jz e-t212 dt 't - � 
- oo 

for all z E R. Then the vector ( Z1 , Z2 , . . .  , Zn) E R n is distributed accord
ing to the measure 1. This 1 is spherically symmetric; the density function 
(27r)-nf2e- l lx l l 2 12 depends only on the distance of x from the origin. The dis
tance of a point chosen at random according to this distribution is sharply 
concentrated around fo, and in many respects, choosing a random point 
according to 1 is similar to choosing a random point from the uniforn1 dis
tribution on the sphere Vn sn- 1 . 

The isoperimetric inequality for the Gaussian measure claims that among 
all sets A with given 1( A) , a half-space has the smallest possible measure 
of the t-neighborhood. By simple calculation, this yields the corresponding 
theorem about measure concentration for the Gaussian measure: 

14.2.2 Theorem (Gaussian measure concentration) . Let a measurable 
set A C Rn satisfy !(A) > � · Then 1(At ) > 1 - e-t212. 

1 Theorem 14. 1 . 1  provides a good upper bound for the measure of a spherical cap, 
but sometimes a lower bound is useful, too. Here are fairly precise estimates; for 
convenience they are expressed with a different parameterization. Let C ( r) = 
{X E sn-1 : X1 > T} denote the spherical cap of height 1 - T. Then for 0 < T < 

ffn, we have 112 < P (C(r)] < � ' and for ffn < T < 1 ,  we have 

1 ( 1 - T2) (n-1)/2 < P [C(T)} < 
1 ( 1 - T2) (n-1)/2 . 

6Tjn 2Tjn 

These formulas are taken from Brieden et al. [BGK+99] . 
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Note that the dimension does not appear in this inequality, and indeed 
the Gaussian concentration has infinite-dimensional versions as well. Measure 
concentration on sn-1 ,  with slightly suboptimal constants, can be proved as 
an easy consequence of the Gaussian concentration; see, for example, Milman 
and Schechtman [MS86] (Appendix V) or Pisier [Pis89] . 

lVIost of the results in the sequel obtained using measure concentration on 
the sphere can be derived from the Gaussian concentration as well. In more 
advanced applications the Gaussian concentration is often technically prefer
able, but here we stick to the perhaps more intuitive measure concentration 
on the sphere. 

Other important "continuous" spaces with concentration results similar to 
Theorem 14. 1 . 1  include the n-dimensional torus (the n-fold Cartesian product 
81 x · · · x 81 c R2n) and the group SO(n) of all rotations around the origin 
in Rn (see Section 14.4 for a little more about SO(n) ) .  
Discrete metric spaces. Similar concentration inequalities also hold in 
many discrete metric spaces encountered in combinatorics. One of the sim
plest examples is the n-dimensional Harnming cube Cn = {0, 1 }n . The points 
are n-component vectors of O's and 1 's, and their Hamming distance is the 
number of positions where they differ. The "volume" of a set A C {0, 1 }n 
is defined as P [A] = 2� I A I .  An r-ball B is the set of all 0/1 vectors that 
differ from a given vector in at most r coordinates, and so its volume is 
P [ BJ = 2-n ( 1 + (�) + (�) + · · · + (�) ) .  The isoperimetric inequality for the 
Hamming cube, due to Harper, is exactly of the form announced above: 

If A C Cn is any set with P [A] > P [B] , then P [At] > P [Bt] · 
Of course, if A is an r-ball, then At is an (r+t)-ball and we have equality. 
Suitable estimates (tail estimates for the binomial distribution in probability 
theory) then give an analogue of Theorem 14. 1 . 1 :  

14.2.3 Theorem (Measure concentration for the cube) . Let A C Cn 
satisfy P [A] > � · Then 1 - P [At] < e-t2/2n .  

This is very similar to the situation for sn-1 ,  only the scaling is different: 
While the Hamming cube Cn has diameter n, and the interesting range of t 
is from about Vn to n, the sphere sn- l  has diameter 2, and the interesting 
t are in the range from about Jn to 2. 

Another significant discrete metric space with similar measure concentra
tion is the space Sn of all permutations of { 1 ,  2, . . .  , n}  (i.e. , bijective map
pings { 1 ,  2, . . .  , n} ---t { 1 ,  2, . . .  , n} ) .  The distance of two permutations p1 and 
P2 is I { i :  P1 ( i) i= P2 ( i)} I , and the measure is the usual uniform probability 
measure on Sn , where every single permutation has measure � . Here a mea-n. 
sure concentration inequality reads 1 - P [At] < e- <t-3fo)2/Bn for all A C Sn 
with P [A] > � .  The expander graphs, to be discussed in Section 15.5 ,  also 
offer an example of spaces with measure concentration; see Exercise 15.5. 7. 



336 Chapter 14: Measure Concentration and Almost Spherical Sections 

Bibliography and remarks. A modern treatment of measure con
centration is the book Ledoux [LedOlJ ,  to which we refer for more 
material and references. A concise introduction to concentration of 
Lipschitz functions and discrete isoperimetric inequalities, including 
some very recent material and combinatorial applications, is contained 
in the second edition of the book by Alon and Spencer [ASOOdJ . Older 
material on measure concentration in discrete metric spaces, with mar
tingale proofs and several combinatorial examples, can be found in 
Bollobas's survey [Bol87] . For isoperimetric inequalities and measure 
concentration on manifolds see also Gromov [Gro98] (or Gromov's ap
pendix in [MS86] ) .  

The Euclidean isoperimetric inequality (the ball has the smallest 
surface for a given volume) has a long and involved history. It has been 
"known" since antiquity, but full and rigorous proofs were obtained 
only in the nineteenth century; see, e.g., Talenti [Tal93] for references. 
The quick proof via Brunn-Minkowski is taken from Pisier [Pis89] . 

The exact isoperimetric inequality for the sphere was first proved 
(according to [FLM77] ) by Schmidt (Sch48] . Figiel, Lindenstrauss, and 
Milman [FLM77] have a 3-page proof based on symmetrization. 

Measure concentration on the sphere and on other spaces was first 
recognized as an important general tool in the local theory of Banach 
spaces, and its use was mainly pioneered by Milman. Several nice 
surveys with numerous applications, mainly in Banach spaces but also 
elsewhere, are available, such as Lindenstrauss [Lin92] , Lindenstrauss 
and Milman [LM93] , Milman [Mil98] , and some chapters of the book 
Benyamini and Lindenstrauss [BL99) . 

The Gaussian isoperimetric inequality was obtained by Borell 
[Bor75] and independently by Sudakov and Tsirel'son [ST74) . A proof 
can also be found in Pisier [Pis89] . Ball [Bal97J derives a slightly weaker 
version of the Gaussian concentration directly using the Prekopa
Leindler inequality mentioned in the notes to Section 12.2. The ex
act isoperimetric inequality for the Hamming cube is due to Harper 
[Har66] . We will indicate a short proof of measure concentration for 
product spaces, including the Hamming cube, in the notes to the next 
section. 

More recently, very significant progress was made in the area of 
measure concentration and similar inequalities, especially on product 
spaces, mainly associated with the name of Talagrand; see, for in
stance, [Tal95] or the already mentioned book [LedOl] .  Talagrand's 
proof method, which works by establishing suitable one-dimensional 
inequalities and extending them to product spaces by a clever induc
tion, also gives most of the concentration results previously obtained 
with the help of martingales. 
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1v1any new isoperimetric and concentration inequalities, as well as 
new proofs of known results, have been obtained by a function theo
retic (as opposed to geometric) approach. Here concentration inequal
ities are usually derived from other types of inequalities, such as loga
rithmic Sobolev inequalities (estimating the entropy of a random vari
able) . One advantage of this is that while concentration inequalities 
usually do not behave well under products, entropy estimates extend 
to products automatically, and so it suffices to prove one-dimensional . versions. 
Reverse isoperimetric inequality. The smallest possible surface area 
of a set with given volume is determined by the isoperimetric inequal
ity. In the other direction, the surface area can be arbitrarily large for 
a given volume, but a meaningful question is obtained if one consid
ers affine-equivalence classes of convex bodies. The following reverse 
isoperimetric inequality was proved by Ball (see [Bal97] or [Bal] ) :  Fo: 
every n-dimensional convex body C there exists an affine image C 
of unit volume whose surface area is no larger than the surface area 
of the n-dimensional unit-volume regular simplex. Among symmetric 
convex bodies, the extremal body is the cube. 

14.3 Concentration of Lipschitz Functions 

337 

Here we derive a form of the measure concentration that is very suitable for 
applications. It says that any Lipschitz function on a high-dimensional sphere 
is tightly concentrated around its expectation. (Any measurable real function 
f: sn- l ---+ R can be regarded as a random variable, and its expectation is 
given by E [f] = fsn-1 f(x) dP(x) . )  

We recall that a mapping f between metric spaces is C -Lipschitz, where 
C > 0 is a real number, if the distance of f(x) and f(y) is never larger than 
C times the distance of x and y. We first show that a 1-Lipschitz function 
f: sn-l ---+ R is concentrated around its median. The median of a real-valued 
function f is defined as 

med(f) = sup{t E R: P [f < t] < � } .  

Here P is the considered probability measure on the domain of f; in our 
case, it is the normalized surface measure on sn- I . The notation P [! < t] 
is the usual probability-theory shorthand for p [ {X E sn - l : f (X) < t} ] . The 
following lemma looks obvious, but an actual proof is perhaps not completely 
obvious: 

14.3.1 Lemma. Let f: 0 ---+ R be a measurable function on a space 0 with 
a probability measure P. Then 

P [f < med(f)J < � and P [f > med(f)] < � .  
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Proof. The first inequality can be derived from the a-additivity of the 
measure P: 

00 

P [/ < med(f)] = L P [med(f) - k 1 1 < f < med(f) - �] 
k=l  

= sup P [f < med(f) - k]  < � · 
k> l  

The second inequality follows similarly. D 

We are ready to prove that any 1-Lipschitz function sn-1 ----+ R is con
centrated around its median: 

14.3.2 Theorem (Levy's lemma) . Let f: sn-l � R be !-Lipschitz. Then 
for all t E [ 0, 1 ] ,  

P [f > med(f) + t] < 2e -t2n/2 and P [f < med(f) - t] < 2e -t2n/2 . 

For example, on 99% of sn-1 ,  the function J attains values deviating 
from med(f) by at most 3.5n-112 . 
Proof. We prove only the first inequality. Let A = {x E sn- 1 :  f(x) < 

med(f) } .  By Lemma 14.3 . 1 ,  P [A] > � .  Since f is !-Lipschitz, we have 
f(x) < med(f) + t for all x E At . Therefore, by Theorem 14. 1 . 1 ,  we get 
P [f > med(f) + t] < 1 - P [At ] < 2e-t2n/2 . D 

The median is generally difficult to compute. But for a 1-Lipschitz func
tion, it cannot be too far from the expectation, which is usually easier to 
estimate: 

14.3.3 Proposition. Let f: sn- l ----+ R be !-Lipschitz. Then 

I med(f) - E[f] I < 12n- 1/2. 

Proof. 
00 k + 1 

I med(f) - E [f] I < E[ l / - med(f) l ]  < L fo · P [ 11 - med(f) l > Jn] 
k=O 

00 
< n-1/2 L (k+l) . 4e-k2/2 < 12n-1/2 

k=O 

(the numerical estimate of the last sum is not important; it is important that 
it converges to some constant, which is obvious) . D 

We derive a consequence of Levy's lemma on finding k-dimensional sub
spaces where a given Lipschitz function is almost constant. But first we need 
some notions and results. 
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Random rotations and random subspaces.. We want to speak about 
a random k-dimensional (linear) subspace of R n .  We thus need to specify a 
probability measure on the set of all k-dimensional linear subspaces of Rn 
(so-called Grassmann manifold or Grassmannian) . An elegant way of doing 
this is via random rotations. 

A rotation p is an isometry of R n fixing the origin and preserving the 
orientation. In algebraic terms, p is a linear mapping x H Ax given by 
an orthonormal matrix A with determinant 1 .  The result of performing the 
rotation p on the standard orthonormal basis ( e1 ,  . . . , en) in R n is an n-tuple 
of orthonormal vectors, and these vectors are the columns of A. 

The group of all rotations in R n around the origin with the operation 
of composition (corresponding to multiplication of the matrices) is denoted 
by SO(n), which stands for the special orthogonal group. With the natu
ral topology (obtained by regarding the corresponding matrices as points in 
Rn2 ) ,  it is a compact group. By a general theorem in the theory of topologi
cal groups, there is a unique Borel probability measure on SO(n) (the Haar 
measure) that is invariant under the action of the elements of SO ( n) .  Here is 
a more concrete description of this probability measure. To obtain a random 
rotation p, we first choose a vector a1 E sn- 1 uniformly at random. Then 
we pick a2 orthogonal to a1 ; this a2 is drawn from the uniform distribution 
on the ( n-2)-dimensional sphere that is the intersection of sn-1 with the 
hyperplane perpendicular to a1 and passing through 0. Then a3 is chosen 
from the unit sphere within the (n-2)-dimensional subspace perpendicular 
to a1 and a2 , and so on. 

In the sequel we need only the following intuitively obvious fact about 
a random rotation p E SO ( n) : For every fixed u E sn-1 , p( u) is a random 
vector of sn-1 . Therefore, if u E sn-1 is fixed, A C sn-1 is measurable, and 
p E SO(n) is random, then the probability of p(tt) E A equals P [A] . 

Let £0 be the k-dimensional subspace spanned by the first k coordinate 
vectors e1 ,  e2 , . . .  , ek .  A random k-dimensional linear subspace L C R n can 
be defined as p(L0) ,  where p E SO(n) is a random rotation. 

By Levy's lemma, a 1-Lipschitz function on sn-l is "almost constant" on 
a subset A occupying almost all of sn-1 . Generally we do not know anything 
about the shape of such an A. But the next proposition shows that the 
almost-constant behavior can be guaranteed on the intersection of sn- l with 
a linear subspace of R n of relatively large dimension. 

14.3.4 Proposition (Subspace where a Lipschitz function is almost 
constant) .  Let j: sn-1  ---7 R be a 1-Lipschitz function and let 6 E (0, 1] . 
Then there is a linear subspace L C an such that all values of f restricted 
to sn-1 n L are in the interval [med(/) - 6, med(/) + 6] and 

82 
dim L > S log(S/<5) 

· n - 1 .  
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Proof. Let L0 be the subspace spanned by the first k = r n62 /8 log � - 11 
coordinate vectors. Fix a �-net N (as defined above Lemma 13. 1 . 1 )  in sn- l n 
Lo . Let p E SO(n) be a random rotation. For x E N, p(x) is a random point, 
and so by Levy's lemma, the probability that l f(p(x)) - med(f) l > � for 
at least one point x E N is no more than IN I  · 4e-<52n/B . Using the bound 
IN I  < ( � )k from Lemma 13. 1 . 1 ,  we calculate that with a positive probability, 
l f(y) - med(f) l < � for all y E p(N) . 

We choose a p with this property and let L = p(Lo ) .  For each X E sn-lnL, 
there is some y E p(N) with l lx - y JI < � , and since f is 1-Lipschitz, we obtain 
l f(x) - med(f) l < l f (x) - f(y) l + lf(y) - med(/) 1 < 6. D 

Bibliography and remarks. Levy's lemma and a measure concen
tration result similar to Theorem 14. 1 . 1  were found by Levy [Lev51] . 

Analogues of Levy's lemma for other spaces with measure concen
tration follow by the same argument. On the other hand, a measure 
concentration inequality for sets follows from concentration of Lips
chitz functions (a Levy's lemma) on the considered space (Exercise 1) .  
For some spaces, concentration of Lipschitz functions can be proved 
directly. Often this is done using martingales (see [Led01] , [ASOOd] , 
(MS86] , (Bol87] ) .  Here we outline a proof without martingales (follow
ing [Led01] ) for product spaces. 

Let 0 be a space with a probability measure P and a metric p. The 
Laplace functional E = En,P,p is a function (0, oo) ---+ R defined by 

E(A) = sup {E [ e.Af] : f :  n ---+ R is 1-Lipschitz and E [f] = 0} . 

First we show that a bound on E(A) implies concentration of Lipschitz 
functions. Assume that E(A) < ea>.? 12 for some a > 0 and all A > 0, 
and let f: n ---+ R be 1-Lipschitz. We may suppose that E [f] = 0. 
Using Markov's inequality for the random variable Y = e.Af , we have 
P [f > t] = P [Y > et.A] < E [Y] jet.A < E(A)jet.A < ea.A2/2-.At ,  and 
setting A = ! yields P [! > t] < e-t2f2a . 

Next, for some spaces, E(A) can be bounded directly. Here we show 
that if (n, p) has diameter at most 1 ,  then E(A) < e-.A2/2 • This can be 
proved by the following elegant trick. First we note that eE[f] < E [ ef] 
for any f, by Jensen's inequality in integral form, and so if E [!] = 0, 
then E [e-I] > 1. Then, for a 1-Lipschitz f with E [f] = 0, we calculate 

E [ e.>.f] = in e.>.f(x) dP(x) 

< (/ e-Af(y) dP(y)) (/ e.>.f(x) dP(x)) 
= J J e.>.Cf(x)-f(y)) dP(x) dP(y) 
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= f: j j (>. (f(x) � f(y) ) )i 
dP(x) dP(y) . 

t=O 

For i even, we can bound the integrand by _Ai /i! ,  since !f(x) -f(y) j < 1 .  
For odd i, the integral vanishes by symmetry. The resulting bound 
is 2:r 0 

.A2k / (2k) ! < eA2 
12 . (If the diameter is D, then we obtain 

E(.A) < eD2 A2 /2 . )  
Finally, we prove that the Laplace functional is submultiplica

tive. Let (Ol , Pl , Pl )  and (02 , P2 , P2 ) be spaces, let 0 = 01 xn2 , 
P = P1 xP2 , and p = Pl + P2 (that is, p( (x , y) ,  (x' , y') )  = Pl (x, x') + 
P2(y, y') ) .  We claim that En,P,p (.A) < Erh ,Pt ,p1 (.A) · En2 ,P2 ,p2 (.A) . To 
verify this, let f: n ---t R be !-Lipschitz with E [f] = 0, and set 
g(y) = Ex [f(x, y) ]  = fn1 J(x, y) dP1 (x) .  We observe that g, being 
a weighted average of 1-Lipschitz functions, is 1-Lipschitz. We have 

The function x H f(x, y) -g(y) is !-Lipschitz and has zero expectation 
for each y, and the inner integral is at most En 1 ,P1 ,p1 (A) . Since g is 
!-Lipschitz and E [g] = 0, we have f02 eAg(y) dP2 (y) < Eo.2,P2 ,p2 (.A) 
and we are done. 

By combining the above, we obtain, among others, that if each 
of n spaces (Oi , Pi, Pi ) has diameter at most 1 and (0, P, p) is the 
product, then P [f > E(/] + t] < e-t2 12n for all !-Lipschitz f: 0 ---t R. 
In particular, this applies to the Hamming cube. 

Proposition 14.3.4 is due to Milman [Mil69] , (Mil71] . 

Exercises 

341 

1 .  Derive the measure concentration on the sphere (Theorem 14. 1 . 1 ) from 
Levy's lemma. � 

14.4 Almost Spherical Sections: The First Steps 

For a real number t > 1 ,  we call a convex body K t-almost spherical if it 
contains a (Euclidean) ball B of some radius r and it is contained in the 
concentric ball of radius tr. 
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Given a centrally symmetric convex body K C Rn and c > 0, we are in
terested in finding a k-dimensional ( linear) subspace L,  with k as large as 
possible, such that the "section" K n L is ( 1  +c)-almost spherical. 
Ellipsoids. First we deal with ellipsoids, where the existence of large spher
ical sections is not very surprising. But in the sequel it gives us additional 
freedom: Instead of looking for a ( 1 +c)-spherical section of a given convex 
body, we can as well look for a ( 1+c)-ellipsoidal section, while losing only a 
factor of at most 2 in the dimension. This means that we are free to trans
form a given body by any (nonsingular) affine map, which is often convenient. 
Let us remark that in the local theory of Banach spaces, almost-ellipsoidal 
sections are usually as good as almost-spherical ones, and so the following 
lemma is often not even mentioned. 

14.4. 1 Lemma (Ellipsoids have large spherical sections) .  For any 
(2k-1 )-dinlensional ellipsoid E, there is a k-flat L passing through the center 
of E such that E n L is a Euclidean ball. 

Proof. Let E = { x E R2k-l : I;;k� l � < 1 } with 0 < a1 < a2 < · · · < 
a2k-l · We define the k-dimensional linear subspace L by a system of k - 1 
linear equations. The ith equation is 

i = 1 ,  2, . . . , k-1 .  It is chosen so that 

2 x2 1 xi 2k-i ( 2 2 ) 2 + 2 == 2 xi + x2k-i a . a2k . ak t , - 1,  

for x E L. It follows that for x E £, we have x E E if and only if l l x l l  < ak ,  
and so E n L is a ball of radius ak . The reader is invited to find a geometric 
meaning of this proof and/ or express it in the language of eigenvalues. D 

To make formulas simpler, we consider only the case E = 1 (2-almost 
spherical sections) in the rest of this section. An arbitrary c > 0 can always 
be handled very similarly. 
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The cube. The cube [-1 ,  1]n is a good test case for finding almost-spherical 
sections; it seems hard to imagine how a cube could have very round slices. 
In some sense, this intuition is not totally wrong, since the almost-spherical 
sections of a cube can have only logarithmic dimension, as we verify next. 
(But the n-dimensional crosspolytope has ( 1 +c)-spherical sections of dimen
sion as high as c( c )n, and yet it does not look any rounder than the cube; so 
much for the intuition. ) 

The intersection of the cube with a k-dimensional linear subspace of R n 
is a k-dirnensional convex polytope with at rnost 2k facets. 

14.4.2 Lemma. Let P be a k-dirnensional 2-alrnost spherical convex poly
tope. Then P has at least � ek/B facets. 

Therefore, any 2-almost spherical section of the cube has dimension at 
most O(log n) . 

Proof of Lemma 14.4.2. After a suitable affine transform, we may assume 
� Bk c p c Bk. Each point X E sk- l is separated from p by one of the facet 
hyperplanes. For each facet F of P, the facet hyperplane hp cuts off a cap Cp 
of sk� 1 '  and these caps together cover all of sk- l .  The cap c F is at distance 
at least � from the hemisphere defined by the hyperplane h'p parallel to hp 
and passing through 0. 

_,. -- hp 

. .... . - h'p 

By Theorem 14. 1 . 1  (measure concentration) , we have P [CF] < 2e-kf8. D 

Next, we show that the n-dimensional cube actually does have 2-almost 
spherical sections of dimension !1 (log n) . First we need a k-dimensional 2-
almost spherical polytope with 4k facets. We note that if P is a convex 
polytope with Bk c P c tBk , then the dual polytope P* satisfies � Bk c 
P* c Bk (Exercise 1 ) . So it suffices to construct a k-dimensional 2-almost 
spherical polytope with 4 k vertices, and this was done in Section 13.3: We can 
take any 1-net in sk- l  as the vertex set. (Let us remark that an exponential 
lower bound for the number of vertices also follows from Theorem 13.2. 1 . ) 

By at most doubling the number of facets, we may assume that our k
dimensional 2-almost spherical polytope is centrally symmetric. It remains 
to observe that every k-dimensional centrally symmetric convex polytope P 
with 2n facets is an affine i1nage of the section [- 1 ,  1] n n L for a sui table k-di
mensional linear subspace L C Rn . Indeed, such a P can be expressed as the 
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intersection n� 1 {x E Rk : J (ai , x) J < 1} ,  where ±a1 , . . .  , ±an are suitably 
normalized normal vectors of the facets of P. Let f: R k ---+ R n be the linear 
map given by 

f ( x) = ( (a 1 , X) , ( a2 , x) , . . . , (an , x) ) . 

Since P is bounded, the ai span all of R k , and so f has rank k. Consequently, 
its image L = f(Rk)  is a k-dimensional subspace of Rn. We have P = 
f-1 ( [-1 ,  1 ]n ) ,  and so the intersection [- 1 ,  1] n n L is the affine in1age of P. 

We see that the n-dimensional cube has 2-almost ellipsoidal sections of 
dimension ��(log n) (as well as 2-almost spherical sections, by Lemma 14.4. 1 ) .  

Next, we make preparatory steps for finding almost-spherical sections of 
arbitrary centrally symmetric convex bodies. These considerations are most 
conveniently formulated in the language of norms. 
Reminder on norms. We recall that a norm on a real vector space Z is 
a mapping that assigns a nonnegative real number l l x l lz  to each x E Z such 
that l l x l lz  = 0 implies x = 0, l lax l l z  = la l  · l lx l lz  for all a E R, and the 
triangle inequality holds: l lx + Y l l z  < l lx ll z + I IY I I z .  (Since we have reserved 
I I  · I I  for the Euclidean norm, we write other norms with various subscripts, 
or occasionally we use the symbol I · J . )  

Norms are in one-to-one correspondence with closed bounded convex bod
ies symmetric about 0 and containing 0 in their interior. Here we need only 
one direction of this correspondence: Given a convex body K with the listed 
properties, we assign to it the norm I I · I lK given by 

l lx I I K = min { t > 0: � E K} ( x =/= 0). 

Here is an illustration: 

I IY I IK = 3 � y 

X 
l lx i i K = 1 

. . 
' . 
' 
' 

' 
' . 
' . . 

It is easy to verify the axioms of the norm (the convexity of K is needed for 
the triangle inequality) . The body K is the unit ball of the norm I I · I IK ·  The 
norm of points decreases by blowing up the body K. 
General body: the first attempt. Let K C Rn be a convex body defining 
a norm (i .e . ,  closed, bounded, symmetric, 0 in the interior) . Let us define the 
function fK : sn-l ---t R as the restriction of the norm I I . I l K on sn- l ; that 
is, !K (x) = l lx i iK · We note that K is t-almost spherical if (and only if) there 
is a number a > 0 such that a <  f(x) < ta for all X E sn- l . So for finding 
a large almost-spherical section of K, we need a linear subspace L such that 
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f does not vary too much on sn- l n L, and this is where Proposition 14.3.4, 
about subspaces where a Lipschitz function is almost constant, comes in. 

Of course, that proposition has its assumptions, and one of them is that 
f K is 1-Lipschitz. A sufficient condition for that is that K should contain the 
unit ball: 

14.4.3 Observation. Suppose that the convex body K contains the R-ball 
B(O, R) . Then l lx i i K  < k l lx l l  for all x, and the function x t-t l lx i iK  is k-Lip
schitz with respect to the Euclidean metric. D 

Then we can easily prove the following result. 

14.4.4 Proposition. Let K C Rn be a convex body defining a norm and 
such that Bn C K, and let m = med(f K) ,  where f K is as above. Then there 
exists a 2-almost-spherical section of K of dimension at least ( nm2 ) 

n log(24/m) 
. 

Proof. By Observation 14.4.3, f K is 1-Lipschitz. Let us set 6 = r; (note 
that Bn c K also implies m < 1 } .  Proposition 14.3.4 shows that there is a 
subspace L such that fK E (�m, jm] on sn- l n L,  where ( n62 ) ( nm2 ) dim £ = n log(8/8) 

= n log(24/m) 
. ( 14.2) 

The section K n L is 2-almost spherical. D 

A slight improvement. It turns out that the factor log(24/m) in the result 
just proved can be eliminated by a refined argument, which uses the fact that 
fK comes from a norm. 

14.4.5 Theorem. With the assumptions as in Proposition 14.4.4, a 2-almost 
spherical section exists of dimension at least {3nm2 , where {3 > 0 is an absolute 
constant. 

Proof. The main new observation is that for our JK , we can afford a much 
less dense net N in the proof of Proposition 14.3.4. Namely, it suffices to let 
N be a �-net in sk-· 1 , where k = f(3m2nl . 

If (3 > 0 is sufficiently srrtall , Levy's lemma gives the existence of a rotation 
p such that iim < /K(Y) < i�m for all y E p(N) ; this is exactly as in the 
proof of Proposition 14.3.4. It remains to verify �m < !K (x) < �m for all 
X E sn-1 n L, where L = p(Lo ) .  This is implied by the following claim with 
a =  i�m and I · I = II · I l K : 
Claim. Let N be a ! -net in sk- l with respect to the Euclidean metric, and 
let I · I be a norm on Rk satisfying �a < IY I < a for all y E N  and for some 
number a > 0. Then �a < l x l < �a for all X E sk- 1 . 
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To prove the claim, we begin with the upper bound (this is where the 
new trick lies) . Let M = max{ lx l : X E sk- 1 } and let Xo E sk-l  be a point 
where M is attained. Choose a y0 E N at distance at most � from x0, and let t) 
z = (xo - Yo)/ l lxo - Yo I I  be the unit vector in the direction of x0 - YO · Then 
M = lxo l  < IYo l  + lxo - Yo l  < a +  l lxo - Yo II · l z l  < a + �M. The resulting 
inequality M < a + i M yields M < �a. 

The lower bound is now routine: If  X E sk- 1  and y E N is at distance at 
most � from it, then lx l  > IY I - lx - Yl > � a - ; ·  � a > �a .  The claim, as 
well as Theorem 14.4.5, is proved. 0 

Theorem 14.4.5 yields almost-spherical sections of K, provided that we 
can estimate med(/K ) (after rescaling K so that Bn C K). We must warn 
that this in itself does not yet give almost spherical sections for every K 
(Dvoretzky's theorem), and another twist is needed, shown in Section 14.6. 
But in order to reap some benefits from the hard work done up until now, 
we first explain an application to convex polytopes. 

Bibliography and remarks. As was remarked in the text, almost
spherical and almost-ellipsoidal sections are seldom distinguished in 
the local theory of Banach spaces, where symmetric convex bodies are 
considered up to isomorphism, i .e . ,  up to a nonsingular linear trans
form. If K1 and K2 are symmetric convex bodies in Rn, their Banach�· 
Mazur distance d(K1 , K2) is defined as the smallest positive t for which 
there is a linear transform T such that T(K1 ) C K2 C t · T(K2) .  
So a symmetric convex body K is t-almost ellipsoidal if and only if 
d(K, Bn) < t .  It turns out that every two symmetric cornpact convex 
bodies K1 , K2 C Rn satisfy d(K1 , K2) < fo. The logarithm of the 
Banach-Mazur distance is a metric on the space of compact symmet
ric convex bodies in R n .  

Lernma 14.4. 1 appears in Dvoretzky [Dvo61 ] . Theorem 14.4.5 is 
from Figiel, Lindenstrauss, and J\1ilman [FLM77} . 

There are several ways of proving that the n-dimensional crosspoly
tope has almost spherical sections of dimension 0( n) (but, perhapH 
surprisingly, no explicit construction of such a section seems to be 
known) .  A method based on Theorem 14.4.5 is indicated in Exer
cise 14.6.2. A somewhat more direct way, found by Schechtman, is 
to let the section L be the image of the linear map f: Rcn --+ Rn 
whose matrix has entries ±1  chosen uniformly and independently at 
random ( c > 0 is a suitable small constant) .  The proof uses martin
gales ( Azuma's inequality) ; see, e.g. , J\1ilman and Schechtman [MS86] . 
The existence of a C-almost spherical section of dimension � ,  with a 
suitable constant C, is a consequence of a theorem of Kashin: If Br de
notes the crosspolytope and p is a random rotation, then Bl_� np( Bi� ) is 
32-almost spherical with a positive probability; sec Ball [Bal97] for an 
insightful exposition. The previously mentioned methods do not pro-
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vide a dimension this large, but Kashin's result does not give (!+c)
almost spherical sections for small £ .  

Exercises 

347 

1 .  Let K be a convex body containing 0 in its interior. Check that K C Bn 
if and only if Bn C K* (recall that K* = {x E Rk : (x, y) < 1 for all y E 
K}) .  Derive that if Bk c K c tBk , then tBk c K* c Bk. ITJ 

14.5 Many Faces of Symmetric Polytopes 

Can an n-dimensional convex polytope have both few vertices and few facets? 
Yes, an n-si1nplex has n+1 vertices and n+l facets. What about a centrally 
symmetric polytope? The n-dimensional cube has only 2n facets but 2n ver
tices. Its dual, the crosspolytope (regular octahedron for n == 3) , has few 
vertices but many facets. It turns out that every centrally symmetric poly
tope has many facets or many vertices. 

14.5.1 Theorem. There is a constant a > 0 such that for any centrally sym
Inetric n-di1nensional convex polytope P, we l1ave log fo ( P) ·log f n-1 ( P) > an 
(recall that fo ( P) denotes the number of vertices and f n- 1 ( P) the number 
of facets). 

For the cube, the expression log fo (P) · log fn-1 (P) is about n log n, which 
is even slightly larger than the lower bound in the theorem. However, poly
topes can be constructed with both log fo (P) and log fn-1 (P) bounded by 
0 ( y'n) (Exercise 1 ) . 

Proof of Theorem 14.5. 1 .  We use the dual polytope P*  with fo(P) = 

fn-1 (P* ) ,  and we prove the theorem in the equivalent form log fn-1 (P* ) · 

log fn-1  (P) > an. 
John's lemma (Theorem 13 .4 .1 ) claims that for any symmetric convex 

body K, there exists a ( nonsingular) linear map that transforms K into a 
y'n-almost spherical body. We can thus assume that the considered n-dimen
sional polytope P is y'n-almost spherical (this is crucial for the proof) .  

After rescaling, we may suppose Bn C P C y'n Bn. Letting m = rned(fp ) ,  
where fp is the restriction of I I · I I P  on sn-1 as usual, Theorem 14.4.5 tells us 
that there is a linear subspace L of Rn with P n L being 2-almost spherical 
and with din1(L) = O(nm2) .  Thus, since any k-dimensional 2-almost spherical 
polytope has en(k) facets, we have log fn- 1 (P) = O(nm2) .  

Now, we look at P* . Since Bn C P C y'n Bn, by Exercise 14.4. 1 we have 
n-112 Bn C P* C Bn . In order to apply Theorem 14.4 .5 ,  we set P = y'n P* , 
and obtain a 2-almost spherical section L of P of dimension O(nm2) ,  where 
rh = n1ed(j_p ) .  This implies log fn-1 (P* ) = O(nm2) .  

It remains to observe the following inequality: 
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14.5.2 Lemma. Let P be a polytope in Rn defining a norm and let P* be 
the dual polytope. Then we have med(fp) med(fp• ) > 1 .  

We leave the easy proof as Exercise 2. Since m = med(fP* ) /  fo, we finally 
obtain 

log fn-1 (P) · log fn-1 (P*) = !1(n2m2m2) 
= O(n med(fp)2 med(fP* )2) = O(n) . 

This concludes the proof of Theorem 14.5. 1 .  

Bibliography and remarks. Theorem 14.5 .1 ,  as well as the exam
ple in Exercise 1 ,  is due to Figiel, Lindenstrauss, and Milman [FLM77] . 
Most of the tools in the proof come from earlier papers of Milman 
[Mil69] , [Mil71] . 

Exercises 

D 

1 .  Construct an n-dimensional convex polytope P with log fo (P) = 0( fo) 
and log fn-1 (P) = 0( fo}, thereby demonstrating that Theorem 14.5 .1  
is asymptotically optimal. Start with the interval [0, 1 ] c R 1 , and alter
nate the operations ( · )  * (passing to the dual polytope) and x (Cartesian 
product) suitably; see Exercise 5.5.1 for some properties of the Cartesian 
product of polytopes. 0 
The polytopes obtained from [0, 1] by a sequence of these operations are 
called Hammer polytopes, and they form an important class of examples. 

2. Let K be a bounded centrally symmetric convex body in Rn containing 
0 in its interior, and let K* be the dual body. 
(a) Show that l lx i i K . l lx i i K· > 1 for all X E sn-l . [!] 
(b) Let /, g: sn- 1 -4 R be (measurable) functions ,vith f(x)g(x) > 1 for 
all X E sn-1 . Show that med(f) med(g) > 1 .  [II 

14.6 Dvoretzky's Theorem 

Here is the remarkable Ramsey-type result in high-dimensional convexity 
promised at the beginning of this chapter. 

14.6.1 Theorem (Dvoretzky's theorem). For any natural number k 
and an.Y real c > 0, there exists an integer n == n(k , c) with the following 
property. For any n-dimensional centrally symmetric convex body K C Rn, 
there exists a k-dimensional linear subspace L C Rn such that the section 
K n L is (!+c) -almost spl1erical. 

Tl1e best known estimates give n(k , c) = e0(k/e2) .  
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Thus, no matter how "edgy" a high-dimensional K may be, there is always 
a slice of not too small dimension that is almost a Euclidean ball. Another 
way of expressing the statement is that any normed space of a sufficiently 
large dimension contains a large subspace on which the norm is very close 
to the Euclidean norm (with a suitable choice of a coordinate system in the 
subspace) . Note that the Euclidean norn1 is the only norm with this universal 
property, since all sections of the Euclidean ball are again Euclidean balls. 

As we saw in Section 14.4, the n-dimensional cube shows that the largest 
dirnension of a 2-almost spherical section is only O(log n) in the worst case. 

The assumption that K is syrnmetric can in fact be omitted; it suffices 
to require that 0 be an interior point of K. The proof of this more general 
version is not much more difficult than the one shown below. 

We prove Dvoretzky's theorem only for c = 1 ,  since in Section 14.4 we 
prepared the tools for this particular setting. But the general case is not very 
different . 
Preliminary considerations. Since affine transforms of K arc practically 
for free in view of Lenuna 14.4. 1 ,  we Inay assu1ne that Bn C K C fo Bn 
by John's lemma (Theorern 13 .4 . 1 ) .  So the norm induced by K satisfies 
n-1/2 l lx l l < l lx i iK < l l x l l for all x. If !K is the restriction of I I  · I lK to 
sn- l '  we have the obvious bound med(fK)  > n-

1 12 . Immediate applica
tion of Theorem 14.4.5 shows the existence of a 2-almost spherical section 
of K of dimension O(n Ined(fK )2 ) = 0(1 ) ,  so this approach gives nothing at 
all! On the other hand, it just fails, and a small improvement in the order of 
magnitude of the lower bound for med(fK )  already yields Dvoretzky's theo
rem. 

We will not try to improve the estimate for rned(/K )  directly. Instead, 
we find a relatively large subspace Z C R n such that the section K n Z can 
be enclosed in a not too large parallelotope P. Then we estimate, by direct 
cornputation, med(fp) (over the unit sphere in Z). 

The selection of the subspace Z is known as the Dvoretzky-Rogers lemma. 
We present a version with a particularly simple proof, where dim Z � n/ log n. 

(For our purposes, we would be satisfied with even rnuch weaker estin1ates, 
say dim Z > n6 for some fixed 8 > 0, but on the other hand, another proof 
gives even dim Z == � . ) 

14.6.2 Lemma {A version of the Dvoretzky-Rogers lemma) . Let 
K C Rn be a centrally symmetric convex body. Then there exist a lin
ear subspace Z C R n of dimension k == l 1 gn J ,  an orthonormal basis o 2 n 
u 1 ,  u2 , . • .  , uk of Z, and a nonsingular linear transform T of R n such that 
if we let k = T(K) n Z, then l l x l l k < l l x l l  for all x E Z and l l ui l lk  > � for 
all i == 1, 2, . . .  , k. 

-
Geometrically, the lemma asserts that K is sandwiched between the unit ball 
Bk and a parallelotope P as in the picture: 
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p 

(The lemma claims that the points 2ui are outside of K or on its boundary, 
and P is obtained by Reparating theRe points from K by hyperplanes. )  
Proof. By John's lemma, we may assume Bn C K C tBn , where t = fo. 
Interestingly, the full power of John's lemma is not needed here; the sarne 
proof works with, say, t = n or t = n10 ,  only the bound for k would become 
worse by a constant factor. 

Let X0 = Rn and K0 = K. Here is the main idea of the proof. The 
current body Ki is enclosed between an inner ball and an outer ball. Either 
Ki approaches the inner ball sufficiently closely at "many" places, and in 
this case we can construct the desired u1 , . . .  , uk,  or it stays away from the 
inner ball on a "large" subspace. In the latter case, we can restrict to that 
subspace and inflate the inner ball. But since the outer ball remains the 
same, the inflation of the inner ball cannot continue indefinitely. A precise 
argument follows; for notational reasons, instead of inflating the inner ball, 
we will shrink the body and the outer ball. 

We consider the following condition: 

( *) Each linear subspace Y C X0 with dim(X0) - dim(Y) < k con
tains a vector u with ] ]u ] ]  = 1 and ] ]u ] ]Ko > � ·  

This condition may or may not be satisfied. If it holds, we construct the 
orthonormal basis u1 , u2 , . . .  , uk by an obvious induction. If it is not satisfied, 
we obtain a subspace X1 of dimension greater than n - k such that ] ]x ] ]Ko < � l lx l l  for all X E xl · Thus, KonXl is twice "more spherical" than Ko . Setting 
Kl = � (Ko n XI ) ,  we have 

; 1 1 · 1 1 < I I · I IKI < I I . I J .  
We again check the condition (*) with X1 and K1 instead of X0 and K0. If 
it holds, we find the ui within X 1 , and if it does not, we obtain a subspace 
X2 of dimension greater than n - 2k, etc. After the ith step, we have 

2'l T I I  . I I  < I I  . I I  K� < I I  . I J . 
ThiR conRtruction cannot proceed all the way to step i = i0 = llog2 n J , since 
2io > t = fo. Thus, the condition (*) must hold for Xio- l  at the latest. We 
have dim Xio - 1 > n - (io - l )k  > k, and SO the required basis U } ,  . . .  , Uk Can 
be constructed. D 
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The parallelotope is no worse than the cube. From now on, we work 
within the Rnbspace Z as in Lemma 14.6.2. For convenient notation, we as
suine that Z is all of Rn and K is as K in the above lemma, i.e. , Bn C K 
and l lui i iK > � ,  i = 1 ,  2, . . . , n, where u1 , . . .  , Un is an orthonormal basis of 
Rn . (Note that the reduction of the dimension from n to n/ log n is nearly 
insignificant for the estimate of n(k, c) in Dvoretzky's theorem. )  

The goal is to show that med(fK)  = n (J(log n)/n ) , where !K is I I · I IK 
restricted to sn- 1 . Instead of estimating med(fK ) ,  we bound the expectation 
E [fK] ·  Since !K is 1-Lipschitz (we have Bn C K) , the difference I med(fK ) 
E[fK] I is O(n- 112) by Proposition 14.3.3, which is negligible compared to 
the lower bound we are heading for. 

We have 1 1 · 1 1 K > 1 1 · 1 1 p ,  where P is the parallelotope as in the illustration 
to Lemma 14.6.2. So we actually bound E [fp] from below. 

First we show, by an averaging trick, that E [fp] > E[fc] ,  where fc (x) = � II x II oo = � maxi ! xi I is the norm induced by the cube C of side 4. The idea 
of the averaging is to consider' together with a point X = E� 1 O:iUi E sn- l '  
the 2n points of the form E� 1 aio:iui , where a E { -1 ,  1 }n iR a vector of 
signs. For any measurable function fp: sn- 1 ---+ R, we have 

= 2n { fp (x) dP(x) = 2n E[fp] . }sn- 1 
The following lemma with Vi = o:iui and 1 · 1  = 1 1 · 1 1 p implies that the integrand 
on the left-hand side is always at least 2n maxi l laiui i i P  > 2n · � maxi ! ai l ,  
and so indeed E [!P] > E[fc] .  

14.6.3 Lemma. Let Vt ,  v2 , . . .  , Vn be arbitrary vectors in a normed space 
with nor1n I · j .  Then 

n 
L L aivi 

aE{ - l , l }n  i= l 
> 2n m9-x !vi I · 

t 

The proof is left as Exercise 1 .  It remains to estimate E [fc] from below. 

14.6.4 Lemma. For a suitable positive constant c and for all n we have 

E [fc] = � { l l x l loo  dP(x) > c �' lsn- 1 v �  
where l l x l l oo = maxi lxi l is the foo (or maximum) norm. 

Note that once this lemma is proved, Dvoretzky's theorem (with € = 1 )  
follows from what we have already done and from Theorem 14.4.5. 
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Proof of Lemma 14.6.4. There are various proofs; a neat way is based 
on the generally useful fact that the n-dimensional normal distribution is 
spherically symmetric around the origin. We use probabilistic terminology. 
Let Z1 , Z2 , . . .  , Zn be independent random variables, each of them with the 
standard normal distribution N(O, 1 ) .  As was mentioned in Section 14. 1 ,  the 
random vector Z = (Z1 , Z2 , . . .  , Zn) has a spherically symmetric (Gaussian) 
distribution, and consequently, the random variable ll�ll is uniformly dis-
tributed in sn-l . Thus 

We show first, that we have I I Z I I < ffn with probability at least � '  and 
second, that for a suitable constant c1 > 1 ,  I I Z I Ioo > c1 Jlog n holds with 
probability at least � .  It follows that both these events occur simultaneously 
with probability at least � ,  and so E[/c] > cJlog nfn as clain1ed. 

As for the Euclidean norm l iZ ] ] ,  we obtain E [ J IZ I I 2] = nE [Zr] == n, 
since an N(O, 1) random variable has variance 1 .  By Markov's inequality, 
Prob [ I IZ I I  > ffn ] = Prob [ I IZ I I 2 > 3E [ J IZ J I 2) ]  < j .  

Further, by the independence of the Zi we have 

Prob [ I IZ I Ioo < z] == Prob [IZi l < z for all i == 1 , 2, . . .  , n] 

= Prob [IZl l < zt = (1 - J,r loo e-t2/2 dt) n . 

We can estimate fz
oo e-t2 12 dt > 

fzz+l e-t2 12 dt > e-(z+I)2 12 . Thus, setting 
z = �-1,  we have Prob [ ] ]Z ] ]oo < z] < ( 1 - J,r n-112)n ,  which is below 
� for sufficiently large n. Lemma 14.6.4 is proved. D 

Bibliography and remarks. Dvoretzky and Rogers [DR50] in
vestigated so-called unconditional convergence in infinite-dimensional 
Banach spaces, and as an auxiliary result, they proved a staten1ent 
similar to Lemma 14.6.2, with the dimension of the subspace about 
fo. They used the largest inscribed ellipsoid and a variational argu
ment (somewhat similar to the proof of John's le1nma) . The leinina 
actually holds with an �-dimensional subspace; for a proof due to 
Johnson, again using the largest inscribed ellipsoid, see Benyamini 
and Lindenstrauss [BL99] . The proof of Lemma 14.6.2 presented in 
this section is from Figiel, Lindenstrauss, and Milman [FLM77] . 

Dvoretzky's theorem was conjectured by Grothendieck (Gro56] and 
first proved by Dvoretzky [Dvo59] , [Dvo61] . His proof was quite com
plicated, and the estin1ate for the dirnension of the ahnost spheri
cal section was somewhat worse than that in Theorem 14.6. 1 .  Since 
then, several other proofs have appeared; see Lindenstrauss [Lin92] 
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for an insightful summary. The proof shown above essentially follows 
Figiel et al. [FLM77] , who improved and streamlined Milman's proof 
[Mil71] based on measure concentration. A modern proof using mea
sure concentration for the Gaussian measure instead of that for the 
sphere can be found in Pisier [Pis89] . Gordon [Gor88] has a proof with 
more probability-theoretic flavor, using certain inequalities for Gaus
sian random variables (an extension of the so-called Slepian's lemma) . 

The dependence of the dimension of the almost spherical section 
on n is of order log n, which is tight, as we have seen. In terms of E ,  

the proof presented gives a bound proportional to c2 / log ! , and the 
best known general bound is proportional to c2 (Gordon [Gor88] ) .  

A version of Dvoretzky's theorem for not necessarily symmetric 
convex bodies was established by Larman and Mani [LM75] , and Gor
don's proof [Gor88] is also formulated in this setting. 

For x E Rn, let l lx i iP = ( lxt iP + · · · + l xn lp) lfp denote the fp
norm of x. Here p E [1 ,  oo ) ,  and for the limit case p = oo we have 
l lx l loo = maxi lxi l · For not too large p, the unit balls of lp-norms have 
much larger almost spherical sections than is guaranteed by Dvoret
zky's theorem. For p E [ 1 ,  2) , the dimension of a {l+c)-almost spherical 
section is Cgn, and for p > 2 ,  it is cen21P. These results are obtained by 
the probabilistic method, and no explicitly given sections with compa
rable dimensions seem to be known; see, e.g. , [MS86] . There are many 
other estimates on the dimension of almost spherical sections, for ex
ample in tern1s of the so-called type and cotype of a Banach space, as 
well as bounds for the dimension of almost spherical projections. For 
example, by a result of Milman, for any centrally symmetric n-dimen
sional convex body K there is a section of an orthogonal projection 
of K that is ( 1 +c)-almost spherical and has dimension at least c( E )n 
(which is surprising, since both for sections alone and for projections 
alone the dimension of an almost spherical section can be only loga
rithmic) . Such things and much more information can be found in the 
books Milman and Schechtman [MS86] , Pisier (Pis89] , and Tomczak
Jaegermann [TJ89] . 

Exercises 

1 .  Prove Lemma 14.6.3. 8J 
2. (Large almost spherical sections of the crosspolytope) Use Theorem 14.4.5 

and the method of the proof of Lemma 14.6.4 for proving that the n-di
mensional unit ball of the t'1-norm has a 2-almost spherical section of 
dimension at least en, for a suitable constant c > 0. [I] 





15  

Embedding Finite Metric 

Spaces into Normed Spaces 

15.1  Introduction: Approximate Embeddings 

We recall that a metric space is a pair (X, p) ,  \vhere X is a set and p: X x X ---+ 
[0, oo) is a metric, satisfying the following axioms: p(x, y) == 0 if and only if 
x == y ,  p(x, y) == p(y, x) , and p(x, y) + p(y, z )  > p(x, z ) . 

A metric p on an n-point set X can be specified by an nxn  matrix of 
real numbers (actually (�) nurnbers suffice because of the syrnmetry) . Such 
tables really arise, for example, in microbiology: X is a collection of bacterial 
strains, and for every two strains, one can obtain their dissimilarity, which 
is some measure of how much they differ. Dissimilarity can be computed 
by assessing the reaction of the considered strains to various tests, or by 
corn paring their DNA, and so on. 1 It is difficult to see any structure in a 
large table of nurnbers, and so we would like to represent a given metric 
space in a more comprehensible way. 

For example, it would be very nice if we could assign to each x E X a point 
f ( x) in the plane in such a way that p( x, y) equals the Euclidean distance of 
f(x) and f(y) .  Such representation would allow us to see the structure of the 
metric space: tight clusters, isolated points, and so on. Another advantage 
would be that the metric would now be represented by only 2n real numbers, 
the coordinates of the n points in the plane, instead of (�) numbers as be
fore. Moreover, rnany quantities concerning a point set in the plane can be 
cornputed by efficient geometric algorithms, which are not available for an 
arbitrary metric space. 

1 There are various measures of dissimilarity, and not all of them yield a metric, 
but many do. 
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This sounds very good, and indeed it is too good to be generally true: It 
is easy to find examples of small metric spaces that cannot be represented in 
this way by a planar point set. One example is 4 points, each two of them 
at distance 1 ;  such points cannot be found in the plane. On the other hand, 
they exist in 3-dimensional Euclidean space. 

Perhaps less obviously, there are 4-point metric spaces that cannot be 
represented (exactly) in any Euclidean space. Here are two examples: 

The metrics on these 4-point sets are given by the indicated graphs; that is, 
the distance of two points is the number of edges of a shortest path connecting 
them in the graph. For example, in the second picture, the center has distance 
1 from the leaves, and the mutual distances of the leaves are 2. 

So far we have considered isometric embeddings. A mapping f: X � Y, 
where X is a metric space with a metric p and Y is a metric space with 
a metric a, is called an isometric embedding if it preserves distances, i .e. , 
if a(f(x) , f(y) ) = p(x, y) for all x, y E X. But in many applications we 
need not insist on preserving the distance exactly; rather, we can allow some 
distortion, say by 10%. A notion of an approximate embedding is captured 
by the following definition. 

15.1 .1  Definition (D-embedding of metric spaces) .  A mapping J: X ---+ 
Y, where X is a metric space with a metric p and Y is a metric space with 
a metric a, is called a D-ernbedding, where D > 1 is a real number, if tl1ere 
exists a number r > 0 such that for all x, y E X, 

r · p(x, y) < a(f(x) , f(y) ) < D · r · p(x, y) . 

The infimum of the numbers D such that f is a D-embedding is called the 
distortion of f. 

Note that this definition permits scaling of all distances in the same ratio 
r, in addition to the distortion of the individual distances by factors between 
1 and D. If Y is a Euclidean space (or a normed space) , we can rescale the 
image at will, and so we can choose the scaling factor r at our convenience. 

Mappings with a bounded distortion are sometirnes called hi-Lipschitz 
mappings. This is because the distortion of f can he equivalently defined using 
the Lipschitz constants of f and of the inverse mapping f- 1 . Namely, if we 
define the Lipschitz norm of f by I I  f i l Lip = sup{ a(f(x) , f(y) )/ p(x, y) : x, y E 
X, x # y} ,  then the distortion of f equals 11/ I I Lip · I I /-1 I I Lip · 

We are going to study the possibility of D-ernbedding of n-point Inetric 
spaces into Euclidean spaces and into various normed spaces. As usual, we 
cover only a small sample of results. Many of them are negative, showing 
that certain metric spaces cannot be embedded too well. But in Section 15.2 
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we start on an optimistic note: We present a surprising positive result of 
considerable theoretical and practical importance. Before that, we review a 
few definitions concerning lp-spaces. 
The spaces lp and t:. For a point x E Rd and p E [ 1 ,  oo) , let 

denote the lp-norm of x. Most of the time, we will consider the case p = 2, 
i.e. , the usual Euclidean norm l lx l l 2 = l lx l l . Another particularly important 
case is p = 1 ,  the l1-norm (sometimes called the Manhattan distance) . The 
i00-norm, or maximum norm, is given by l lx l loo := maxi lxi l ·  It is the limit of 
the lp-norms as p --1- oo. 

Let l� denote the space Rd equipped with the lp-norm. In particular, we 
write .eg in order to stress that we mean Rd with the usual Euclidean norm. 

Sometimes we are interested in embeddings into some space l� , with p 
given but without restrictions on the dimension d; for example, we can ask 
whether there exists some Euclidean space into which a given metric space 
embeds isometrically. Then it is convenient to speak about lp, which is the 
space of all infinite sequences x = (xt , x2, . . .  ) of real numbers with l lx i iP < oo, 

where l lx l lv = (I;� 1 I xi IP) l/p. In particular, £2 is the (separable) Hilbert 
space. The space lp contains each l� isometrically, and it can be shown that 
any finite metric space isometrically embeddable into lp can be isometrically 
embedded into f� for some d. (In fact, every n-point subspace of lp can be 
isometrically embedded into l� with d < (�) ; see Exercise 15.5.2.) 

Although the spaces lp are interesting mathematical objects, we will not 
really study them; we only use embeddability into lp as a convenient short
hand for embeddability into l� for some d. 

Bibliography and remarks. This chapter aims at providing an 
overview of important results concerning low-distortion embeddings 
of finite metric spaces. The scope is relatively narrow, and we almost 
do not discuss even closely related areas, such as isometric embed
dings. Another recent survey, with fewer proofs and mainly focused 
on algorithmic aspects, is Indyk [In dOl] .  

For studying approximate embeddings, it may certainly be help
ful to understand isometric embeddings, and here extensive theory is 
available. For example, several ingenious characterizations of isometric 
embeddability into f2 can be found in old papers of Schoenberg (e.g., 
[Sch38] , building on the work of mathematicians like Menger and von 
Neumann) . A recent book concerning isometric embeddings, and em
beddings into l 1 in particular, is Deza and Laurent [D L97] . 

Another closely related area is the investigation of hi-Lipschitz 
maps, usually ( l+e)-embeddings with e > 0 small, defined on an open 



358 Chapter 15: Embedding Finite Metric Spaces into Nor1ned Spaces 

subset of a Euclidean space (or a Banach space) and being local home
omorphisms. These mappings are called quasi-isometries (the defini
tion of a quasi-isometry is slightly more general, though) , and the 
main question is how close to an isometry such a mapping ha� to be, 
in terms of the dimension and c-; see Benyamini and Lindenstrauss 
[BL99] , Chapters 14 and 15,  for an introduction. 

Exercises 

1 .  Consider the two 4-point examples presented above (the square and the 
star) ;  prove that they cannot be isometrically embedded into t'� . � Can 
you determine the minimum necessary distortion for embedding into £�? 

2 .  (a) Prove that a bijective mapping f between metric spaces i� a D
embedding if and only if 1 1 / I I Lip · I I /- 1 1 1 Lip < D. II1 
(b) Let (X, p) be a metric space, I X I > 3. Prove that the distortion 
of an embedding f: X -+ Y, where (Y, a) is a metric space, equals the 
supremum of the factors by which f "spoils'' the ratios of distances; that . 
lS, 

sup { a(f(x ) ,  f(y) )  / a(f(z ) , f( t) ) : x, y , z , t E X, x =1- y, z =1- t} . p(x , y)jp(z, t) . 

15.2  The Johnson-Lindenstrauss Flattening Lemma 

It is easy to show that there is no isometric embedding of the vertex set 
V of an n-dimensional regular simplex into a Euclidean space of dimension 
k < n. In this sense, the ( n+ 1 )-point set V C £2 is truly n-dimensional. 
The situation changes drastically if we do not insist on exact isometry: As 
we will see, the set V, and any other ( n+ 1 )-point set in 1!2 , can be almost 
isometrically embedded into £� with k == O(log n) only! 

15 .. 2 .. 1 Theorem (Johnson-Lindenstrauss flattening lemma) .. Let X 
be an n-point set in a Euclidean space (i.e., X c 1!2), and let E E (0, 1] 
be given. Then there exists a ( l+c)-embedding of X into 1!� , where k == 
O(s-2 log n) .  

This result shows that any metric question about n points in £2 can 
be considered for points in £�(log n) , if we do not mind a distortion of the 
distances by at most 10%, say. For example, to represent n points of £2 in 
a computer, we need to store n2 numbers. To store all of their distances, we 
need about n2 numbers as well. But by the flattening lemma, we can store 
only O(n log n) numbers and still reconstruct any of the n2 distances with 
error at most 10%. 
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Various proofs of the flattening lemma, including the one below, provide 
efficient randomized algorithms that find the almost isometric embedding 
into f� quickly. Numerous algorithmic applications have recently been found: 
in fast clustering of high-dimensional point sets, in approximate searching 
for nearest neighbors, in approximate multiplication of matrices, and also in 
purely graph-theoretic problems, such as approximating the bandwidth of a 
graph or multicommodity flows. 

The proof of Theorem 15.2 .1 is based on the following lemma, of inde
pendent interest. 

15.2.2 Lemma {Concentration of the length of the projection) . For 
a unit vector X E sn-1 , let 

j(x) = Jxi + x� + · · · + x� 

be the length of the projection of x on the subspace Lo spanned by the first 
k coordinates. Consider X E sn-1 chosen at random. Tllen f(x) is sllarply 
concentrated around a suitable number m = m(n, k) : 

P [f(x) > m + t] < 2e-t2n/2 and P [f(x) < m - t] < 2e-t2n/2 , 

where P is tl1e uniform probability measure on sn-l .  For n larger than a 

suitable constant and k > 10 ln n, we have m > � /F_. 
In the lemma, the k-dimensional subspace is fixed and x is random. Equiv

alently, if x is a fixed unit vector and L is a random k-dimensional subspace 
of f2 (as introduced in Section 14.3) , the length of the projection of x on L 
obeys the bounds in the lemma. 
Proof of Lemma 15.2.2. The orthogonal projection p: f� --+ f� given by 
(x1 ,  . . .  , Xn) t-+ (x1 ,  . . . , xk) is !-Lipschitz, and so f is !-Lipschitz as well. 
Levy's lemma (Theorem 14.3.2) gives the tail estimates as in the lemma 
with rn = med(f) . It remains to establish the lower bound for rn. It is not 
impossibly difficult to do it by elementary calculation (we need to find the 
measure of a simple region on sn-l ) . But we can also avoid the calculation 
by a trick combined with a general measure concentration result . 

For random X E sn-1 ' we have 1 = E [ l lx l l 2] = L� 1 E [x;] . By symme
try, E [ xr] = .��, , and so E [/2] = � .  We now show that, since f is tightly 
concentrated, E [!2] cannot be much larger than m2 , and so m is not too 
small. 

For any t > 0, we can estimate 

k 
= E [f2] < P [f < m + t] · (m + t)2 + P [f > m + t] · max(f(x}2 } n x 

< (m + t)2 + 2e-t2n/2 . 
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Let us set t = Jkl5ii. Since k > 10 ln n, we have 2e-t2n/2 < � ,  and from 
the above inequality we calculate m > J(k-2)/n - t > � y'k]n. 

Let us remark that a more careful calculation shows that m = y'kJn + 
0( )n) for all k. 0 

Proof of the flattening lemma (Theorem 15.2.1}.  We may assume 
that n is sufficiently large. Let X c i� be a given n-point set. We set k = 

200c-2 ln n (the constant can be improved) .  If k > n, there is nothing to 
prove, so we assume k < n .  Let L be a random k-dimensional linear subspace 
of f� (obtained by a random rotation of L0) .  

The chosen L is a copy off� . We let p: f2 --+ L be the orthogonal projection 
onto L. Let m be the number around which l lp(x) l l  is concentrated, as in 
Lemma 15.2.2. We prove that for any two distinct points x, y E £� , the 
condition 

( 1 - � )m l l x - Y l l < l lp(x) - p(y) l l < (1 + � )m l l x - Y l l  (15 .1 )  

is violated with probability at most n -2
• Since there are fewer than n2 pairs of 

distinct x, y E X, there exists some L such that ( 15 . 1 )  holds for all x, y E X. 
In such a case, the mapping p is a D-embedding of X into f� with D < 
l+c:/3 < 1 +c (for c < 1 ) .  1-c:/3 -

Let x and y be fixed. First we reformulate the condition ( 15 . 1 ) .  Let u = 

x - y; since p is a linear mapping, we have p(x) -p(y) = p(u), and {15 .1 )  can 
be rewritten as ( 1- � )m l lu l l  < l iP( u) I I  < ( 1  + � )m l l u l l · This is invariant under 
scaling, and so we may suppose that ! lu l l = 1 .  The condition thus becomes 

l lp(u) l l - m < �m. (15.2) 

By Lemma 15.2.2 and the remark following it, the probability of violating 
{15 .2) ,  for u fixed and L random, is at most 

This proves the Johnson-Lindenstrauss flattening lemma. 0 

Alternative proofs. There are several variations of the proof, which are 
more suitable from the computational point of view (if we really want to 
produce the embedding into f�(log n) ) .  

In the above proof we project the set X on a random k-dimension
al subspace L.  Such an L can be chosen by selecting an orthonormal ba
sis (b1 , b2 , • • •  , bk ) ,  where b1 ,  • • •  , bk is a random k-tuple of unit orthogo
nal vectors. The coordinates of the projection of x to L are the scalar 
products {b1 , x) , . . .  , {bk, x) . It turns out that the condition of orthogonal
ity of the bi can be dropped. That is, we can pick unit vectors b1 ,  . . .  , bk E 
sn- l independently at random and define a mapping p: X --+ R� by X I--t 
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( {b1 , x) , . . . , {bk, x) ) .  Using suitable concentration results, one can verify that 
p is a ( !+c)-embedding with probability close to 1 .  The procedure of picking 
the bi is computationally much simpler. 

Another way is to choose each component of each bi from the normal 
distribution N(O, 1 ) ,  all the nk choices of the components being independent . 
The distribution of each bi in Rn is rotationally symmetric (as was mentioned 
in Section 14. 1 ) .  Therefore, for every fixed u E sn- 1 ,  the scalar product (bi , u) 
also has the normal distribution N(O, 1 )  and l lp(u) l l 2 , the squared length of 
the image, has the distribution of L:7 1 z; , where the zi are independent 
N(O, 1 ) .  This is the well known Chi-Square distribution with k degrees of 
freedom, and a strong concentration result analogous to Lemma 15.2.2 can 
be found in books on probability theory (or derived from general measure
concentration results for the Gaussian measure or from Chernoff-type tail 
estimates) .  A still different method, particularly easy to implement but with 
a more difficult proof, uses independent random vectors bi E {-1 ,  1 }n . 

Bibliography and remarks. The flattening lemma is from John
son and Lindenstrauss [JL84] . They were interested in the following 
question: Given a metric space Y, an n-point subspace X C Y, and a 
!-Lipschitz mapping /: X � £2 , what is the smallest C = C(n) such 
that there is always a C-Lipschitz rnapping /: Y � £2 extending f? 
They obtained the upper bound C = 0( y'Iog n ) , together with an 
almost matching lower bound. 

The alternative proof of the flattening lemma using independent 
normal random variables was given by Indyk and Motwani [IM98] . A 
streamlined exposition of a similar proof can be found in Dasgupta and 
Gupta [DG99] . For more general concentration results and techniques 
using the Gaussian distribution see, e.g. , [Pis89] , [MS86] . 

Achlioptas [AchOl] proved that the components of the bi can also 
be chosen as independent uniform ±1 random variables. Here the dis
tribution of (bi , u) does depend on u but the proof shows that for every 
u E sn-l ,  the concentration of l iP( u) 1 12 is at least as strong as in the 
case of the normally distributed bi. This is established by analyzing 
higher moments of the distribution. 

The sharpest known upper bound on the dimension needed for a 
( 1 +c)-embedding of an n-point Euclidean metric is !� ( 1 + o( 1 ) )  In n, 
where o(l) is with respect to c � 0 [IM98) , [DG99] , [AchOl] .  The 
main term is optimal for the current proof method; see Exercises 3 
and 15.3.4. 

The Johnson-Lindenstrauss flattening lemma has been applied 
in many algorithms, both in theory and practice; see the survey 
[IndO I] or, for example, Kleinberg [Kle97] , Indyk and Motwani [IM98], 
Borodin, Ostrovsky, and Rabani [BOR99] . 
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Exercises 

1 .  Let x, y E sn-1 be two points chosen independently and uniformly at 
random. Estimate their expected (Euclidean) distance, assuming that n 
is large. 0 

2. Let L C Rn be a fixed k-dimensional linear subspace and let x be a 
random point of sn- 1 •  Estimate the expected distance of X from L, as
suming that n is large. @J 

3. (Lower bound for the flattening lemma) 

(a) Consider the n+l points 0, e1 , e2 , . . .  , en E Rn 
(where the ei are the 

vectors of the standard orthonormal basis) . Check that if these points 
with their Euclidean distances are ( 1 +c: )-embedded into £� , then there 
exist unit vectors 1JI ,  v2 , . . .  , Vn E R k with I ( 1Ji , Vj) I < lOOt: for all i -:1 .i 
(the constant can be improved) . � 
(b) Let A be an nxn  symmetric real matrix with aii = 1 for all i and 
I aij I < n -I/2 for all j, j ,  i -:1 j .  Prove that A has rank at least � .  [II 
(c) Let A be an n x n real matrix of rank d, let k be a positive integer, 
and let B be the nxn matrix with bij = afj · Prove that the rank of B is 
at most ( kkd) . 8J 
(d) Using (a)-( c) , prove that if the set as in (a) is (l+c:)-embedded into 
£� , where lOOn - l/2 < c: < � ,  then 

0 
k = n ( 1 1 ) 

c:2 Iog ! og n . 

This proof is due to Alon (unpublished manuscript , Tel Aviv University) . 

15.3 Lower Bounds By Counting 

In this section we explain a construction providing many "essentially dif
ferent" n-point metric spaces, and we derive a general lower bound on the 
Ininimum distortion required to embed all these spaces into a d-din1ensional 
normed space. The key ingredient is a construction of graphs without short 
cycles. 
Graphs without short cycles. The girth of a graph G is the length of 
the shortest cycle in G. Let m (£, n) denote the maximum possible number 
of edges of a simple graph on n vertices containing no cycle of length R or 
shorter, i .e . ,  with girth at least t'+l .  

We have m(2, n) = (�) , since the complete graph Kn has girth 3. Next, 
m (3, n) is the maximum number of edges of a triangle-free graph on n vertices, 
and it equals l � J · I� l by Turan's theorem; the extremal example is the 
complete bipartite graph K l n/2 J ,  r n/21 . Another simple observation is that for 
all k, m (2k+l ,  n) > � m (2k, n) . This is because any graph G has a bipartite 
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subgraph H that contains at least half of the edges of G. 2 So it suffices to 
care about even cycles and to consider £ even, remembering that the bounds 
for £ = 2k and f == 2k+ 1 are almost the same up to a factor of 2. 

Here is a simple general upper bound on m(£, n) .  

15.3.1 Lemma. For all n and £, 

m(£, n) < nl+l/ L�/2J + n. 

Proof. It suffices to consider even £ =  2k. Let G be a graph with n vertices 
and Tn = ·rrt(2k, n) edges. The average degree is d = 2m .  There i� a subgraph - n 
H C G with minimum degree at least 6 = �d. Indeed, by deleting a vertex 
of degree smaller than 8 the average degree does not decrease, and so H can 
be obtained by a repeated deletion of such vertices. 

Let v0 be a vertex of H. The crucial observation is that, since H has no 
cycle of length 2k or shorter, the subgraph of H induced by all vertices at 
distance at most k from v0 is a tree: 

The number of vertices in this tree is at least 1+J+J(8-1 )+ ·  · ·+8(8-1)k- l > 
(8- 1 )k , and this is no more than n. So 8 < n11k+1 and m = �dn < 8n < 
nl+I/k + n. D 

This simple argument yields essentially the best known upper bound. 
But it was asymptotically matched only for a few small values of £, namely, 
for f E { 4, 5, 6, 7, 10, 1 1 } .  For m( 4, n) and m( 5,  n) ,  we need bipartite graphs 
without K2,2 ; these were briefly discussed in Section 4.5, and we recall that 
they can have up to n312 edges, as is witnessed by the finite projective plane. 
The remaining listed cases use clever algebraic constructions. 

For the other £, the record is also held by algebraic constructions; they 
are not difficult to describe, but proving that they work needs quite deep 
mathematics. For all £ 1 (mod 4) (and not on the list above) ,  they yield 
m(f, n) = f!(n1+4/(3f-7) ) ,  while for £ - 3 (mod 4) ,  they lead to m(£, n) = 
�1 ( n 1+4/(3�-9) ) .  

Here we prove a weaker but simple lower bound by the probabilistic 
method. 

2 To see this, divide the vertices of G into two classes A and B arbitrarily, and 
while there is a vertex in one of the classes having more neighbors in its class 
than in the other class, move such a vertex to the other class; the number of 
edges between A and B increases in each step. For another proof, assign each 
vertex randomly to A or B and check that the expected number of edges between 
A and B is � IE (G) I .  
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15.3.2 Lemma. For all f > 3 and n > 2, we have 

m(f, n) > � nl+l/(l- 1 ) .  

Of course, for odd f we obtain an O(n1+1/ (R-2) ) bound by using the lemma 
for l-1 .  
Proof. First we note that we may assume n > 4£- 1 > 16, for otherwise, the 
bound in the lemma is verified by a path, say. 

We consider the random graph G( n, p) with n vertices, where each of the 
(�) possible edges is present with probability p, 0 < p < 1 ,  and these choices 
are mutually independent. The value of p is going to be chosen later. 

Let E be the set of edges of G(n, p) and let F C E be the edges contained 
in cycles of length f or shorter. By deleting all edges of F from G ( n, p) , we 
obtain a graph with no cycles of length .e or shorter. If we manage to show, 
for some m ,  that the expectation E[IE \ FIJ is at least m, then there is an 
instance of G(n, p) with IE \ F l  > m, and so there exists a graph with n 
vertices, m edges, and of girth greater than e. 

We have E[IEI J  = (�)p. What is the probability that a fixed pair e = 
{ u, v} of vertices is an edge of F? First, e must be an edge of G( n, p ) ,  which 
has probability p, and second, there must be path of length between 2 and 
l-1 connecting u and v. The probability that all the edges of a given potential 
path of length k are present is pk , and there are fewer than nk-1 possible 
paths from u to v of length k. Therefore, the probability of e E F is at most 
Li-� pk+1nk- 1 , which can be bounded by 2plnl-2 ,  provided that np > 2. 
Then E[ IF I ]  < (�) · 2plnl-2 ,  and by the linearity of expectation, we have 

E [IE \ Fl ]  = E [IEI] - E [IF I] > (�)p ( 1 - 2p£- 1n£-2) .  

Now, we maximize this expression as a function of p; a somewhat rough but 1/ (f-1 )  / ( simple choice is p = n 2n , which leads to E[ IE \ Fl] > � n1+1 £- l ) (the 
constant can be improved somewhat) . The assumption np > 2 follows from 
n > 4£- I . Lemma 15.3.2 is proved. 0 

There are several ways of proving a lower bound for m(f, n) similar to that 
in Lemma 15.3.2, i .e. , roughly n1+I/R; one of the alternatives is indicated in 
Exercise 1 below. But obtaining a significantly better bound in an elementary 
way and improving on the best known bounds (of roughly n1+4/3l )  remain 
challenging open problems. 

We now use the knowledge about graphs without short cycles in lower 
bounds for distortion. 

15.3.3 Proposition (Distortion versus dimension) . Let Z be a d-di
mensional normed space, such as some f� , and suppose that all n-point metric 
spaces can be D-embedded into Z. Let f be an integer with D < I! <  5D (it 
is essential that e be strictly larger than D, while the upper bound is only 
for technical convenience) . Then 
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Proof. Let G be a graph with vertex set V = { v1 , v2 , . . .  , Vn } and with 
n� = m(£, n) edges. Let g denote the set of all subgraphs H C G obtained 
from G by deleting some edges (but retaining all vertices) . For each H E  Q, 
we define a metric PH on the set V by PH (u, v) = min(f, dH (u, v) ) ,  where 
d H ( u, v) is the length of a shortest path connecting u and v in H. 

The idea of the proof is that g contains many essentially different metric 
spaces, and if the dimension of Z were small, then there would not be suffi
ciently many essentially different placements of n points in Z. 

Suppose that for every H E g there exists a D-embedding fn : (V, PH) ---+ 

Z. By rescaling, we make sure that b PH(u, v) < 1 1 /H (u) - fn(v) l l z  < 
pH ( u, v) for all u, v E V. We may al�o a��ume that the images of all point� 
are contained in the £-ball Bz (O, f) = {x E Z: l l x l l z < £} .  

Set � =  ! (_i>-1 ) .  We have 0 < � < 1 . Let N be a �-net in Bz(O, i) . The 
notion of /3-net was defined above Lemma 13. 1 . 1 ,  and that lemma showed that 
a ,8-net in the ( d- 1 )-dimensional Euclidean sphere has cardinality at most 
(� )d . Exactly the same volume argument prove� that in our ca�e IN I < (� )d .  

For every H E  Q, we define a new mapping 9H = V ---+ N by letting 9H (v) 
be the nearest point to fn (v) in N (ties resolved arbitrarily) .  We prove that 
for distinct Ht , H2 E Q, the mappings 9H1 and 9H2 are distinct. 

The edge sets of H1 and H2 differ, so we can choose a pair u, v of vertices 
that form an edge in one of them, say in H1 , and not in the other one (H2 ) . 
We have PH1 (u, v) = 1 ,  while PH2 (u, v) = £, for otherwise, a u-v path in H2 
of length smaller than f and the edge { u, v}  would induce a cycle of length 
at most i in G. Thus 

and 
f 

I IYH2 (u) - 9H2 (v) l l z > l l fH2 (u) - !H2 (v) l l z - 2� > D - 2/3 = 1 + 2(3. 

Therefore, 9H1 (u) i- 9H2 (u) or 9H1 (v) =/= 9H2 (v). 
We have shown that there are at least IQ I distinct mappings V ---+ N. The 

number of all mappings V ---+ N is IN I n , and so 

The bound in the proposition follows by calculation. 0 

15.3.4 Corollary ( "Incompressibility" of general metric spaces). If 
Z is a normed space such that all n-point metric spaces can be D-embedded 
into Z, where D > 1 is considered fixed and n ---+ oo, tl1en we l1ave 
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• dim Z = O (n) for D <  3, 
• dim Z = f2(fo )  for D <  5, 
• dim Z = O (n1 13 ) for D <  7. 

This follows from Proposition 15.3.3 by substituting the asymptotically 
optimal bounds for rn(3, n) , rn(5, n) , and rn(7, n) . The constant of propor
tionality in the first bound goes to 0 as D --+ 3, and similarly for the other 
bounds. 

The corollary shows that there is no normed space of dimension signifi
cantly smaller than n in which one could represent all n-point metric spaces 
with distortion smaller than 3. So, for example, one cannot save much space 
by representing a general n-point metric space by the coordinates of points 
in some suitable normed space. 

It is very surprising that, as we will see later, it is possible to 3-embed all 
n-point metric spaces into a particular normed space of dimension close to 
fo. So the value 3 for the distortion is a real threshold! Similar thresholds 
occur at the values 5 and 7. Most likely this continues for all odd integers D, 
but we cannot prove this because of the lack of tight bounds for the number 
of edges in graphs without short cycles. 

Another consequence of Proposition 15.3.3 concerns embedding into Eu
clidean spaces, without any restriction on diinension. 

15.3.5 Proposition (Lower bound on embedding into Euclidean 
spaces) . For all n, there exist n-point metric spaces that cannot be em
bedded into £2 (i.e. , into any Euclidean space) with distortion smaller than 
c log n / log log n, where c > 0 is a suitable positive constant. 

Proof. If an n-point metric space is D-embedded into £2 , then by the 
Johnson-Lindenstrauss flattening lemma, it can be (2D)-embedded into £� 
with d < C log n for some specific constant C. 

For contradiction, suppose that D < c1 log n/ log log n with a sufficiently 
small c1 > 0. Set .e = 4D and assume that e is an integer. By Lemma 15.3.2, 
we have rn( .e, n) > � n 1+ 1/(f- 1 )  > C1 n log n, where C1 can be made as large as 

we wish by adjusting c1 . So Proposition 15.3.3 gives d > �· log n. If C1 > 5C, 
we have a contradiction. D 

In the subsequent sections the lower bound in Proposition 15.3.5 will be 
improved to O (log n) by a completely different method, and then we will see 
that this latter bound is tight. 

Bibliography and remarks. The proble1n of constructing small 
graphs with given girth and minimum degree has a rich history; see, 
e.g. , Bollobas [Bol85] for most of the earlier results. 

In the proof of Lemma 15.3 .1 we have derived that any graph of 
minimum degree 8 and girth 2k+1 has at least 1 + 8 LZ � (8-1)i ver-
tices, and a similar lower bound for girth 2k is 2 2:: � ( 8-1) i . Graphs 



15.3 Lower Bou11ds By Cou11ti11g 

attaining these bounds (they are called Moore graphs for odd girth 
and generalized polygon graphs for even girth) are known to exist only 
in very few cases (see, e.g. , Biggs [Big93] for a nice exposition) . Alon, 
Hoory, and Linial [AHL01] proved by a neat argument using random 
walks that the same formulas still bound the number of vertices from 
below if 8 is the average degree (rather than minimum degree) of the 
graph. But none of this helps improve the bound on m( 1!, n) by any 
substantial amount. 

The proof of Lemma 15.3.2 is a variation on well known proofs by 
Erdos. 

The constructions mentioned in the text attaining the asymptot
ically optimal value of m( f; n) for several small f are due to Benson 
(Ben66) (constructions with similar properties appeared earlier in Tits 
[Tit59] , where they were investigated for different reasons) . As for the 
other R, graphs with the parameters given in the text were constructed 
by Lazebnik, Ustimenko, and Woldar [LUW95] , [LUW96] by algebraic 
methods, improving on earlier bounds (such as those in Luhotzky, 
Phillips, Sarnak [LPS88] ; also see the notes to Section 15.5) .  

Proposition 15.3 .5 and the basic idea of Proposition 15.3.3 were 
invented by Bourgain [Bou85] . The explicit use of graphs without 
short cycles and the detection of the "thresholds" in the behavior 
of the dimension as a function of the distortion appeared in Matousek 
[Mat96b) . 

Proposition 15.3.3 implies that a normed space that should accom
modate all n-point metric spaces with a given small distortion must 
have large dimension. But what if we consider just one n-point metric 
space M, and we ask for the minimum dimension of a normed space Z 
such that M can be D-embedded into Z? Here Z can be "customized" 
to M, and the counting argument as in the proof of Proposition 15.3.3 
cannot work. By a nice different method, using the rank of certain 
matrices, Arias-de-Reyna and Rodriguez-Piazza [AR92] proved that 
for each D < 2, there are n-point metric spaces that do not D-embed 
into any normed space of dimension below c(D)n, for some c(D) > 0. 
In [Mat96b] their technique was extended, and it was shown that for 
any D > 1 ,  the required dimension is at least c( l D J )n 112 LD J ,  so for a 
fixed D it is at least a fixed power of n. The proof again uses graphs 
without short cycles. An interesting open problem is whether the pos
sibility of selecting the norm in dependence on the metric can ever 
help substantially. For example, we know that if we want one normed 
space for all n-point metric spaces, then a linear dimension is needed 
for all distortions below 3. But the lower bounds in [AR92] , [Mat96b] 
for a customized normed space force linear dimension only for distor
tion D < 2. Can every n-point metric space M be 2.99-embedded, say, 
into some normed space Z = Z(M) of dimension o(n)? 

367 
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We have examined the tradeoff between dimension and distortion 
when the distortion is a fixed number. One may also ask for the min
imum distortion if the dimension d is fixed; this was considered in 
Matousek [Mat90b] . For fixed d, all lp-norms on R d are equivalent 
up to a constant, and so it suffices to consider embed dings into £�. 
Considering the n-point metric space with all distances equal to 1 ,  
a simple volume argument shows that an embedding into eg has dis
tortion at least O(n1fd) .  The exponent can be improved by a factor 
of roughly 2; more precisely, for any d > 1 ,  there exist n-point met
ric spaces requiring distortion 0 (n1/ L(d+l)/2J ) for embedding into £� 
(these spaces are even isometrically embeddable into .e�+ 1 ) .  They are 
obtained by taking a q-dimensional simplicial complex that cannot 
be embedded into R2q (a Van Kampen-Flores complex; for modern 
treatment see, e.g. , [Sar91] or [Ziv97] ) ,  considering a geometric real
ization of such a complex in R2q+I ,  and filling it with points uniformly 
(taking an 17-net within it for a suitable 1], in the metric sense) ;  see 
Exercise 3 below for the case q = 1 .  For d =  1 and d = 2, this bound 
is asymptotically tight, as can be shown by an inductive argument 
[Mat90b] . It is also almost tight for all even d. An upper bound of 
O(n2fd log312 n) for the distortion is obtained by first embedding the 
considered metric space into f2 (Theorem 15.7. 1 ) ,  and then project
ing on a random d-dimensional subspace; the analysis is similar to 
the proof of the Johnson-Lindenstrauss flattening lemma. It would 
be interesting to close the gap for odd d > 3; the case d =  1 suggests 
that perhaps the lower bound might be the truth. It is also rather puz
zling that the ( �uspected) bound for the distortion for fixed dimension, 
D � n1/ L(d+l)/2J , looks optically similar to the (suspected) bound for 
dimension given the distortion (Corollary 15.3.4) , d � n1/ L(D+l)/2J . Is 
this a pure coincidence, or is it trying to tell us something? 

Exercises 

1 .  (Erdos-Sachs construction) This exercise indicates an elegant proof, by 
Erdos and Sachs [ES63] , of the existence of graphs without short cycles 
whose number of edges is not much smaller than in Lemma 15.3.2 and 
that are regular. Let £ > 3 and 8 > 3. 
(a) (Starting graph) For all 8 and f, construct a finite 8-regular graph 
G ( 8, f) with no cycles of length R or shorter; the number of vertices does 
not matter. One possibility is by double induction: Construct G( 8+ 1 ,  f) 
using G(8, f) and G(8', £-1)  with a suitable 8'. 0 
(b) Let G be a 8-regular graph of girth at least f + 1 and let u and v be 
two vertices of G at distance at least £+2. Delete them together with 
their incident edges, and connect their neighbors by a matching: 
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u 

v 

Check that the resulting graph still does not contain any cycle of length 
at IllOSt f. 0 

(c) Show that starting with a graph as in (a) and reducing it by the 
operations as in (b) , we arrive at a 8-regular graph of girth R+ 1 and with 
at most 1 + 8 + 8(8- 1 )  + · · · + 8(o-1)e  vertices. What is the resulting 
asymptotic lower bound for m( n, £) ' with e fixed and n ---+ 00? IT1 

2.  (Sparse spanners) Let G be a graph with n vertices and with positive real 
weights on edges, which represent the edge lengths. A subgraph H of G is 
called a t-spanner of G if the distance of any two vertices u, v in H is no 
n1ore than t times their distance in G (both the distances are measured 
in the shortest-path metric) . Using Lemma 15.3. 1 ,  prove that for every 
G and every integer t > 2, there exists a t-spanner with 0 (n1+1/ Lt/2J ) 
edges. 0 

3. Let Gn denote the graph arising from K5 , the complete graph on 5 ver
tices, by subdividing each edge n-1  times; that is, every two of the orig
inal vertices of K5 are connected by a path of length n. Prove that the 
vertex set of Gn, considered as a metric space with the graph-theoretic 
distance, cannot be embedded into the plane with distortion smaller than 
const · n. � 

4. (Another lower bound for the flattening lemma) 
(a) Given c E (0, � )  and n sufficiently large in terms of c, construct a 
collection V of ordered n-tuples of points of £2 such that the distance of 
every two points in each V E V is between two suitable constants, no two 
V -=/=  V' E V can have the same (1+c-)-embedding (that is, there are i ,  .i 
such that the distances between the ith point and the jth point in V and 
in V' differ by a factor of at least l+c-) , and log lV I  = O(c--2n log n) . 0 
(b) Use (a) and the method of this section to prove a lower bound of 
0( 2 1

1 
1 log n) for the dimension in the Johnson-Lindenstrauss flat ten-t og g 

ing lemma. m 

15.4 A Lower Bound for the Hrunming Cube 

We have established the existence of n-point metric spaces requiring the 
distortion close to log n for embedding into /!2 (Proposition 15.3.5) ,  but we 
have not constructed any specific metric space with this property. In this 
section we prove a weaker lower bound, only n( y'log n ) ,  but for a specific 
and very simple space: the Hamming cube. Later on, we extend the proof 
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method and exhibit metric spaces with O (log n) lower bound, which turns 
out to be optimal. We recall that Cm denotes the space {0, 1 }m with the 
Hamming (or £1 ) metric, where the distance of two 0/1 sequences is the 
number of places where they differ. 

15.4.1 Theorem. Let m > 2 and n = 2m . Then there is no D-embedding 
of the Hamming cube Cm into £2 with D < y'rii = Jlog2 n. That is, the 
natural embedding, where we regard { 0, 1 } m as a subspace of f�t , is optimal. 

The reader may remember, perhaps with some dissatisfaction, that at the 
beginning of this chapter we mentioned the 4-cycle as an example of a metric 
space that cannot be isometrically embedded into any Euclidean space, but 
we gave no reason. Now, we are obliged to rectify this, because the 4-cycle is 
just the 2-dimensional Hamming cube. 

The intuitive reason why the 4-cycle cannot be embedded isometrically 
is that if we embed the vertices so that the edges have the right length, 
then at least one of the diagonals is too short. We make this precise using 
a slightly more complicated notation than necessary, in anticipation of later 
developments. 

Let V be a finite set , let p be a metric on V, and let E, F C (�) 
be nonempty sets of pairs of points of V. As our running example, V = 
{ v1 ,  • . •  , v4} is the set of vertices of the 4-cycle, p is the graph metric on 
it, E = {{v1 , v2 } ,  {v2 , v3 } ,  {v3 , v4} ,  {v4 , v1 } }  are the edges, and F = 
{ {vi , v3 } ,  {v2 , v4} }  are the diagonals. 

V4 •.-. ----
. ,' . , . , 

E 
·,:· . .  , . , . 

# � .... 

- - - - - - - - - - - - - - F 
,' · .. . . 

Vt w·' •• 

Let us introduce the abbreviated notation 

We consider the ratio 

p2 (E) = L p(u, v)2 . 
{u,v}EE 

RE,F (P) = 

the subscripts E, F will be omitted unless there is danger of confusion. For 
our 4-cycle, R(p) is a kind of ratio of "diagonals to edges" but with quadratic 
averages of distances, and it equals J2 (right?) . 

Next, let f: V --+ f,� be a D-embedding of the considered metric space into 
a Euclidean space. This defines another metric u on V: u( u, v) = I I  f (  u) -

f(v) l l ·  With the same E and F, let us now look at the ratio R(u). 
If f is a D-embedding, then R( u) > R(p) /D. But according to the idea 

mentioned above, in any embedding of the 4-cycle into a Euclidean space, the 
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diagonals are always too short, and so R( a) can be expected to be smaller 
than J2 in this case. This is confirmed by the following lemma, which (with 
xi = .f(vi ) )  shows that R(a) < 1 and therefore D > J2. 

15.4.2 Lemma (Short diagonals lemma) . Let x1 , x2 , x3 , x4 be arbitrary 
points in a Euclidean space. Then 

Proof. Four points can be assumed to lie in R 3 , so one could start some 
stereon1etric calculations. But a better way is to observe that it suffices to 
prove the lemma for points on the real line! Indeed, for the Xi in some R d we 
can write the !-dimensional inequality for each coordinate and then add these 
inequalities together. (This is the reason for using squares in the definition 
of the ratio R( a) : Squares of Euclidean distances split into the contributions 
of individual coordinates, and so they are easier to handle than the distances 
themselves. )  

If the Xi are real numbers, we calculate 

(x1 - x2)2 + (x2 - x3)2 + (x3 - x4)2 + (x4 - x1)2 - (x1 - x3)2 - (x2 - x4)2 

= (x1 - x2 + x3 - x4)2 > 0, 
and this is the desired inequality. D 

Proof of Theorem 15.4.1 .  We proceed as in the 2-dimensional case. Let 
V = {0, 1} rn be the vertex set of Cm, let p be the Hamming metric, let E be 
the set of edges of the cube (pairs of points at distance 1 ) ,  and let F be the 
set of the long diagonals. The long diagonals are pairs of points at distance 
m, or in other words, pairs { u, u} , u E V, where u is the vector arising from 
u by changing O's to 1 's and 1 's to O's. 

We have lE I = m2m-l  and IFI = 2rn- l ' and we calculate RE,F (P) = rm. 
If a is a metric on V induced by some embedding f: V � .e�, we want 
to show that RE,F (a) < 1 ;  this will give the theorem. So we need to 
prove that a2 (F) < a2 (E) . This follows from the inequality for the 4-cycle 
(Lemma 15.4.2) by a convenient induction. 

The basis for m = 2 is directly Lemma 15.4.2 . For larger m, we divide 
the vertex set V into two parts V0 and V1 , where V0 are the vectors with the 
last component 0, i .e . ,  of the form uO, u E {0, l }m-l .  The set V0 induces an 
( rn-1 )-dimensional subcube. Let Eo be its edge set and F0 the set of its long 
diagonals; that is, F0 = { { uO, uO} : u E { 0, 1}  m-l } ,  and similarly for E1 and 
F1 . Let E01 = E \ (Eo U E1 ) be the edges of the m-dimensional cube going 
between the two subcubes. By induction, we have 

For u E { 0, 1 }  rn-l , we consider the quadrilateral with vertices uO, uO, u1 ,  u1 ;  
for u = 00, it is indicated in the picture: 
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Its sides are two edges of E01 , one diagonal from F0 and one from F1 , and 
its diagonals are from F. If we write the inequality of Lemma 15.4.2 for this 
quadrilateral and sum up over all such quadrilaterals (they are 2m-2 , since 
u and u yield the same quadrilaterals) , we get 

By the inductive assumption for the two subcubes, the right-hand side is at 
rnost a2 (Eol ) + a2(Eo) + a2 (E1 )  = a2 (E). D 

Bibliography and remarks. Theorem 15.4. 1 ,  found by Enfto 
[Enf69] , is probably the first result showing an unbounded distortion 
for embeddings into Euclidean spaces. Enflo considered the problem of 
uniform embeddability among Banach spaces, and the distortion was 
an auxiliary device in his proof. 

Exercises 

1 .  Consider the second graph in the introductory section, the star with 3 
leaves, and prove a lower bound of � for the distortion required to 
embed into a Euclidean space. Follow the method used for the 4-cycle. 0 

2. (Planar graphs badly embeddable into R2 ) Let G0, G1 ,  . . .  be the following 
graphs: 

. . <> 
Go 

Gi+l is obtained from Gi by replacing each edge by a square with two 
new vertices. Using the short diagonals lemma and the method of this 
section, prove that any Euclidean embedding of Gm (with the graph 
metric) requires distortion at least Jm+1.  CTI 
This result is due to Newman and Rabinovich [NR01] . 
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3. (Almost Euclidean subspaces) Prove that for every k and c > 0 there 
exists n ;:;;;;; n(k, c) such that every n-point metric space (X, p) contains a 
k-point subspace that is ( !+c)-embeddable into £2 • Use Ramsey's theo
rem. � 
This result is due to Bourgain, Figiel, and Milman [BFM86] ; it is a kind 
of analogue of Dvoretzky's theorem for metric spaces. 

15.5 A Tight Lower Bormd via Expanders 

Here we provide an explicit example of an n-point metric space that requires 
distortion O(log n) for embedding into any Euclidean space. It is the vertex 
set of a constant-degree expander G with the graph metric. In the proof we 
are going to use bounds on the second eigenvalue of G, but for readers not 
familiar with the important notion of expander graphs, we first include a 
little wider background. 

Roughly speaking, expanders are graphs that are sparse but well con
nected. If a model of an expander is made with vertices being little balls and 
edges being thin strings, it is difficult to tear off any subset of vertices, and 
the more vertices we want to tear off, the larger effort that is needed. 

More formally, we define the edge expansion (also called the conductance) 
<P(G) of a graph G = (V, E) as . { e(A, V \ A) I 1 } mm 

IA I  
: A C V, 1 < A I < 2 JV I , 

where e(A, B) is the number of edges of G going between A and B. One can 
say, still somewhat imprecisely, that a graph G is a good expander if <P (G) is 
not very small compared to the average degree of G. 

In this section, we consider r-regular graphs for a suitable constant r > 
3, say r = 3. We need r-regular graphs with an arbitrary large number n 
of vertices and with edge expansion bounded below by a positive constant 
independent of n. Such graphs are usually called constant-degree expanders. 3 

It is useful to note that, for example, the edge expansion of the n x n planar 
square grid tends to 0 as n ---+ oo .  More generally, it is known that constant
degree expanders cannot be planar; they must be much more tangled than 
planar graphs. 

The existence of constant-degree expanders is not difficult to prove by the 
probabilistic method; for every fixed r > 3, random r-regular graphs provide 
very good expanders. With considerable effort, explicit constructions have 
been found as well; see the notes to this section. 

3 A rigorous definition should be formulated for an infinite family of graphs. A 
family { G 1 ,  G2 , . . .  } of r-regular graphs with I V  ( Gi) I --+ oo as i --+ oo is a family 
of constant-degree expanders if the edge expansion of all Gi is bounded below 
by a positive constant independent of i .  
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Let us remark that several notions similar to edge expansion appear in 
the literature, and each of them can be used for quantifying how good an 
expander a given graph is (but they usually lead to an equivalent notion of 
a family of constant-degree expanders) . Often it is also useful to consider 
nonregular expanders or expanders with larger than constant degree, but 
regular constant-degree expanders are probably used most frequently. 

Now, we pass to the second eigenvalue. For our purposes it is most con
venient to talk about eigenvalues of the Laplacian of the considered graph. 
Let G = (V, E) be an r-regular graph. The Laplacian matrix Lc of G is an 
n x n  matrix, n = lV I , with both rows and columns indexed by the vertices 
of G, defined by 

(Lc)uv = 
r for u = v, 

-1  if u -:f. v and { u ,  v} E E (G) , 
0 otherwise. 

It is a symmetric positive semidefinite real n1atrix, and it has n real eigen
values /.11 = 0 < 1-12 < · · · < J.ln . The second eigenvalue ft2 = /.12 (G) is a 
fundamental parameter of the graph G.4 

Somewhat similar to edge expansion, J-L2 (G) describes how much G "holds 
together," but in a different way. The edge expansion and J..t2 (  G) are related 
but they do not determine each other. For every 1·-regular graph G, we have 
J.l2 (G) > <P��)2 (see, e.g. , Lovasz [Lov93] , Exercise 1 1 .31 for a proof) and 
ft2 (G) < 2<1> (G) (Exercise 6) . Both the lower and the upper bound can almost 
be attained for some graphs. 

For our application below, we need the following fact: There are constants 
r and f3 > 0 such that for sufficiently many values of n (say for at least 
one n between 10k and 10k+l ) ,  there exists an n-vertex r-regular graph G 
with J..t2 (G) > /3. This follows from the existence results for constant-degree 
expanders mentioned above (random 3-regular graphs will do, for example) ,  
and actually most of the known explicit constructions of expanders bound 
the second eigenvalue directly. 

We are going to use the lower bound on jj2 (G) via the following fact: 

For all real vectors (x,u )vEV with LvEV x," = 0, we have 
xT Lex > J..t2 l l x l l · 

( 15.3) 

To understand what is going on here, we recall that every symmetric real n x n 

matrix has n real eigenvalues (not necessarily distinct) ,  and the corresponding 
n unit eigenvectors b1 , b2 , . . .  , bn form an orthonormal basis of Rn . For the 

4 The notation J.Lt for the eigenvalues of La is not standard. We use it in order 
to distinguish these eigenvalues from the eigenvalues A1 > A� > · · · > An of the 
adjacency matrix Ac usually considered in the literature, where ( Ac )uv = 1 if 
{ u, v} E E( G) and ( Ac )1Lv = 0 otherwise. Here we deal exclusively with regular 
graphs, for which the eigenvalues of Ac are related to those of La in a very 
simple way: At = r-J.Lt ,  i = 1 ,  2 . . . , n, for any r-regular graph. 
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matrix La, the unit eigenvector b1 belonging to the eigenvalue J.LI 0 is 
n- 112 ( 1 ,  1 ,  . . .  , 1 ) . So the condition L:vEV Xv = 0 means the orthogonality of 
x to b1 , and we have x = L� 1 aibi for suitable real ai with a1 = 0. We 
calculate, using xTbi = ai, 

n n n n 
xT Lax = L xT (aiLabi) = L aiJ.LiXTbi = L aTJ.Li > J.L2 L aT =  J.L2 I Ix l l 2 . 

i=2 i=2 i=2 i=2 

This proves ( 15 .3) ,  and we can also see that x = b2 yields equality in ( 15 .3) . 
So we can write J.L2 = min{xT Lex: l lx l l  = 1 ,  LvEV Xv = 0} (this is a special 
case of the variational definition of eigenvalues discussed in many textbooks 
of linear algebra) . 

Now, we are ready to prove the main result of this section. 

15.5.1 Theorem (Expanders are badly embeddable into £2) .  Let G 
be an r-regular graph on an n-element vertex set V with J-L2 (G) > (3, where 
r > 3 and p > 0 are constants, and let p be the shortest-path metric on V .  
Then the metric space (V, p) cannot be D-embedded into a Euclidean space 
for D < c log n, where c = c( r, {3) > 0 is independent of n. 
Proof. We again consider the ratios RE,F (P) and RE,F(a) as in the proof 
for the cube (Theorem 15.4. 1 ) .  This time we let E be the edge set of G, and 
F = (�) are all pairs of distinct vertices. In the graph metric all pairs in E 
have distance 1 � while most pairs in F have distance about log n, as we will 
check below. On the other hand, it turns out that in any embedding into £2 
such that all the distances in E are at most 1 ,  a typical distance in F is only 
0(1) .  The calculations follow. 

We have p2 (E) = IEJ = n;· . To bound p2 (F) from below, we observe that 
for each vertex v0 , there are at most 1 + r + r(r-1 ) + ·  · · + r(r- 1) k- 1  < rk+1 
vertices at distance at most k from v0 . So for k = logr n 

2 1 , at least half of 
the pairs in F have distance more than k, and we obtain p2 (F) = O (n2k2 )  = 
O(n2 log2 n). Thus 

RE,F (P) = n ( y'n · log n) . 

Let f:  V ---+ f� be an embedding into a Euclidean space, and let a be the 
rnetric induced by it on V. To prove the theorem, it suffices to show that 
RE,F (a) = 0( fo); that is, 

By the observation in the proof of Lemma 15.4.2 about splitting into coordi
nates, it is enough to prove this inequality for a one-dimensional embedding. 
So for every choice of real numbers (xv)vEV , we want to show that 

L (xu - Xv )2 = O(n) L (xu - Xv )2 . 
{u ,v}EF {u,v}EE 

( 15.4) 
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By adding a suitable number to all the Xv , we may assume that I:vE v Xv = 0. 
This does not change anything in ( 15.4) , but it allows us to relate both sides 
to the Euclidean norm of the vector x. 

We calculate, using L:vEV Xv = 0, 

2: (xu-xv)2 = (n- 1 )  2: x�-2: XuXv = n 2: x�- ( 2: Xv) 2 = nl lx l l 2 . 
{u,v}EF vEV u#v vEV vEV 

For the right-hand side of ( 15.4) , the Laplace matrix enters: 

2: (xu - Xv )2 = r L x� - 2  2: XuXv = XTLcx > Jl2 l lx l l 2 , 
{u,v}EE vEV {u,v}EE 

the last inequality being ( 15.3) . This establishes ( 15.4) and concludes the 
proof of Theorem 15.5 . 1 .  0 

The proof actually shows that the maximum of RE, F (a) over all Euclidean 
metrics a equals � (which is an interesting geometric interpretation of 
JJ2 ) .  The maximum is attained for the a induced by the mapping V ---+ R 
specified by b2 , the eigenvector belonging to JL2 . 
The cone of squared £2-metrics and universality of the lower-bound 
method. For the Hamming cubes, we obtained the exact minimum distor
tion required for a Euclidean embedding. This was due to the lucky choice of 
the sets E and F of point pairs. As we will see below, a "lucky" choice, leading 
to an exact bound, exists for every finite metric space if we allow for sets of 
weighted pairs. Let (V, p) be a finite metric space and let ry, r.p: (�) ---+ [0, oo) 
be weight functions. We define 

p2 (ry) = 2: ry(u, v)p( u, v)2 
{ u,v }E  (�) 

and similarly for p2 ( r.p) , and we let 

15.5.2 Proposition. Let (V, p) be a finite metric space and let D > 1 be the 
smallest number such tllat (V, p) can be D-embedded into f2 . Then there are 
weight functions 7J, c.p:  (�) ---+ [0, oo) such that R11,<p (p) > D and R11,<p (a) < 1 
for any metric a induced on V by an embedding into £2 . 

Thus, the exact lower bound for the embeddability into Euclidean spaces 
always has an "easy" proof, provided that we can guess the right weight 
functions 7J and r.p. (As we will see below, there is even an efficient algorithm 
for deciding D-embeddability into £2 . )  
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Proposition 15.5.2 is included mainly because of generally useful concepts 
appearing in its proof. 

Let V be a fixed n-point set. An arbitrary function <p: (�) ---+ R, assigning 
a real number to each unordered pair of points of V, can be represented by a 
point in RN , where N = (�) ; the coordinates of such a point are indexed by 
pairs { u, v }  E (�) . For example, the set of all metrics on V corresponds to a 
subset of RN called the metric cone (also see the notes to Section 5.5) .  As is 
not difficult to verify, it is an N -dimensional convex polyhedron in RN. Its 
combinatorial structure has been studied intensively. 

In the proof of Proposition 15.5.2 we will not work with the metric cone 
but rather with the cone of squared Euclidean metrics, denoted by £2• We 
define 

£2 = { ( l lf (  u) - f( v) l l 2) {u,v}E (�) : f : V --t £2 } C RN. 

15.5.3 Observation. The set £2 is a convex cone. 

Proof. Clearly, if x E £2 , then ,\x E £2 for all ,\ > 0, and so it suffices 
to verify that if x, y E £2, then x + y E £2 . Let x, y E £2 correspond 
to embed dings j: V ---+ f� and g : V ---+ f'2, respectively. We define a new 
embedding h: V ---+ e�+m by concatenating the coordinates of f and g; that . 
IS, 

h(v) == (j (v) l , . . . , j(v) k , g (v) l , . . .  , g (v)m) E f�+m. 
The point of £2 corresponding to h is x + y. D 

Proof of Proposition 15.5.2. Suppose that (V, p) cannot be D-embedded 
into any Euclidean space. We are going to exhibit TJ and c.p with R11,r.p (p) > D 
and R11,<p ( o') < 1 for every Euclidean a. The claim of the proposition is easily 
derived from this by a compactness argument. 

Let £2 C RN be the cone of squared Euclidean metrics on V as above 
and let 

K = { (x,.,) {u,v}E (�) E RN : there exists an r > 0 with 

r2 p( u,  v )2 < Xuv < D2r2 p( u, v)2 for all u ,  v } · 

This 1C includes all squares of metrics arising by D-embeddings of ( V, p) . But 
not all elements of 1C are necessarily squares of metrics, since the triangle 
inequality may be violated. Since there is no Euclidean D-embedding of (V, p) , 
we have 1C n £2 == 0. Both 1C and £2 are convex sets in RN, and so they can 
be separated by a hyperplane, by the separation theorem (Theorem 1 .2.4) . 
Moreover, since £2 is a cone and K is a cone minus the origin 0, the separating 
hyperplane has to pass through 0. So there is an a E R N such that 

(a, x) > 0 for all x E JC and (a, x) < 0 for all x E £2• ( 15.5) 

Using this a, we define the desired TJ and <p, as follows: 
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ry( u, v) = 

cp( u, v) = 

{ auv if auv > 0, 
0 otherwise; { -auv if auv < 0, 
0 otherwise. 

First we show that RTJ,v; (p) > D. To this end, we employ the property 
(15.5) for the following x E IC: 

X 
_ 
{ D2p(u, v)2 if auv > 0, 

uv - p(u, v)2 1.£ a < 0 uv . 

Then (a, x) > 0 boils down to D2 p2 ( ry) - p2 ( cp) > 0, which means that 
RTJ,cp (P) > D. 

Next , let a be a metric induced by a Euclidean embedding of V.  This 
time we apply (a, x) < 0 with the x E £2 corresponding to a� i.e. , Xuv = 
a (  u, v ) 2 . This yields a2 ( rJ) - a2( cp) < 0, and so RTJ,cp( a) < 1 .  This proves 
Proposition 15.5.2. D 

Algorithmic remark: Euclidean embeddings and semidefinite pro
gramming. The problem of deciding whether a given n-point metric space 
(V, p) admits a D-embedding into £2 (i.e . ,  into a Euclidean space without re
striction on the dimension) ,  for a given D > 1 ,  can be solved by a polynomial
time algorithm. Let us stress that the dimension of the target Euclidean space 
cannot be prescribed in this method. If we insist that the embedding be into 
f� , for some given d, we obtain a different algorithmic problem, and it is not 
known how hard it is. Many other similar-looking embedding problems are 
known to be NP-hard, such as the problem of D-embedding into R 1 . 

The algorithm for D-embedding into f2 is based on a powerful technique 
called semidefinite programming, where the problem is expressed as the exis
tence of a positive semidefinite matrix in a suitable convex set of matrices. 

Let (V, p) be an n-point metric space, let f: V -t Rn be an embedding, 
and let X be the n x n matrix whose columns are indexed by the elements 
of V and such that the vth column is the vector f ( v) E R n . The matrix 
Q = xr X has both rows and columns indexed by the points of V, and the 
entry Quv is the scalar product (f ( u) , f ( v)) .  

The matrix Q is positive semidefinite, since for any x E Rn , we have 
xTQx = (xTXT) (Xx) = 1 1Xx l l 2 > 0. (In fact, as is not too difficult to check, 
a real symmetric n x n matrix P is positive semidefinite if and only if it can 
be written as xr X for some real n x n matrix X.) 

Let a ( u,  v) = I I  f ( u) - f ( v) I I  = ( f ( u) - f ( v) , f ( u) - f ( v) ) 112 . We can ex
press 

a(u, v)2 = (f(u) , f(u)) + (f(v) , f(v)) - 2(/(u) , f(v)) = Quu + Qvv - 2Quv · 

Therefore, the space (V, p) can be D-embedded into £2 if and only if there 
exists a symmetric real positive semidefinite matrix Q whose entries satisfy 
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the following constraints: 

( . 2 2 ( )2 p u, v) < quu + qvv - 2quv < D p u, v 
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for all u, v E V. These are linear inequalities for the unknown entries of Q. 
The problem of finding a positive semidefinite matrix whose entries sat

isfy a given system of linear inequalities can be solved efficiently, in time 
polynomial in the size of the unknown matrix Q and in the number of the 
linear inequalities. The algorithm is not simple; we say a little more about it 
in the remarks below. 

Bibliography and remarks. Theorem 15.5 . 1 was proved by Linial, 
London, and Rabinovich [LLR95] . This influential paper introduced 
methods and results concerning low-distortion embeddings, developed 
in local theory of Banach spaces, into theoretical computer science, and 
it gave several new results and algorithmic applications. It is very in
teresting that using low-distortion Euclidean embeddings, one obtains 
algorithmic results for certain graph problems that until then could 
not be attained by other methods, although the considered problems 
look purely graph-theoretic without any geometric structure. A simple 
but important example is presented at the end of Section 15 .  7. 

The bad embeddability of expanders was formulated and proved 
in [LLR95] in connection with the problem of multicommodity flows 
in graphs. The proof was similar to the one shown above, but it es
tablished an O(log n) bound for embedding into f 1 .  The result for 
Euclidean spaces is a corollary, since every finite Euclidean metric 
space can be isometrically embedded into £1 (Exercise 5) .  An inequal
ity similar to ( 15.4) was used, but with squares of differences replaced 
by absolute values of differences. Such an inequality was well known 
for expanders. The method of [LLR95] was generalized for embeddings 
to Rp-spaces with arbitrary p in [Mat97] ; it was shown that the mini
mum distortion required to embed all n-point metric spaces into fp is 
of order log n , and a matching upper bound was proved by the method 
shown in Section 15. 7. 

The proof of Theorem 15 .5 .1  given in the text can easily be ex
tended to prove a lower bound for f 1-embeddability as well. It ac
tually shows that distortion O(log n) is needed for approximating the 
expander metric by a squared Euclidean metric, and every £1-metric is 
a squared Euclidean metric. Squared Euclidean metrics do not gener
ally satisfy the triangle inequality, but that is not needed in the proof. 
Those squared Euclidean metrics that do satisfy the triangle inequal
ity are sometimes called the metrics of negative type. Not all of these 
metrics are f 1-metrics, but a challenging conjecture (made by Linial 
and independently by Goemans) states that perhaps they are not very 
far from f1-metrics: Each metric of negative type might be embeddable 



380 Chapter 15: Embedding Finite Metric Spaces into Normed Spaces 

into f 1 with distortion bounded by a universal constant. If true, this 
would have significant algorithmic consequences: Many problems can 
be formulated as optimization over the cone of all f 1-metrics, which is 
computationally intractable, and the metrics of negative type would 
provide a good and algorithmically manageable approximation. 

The formulation of the minimum distortion problem for Euclidean 
em beddings as semidefinite programming is also due to [LLR95] , as 
well as Proposition 15.5.2. These ideas were further elaborated and 
applied in examples by Linial and Magen [LMOO] . The proof of Propo
sition 15.5.2 given in the text is simpler than that in [LLR95] , and it 
extends to fp-embeddability (Exercise 4) , unlike the formulation of 
the D-embedding problem as a semidefinite program. It was commu
nicated to me by Yuri Rabinovich. 

A further significant progress in lower bounds for £2-embeddings of 
graphs was made by Linial, Magen, and Naor [LMNOI] . They proved 
that the metric of every r-regular graph, r > 2, of girth g requires 
distortion at least n( y'g )  for embedding into £2 (an O.(g) lower bound 
was conjectured in [LLR95] ) . They give two proofs, one based on the 
concept of Markov type of a metric space due to Ball (Bal92] and 
another that we now outline (adapted to the notation of this section) . 
Let G = (V, E) be an r-regular graph of girth 2t+l or 2t+2 for sorne 
integer t > 1 ,  and let p be the metric of G. We set F = { { u, v} E 

(�) : p( u, v) = t} ;  note that the graph H = (V, F) is s-regular for 
s = r(r- I )t- 1

• Calculating RE,F (P) is trivial, and it remains to bound 
RE,F(a) for all Euclidean metrics a on V, which amounts to finding 
the largest (3 > 0 such that a2 (E) - (3 · a2 (F) > 0 for all a. Here it 
suffices to consider line metrics a; so let xv E R be the image of v in 
the embedding V -t R inducing a. We may assume EvEV Xv = 0 and, 
as in the proof in the text, a2 (E) = E

{u,
v}EE(xu - xv)2 = xT Lex = 

xr(rl- Aa)xr, where I is the identity matrix and Ac is the adjacency 
matrix of G, and similarly for a2 (F) . So we require xTCx > 0 for all x 
with EvEV Xv = 0, where C = ( r-j3s )I- Ac + /3An . It turns out that 
there is a degree-t polynomial Pt (x) such that AH = Pt (Ac) (here we 
need that the girth of G exceeds 2t ) . This Pt ( x) is called the Geronimus 
polynomial, and it is not hard to derive a recurrence for it: P0(x) = 1 ,  
P1 (x) = x, P2 (x) = x2 - r, and Pt (x) = xPt-l (x) - (r-l)Pt-2 (x) for 
t>2. So C =  Q(A) for Q(x) = r - (3s - x + Pt (x) .  As is well known, all 
the eigenvalues of A lie in the interval [-r, r] , and so if we make sure 
that Q ( x) > 0 for all x E [-r, r] , all eigenvalues of C are nonnegative, 
and our condition holds. This leaves us with a nontrivial but doable 
calculus problem whose discussion we omit. 
Semidefinite programming. The general problem of semidefinite pro
gramming is to optimize a linear function over a set of positive definite 
n x n matrices defined by a system of linear inequalities. This is a con-
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vex set in the space of all real n x n matrices, and in principle it is 
not difficult to construct a polynomial-time membership oracle for it 
(see the explanation following Theorem 13.2.1 ) . Then the ellipsoid 
rnethod can solve the optimization problern in polynomial time; see 
Grotschel, Lovasz and Schrijver [GLS88] . More practical algorithms 
are based on interior point methods. Semidefinite programming is an 
extremely powerful tool in combinatorial optimization and other ar
ea". For example, it provides the only known polynomial-time algo
rithms for computing the chromatic number of perfect graphs and the 
best known approximation algorithms for several fundamental NP
hard graph-theoretic problems. Lovasz's recent lecture notes [Lov] are 
a beautiful concise introduction. Here we outline at least one lovely 
application, concerning the approximation of the maximum cut in a 
graph, in Exercise 8 below. 
The second eigenvalue. The investigation of graph eigenvalues consti
tutes a well established part of graph theory; see, e.g. , Biggs [Big93] 
for a nice introduction. The second eigenvalue of the Laplace matrix as 
an important graph parameter was first considered by Fiedler (Fie73] 
(who called it the algebraic connectivity) .  Tanner [Tan84 J and Alon 
and Milman [AM85] gave a lower bound for the so-called vertex ex
pansion of a regular graph (a notion similar to edge expansion) in 
terms of JL2(  G) , and a reverse relation was proved by Alon [Alo86a] . 

There are many useful analogies of graph eigenvalues with the 
eigenvalues of the Laplace operator � on manifolds, whose theory is 
classical and well developed; this is pursued to a considerable depth in 
Chung [Chu97] . This point of view prefers the eigenvalues of the Lapla
cian matrix of a graph, as considered in this section, to the eigenvalues 
of the adjacency matrix. In fact , for nonregular graphs, a still closer 
correspondence with the setting of manifolds is obtained with a differ
ently normalized Laplacian matrix £c : (£c )v,v = 1 for all v E V( G), 
(Cc )uv = - ( degc ( u) degc ( v) )-1/2 for { u, v} E E( G) ,  and (.Cc )uv = 0 
otherwise. 
Expanders have been used to address many fundamental problems of 
computer science in areas such as network design, theory of compu
tational complexity, coding theory, on-line computation, and crypto
graphy; see, e.g. , [RVWOO] for references. 

For random graphs, parameters such as edge expansion or vertex 
expansion are usually not too hard to estimate (the technical difficulty 
of the arguments depends on the chosen model of a random graph) . On 
the other hand, estimating the second eigenvalue of a random r-regular 
graph is quite challenging, and a satisfactory answer is known only for 
r large (and even) ; see Friedman, Koml6s, and Szemeredi [FKS89] or 
Friedman [Fri91] . Namely, with high probability, a random r-regular 
graph with r even has A2 < 2yr=I + O( log r) . Here the number of 
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vertices n is assumed to be sufficiently large in terms of r and the 
0( · ) notation is with respect to r --+ oo. At the same time, for every 
fixed r > 3 and any r-regular graph on n vertices, A2 > 2Vr=l- o(l) ,  
where this time o( · ) refers to n --+ oo.  So random graphs are almost 
optimal for large r. 

For many of the applications of expanders, random graphs are 
not sufficient, and explicit constructions are required. In fact, explic
itly constructed expanders often serve as substitutes for truly random 
graphs; for example, they allow one to convert sorne probabilistic algo
rithms into deterministic ones (derandomization) or reduce the num
ber of random bits required by a probabilistic algorithm. 

Explicit construction of expanders was a big challenge, and it has 
led to excellent research employing surprisingly deep results fron1 
classical areas of mathematics (group theory, number theory, har
monic analysis, etc.) . In the analysis of such constructions, one usually 
bounds the second eigenvalue (rather than edge expansion or vertex 
expansion) . After the initial breakthrough by Margulis in 1973 and 
several other works in this direction (see, e.g. , [Mor94] or [RVWOO] for 
references) , explicit fan1ilies of constant-degree expanders matching 
the quality of random graphs in several parameters (and even super
seding them in some respects) were constructed hy Lubotzky, Phillips, 
and Sarnak [LPS88) and independently by Margulis [Mar88] . Later 
Morgenstern [Mor94] obtained similar results for many more values of 
the parameters (degree and number of vertices) . In particular, these 
constructions achieve A2 < 2Vr=T , which is asymptotically optimal, 
as was mentioned earlier. 

For illustration, here is one of the constructions (from [LPS88] ) . Let 
p =I= q be primes with p, q - 1 (mod 4) and such that p is a quadratic 
nonresidue modulo q, let i be an integer with i2 - -1  (mod q), and 
let F denote the field of residue classes modulo q. The vertex set 
V(G) consists of all 2 x 2  nonsingular matrices over F. Two matrices 
A, B E V(G) are connected by an edge iff AB-1 is a matrix of the 
c ( ao+ia1 a2 +ia3) h · · h 2 10rm + . . , w ere ao , a1 ,  a2 , a3 are Integers w1t a0 + -a2 �a3 ao -tat 
af + a� + a� == p, ao > 0, ao odd, and a1 , a2 , a3 even. By a theorem 
of Jacobi, there are exactly p+l such vectors (ao, a 1 ,  a2 , a3) , and it 
follows that the graph is (p+ 1 )-regular with q( q2 -1)  vertices. A family 
of constant-degree expanders is obtained by fixing p, say p == 5, and 
letting q --+ oo. 

Reingold, Vadhan, and Wigderson [RVWOO] discovered an ex
plicit construction of a different type. Expanders are obtained from 
a constant-size initial graph by iterating certain sophisticated prod
uct operations. Their parameters are somewhat inferior to those from 
[Mar88} , [LPS88] , [l\t1or94] , but the proof is relatively short, and it uses 
only elementary linear algebra. 
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Exercises 

1 .  Show that every real symmetric positive semidefinite n x n matrix can 
be written as xr X for a real n x n matrix X. 0 

2. (Dimension for isometric fp-embeddings) 
(a) Let V be an n-point set and let N = (�) . Analogous to the set 
£2 defined in the text, let £ifin) C R N be the set of all metrics on V 
induced by em beddings f: V � f� , k � 1 ,  2, . . . . Show that £�fin) is 
the convex hull of line pseudometrics, 5 i.e . ,  pseudometrics induced by 
mappings f: V � fi . 0 
(b) Prove that any metric from £ifin) can be isometrically embedded 
into Rf . That is, any n-point set in some f� can be realized in Rf . 0 
(Examples show that one cannot do much better and that dimension 
O(n2 ) is necessary, in contrast to Euclidean embeddings, where dimension 
n-1 always suffices. )  
(c) Let £1 C RN be all metrics induced by embeddings of V into £1 (the 
space of infinite sequences with finite £1-norm) . Show that £1 = £ifin) , 
and thus that any n-point subset of £1 , can be realized in if . 0 
(d) Extend the considerations in (a)-( c) to fp-metrics with arbitrary 
p E  [1 , oo) . II1 
See Ball [Bal90] for more on the dimension of isometric fp-embeddings. 

3. With the notation as in Exercise 2, show that every line pseudometric 
v on an n-point set V is a nonnegative linear combination of at most 
n-1 cut pseudometrics : v � 2:::::� / O'.iTi ,  a1 , . . . , O'.n- 1  > 0, where each 
Ti is a cut pseudometric, i .e . ,  a line pseudo metric induced by a mapping 
'l/Ji : V � {0, 1 } .  (Consequently, by Exercise 2(a) , every finite metric iso
metrically embeddable into £1 is a nonnegative linear combination of cut 
pseudometrics.) II1 

4. (An fp-analogue of Proposition 15.5.2) Let p E [ 1 ,  oo) be fixed. Using 
Exercise 2, formulate and prove an appropriate lp-analogue of Proposi
tion 15.5.2. II1 

5. (Finite £2-metrics embed isometrically into fp) 
(a) Let p be fixed. Check that if for all c > 0, a finite metric space 
(V, p) can be (1+c)-embedded into some t; , k � k(c), then (V, p) can be 
isometrically embedded into e: , where N � ( 1� 1 ) . Use Exercise 2. 0 
(b) Prove that every n-point set in £2 can be isometrically embedded into 
e: . 0 

6. (The second eigenvalue and edge expansion) Let G be an r-regular graph 
with n vertices, and let A, B C V be disjoint . Prove that the number of 
edges connecting A to B is at least e (  A, B) > p,2 (G) · I A I� Bl (use ( 15.3) 
with a suitable vector x) , and deduce that �(G) > � J-L2 (G) . 0 

5 A pseudometric v satisfies all the axioms of a metric except that we may have 
v(x, y) = 0 even for two distinct points x and y. 
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7. (Expansion and measure concentration) Let us consider the vertex set 
of a graph G as a metric probability space, with the usual graph metric 
and with the uniform probability measure P (each vertex has measure 
� ,  n = I V  (G) I ) .  Suppose that <I> = <I> (G) > 0 and that the rr1axirrturr1 
degree of G is Ll .  Prove the following measure concentration inequality: 
If A C V( G) satisfies P (A] > � ,  then 1 - P [At ] < �e-t�/� , where At 
denotes the t-neighborhood of A. [I] 

8. (The Goemans-Williamson approximation to MAXCUT) Let G = (V, E) 
be a given graph and let n = lV I .  The MAXCUT problem for G is to find 
the maximum possible number of "crossing" edges for a partition V = 
AUB of the vertex set into two disjoint subsets, i .e. , maxAcv e(A, V \A) .  
This is an NP-complete problem. The exercise outlines a geometric ran
domized algorithm that finds an approximate solution using semidefinite . progran1nung. 
(a) Check that the l\1AXCUT problem is equivalent to computing 

m 
(b) Let 

Mopt = max{ � I: ( 1 - XuXv ) :  Xv E {-1 ,  1 } ,  V E V } · 
{u,v}EE 

Mrelax = max{ � I: ( 1 - (Yu . Yv ) ) : Yv E Rn, I I Yv l l = 1 ,  v E v } · 
{u,v}EE 

Clearly, Mrelax > Mopt · Verify that this relaxed version of the problem is 
an instance of a semidefinite program, that is, the maximum of a linear 
function over the intersection of a polytope with the cone of all symmetric 
positive semidefinite real matrices. 0 
(c) Let (Yv : v E V) be some system of unit vectors in R n for which Mrelax 
is attained. Let r E Rn be a random unit vector, and set Xv = sgn (yv , r) , 

v E V. Let Mapprox = � I:{u,v}EE ( l - XuXv) for these Xv · Show that 
the expectation, with respect to the random choice of r, of Mapprox is 
at least 0.878 · Mrelax (consider the expected contribution of each edge 
separately) . So we obtain a polynomial-time randomized algorithm pro
ducing a solution to MAXCUT whose expected value is at least about 
88% of the optimal solution. 8J 
Remark. This algorithm is due to Goemans and Williamson (GW95] . 
Later, Hastad (Has97] proved that no polynomial-tin1e algorithm can 
produce better approximation in the worst case than about 94% unless 
P=NP (also see Feige and Schechtman [FSOl] for nice mathematics show
ing that the Goemans·--Williamson value 0.878 . . .  is, in a certain sense, 
optimal for approaches based on semidefinite programming) . 
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15.6 Upper Bounds for £00-Embeddings 

In this section we explain a technique for producing low-distortion embed
dings of finite metric spaces. Although we are mainly interested in Euclidean 
em beddings, here we begin with em beddings into the space Roo , which are 
somewhat simpler. We derive almost tight upper bounds. 

Let (V, p) be an arbitrary metric space. To specify an embedding 

f: (V, p) -t R� 

rneans to define d functions !1 , . . .  , fd : V -t R, the coordinates of the embed
ded points. If we aim at a D-embedding, without loss of generality we may 
require it to be nonexpanding, which means that I fi ( u) - fi ( v) I < p( u, v) for 
all u, v E V and all i = 1 ,  2, . . .  , d. The D-embedding condition then rneans 
that for every pair { u, v} of points of V, there is a coordinate i = i ( u, v) that 
"takes care" of the pair: l fi ( u) - fi ( v) I > b p( u, v) . 

One of the key tricks in constructions of such embeddings is to take each 
fi as the distance to some suitable subset Ai C V; that is, fi (u) = p(u, Ai) = 
ma.xaEA� p( u, a) . By the triangle inequality, we have I p( u, Ai) - p( v, Ai) I < 
p(u, v) for any u, v E V, and so such an embedding is automatically nonex
panding. We "only" have to choose a suitable collection of the Ai that take 
care of all pairs { u, v} . 

We begin with a simple case: an old observation showing that every finite 
metric space embeds isometrically into Roc . 
15.6.1 Proposition (Frechet's embedding) . Let (V, p) be an arbitrary 
n-point metric space. Then there is an isometric embedding f: V ---+ t� . 

Proof. Here the coordinates in £� are indexed by the points of V ,  and the 
vth coordinate is given by fv ( u) = p( u, v) . In the notation above, we thus put 
Av = { v} . As we have seen, the embedding is nonexpanding by the triangle 
inequality. On the other hand, the coordinate v takes care of the pairs { u, v} 
for all u E V: 

l l f(u) - f(v) l loo > l fv (u) - fv (v) l = p(u, v) .  

D 

The dimension of the image in this embedding can be reduced a little; 
for example, we can choose some vo E V and remove the coordinate cor
responding to v0 , and the above proof still works. To reduce the dimension 
significantly, though, we have to pay the price of distortion. For example, from 
Corollary 15.3.4 we know that for distortions below 3 ,  the dimension must 
generally remain at least a fixed fraction of n. We prove an upper bound on 
the dimension needed for embeddings with a given distortion, which nearly 
matches the lower bounds in Corollary 15 .3.4: 
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15.6.2 Theorem. Let D = 2q- 1  > 3 be an odd integer and let (V, p) be an 
n-point metric space. Then there is a D-embedding of V into f� with 

d == O(qn1fq Inn) .  

Proof. The basic scheme of the construction is as explained above: Each 
coordinate is given by the distance to a suitable subset of V. This time the 
subsets are chosen at randon1 with suitable densities. 

Let us consider two points u, v E V. What are the sets A such that 
l p(u, A} - p(v, A) l > Ll, for a given real Ll > 0? For some r > 0, they must 
intersect the closed r-ball around u and avoid the open (r+Ll)-ball around v; 
schematically, 

not empty 
.. ..  - - · · · - - -• "  .... ..... 

... ·· .. 
·· · .  · .  

,.. empty 
. 

. . . . . . . . . . . . . . . ' . . 

v 

. 
· · .  ......... . ... .. . . 

' 

. , 

. . . . . 
. 
I . . . : 

. : 
. . 

or conversely (with the roles of u and v interchanged) . 
In the favorable situation where the closed r-ball around u does not con

tain many fewer points of V than the open (r+�)-ball around v, a random A 
with a suitable density has a reasonable chance to work. Generally we have 
no control over the distribution of points around u and around v, but by 
considering several suitable balls simultaneously, we can find a good pair of 
balls. We also do not know the right density needed for the sample to \Vork, 
but since we have many coordinates, we can take samples of essentially all 
possible densities. 

Now we begin with the formal proof. We define an auxiliary param
eter p = n -l I q ,  and for j == 1 ,  2 , . . .  , q ,  we introduce the probabilities 
PJ == min(� ,pi) .  Further, let m == f24n1/q Inn l ·  For i == 1 ,  2, . . . , m and 
j == 1 ,  2 ,  . . .  , q, we choose a random subset Aii C V. The sets (and the cor
responding coordinates in f�q) now have double indices, and the index j 
influences the "density" of Aij . Namely, each point v E V has probability PJ 
of being included into Aij , and these events are mutually independent . The 
choices of the Aii , too, are independent for distinct indices i and j .  Here is a 
schematic illustration of the sampling: 
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• 0 .  0 • 0 0 0 0 
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We divide the coordinates in £� into q blocks by m coordinates. For 
v E V, we let 

/( v ) ij = p( v, Aij ) , i = 1 ,  2, . . .  , m, j = 1 ,  2, . . .  , q .  

We claiin that with a positive probability, this f: V ---+ f�q is a D-embedding. 
We have already noted that f is nonexpanding, and the following lemma 
serves for showing that with a positive probability, every pair { u, v} is taken 
care of. 

15.6.3 Lemma. Let u, v be two distinct points of V. Then there exists an 
index j E { 1 ,  2, . . .  , q} such that if the set Aij is chosen randomly as above, 
then the probability of tl1e event 

. 1 p 1s at east 12 . 

j p(u, Aij ) - p(v, AiJ ) I  > b p(u, v) (15.6) 

First, assuming this lemma, we finish the proof of the theorem. To show 
that f is a D-embedding, it suffices to show that with a nonzero probability, 
for every pair { u, v} there arc i ,  j such that the event (15.6) in the lemma 
occurs for the set Aij . Consider a fixed pair { u, v} and select the appropriate 
index j as in the lemma. The probability that the event (15.6) does not occur 
for any of the m indices i is at most (1 - /;)m < e-Pm/!2 < n-2 . Since there 
are (�) < n2 pairs { u, v} , the probability that we fail to choose a good set 
for any of the pairs is smaller than 1 .  D 

Proof of Lemma 15.6.3. Set � =  b p(u, v) .  Let Bo = {u} , let B1 be 
the (closed) �-ball around v, let B2 be the (closed) 2�-ball around u, . . .  , 
finishing with Bq , which is a q�-ball around u (if q is even) or around v (if q 
is odd) . The parameters are chosen so that the radii of Bq- I and Bq add up 
to p('u, v); that is , the last two balls just touch (recall that D = 2q-1 ) :  

Let nt denote number of points of V in Bt . 
We want to select an index j such that 

nt > n(j- I) /q and nt+I < njfq . ( 15. 7) 

To this end, we divide the interval [1 ,  n] into q intervals /1 , /2 , . . .  , Iq , where 
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If the sequence ( n1 , n2 , . . .  , nq) is not monotone increasing, i .e . ,  if nt+l < nt 
for some t, then ( 15. 7) holds for the j such that Ij contains nt . On the other 
hand, if 1 = n0 < n1 < . . .  < nq < n, then by the pigeonhole principle, there 
exist t and j such that the interval Ij contains both nt and nt+l · Then (15. 7) 
holds for this j as well. 

In this way, we have selected the index j whose existence is claimed in the 
lemma. We will show that with probability at least f2 ,  the set Aij ,  randomly 
selected with point probability Pi , includes a point of Bt (event E1 ) and is 
disjoint fron1 the interior of Bt+l (event E2) ;  such an Aij satisfies (15.6) .  
Since Bt and the interior of Bt+ 1 are disjoint, the events E1 and E2 are 
independent . 

We calculate 

Prob (E1] = 1 - Prob [Aii n Bt = 0] = 1 - ( 1 - pj )nt > 1 - e-pJ nt .  

Using (15 .7) ,  we have pjnt > pjn(j-l )/q = PjP-j+l = min(� , pi )p-j+l > 
min( l , p) .  For p > � ' we get Prob [E1 ] > 1 - e-112 > � > � ' while for 
p < t we have Prob [Ed > 1 - e-P , and a bit of calculus verifies that the 
last expression is well above � for all p E [0, � ) .  

Further, 

Prob [E2) > ( 1 - Pj )nt+l > ( 1  - Pi )nJ fq > ( 1  - Pj) 1 /P.7 > � 

(since Pj < � ) .  Thus Prob [Et n E2] > J; ,  which proves the lemma. o 

Bibliography and remarks. The embedding method discussed 
in this section was found by Bourgain [Bou85] , who used it to prove 
Theorem 15.7 . 1  explained in the subsequent section. Theorem 15.6.2 
is from [Mat96b] . 

Exercises 

1 .  (a) Find an isometric embedding of ft into f� . � 
(b) Explain how an embedding as in (a) can be used to compute the 
diameter of an n-point set in ft in time O(d2dn) . 0 

2. Show that if the unit ball K of some finite-dimensional normed space 
is a convex polytope with 2nt facets, then that normed space embeds 
isometrically into f� . � 
(Using results on approximation of convex bodies by polytopes, this yields 
useful approxin1ate en1beddings of arbitrary norms into f�. )  

3 .  Deduce from Theorem 15.6.2 that every n-point metric space can be D
embedded into f� with D = O(log2 n) and k = O(log2 n) .  � 
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15.7 Upper Bounds for Euclidean Embeddings 

By a method similar to the one shown in the previous section, one can also 
prove a tight upper bound on Euclidean embeddings; the method was actually 
invented for this problem. 

15.7. 1 Theorem (Bourgain's embedding into l2) .  Every n-point metric 
space (V, p) can be embedded into a Euclidean space with distortion at most 
O(logn) .  

The overall strategy of the embedding is similar to the embedding into e� 
in the proof of Theorem 15.6.2. The coordinates in eg are given by distances 
to suitable subsets. The situation is slightly more complicated than before: 
For embedding into e� , it was enough to exhibit one coordinate "taking care" 
of each pair, whereas for the Euclidean embedding, many of the coordinates 
will contribute significantly to every pair. Here is the appropriate analogue 
of Lemma 15.6.3. 

15. 7.2 Lemma. Let u, v E V be two distinct points. Then there exist real 
numbers �1 , �2, . . .  , �q > 0 with �1  + · · · + �q = ! p(u, v) ,  where q = 
llog2 n J + 1 ,  and such that the following holds for each j = 1 ,  2, . . .  , q: If 
AJ C V is a randomly chosen subset of V, with each point of V included in 
Aj independently with probability 2-j , then the probability Pj of the event 

satisfies Pj > l2 . 

Proof. We fix u and v. We define rq = ! p(u, v) and for j = 0, 1 ,  . . .  , q-1 ,  we 
let rj be the smallest radius such that both IB (u, rJ ) I  > 2i and IB (v, rJ ) I  > 21 
where, as usual, B(x, r) = {y E V: p(x, y) < r} . We arc going to show that 
the claim of the lemma holds with D..j = r j - r j _ 1 .  

Fix j E { 1 ,  2, . . .  , q} and let Aj C V be a random sample with point 
probability 2-i . By the definition of r1 , I B0 (u, rJ ) I  < 2i or IB0 (v, r1 ) 1  < 21 , 
where B0 (x, r) = {y E V: p(x, y) < r} denotes the open ball (this holds 
for j = q, too, because lV I  < 2q) .  We choose the notation u, v so that 
IB0 (u, rj ) I  < 2J . A random set Ai is good if it intersects B(v, rJ_ 1 ) and 
misses B0 ( u, r j ) .  The former set has cardinality at least 2J - I  and the latter 
at most 2J . The calculation of the probability that Ai has these properties is 
identical to the calculation in the proof of Lemma 15.6.3 with p = � .  D 

In the subsequent proof of Theorem 15 .7 .1 we will construct the embed
ding in a slightly roundabout way, which sheds some light on what is really 
going on. Define a line pseudometric on V to be any pseudometric v induced 
by a mapping <p: V -+ R, that is, given by v( u, v) = I <p( u) - <p( v) j .  For 
each A C V, let v A be the line pseudo metric corresponding to the mapping 
v t-+ p( v, A). As we have noted, each VA is dominated by p, i.e. , VA < p 
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(the inequality between two (pseudo)metrics on the same point set means 
inequality for each pair of points) . 

The following easy lemma shows that if a metric p on V can be approx
imated by a convex combination of line pseudometrics, each of them domi
nated by p, then a good embedding of ( V, p) into £2 exists. 

15.7. 3 Lemma. Let ( V, p) be a finite metric space, and let v1 , . . .  , v N be 
line pseudometrics on V with vi < p for all i and such that 

N 
1 """ a · v· > - p � 't 't - n i=l 

for some nonnegative a1 , . . .  , aN summing up to 1 .  Then (V, p) can be D
embeddcd into £� . 

Proof. Let <pi: V -1- R be a mapping inducing the line pseudometric vi. \Ve 
define the embedding f:  V ---+ R!j by 

Then, on the one hand, 

N 
l l f (u) - f(v) l l 2 = L aivi (u, v)2 < p(u, v) 2, 

i=l 
because all vi are dominated by p and 2::: ai = 1 .  On the other hand, 

N 
> L aivi (u, v) 

i=l 

by Cauchy-Schwarz, and the latter expression is at least b p( u, v) by the 
assumption. D 

Proof of Theorem 15. 7.1 .  As was remarked above, each of the line pscu
dometrics VA corresponding to the mapping v H p(v, A) is dominated by p. 
It remains to observe that Lemma 15 .7.2 provides a convex combination of 
these line pseudometrics that is bounded from below by 4�q • p. The coefficient 
of each v A in this convex combination is given by the probability of A appear
ing as one of the sets Aj in Lemma 15.7 .2 .  More precisely, write 7rj (A) for 
the probability that a random subset of V, with points picked independently 
with probability 2-1 , equals A. Then the clairn of Lemrna 15.  7.2 in1plies, for 
every pair { u, v} ,  
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L 1fj (A) · vA (u , v) > 1� �i · 
ACV 

Summing over j = 1 ,  2, . . .  , q, we have 

L ( t 11"j (AJ) · 
VA (u, v) > /2 · t f:l.j = 1s p(u, v) . 

ACV j=l j=l 

Dividing by q and using LAcv 1fj (A) == 1, we arrive at 
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with aA == ! LJ= 1 nj (A).  Lemma 15 .7.3 now gives embcddability into £2 
with distortion at most 48q. Theorem 15 .7. 1  is proved. D 

Remarks. Almost the same proof with a slight modification of Lemma 1 5. 7.3 
shows that for each p E [ 1 ,  oo ) , every n-point metric space can be embedded 
into fp with distortion O(log n); see Exercise 1 .  

The proof as stated produces an embedding into space of dimension 2n , 
since there are 2n subsets A C V, each of them yielding one coordinate. 
To reduce the dimension, one can argue that not all the sets A are needed: 
by suitable Chernoff-type estimates, it follows that it is sufficient to choose 
O(Iog n) random sets with point probability 2-j , i .e. , O(log2 n) sets altogether 
(Exercise 2) .  Of course, for Euclidean embeddings, an even better dimension 
O(log n) is obtained using the Johnson-·Lindenstrauss flattening lemma, but 
for other fp , no flattening lemma is available. 

An algorithmic application: approximating the sparsest cut. We 
know that every n-point n1etric space can be O(logn)-embedded into £� with 
d == O(log2 n). By inspecting the proof, it is not difficult to give a randomized 
algorithm that computes such an embedding in polynomial expected time. 
We show a neat algorithmic application to a graph-theoretic problem. 

Let G == (V, E) be a graph. A cut in G is a partition of V into two 
nonempty subsets A and B = V \ A. The density of the cut (A, B) is j�f-1�1, 
where e(A, B) is the number of edges connecting A and B .  Given G, we 
would like to find a cut of the smallest possible density. This problem is NP
hard, and here we discuss an efficient algorithm for finding an approximate 
answer: a cut whose density is at most O(log n) times larger than the density 
of the sparsest cut, where n == lV I  (this is the best known approximation 
guarantee for any polynomial-time algorithm) . Note that this also allows us 
to approximate the edge expansion of G (discussed in Section 15.5) within a 
multiplicative factor of O(logn) .  

First we reformulate the problem equivalently using cut pseudometrics. A 
cut pseudornetric on V is a pseudon1etric T corresponding to so1ne cut (A, B) ,  
with r(u, v) == r(v, u) == 1 for u E A and v E B and r(u, v) = 0 for u, v E A or 
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u, v E B. In other words, a cut pseudo metric is a line pseudometric induced 
by a mapping 'lj;: V � {0, 1 }  (excluding the trivial case where all of V gets 
mapped to the same point) .  Letting F = (�) , the density of the cut (A, B) 
can be written as T( E)/ T( F), where T is the corresponding cut pseudornetric 
and r(E) = l:{u,v}EE T(u, v ) . Therefore, we would like to minimize the ratio 
R1 (r) = r(E)/r(F) over all cut pseudometrics r. 

In the first step of the algorithm we relax the problem, and we find a pseu
dometric, not necessarily a cut one, minimizing the ratio R 1 (p) = p( E)/ p( F). 
This can be done efficiently by linear programming. The minimized function 
looks nonlinear, but we can get around this by a simple trick: We postulate 
the additional condition p(F) = 1 and minimize the linear function p(E) . The 
variables in the linear program are the (�) numbers p( u, v) for { u, v} E F, 
and the constraints are p( u, v) > 0 (for all u, v) , p( F) = 1 ,  and those express
ing the triangle inequalities for all triples u, v,  w E V. 

Having computed a p0 minimizing R1 (p) , we find a D-embedding f of 
(V, p0) into some f� with D = O(log n) .  If a0 is the pseudometric induced on 
V by this /, we clearly have R1 (a0) < D·R1 (p0 ) .  Now since a0 is an £1 -pseudo
metric, it can be expressed as a nonnegative linear combination of suitable 
cut pseudometrics (Exercise 15.5.3) : ao = 2:� 1 airi ,  a1 , . . .  , aN > 0, N < 
d( n-1  ) . It is not difficult to check that R1 (ao) > min{ R1 ( Ti ) : i = 1 ,  2 , . . . , N} 
(Exercise 3) .  Therefore, at least one of the ri is a cut pseudometric satisfying 
R1 (Ti )  < Rl (ao) < D · RI (Po) < D · RI (ro) ,  where To is a cut pseudometric 
with the smallest possible R1 ( r0) .  Therefore, the cut corresponding to this Ti 
has density at most O (log n) times larger than the sparsest possible cut. 

Bibliography and remarks. Theorem 15.7.1 is due to Bourgain 
[Bou85] . The algorithntic application to approxin1ating the sparsest 
cut uses the idea of an algorithm for a somewhat more complicated 
problem (multicommodity flow) found by Linial et al. [LLR95] and 
independently by Aumann and Rabani [AR98] . 

We will briefly discuss further results proved by variations of Hour
gain's embedding technique. Many of them have been obtained in the 
study of approximation algorithms and imply strong algorithmic re
sults. 
Tree metrics. Let g be a class of graphs and consider a graph G E Q. 
Each positive weight function w :  E(G) � (0, oo) defines a metric on 
V(G), namely the shortest-path metric, where the length of a path 
is the sum of the weights of its edges. All subspaces of the resulting 
metric spaces are referred to as Q-m,etric��. A tree m,etric is a T-metric 
for r the class of all trees. Tree metrics generally behave much better 
than arbitrary metrics, but for embedding problems they are far from 
trivial. 

Bourgain (Bou86] proved, using martingales, a surprising lower 
bound for embedding tree metrics into 1!2 : A tree metric on n points 
requires distortion 0( v'log log n ) in the worst case. His example is the 
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complete binary tree with unit edge lengths, and for that example, 
he also constructed an embedding with 0( y'log log n ) distortion. For 
embedding the complete binary tree into lp , p > 1 ,  the distortion is 
0( (log log n )min(l/2,l /p) ) ,  with the constant of proportionality depend-
ing on p and tending to 0 as p ---+ 1 .  (For Banach-space specialists, we 
also remark that all tree metrics can be embedded into a given Banach 
space Z with bounded distortion if and only if Z is not superrefiexive.) 
In Matousek (Mat99b] it was shown that the complete binary tree is 
essentially the worst example; that is, every n-point tree metric can be 
embedded into Rp with distortion 0( (log log n )min( l/2,!/p) ) .  An alter-
native, elementary proof was given for the matching lower bound (see 
Exercise 5 for a weaker version) .  Another proof of the lower bound, 
very short but applying only for embeddings into £2 , was found by 
Linial and Saks (LS02] (Exercise 6) . 

In the notes to Section 15.3 we mentioned that general n-point 
metric spaces require worst-case distortion O(n1/ l(d+I)/2J ) for embed
ding into f�, d > 2 fixed. Gupta [ GupOO] proved that for n-point tree 
metrics, O(n1/ (d-l ) )-embeddings into f� are possible. The best known 
lower bound is O(n1fd) ,  from a straightforward volu1ne argu1nent. Ba
bilon, Matousek, Maxova, and Valtr [BMMV02] showed that every 
n-vertex tree with unit-length edges can be 0( fo )-embedded into f� . 
Planar-graph metrics and metrics with excluded minor. A planar
graph metric is a P-metric with P standing for the class of all pla
nar graphs (the shorter but potentially confusing term planar met
ric is used in the literature) . Rao [Rao99] proved that every n-point 
planar-graph metric can be embedded into £2 with distortion only 
0( y'Iog n ) , as opposed to log n for general metrics. More generally, 
the same method shows that whenever H is a fixed graph and Excl(H) 
is the class of all graphs not containing H as a minor, then Excl (H)
metrics can be 0( v'Iog n )-embedded into /!,2 • For a matching lower 
bound, valid already for the class Excl(K4 ) (series-parallel graphs) ,  
and consequently for planar-graph metrics; see Exercise 15.4.2. 

We outline Rao's method of embedding. We begin with graphs 
where all edges have unit weight (this is the setting in [Rao99] , but 
our presentation differs in some details) ,  and then we indicate how 
graphs with arbitrary edge weights can be treated. The n1ain new 
ingredient in Rao's method, compared to Bourgain's approach, is a 
result of Klein, Plotkin, and Rao [KPR93] about a decomposition of 
graphs with an excluded minor into pieces of low diameter. Here is the 
decomposition procedure. 

Let G be a graph, let p be the corresponding graph metric (with all 
edges having unit length) , and let � be an integer parameter. We fix a 
vertex v0 E V( G) arbitrarily, we choose an integer r E {0, 1 ,  . . .  , �-1} 
uniformly at random, and we let Bt = {v E V(G): p(v, vo) -

393 
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r (mod �) } . By deleting the vertices of B1 from G, the remaining 
vertices are partitioned into connected components; this is the first 
level of the decomposition. For each of these components of G \ B1 , 
we repeat the same procedure; � rernains unchanged and r is chosen 
anew at random (but we can use the same r for all the components) . 
Let B2 be the set of vertices deleted from G in this second round, 
taken together for all the components. The second level of the decom
position consists of the connected components of G \ (B1 U B2) ,  and 
decompositions of levels 3, 4, . . .  can be produced similarly. The fol
lowing schematic drawing illustrates the two-level decomposition; the 
graph is marked as the gray area, and the vertices of B1 and B2 are 
indicated by the solid and dashed arcs, respectively. 

For planar graphs, it suffices to use a 3-level decomposition, and for 
every fixed graph H, there is a suitable k = k(H) such that a k-level 
decomposition is appropriate for all graphs G E Excl(H) . 

Let B = B1 U · · · U Bk; this can be viewed as the boundary of the 
components in the k-level decomposition. Here are the key properties 
of the decomposition: 

( i) For each vertex v E V(G), we have p(v, B) > c1� with proba
bility at least c2 , for suitable constants c1 ,  c2 > 0. The probability is 
with respect to the random choices of the parameters r at each level 
of the decornposition. (This is not hard to see; for example, in the 
first level of the decomposition, for every fixed v, p( v, v0) is some fixed 
number and it has a good chance to be at least c1� away, modulo �' 
from a random r. ) 

( ii) Each component in the resulting decomposition has diameter 
at most 0 (�) . (This is not so easy to prove, and it is where one needs 
k = k(H) sufficiently large. For H = K3,3 , which includes the case of 
planar graphs, the proof is a relatively simple case analysis. ) 

Next, we describe the embedding of V(G) into €2 in several steps. 
First we consider � and the decomposition as above fixed, and we let 
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CI , . . .  ' Cm be the components of G \ B. For all the ci , we choose 
random signs a(Ci) E {- 1 ,  +1} uniformly and independently. For a 
vertex x E V(G), we define a(x) = 0 if x E B and a (x) = a(Ci )  
if X E v ( ci) .  Then we define the mapping <p B ,a :  v (G) -+ R by 
'PB,a (v) = a (x) · p(x, B) (the distance of x to the boundary signed by 
the component's sign). This <fJB,a induces a line pseudometric VB,a , 
and it is easy to see that v B ,a is dominated by p. 

Let C be a constant such that all the Ci have diameter at most 
CD., and let x, y E V(G) be such that CD. < p(x, y) < 2CD.. Such 
x and y certainly lie in distinct components, and a( x) =f. a(y) with 
probability � .  With probability at least c2 , we have p(x, B) > c1 D. , 
and so with a fixed positive probability, VB ,a places x and y at distance 
at least c1 D.. 

Now, we still keep D. fixed and consider v B ,a for all possible B and 
a. Letting o:B,a be the probability that a particular pair (B, a) results 
from the decomposition procedure, we have 

L aB,aVB,a (x, y) = O(p(x, y)) 
B,a 

whenever CD. < p(x, y) < 2CD.. As in the proof of Lemma 15.7.3, 
this yields a 1-Lipschitz embedding /b.. : V (G) -+ f� (for some N) that 
shortens distances for pairs x, y as above by at most a constant factor. 
(It is not really necessary to use all the possible pairs ( B, a) in the 
embedding; it is easy to show that const · log n independent random 
B and a will do. )  

To construct the final embedding f: V (G) -t f2 , we let f ( v ) be the 
concatenation of the vectors f b.. for D. E { 2J : 1 � 2J < diam( G)} .  No 
distance is expanded by more than 0( y'log diam( G) ) = 0( y'Iog n ) , 
and the contraction is at most by a constant factor, and so we have 
an ernbedding into £2 with distortion 0 ( y'Iog n ) . 

Why do we get a better bound than for Bourgain's embedding? 
In both cases we have about log n groups of coordinates in the em
bedding. In Rao's embedding we know that for every pair (x, y) , one 
of the groups contributes at least a fixed fraction of p( x, y) (and no 
group contributes more than p(x,  y) ) .  Thus, the sum of squares of the 
contributions is between p(x, y)2 and p(x, y)2 logn. In Bourgain's em
bedding (with a comparable scaling) no group contributes more than 
p(x, y) ,  and the sum of the contributions of all groups is at least a 
fixed fraction of p(x, y) . But since we do not know how the contri
butions are distributed among the groups, we can conclude only that 
the sum of squares of the contributions is between p(x, y)2/ log n and 
p(x, y)2 log n. 

It remains to sketch the modifications of Rao's embedding for a 
graph G with arbitrary nonnegative weights on edges. For the un
weighted case, we defined B1 as the vertices lying exactly at the given 
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distances from v0 . In the weighted case, there need not be vertices 
exactly at these distances, but we can add artificial vertices by subdi
viding the appropriate edges; this is a minor technical issue. A more 
serious proble1n is that the distances p(x, y) can be in a very wide 
range, not just from 1 to n. We let � run through all the relevant 
powers of 2 (that is, such that C� < p(x, y) < 2C� for some x =f. y), 
but for producing the decomposition for a particular �' we use a mod
ified graph G � obtained from G by contracting all edges shorter than 
! . In this way, we can have many Inore than log n values of �' but 
only O(log n) of them are relevant for each pair ( x, y), and the analysis 
works as before. 

Gupta, Newman, Rabinovich, and Sinclair (GNRS99] proved that 
any Excl(K4 )-mctric, as well as any Excl (K2,3 )-mctric, can be 0(1)
embedded into £1 , and they conjectured that for any H, Excl (H)
metrics might be 0(1)-embeddable into £1 (the constant depending 
on H). 
Volume-respecting embeddings. Feige [FeiOO] introduced an interest
ing strengthening of the notion of the distortion of an embedding, 
concerning embeddings into Euclidean spaces. Let f: (V, p) -7 £2 be 
an embedding that for simplicity we require to be 1-Lipschitz (nonex
panding) .  The usual distortion of f is determined by looking at pairs 
of points, while Feige's notion takes into account all k-tuples for some 
k > 2. For example, if V has 3 points, every two with distance 1 ,  then 
the following two embeddings into f� have about the same distortion: 

• 

• • 
• • • 

But while the left embedding is good in Feige's sense for k == 3, the 
right one is completely unsatisfactory. For a k-point set P C £2 , de
fine Evol( P) as the ( k-1 )-dimensional volume of the simplex spanned 
by P (so Evol(P) == 0 if P is affinely dependent) .  For a k-point 
metric space (S, p), the volume Vol(S) is defined as sup1 Evol(f(S) ) ,  
where the supremum is over all 1-Lipschitz f :  S -7 £2 . An embedding 
f: (V, p) -7 £2 is (k, D) volume-respecting if for every k-point subset 
S C V, we have D · Evol(/(8) ) 1/(k- l) > Vol(S) 1/ (k- l ) . For D small, 
this means that the image of any k-tuple spans nearly as large a vol
ume as it possibly can for a 1-Lipschitz map. (Note, for example, that 
an isometric embedding of a path into /!2 is not volume-respecting. ) 

Feige showed that Vol(S) can be approximated quite well by an 
intrinsic para1neter of the metric space (not referring to embed dings) , 
namely, by the tree volume Tvol(S) , which equals the products of the 
edge lengths in a minimum spanning tree on S (with respect to the 
metric on S) . Namely, Vol(S) < (k�I)! Tvol(S) < 2(k-2)/2 Vol(S) . He 
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proved that for any n-point metric space and all k > 2, the embed
ding as in the proof of Theorem 15. 7 .1 is (k, O(log n + v'k log n log k ) ) 
volume-respecting (the result in the conference version of his paper is 
slightly weaker) .  
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The notion of volume-respecting embeddings currently still looks 
somewhat mysterious. In an attempt to convey some feeling about 
it, we outline Feige's application and indicate the use of the volume
respecting condition in it. He considered the problem of approximat
ing the bandwidth of a given n-vertex graph G. The bandwidth is 
the minimum, over all bijective maps <p: V(  G) --+ { 1 ,  2, . . .  , n } ,  of 
max { I'P( u) - <p( v) I :  { u, v} E E( G)} (so it has the flavor of an approx
imate embedding problem) . Computing the bandwidth is NP-hard, 
but Feige's ingenious algorithm approximates it within a factor of 
O((log n)const ) .  The algorithm has two main steps: First, embed the 
graph (as a metric space) into f2 , with m being some suitable power 
of log n, by a (k, D) volume-respecting embedding /, where k = log n 
and D is as small as one can get. Second, let .A be a random line in 
f2 and let '¢( v) denote the orthogonal projection of f(  v) on .A. This 
'¢: V (G) ---+ .A is almost surely injective, and so it provides a linear or
dering of the vertices, that is, a bijective map <p: V (G) --+ { 1 ,  2 ,  . . .  , n} ,  
and this is used for estimating the bandwidth. 

To indicate the analysis, we need the notion of local density of the 
graph G: ld( G) = max{ IB (  v, r) 1 /r :  v E V( G), r = 1 ,  2, . . .  , n } ,  where 
B ( v, r) are all vertices at distance at most r from v. It is not hard to 
sec that ld( G) is a lower bound for the bandwidth, and Feige's analysis 
shows that 0 (ld (G) (log n )const ) is an upper bound. 

One first verifies that with high probability, if { u, v} E E( G) , then 
the images '¢( u) and '¢( v) on .A are close; concretely, 1'¢ (  u) - '¢( v) I < 
� = 0( /(log n) / m ) . For proving this, it suffices to know that f is 
!-Lipschitz, and it is an immediate consequence of measure concentra
tion on the sphere. If b is the bandwidth obtained from the ordering 
given by '¢, then some interval of length � on .A contains the images of 
b vertices. Call a k-tuple S C V( G) squeezed if '¢(8) lies in an interval 
of length �- If b is large, then there are many squeezed S. On the 
other hand, one proves that, not surprisingly, if ld( G) is small, then 
Vol(S) is large for all but a few k-tuples S C V(G). Now, the volunle
respecting condition enters: If Vol(S) is large, then conv(f(S)) has 
large (k-1)-dimensional volume. It turns out that the projection of a 
convex set in R2 with large (k-1 }-dimensional volume on a random 
line is unlikely to be short, and so S with large Vol(S) is unlikely to be 
squeezed. Thus, by estimating the number of squeezed k-tuples in two 
ways, one gets an inequality bounding b from above in terms of ld(G) . 

Vempala [Vem98] applied volume-respecting embeddings in an
other algorithmic problem, this time concerning arrangement of graph 
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vertices in the plane. Moreover, he also gave alternative proof of some 
of Feige's lemmas. Rao in the already mentioned paper [Rao99] also 
obtained improved volume-respecting embeddings for planar metrics. 
Bartal 's trees. As we have seen, in Bourgain's method, for a given 
metric p one constructs a convex combination 2: o:ivi > b p, where vi 

are line pseudometrics dominated by p. An interesting "dual" result 
was found by Barta} [Bar96] , following earlier work in this direction by 
Alon, Karp, Peleg, and West [AKPW95] . He approximated a given p 
by a convex combination Ef 1 O:iTi ,  where this time the inequalities go 
in the opposite direction: Ti > p and 2:::: aiTi < Dp, with D = O(log2 n) 
( later he improved this to O(log n log log n) in [Bar98] ) .  The Ti are not 
line metrics (and in general they cannot be), but they are tree metrics, 
and even of a special form, the so-called hierarchically well-separated 
trees. This means that Ti is given as the shortest-path metric of a 
rooted tree with weighted edges such that the distances from each 
vertex to all of its sons are the same, and if v is a son of u, and w a 
son of v, then ri (u, v) > K · ri (v,  w) , where K > 1 is a parameter that 
can be set at will (and the constant in the bound on D depends on 
it) . 

This result has been used in approximation algorithms for problems 
involving metric spaces, according to the following scheme: Choose 
i E { 1 ,  2 ,  . . .  , N} at random, with each i having probability o:i,  solve 
the problem in question for the tree metric Ti , and show that the 
expected value of the solution is not very far from the optimal solution 
for the original metric p. 

Since tree metrics embed isometrically into f1 , Bartal's result also 
implies O(log n log log n )-embeddability of all n-point metric spaces 
into f1 , which is just a little weaker than Bourgain's approach (and it 
also implies that O(log n) is a lower bound in Bartal's setting) . For a 
simpler proof of a weaker version Bartal's result see Indyk [IndOl] . 

Exercises 

1 .  (Embedding into fp) Prove that under the assumptions of Lemma 15.7.3, 
the metric space (V, p) can be D-embedded into e:: , 1 < p < oo, with 
distortion at most D. (You Inay want to start with the rather easy cases 
p = 1 and p = oo, and use Holder's inequality for an arbitrary p. ) 0 

2. (Dimension reduction for the embedding) 
(a) Let E1 , . . .  , Em be independent events, each of them having proba
bility at least 1

1
2 • Prove that the probability of no more than � of the 

Ei occurring is at n1ost e-cm , for a sufficiently sntall positive constant c. 
Use suitable Chernoff-type estimates or direct estimates of binomial co
efficients. 0 
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(b) Modify the proof of Theorem 15 .7 .1  as follows: For each j 
1 ,  2 ,  . . .  , q , pick sets Aij independently at random, i = 1 ,  2, . . .  , m, 

where the points are included in Aij with probability 2-j and where 
rn = C log n for a sufficiently large constant C. Using (a) and Lenl
mas 15. 7.2 and 15. 7.3, prove that with a positive probability, the embed
ding f: V ---+ f�

m given by f(v)ij = p(v, Aii ) has distortion O(log n) . 0 
3. Let a 1 ,  a2 , . . .  , an , b1 , b2 ,  . . .  , bn , a1 , a2 , . . .  , an be positive real numbers. 

Show that 

@] 
4. Let Pn be the metric space { 0, 1 ,  . . . , n} with the metric inherited from 

R (or a path of length n with the graph metric) . Prove the following 
Ramsey-type result: For every D > 1 and every c > 0 there exists an 
n = n (D, c) such that whenever f: Pn ---+ (Z, a) is a D-embedding of Pn 
into some metric space, then there are a < b < c, b = ate , such that f 
restricted to the subspace {a, b, c} of Pn is a ( !+c)-embedding. That is, 
if a sufficiently long path is D-embedded, then it contains a scaled copy 
of a path of length 2 embedded with distortion close to 1 .  m 
Can you extend the proof so that it provides a scaled copy of a path of 
length k? 

5. (Lower bound for embedding trees into €2 ) 
(a) Show that for every E > 0 there exists 6 > 0 with the following 
property. Let xo ,  x1 ,  x2, x� E €2 be points such that l lxo - X t i l , l lx1 -

x2 l l , l lx1 - x� I I E [1 ,  1 + 8] and l lxo - x2 l l , l lxo - x� I I  E [2, 2 + 8] (so all the 
distances are almost like the graph distances in the following tree, except 
possibly for the one marked by a dotted line) . 

Then l lx2 - x� I I  < c;  that is, the remaining distance must be very short. 
0 
(b) Let Tk,rn denote the complete k-ary tree of height m; the following 
picture shows T3 ,2 : 

Show that for every r and m there exists k such that whenever the leaves 
of Tk,m are colored by r colors, there is a subtree of Tk,m isomorphic to 
T2 ,m with all leaves having the same color. � 
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(c) Use (a) , (b) , and Exercise 4 to prove that for any D > 1 there exist 
m and k such that the tree Tk �m considered as a metric space with the 
shortest-path metric cannot be D-embedded into f2 • CTI 

6. (Another lower bound for embedding trees into £2 ) 
(a) Let x0 , x1 ,  . . •  , xn be arbitrary points in a Euclidean space (we think 
of them as images of the vertices of a path of length n under some em
bedding) .  Let r = { (a, a + 2k , a + 2k+ 1 ) :  a =  0, 1 , 2 ,  . . .  , a + 2k+l < n, k = 
0, 1 ,  2 . . .  } .  Prove that 

"""" J lxa - 2xb + Xcl l 2 � II J J 2 · � ( ) 2 
< � Xa - Xa+l , c - a  (a,b,c)Er a=O 

this shows that an average triple (xa , Xb , Xc) is "straight" (and provides 
an alternative solution to Exercise 4 for Z = £2 ) .  � 
(b) Prove that the complete binary tree T2,1n requires 0( Jlog m ) dis
tortion for embedding into f2 . Consider a nonexpanding embedding 
f: V(T2,m) --+ f2 and sum the inequalities as in (a) over all images of 
the root-to-leaf paths. [!] 

7. (Bourgain's embedding of complete binary trees into f2) Let Bm = T2,m 
be the complete binary tree of height m (notation as in Exercise 5) .  
We identify the vertices of Bm with words of length at most ·m over 
the alphabet {0, 1 } :  The root of Bm is the empty word, and the sons 
of a vertex w are the vertices wO and w1 .  We define the en1bedding 
f: V(Bm) --+ f�V(Bnt) l - l , where the coordinates in the range of f are 
indexed by the vertices of Bm distinct from the root, i.e., by nonempty 
words. For a word w E  V(Brn) of length a, let f(w)u = Ja-b+1 if u is 
a nonempty initial segment of w of length b, and f ( w )u  = 0 otherwise. 
Prove that this embedding has distortion 0( vflog m ) . 0 

8. Prove that any finite tree metric can be isotnetrically embedded into f\ .  
� 

9. (Low-dimensional embedding of trees) 
(a) Let T be a tree (in the graph-theoretic sense) on n > 3 vertices. Prove 
that there exist subtrees T1 and T2 of T that share a single vertex and 
no edge and together cover T, such that nlin( IV(Tt ) J ,  IV(T2 ) 1 )  < l+�n. 
lil 
(b) Using (a) , prove that every tree metric space with n points can be 
isometrically embedded into f� with d = O(log n) . 0 
This result is from [LLR95] . 



What Was It About? An 

Informal Summary 

Chapter 1 
• Linear and affine notions (dependence, hull, subspace, mapping) ; hyper

plane, k-flat. 
• General position: Degenerate configurations have measure zero in the 

space of all configurations, provided that degeneracy can be described by 
countably many polynomial equations. 

• Convex set, hull, combination. 
• Separation theorem: Disjoint convex sets can be separated by a hyper

plane; strictly so if one of them is con1pact and the other closed. 
• Theorems involving the dimension: Helly (if F is a finite family of convex 

sets with empty intersection, then there is a subfamily of at mo�t d+ 1 sets 
with empty intersection) , Radon ( d+ 2 points can be partitioned into two 
subsets with intersecting convex hulls), Caratheodory (if x E conv( X),  
then x E conv(Y) for some at most (d+l)-point Y C X).  

• Centerpoint of X: Every half-space containing it contains at least 
d!l 

of X. It always exists by Helly. Ham-sandwich: Any d mass distributions 
in Rd can be simultaneously bisected by a hyperplane. 

Chapter 2 
• rvlinkowski's theorem: A 0-symmetric convex body of volume larger than 

2d contains a nonzero integer point . 
• General lattice: a discrete subgroup of (R d, +) . It can be written as the 

set of all integer linear combinations of at most d linearly independent 
vectors (basis) .  Determinant = volume of the parallelotope spanned by 
a basis. 

• :tviinkowski for general lattices: Map the lattice onto zd by a linear map-
. ping. 
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Chapter 3 
• Erdos-Szekeres theorem: Every sufficiently large set in the plane in gen

eral position contains k points in convex position. How large? Exponential 
in k. 

• What about k-holes (vertex sets of empty convex k-gons}? For k = 5 
yes (in sufficiently large sets) , for k > 7 no (Horton sets) ,  k = 6 is a 
challenging open problem. 

Chapter 4 
• Szemeredi-Trotter theorem: m distinct points and n distinct lines in the 

plane have at most O(m213n213 + m + n) incidences. 
• This is tight in the worst case. Example for m = n: Use the k x 4k2 grid 

and lines y = ax +  b with a =  0, 1 ,  . . .  , 2k-1 and b = 0, 1 ,  . . .  , 2k2- l . 
• Crossing number theorem: A simple graph with n vertices and m > 4n 

edges needs 0.( m3 /n2) crossings. Proof: At least m-3n crossings, since 
planar graphs have fewer than 3n edges, then random sampling. 

• Forbidden bipartite subgraphs: A graph on n vertices without Kr,s has 
O(n2-l/r ) edges. 

• Cutting lemma: Given n lines and r, the plane can be subdivided into 
O(r2) generalized triangles such that the interior of each triangle is in
tersected by at most � lines. Proof of a weaker version: Triangulate the 
arrangement of a random sample and show that triangles intersected by 
many lines won't survive. Application: geometric divide-and-conquer. 

• For unit distances and distinct distances in the plane, bounds can be 
proved, but a final answer seems to be far away. 

Chapter 5 
• Geometric duality: Sends a point a to the hyperplane (a, x) = 1 and vice 

versa; preserves incidences and sidedness. 
• Convex polytope: the convex hull of a finite set and also the intersection 

of finitely many half-spaces. 
• Face, vertex, edge, facet, ridge. A polytope is the convex hull of it� ver

tices. A face of a face is a face. Face lattice. Duality turns it upside down. 
Simplex. Simple and simplicial polytopes. 

• The convex hull of n points in Rd can have as many as O(nld/2J )  facets; 
cyclic polytopes. 

• This is as bad as it can get: Given the nu1nber of vertices, cyclic polytopes 
maximize the number of faces in each dimension (upper bound theorem) .  

• Gale transform: An n-point sequence in Rd (affinely spanning Rd) is 
mapped to a sequence of n vectors in Rn-d-l . Properties: a simple linear 
algebra. Faces of the convex hull go to subsets whose complement contains 
0 in the convex hull. 
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• 3-dimensional polytopes are nice: Their graphs correspond to vertex 3-
connected planar graphs (Steinitz theorem) ,  and they can be realized 
with rational coordinates. From dimension 4 on, bad things can happen 
(irrational or doubly exponential coordinates may be required, recogni
tion is difficult) .  

• Voronoi diagram. It is the projection of a convex polyhedron in dimension 
one higher (lifting using the paraboloid) .  Delaunay triangulation (defined 
using empty balls; dual to the Voronoi diagram) .  

Chapter 6 
• Arrangement of hyperplanes (faces, vertices, edges, facets, cells) . For d 

fixed, there are 0( nd) faces. 
• Clarkson's theorem on levels: At most O(n ld/2J k fd/21 ) vertices arc at 

level at most k. Proof: Express the expected nuntber of level-0 vertices 
of a random sample in two ways! 

• Zone theorem: The zone of a hyperplane has 0 ( n d-l ) vertices. Proof: 
Delete a random hyperplane, and look at how many zone faces are sliced 
into two by adding it back. 

• Proof of the cutting lemma by a finer sampling argument: Vertically 
decompose the arrangement of a sample taken with probability p, show 
that the number of trapezoids intersected by at least tnp lines decreases 
exponentially with t, take �-cuttings within the trapezoids. 

• Canonical triangulation, cutting lemma in R d ( 0( rd) simplices) .  
• Milnor-Thorn theorern: The arrangentent of the zero sets of n polynonti

als of degree at most D in d real variables has at most O(Dn/d)d faces. 
• Most arrangements of pseudo lines are nonstretchable (by Milnor-Thorn) . 

Similarly for many other combinatorial descriptions of geometric config
urations; usually most of them cannot be realized. 

Chapter 7 
• Davenport-Schinzel sequences of order s (no abab . . .  with s+ 2 letters) ; 

maximum length As ( n) . Correspond to lower envelopes of curves: The 
curves are graphs of functions defined everywhere, every two intersecting 
at most s times. Lower envelopes of segments yield DS sequences of or
der 3. 

• .-\3 = 8(na(n) } ;  .Xs (n) is almost linear for every fixed s .  
• The lower envelope of n algebraic surface patches in R d ,  as well as a 

single cell in their arrangement, have complexity O(nd-l+e) .  Charging 
schemes and more random sampling. 
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Chapter 8 
• Fractional Helly theorem: If a family of n convex sets has a (d� 1) inter

secting ( d+ 1 )-tuples, then there is a point common to at least d� 1 n of 
the sets. 

• Colored Caratheodory theorem: If each of d+ 1 sets contains 0 in the 
convex hull, then we can pick one point from each set so that the convex 
hull of the picked points contains 0. 

• Tverberg's theorem: (d+l ) (r-1)+1  points can be partitioned into r sub
sets with intersecting convex hulls (the number is the smallest conceivable 
one: r-1 simplices plus one extra point) .  

• Colored Tverberg theorem: Given points partitioned into d+1 color 
classes by t points each, we can choose r disjoint rainbow subsets with 
intersecting convex hulls, t = t (  d, r) . Only topological proofs are known. 

Chapter 9 
• The dimension is considered fixed in this chapter. First selection lemma: 

Given n points, there exists a point contained in a fixed fraction of all 
simplices with vertices in the given points. 

• Second selection lemma: If a (d�1) of the simplices are marked, we can 
find a point in many of the marked simplices (at least 0( a8d (d�l) ) ) .  
Needs colored Tverberg and Erdos-Simonovits. 

• Order type. Same-type lemma: Given n points in general position and k 
fixed, one can find k disjoint subsets of size 0( n) , all of whose transversals 
have the same order type. 

• A hypergraph regularity lemma: For an c > 0 and a k-partite hypergraph 
of density bounded below by a constant {3 > 0 and with color classes 
X1 , . . .  , Xn of size n, we can choose subsets Y1 C X1 , . . .  , Yk C Xk , IY1 I = 
. . . = IYk l  > en, c = (k, {3, c) > 0, such that any Zt c Yt , . . .  ' zk c yk 
with IZi l  > c lti l induce some edge. 

• Positive-fraction selection lemma: Given n red, n white, and n blue points 
in the plane, we can choose ;� points of each color so that all red-white
blue triangles have a common point; similarly in Rd. 

Chapter 10 
• Set systems; transversal number r ,  packing number v. Fractional transver

sal and fractional packing; v* = r* by LP duality. 
• Epsilon net, shattered set, VC-dimension. Shatter function lemma: A set 

system on n points with VC-dimension d has at most L�=O (�) sets. 
• Epsilon net theorem: A random sample of C � log ! points in a set system 

of VC-dimension d is an c--net with high probability. In particular, E-nets 
exist of size depending only on d and c. 

• Corollary: T = 0( T* log T* ) for bounded VC-dimension. 
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• Half-spaces in Rd have VC-dimension d+l .  Lifting (Veronese map) and 
the shatter function lemma show that systems of sets in R d definable by 
Boolean combinations of a bounded number of bounded-degree polyno
mial inequalities have bounded VC-dimension. 

• Weak epsilon nets for convex sets: Convex sets have infinite VC-dimen
sion, but given a finite set X and c > 0, we can choose a weak c--net 
of size at most f ( d, c-) , that is, a set (generally not a subset of X) that 
intersects every convex C with IC n XI  > c iX I . 

• Consequently, T is bounded by a function of r* for any finite system of 
convex sets in Rd. 

• Alon-Kleitman (p, q)-theorem: Let :F be a system of convex sets such 
that among every p sets, some q intersect (p > q > d+l) .  Then r(:F) is 
bounded by a function of d, p, q. Proof: First bound v* using fractional 
Helly; then T is bounded in terms of r* = v* as above. 

• A similar {p, q)-theorem for hyperplane transversals of convex sets (even 
though no Helly theoremf ) .  

Chapter 11 
• k-sets, k-facets (only for sets in general position! ) ,  halving facets. Dual: 

cells of level k , vertices of level k . The k-set problem is still unsolved. 
Straightforward bounds from Clarkson's theorem on levels. 

• Bounds for halving facets yield bounds for k-facets sensitive to k. 
• A recursive planar construction with a superlinear number of halving 

edges. 
• Lovasz lemma: No line intersects more than O(nd-l ) halving facets. 

Proof: When a moving line crosses the convex hull of d-1 points of X, 
the number of halving facets intersected changes by 1 (halving-facet in
terleaving lemma) . 

• Implies an upper bound of 0( nd-<5(d) )  for halving facets by the second 
selection lemma. 

• In the plane a continuous motion argument proves that the crossing num
ber of the halving-edge graph is O(n2 ) ,  and consequently, it has O(n413) 
edges by the crossing number theorem. This is the best we can do in the 
plane, although O(n1+e) for every fixed c- > 0 is suspected . 

Chapter 12 
• Perfect graph (X = w hereditarily) . weak perfect graph conjecture (now 

theorem) :  A graph is perfect iff its complement is. 
• Proof via the polytope { x E R v :  x > 0, x(K) < 1 for every clique K}. 
• Brunn's slice volume inequality: For a compact convex C C Rn+l , 

voln ( {x E C: x1 = t }  ) 1 /n is a concave function of t (as long as the 
slices do not miss the body). 
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• Brunn-Minkowski inequality: vol(A) 1fn + vol(B) 1fn < vol(A + B) 1fn for 
nonempty compact A,  B C Rn . 

• A partially ordered set with N linear extensions can be sorted by 
O(log N) comparisons. There always exists a comparison that reduces 
the number of linear extensions by a fixed fraction: Compare elements 
whose average heights differ by less than 1 .  

• Order polytope: 0 < x < 1 ,  Xa < Xb whenever a -< b. Linear extensions 
correspond to congruent simplices and good comparison to dividing the 
volume evenly by a hyperplane Xa == Xb · The best ratio is not known 
(conjectured to be � : � ) .  

Chapter 13 
• Volumes and other things in high dimensions behave differently from 

what we know in R 2 and R 3 . For example, the ball inscribed in the unit 
cube has a tiny volume. 

• An 17-net is an inclusion-maximal 17-separated set. It is mainly useful 
because it is ry-dense. In sn- l ,  a simple volume argument yields 17-nets 
of size at most (4/1J)n . 

• An N-vertex convex polytope inscribed in the unit ball Bn occupies at 
most O(ln(� +1)/n)n/2 of the volume of nn . Thus, with polynomially 
many vertices, the error of deterministic volume approximation is expo
nential in the worst case. 

• Polytopes with such volume can be constructed: For N = 2n use the 
crosspolytope, for N = 4n a 1-net in the dual sn-1 , and interpolate 
using a product. 

• Ellipsoid: an affine image of Bn. John's lemma: Every n-dimensional 
convex body has inner and outer ellipsoids with ratio at most n, and 
a symmetric convex body admits the better ratio fo. The maximum
volume inscribed ellipsoid (which is unique) will do as the inner ellipsoid. 

Chapter 14 
• Measure concentration on sn-1 : For any set A occupying half of the 

sphere, almost all of sn-t is at most O(n-112) away from A. Quantita-
tively, 1 - P [At] < 2e-t2n/2 . 

• Similar concentration phenomena in many other high-dimensional spaces: 
Gaussian measure on Rn , cube {0, l }n ,  permutations, etc. 

• Many concentration inequalities can be proved via isoperimetric inequal
ities. Isoperimetric inequality: Among all sets of given volume, the ball 
has the smallest volume of a t-neighborhood. 

• Levy's lemma: A !-Lipschitz function f on sn-1 is within O(n-1 12 ) of 
its median on most of sn- 1 • 

• Consequently (using ry-nets) , there is a high-dimensional subspace on 
which f is almost constant (use a random subspace) .  
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• Norrned spaces, norm induced by a symmetric convex body. 
• For any n-din1ensional symrnetric convex polytope, log(fo) log(/ n- 1 ) = 

n ( n) ( rnany vertices or many facets) .  
• Dvoretsky's thcoren1: For every k and c: > 0 there exists n (n = e0(k/c.2) 

�uffices) such that any n-dirnensional convex body has a k-dinlension
al ( 1 +c: )-spherical section. In other words, any high-diinensional normed 
space has an alrnost Euclidean subspace. 

Chapter 15 
• 1v1ctric space; the distortion of a mapping between two rnetric �pace�, 

D-e1n bedding. Spaces £� and fp. 
• Flattening lernma: Any n-point Euclidean metric space can be ( l+c:)

ernbedded into £� , k = O(c:-2 logn) (project on a random k-dimensional 
subspace) . 

• Lower bound for D-ernbedding into a d-din1ensional normed space: count
ing; take all subgraphs of a graph without short cycles and with n1any 
edgeH. 

• The rn-dirnensional Hanuning cube needs JTii distortion for embedding 
into £2 (short diagonals and induction) .  

• Edge expansion (conductance) ,  second eigenvalue of the Laplacian ma
trix. Constant-degree expanders need �1(1og n) distortion for embedding 
into £2 (tight ) .  Method: Compare sums of squared distances over the 
edges and over all pairs, in the graph and in the target space. 

• D-ernbeddability into £2 is polynomial-time decidable by sernidcfinite . progran1nung. 
• All n-point spaces etnbed isotnetrically into f� . For embeddings with 

sn1aller dimension, use distances to randon1 subsets of suitable density 
as coordinates. A sin1ilar Inethod yields O(log n )-ernbedding into f2 (or 
any other fp ) .  

• Exan1ple of algorithmic application: approxin1ating the sparsest cut. Ein
bed the graph metric into f 1 with low distortion; this yields a cut pseu
dometric defining a sparse cut. 





Hints to Selected Exercises 

1.2.7(a) . T·he existence of an x > 0 with Ax = b means that b lies in the 
convex cone generated by the columns of A. If b is not in the cone, then it 
can be separated from it as in Exercise 6(b ) . 
1.2.7(b) . Apply (a) with the dx (n+d) matrix (A I Id) ,  where Id is the iden
tity matrix. 
1.3.5(c). V,--2d�/-:--(d-+�1) .  
1.3.8(b) . By Helly's theorem, K = nxEX conv(V(x) )  =/= 0. Prove that K is 
the kernel. 
1.3.10(b) . Assign the set Hx = { (a, b) E Rd x R: (a, x) < b} to each x E X  
and the set Gy = { (a, b) E Rd x R: (a, x) > b} to each y E Y. Use Helly's 
theorem. 
1.4. 1 (a) . Express � as U� 1 Ci , where C1 C C2 C · · · are compact. Then 
J.L( �) = E� 1 tt( ci+l \ Ci) by the (1-additivity of J.L· (More generally, every 
Borel probability rneasure on a separable metric space is regular: The measure 
of any set can be approximated with arbitrary precision by the measure of a 
compact set contained in it . ) 
2.1 .4( c) . Let p( x) be a polynomial with integer coefficients having a as a 
root. If deg(p) = d and I a - m/nl < nd+l ,  say, then ndp(m/n) is integral, 
but lndp(m/n) j < 1 for large n. 
2.1 .5(a) . Seek a nonzero vector in Z3 close to the line y = a1x, y = a2x. 
2.2.1 .  Show that elementary row operations on the matrix, which do not 
change the determinant, also preserve the volume. Diagonalize the matrix. 
3.1 .4. Project orthogonally on a suitable plane and apply Erdos-Szekeres. 
3.2.4. It suffices to deal with the case k = 4m. First prove by induction that 
a 2m-point cup contained in a Horton set has at least 2m - 2m points of the 
set above it. 
4.1.2.  Place points on two circles lying in orthogonal planes in R4• 
4.3.3 .. Choose a point set P, one point in each of the m cells. From each top 
edge, cut off a little segment ab and replace it by the segments ap and pb, 
where p E P lies below the edge. Each line is replaced by a polygonal curve. 
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Consider a graph drawing with P as the vertices and the polygonal curves 
defining edges. 
4.3.4( c).  Consider a drawing of G witnessing pair-cr( G) == k. At most 2k 
edges are involved in any crossings, and the remaining ones (the good edges) 
form a planar graph. Redraw the edges with crossings so that they do not 
intersect any of the good edges and, subject to this, have the rninirnurn pos
sible number of crossings. 
4.4.1 (a) . O(n1017 ) == O(nl .43) .  
4.4.1 (b) . Let Ci be the points of C that are the centers of at least 2i and 
at most 2i+I circles. We have ICi I == Qi < nj2i . One incidence of a line of the 
form fuv with a c E Ci contributes at most 2i+2 edges. 
4.4.2(b ) .  Look at u, v with J.L( u, v) > 4Vci;, and suppose that at least half 
of the uv edges have their partner edges adjacent to u, say. These partner 
edges connect u to at least 2Vci; distinct neighbor vertices. By (a) , at most 
Vdi/2 of these partner edges may belong to Eh · 
4.4.2(c).  We get lE I == O( IE \ Eh l ) == O(n413d;16 ) ;  at the same time, lEI > 
ndi/2. Thi� gives di == O(n215) and Icirc (n, n) == O(n?15) == O(n1 .4) . 
4. 7 . 1 .  Consider a trapezoid AB B' A'; AB is the bottom side and A' B' the 
top side. Suppose AB is contained in an edge CD of P1 and A' B' is an edge 
of Pi+l (the few other possible cases are discussed similarly) . Let A1 be the 
inter�ection of the level qj + i with the vertical line AA', and sirnilarly for B1 . 
The segments A' B', A' A1 , and B' B1 each have at most q+ 1 intersections. 
Observe that if AA1 has some a intersections, then CA also has at least a 

intersections, and similarly for BB1 and BD. At the same tirne CD has at 
most q+l intersections altogether. Therefore, AA1 , AB, and BB1 have no 
more than q+ 1 intersections in total. 
5.1 .9(b ) .  Geometric duality and Helly's theorern. 
5.1 .9(c). The first segrnent s1 is a chord of the unit circle passing near the 
center. Each si+I has one endpoint on the unit circle, and the other endpoint 
almost touches si near the center. 
5.3.2. Ask in this way: Given a normal vector a E Rd of a hyperplane, which 
vertices maximize the linear function x 1---t (a, x)? For example, for the cube, 
if ai > 0, then Xi has to be + 1 ;  if ai < 0, then Xi == -1 ;  and for ai = 0 both 
xi == ± 1  are possible. 
5.3.8. If the rernoved vertices u, v lie in a conunon 2-face f, let h be the plane 
defining /; from each vertex there is an edge going "away from h," except for 
the vertices of a single face g # f "opposite" to f. The graph of the face g 
is connected and can be reached from any other vertex. If u, v do not share 
a 2-face, pass a plane h through them and one more vertex w. The subgraph 
on the vertices below h is connected, and so is the su bgraph on the vertices 
above h ;  they are connected via the vertex w. 

5.4.2. Do not forget to check that (3 is not contained in any hyperplane. 
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5.5.1 (c) . The sirnplest example seems to be the product of an n-vertex 4-di
rnensional cyclic polytope with its dual. 
5.7.11(c) . Assurne n > 2. If x, y are points on the surface of such an inter
section P, coming from the surface of the same ball � ,  show that the shorter 
of the great circle arcs on � connecting x and y lies entirely on the surface of 
P (this is a kind of "convexity" of the facets). Infer that each ball contributes 
at rnost one facet, and use Euler's formula. 
6.1 .5. n! · Cn, where Cn = n�l (�,�) is the nth Catalan number. 
6.1.6( a) . One possibility is a perturbation argument. Another one is a proof 
by induction, adding one line at a time. 
6.1.  7(b ) .  Warning: The (�) lines determined by n points in general position 
are not in general position! 
6.2.2 (b) . Assurning that no si is vertical, write si = { ( x, y) E R 2 : ci < x < 
di , y = aix + bi } ·  Whether si and Sj intersect can be determined from the 
signs of the 0( n2) polynomials ai - aj , ci - Cj , di - dj , ci ( ai - aj ) + bi - bj , 
di ( ai - aj ) + bi - bj , i, j = 1, 2, . . .  , n. 
6.2.2(c) . Use the lower bound for the quantity K(n, n) in Chapter 4. 
6.3.4(a) . First derive Xw > IW I - n, and then use it for a random sample 
of the lines. 
6.4.3(a) . Define an incidence graph between lines and the considered m cells 
(incidence = the line contributes an edge to the cell) .  This graphs contains 
no K2,5 , since two cells have at most 4 "common tangents." 
6.4.3. Each of the given n cell� either lie� completely within a single triangle 
Lli ,  or it is in the zone of an edge of some triangle. Use the zone theorem for 
bounding the total number of edges of cells of the latter type. 
6.5.2(a) . E [X2] = L:i,j E [XiXj] · E [XiXi] = p2 for i =/= j and E [Xf ] = p. 
The result is p2n(n - 1)  + pn. 
7.1 .1 .  Construct the curves frorn left to right: Start with n horizontal lines 
on the left and always "bring down" the curve required by the sequence. 
7.1 .4. Warning: The abab subsequence can appear! 
7. 1.8(b ) .  For simplicity assume that all the si and ti are all distinct and 
let E = { s1 , t 1 ,  . . .  , Bn ,  tn } .  Call a vertex v active for an interval I C R if v 
appears on the lower envelope of Lt for so1ne t E I and I n  { si , s1 , ti , tj } =/= 0, 
where e.i , f j are the lines defining v.  Let g( I) be the number of active vertices 
for I and let g(m) = max{g(I) : I I  n El < m}. Split I in the middle of E n  I 
and derive g(m) < O(m) + g( lm/2J ) + g ( fm/21 ) .  
7.3.2(b ) . Zero out the first and last 1 in each row. Go through the Inatrix 
column by column and write down the row indices of 1 's. Deleting contiguous 
repetitions produces a Davenport-Schinzel sequence with no ababa. 
7 .4.1 (b) . Given a sequence w witnessing 1/J; ( m, n) , replace each of the m 
�egments in the decomposition of w by the list of its symbols (and erase 
contiguous repetitions if needed) .  
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8. 1 .2.  Make the sets compact as in the proof of the fractional Helly theorem. 
Consider all d-element collections K containing one set from each Ci but one, 
and let VK, be the lexicographic minimum of the intersection of n !C. Let !Co 
be such that v = VJC0 is the lexicographically largest among all VK, , and let 
io be the index such that Ko contains no set from Cio . Show that for each 
c E cio ' v is the minimum of c n n Ko' and in particular' v E c. 
8.2 .1 .  Regard S U T  as a Gale transform of a point sequence and reformulate 
the problem using that sequence. Or lift S U T into Rd+l suitably. 
9.2.2(b) . For d =  3: Choose k points on the moment curve, say, and replace 
each by a cluster of njk points. Use all tetrahedra having two vertices in one 
cluster and the other two vertices in another cluster. There are about n4 / k2 
such tetrahedra, and no point is contained in more than n4/k4 of them if the 
clusters are small and k is not too large compared to n. 
9 .3.1 (b) . Be careful with degenerate cases; first determine the dimension of 
the affine hull of PI,  . . .  , Pd+l and test whether Pd+2 lies in it. Then you may 
need to use some number of other affinely independent points among the Pi · 
9.3.3(a) . Let Xi , X� E xi be such that (xl , · · · , Xd+l ) and (x� , . . .  , x�+l )  
have different orientations. Let Yi be a point rnoving along the segn1ent xix� 
at constant speed, starting at Xi at time 0 and reaching x� at time 1 .  By 
continuity of the determinant, all the Yi lie in a common hyperplane at some 
moment , and this hyperplane intersects the convex hulls of all the Xi. 
9.3.3(b ) .  Let the hyperplane h intersect all the Ci , and let ai E h n Ci· Use 
Radon's lemma. 
9.3.3(c). Suppose that 0 E conv (UiEJ Ci ) n conv (Uj¢/ CJ ) · Then there are 
points Xi E Ci , i = 1 ,  2, . . . , d+1 ,  such that 0 E conv{xi : i E I} and 0 E 
conv { x j : j ¢ J} .  Hence the vectors {Xi : i E J} are linearly dependent, as well 
as those of {xi :  j ¢ J} .  Thus, the linear subspace generated by all the Xi has 
dimension at most d-1 .  

9.3.5(a). Partition P into 3 sets and apply the same-type lemma. If Y1 ,  Y2, Y3 
are the resulting sets, then each line misses at least one conv(}i). Let P' be 
the Yi whose convex hull is missed by the largest number of lines of L. 

9.3.5(b). First apply (a) with P consisting of the left endpoints of the seg
ments of S. Then apply (a) again with the right endpoints of the remaining 
segments and the remaining lines. Finally, discard either the lines intersected 
by all segments or those intersected by no segment. 
9.3.5( c) . Use (b) twice. 
9.4.4. Consider the complete bipartite graphs with classes Vi and Vj , 1 < 
i < j < 4, and color each of their edges randomly either red or blue with 
equal probability. A triple { u, v, w} with u E Vi,  v E ltj , w E Vk , i < j < k, 
is present if and only if the edges { u, v} and { u, w} have distinct colors. 
10.1 .3 .  Choose the appropriate number of points independently at random 
according to the distribution given by an optimal fractional transversal. 
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10.1.4(a) . Let mk be the number of yet uncovered sets after the last step 
i such that Xi covered more than k previously uncovered sets (md = IFI , 
mo == 0) . Derive t < L::%=1 

mk--;k- I  and note that m,k < vk (F) . 

10.1 .6(b ) .  By the Farkas lemma, it suffices to check the following: For all 
u E Rm, v E Rn ,  and z E R such that u > 0, v > 0, z > 0, uTA < zc, and 
Av > zb, we have uTb < cT v. For z =I= 0 this is (a) , and for z = 0 choose 
xo E P and Yo E D and use uTb < uT Axo < 0 and cT v > y'{; Av > 0. 
10.2.2. All subsets of size at most d. 
10.3.1 .  7. 

10.3.3. Such a p would have to be 0 on the boundary, but if a polynomial is 
0 on a segment , then it is 0 on the whole line containing that segment . 
10.3.4(b) .  Choose a �-net S C L for the set system (L, T) and triangulate 
the arrangement of S. No dangerous triangle appears in this triangulation. 
10.3.6(c) . The shattering graph SGd considered in Exercise 5 contains a 
subdivision of Kd where each edge is subdivided once. Some care is needed, 
since some vertices might be both shattering and shattered in G. 

10.4. 1 (b ) .  This method gives size 0 ( c2d- t ) .  
10.4.2(b ) .  (a) yields /(c) < (;) + f/(fc/3) ; set f = 3/ ...fi. The exponent of 
log � is log2 3. 
10.4.3. We may assume that c is sufficiently small. Let C be convex with 
IC n X I  > En. Then C n X contains points a, b, c such that the shortest of the 
3 arcs determined by them, call it a, is at least 0( c) .  Show that the triangle 
abc contains a point of Ni , where i is the smallest with c ( 1 .01 ) i /10 > a. 

10.5.2. If x is the last among the lexicographic minima of d-wise intersections 
of :F, the family { F E :F: x � F} satisfies the (p-d, q-d+ 1 )-condition. 
10.5.3(b). By ham-sandwich, choose lines f, f' with I Ri n XI < k+1 ,  where 
R 1 , . . .  , R4 are the "quadrants" determined by I! and I!' . The point I! n £' and 
centerpoints of Ri n X form a transversal. 
10.6.1 (a) . No need to invoke the Alon-Kleitman machinery here. 
10 .. 6.1(b) .  Use Ramsey's theorem. 
10.6.2( a) . Count the incidences of endpoints with intervals (it can be as
sumed that all the intervals have distinct endpoints) . To get a better (3, apply 
Thran's theorem. 
10.6.3. For F C /C� finite, let g = UsEF{81 ,  82 , . . .  , Sk } , where 8 = 81 U 
· · · u Sk with the 8i convex. If F has many intersecting (d+1)-tuples, then Q 
has many intersecting (d+l)-tuples and so fractional Helly for F, with worse 
parameters, follows from that for Q. 
10.6.4. Let C = f(d+l ,  d, k), where f (p , d, k) is as in Exercise 3, and h = 

( d+ 1 )C. Let F' be the family of all intersections of C-tuples of sets of :F. 
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This F' has the (d+l ,  d+l )-property, and so it has a C-point transversal T. 
Show that some point of T is contained in all members of F. 

11 .1 .4. In R3 : Place the planar construction on � points into the xz plane 
so that all of its points lie very near 0 and all the halving edges are almost 
parallel to the x-axis. A set A of � points is placed on the line x = 0, y = 1 ,  
and the re1naining � points are the reflected set -A. 

11 .1 .5 (a) . Use the lower bound for K(n, n) in Chapter 4. 

11 . 1 .6(a) . All the 12 lenses corresponding to such a K3,4 are contained in 
L U U, and so L intersects U at least 24 tin1es. This is in1possible, since U 
has at most 5 edges and L at most 7 edges (using ,\2 (n) < 2n-1 ) .  
11 . 1 .6(  d).  To bound vk (£) , fix a k-packing M C C,  take a randon1 sample 
R c r, and consider the family A of all lenses e in the arrangement of 
R "inherited" from M and such that none of the extrernal edges of f are 
contained in any other lens in the arrangement of R. Extremal edges of a lens 
are those contained in the lens and adjacent to one of its two end-vertices. 

11 .3.2.  By Exercise l (a) , a vertical line intersects the interior of at most 
I:kEK (k+1) k-edges with k E K. Argue as in the proof of the planar case of 
Theorem 1 1 .3 .3 .  

11 .3.4(b ) .  These halving triangles are not influenced by projecting the other 
points of X centrally from Pk+ l on a sphere around Pk+ l ·  

11 .3.5(a) .  Let V be the vertex set of a j-facet F entered by f. Among the 
j points below the hyperplane defined by V we can choose any k points and 
add them to V, obtaining an S with F being the facet of conv(S) through 
which I! leaves conv(S) .  

11.3.5(b ) .  See the end of Section 5.5 for a similar trick. 

11 .3.5( c) . For h1 = hn-<l-j ,  let X' be the mirror reflection of X by a 
horizontal hyperplane. 

11 .3.5( d).  Move x far up. 

11 .3.6(a) . Corollary 5.6.3 (iii ) .  

11 .3.6(b). Use (a) and the formulas expressing the fk using the hj and the 
sk using the hj , respectively. 

11 .3.8(a) . Draw a tiny sphere a around a vertex incident to at least 3n 
triangles. The intersections of the triangles with a define a graph drawn 
on a .  With n vertices and at least 3n edges, the graph is non planar. 

12 .1 .5 .  Let v be a vertex of P. First check that there is an a E zn such 
that v is the unique vertex n1inimizing (a, v) . Moreover, we may assume that 
a' = a +  ( 1 ,  0, . . .  , 0) ,  too, has this property. Then v1 = (a' , v) - (a, v) E Z. 
12 .1 .6(b). We need that each integral b E  ARn is the image of an integer 
point. Let A be a regular k x k submatrix of A with k = rank(A) ; we may 
assume that A is contained in the first k rows and in the first k columns of 
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A. Let b consist of the first k components of b; then x == A -1 b is integral by 
(a) . Append n - k zero components to x. 
12. 1 .6(c) . A vertex is determined by some n of the inequalities holding with 
equality; use (b) .  

12.1 .  7(b ) .  It suffices to consider n = 2d + 1 .  For contradiction, suppose that 
zd n n� 1 !i = 0. For i = 1 ,  2, . . .  , n, let 1'� be T'i translated as far out,vard� 

as possible so that zd n int ( (nj=1 'Yj ) n (nj i+l 'YJ )) = 0. Show that each 

l'� contributes a facet of P' = n� 1 l'� and there is a Zi E zd in the relative 
interior of this facet. Applying (a) to { z1 ,  . . .  , Zn } yields a lattice point interior 
to P' . 

12.2 .5(b) . Suppose vol(A), vol(B) > 0, fix t with vol(A)/(1-t)n == vol(B)jtn , 
and set C == 1 1 t A and D == f B. 

12.2.7(a) . Consider the horizontal slice Fy = {x E R: f (x) == y} , and 

Gy, Hy defined analogously. We have J f == J0
1 

vol(�11 )  dy. The assumption 
implies (1 -t)Fy + tGy C Hy . Apply the one-dimensional Brunn-Minkowski 
to ( 1-t)Fy and tGy and integrate over y. 
12.2.7(b) . Let f(u) be the (n-1)-dimensional volume of the slice of C by 
the hyperplane x1 == u; sirnilarly for g(  u) and D and for h( u) and C +D. 
13. 1 .1 .  2n /nL 

13.1 .2(b ) . In = n Vn J0(X) e-r2 rn-l dr. 
13.2.3. Fix the coordinate system so that c = 0 and F lies in the coordinate 
hyperplane h = { Xn == 0} .  Since 0 is not the center of gravity, for some i 
we have I == JF Xi dx # 0. Without loss of generality, i == 1 and I > 0. Let 
h1 be h slightly rotated around the flat { x1 == Xn == 0} ;  i .e. , h1 == { x E 
Rn : {a, x) == 0} with a == (c: ,  0, . . .  , 0, 1 ) .  Let S1 be the simplex determined 
by the sarne facet hyperplanes as S except that h is replaced by h1 . The 
difference vol(S) - vol(S1 )  is proportional to cl + O(c2) as c: -+ 0. Let h' 
be a parallel translation of h1 that touches Bn (near 0) ,  and let S' be the 
corresponding simplex. Calculation shows that I vol(S1 ) - vol(S' ) I  == O(c:2) . 
13.2.5. The Thales theorem implies that if x ¢ B( � v ,  � I I v i i ) , then v lies in 
the open half-space 'Yx containing 0 and bounded by the hyperplane passing 
through x and perpendicular to Ox. 

13.3 .1(b ) .  Geometric duality and Theorem 13.2 . 1 .  

13.4.4(b ) .  Helly's theorem for suitable sets in Rn+l . 
13.4.5( a) . Since the ratio of areas is invariant under affine transforms, we 
may assume that P contains B(O, 1 )  and is contained in B (O, 2) . Infer that 
99% of the edges of P have length 0(;)  and 99% of the angles are 1r - 0(�) .  
Then there are two consecutive short edges with angle close to 1r. 

14. 1 .4. Choose a radius r such that the caps cut off from r Bn by the 
considered �lab� together cover at most half of the surface of r Bn . Then 
vol(K) > vol(K n rBn ) > �rn . 
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14.6 .1 .  Suppose that maxi I vi I = lv1 1 . For any fixed choice of a2 , . . .  , an , use � ( lx + Y l + lx - y l ) > IY I  with y :::;:: v1 and x :::;:: 2:� 2 aivi · 

14.6.2. We need to bound n-112E [ I IZ I I t / I IZ I I J from below for Z as in 
Lemma 14.6.4. Each IZi l is at least a small constant {3 > 0 with proba
bility at least � ; derive that I I Z I I 1  = O(n) with probability at least � · 
15.2.3(b).  Let A1 , . . .  , An be the eigenvalues of A. The rank is the number 
of nonzero Ai · Estimate 2::: A� in two ways: First use the trace of AT A, and 
then the trace of A and Cauchy-Schwarz. 

15.2.3{d). If v1 , . . .  , vn E Rk , then the matrix A with aij = (vi , vj ) has rank 
at most k. 

15.3.4(a) . Let n == 2m+1 and let each n-tuple in V have the form 
(0, e1 , e2 , . . . , em, em+l + 10cwl , em+l + 10cw2 , . . .  , e2rn + 10cwm) , where each 
Wi is an 0/1 vector with l 40�e2 J ones among the first m positions and zeros 
elsewhere. 

15.4.2. Let Gi == (Vi, Ei) ,  where Vo C V1 C · · · C Vm. For each e E Ei-1 ,  we 
have a pair { Ue , Ve } of new vertices in Gi in the square that replaces e; let 
Fi = { { Ue , Ve } : e E Ei- 1 } . With notation as in the proof of Theorem 15.4. 1 ,  
put E == Em and F == Eo U U:n 1 Fi and show that RE,F (P) == Jm+1 ,  while 
RE,F (a) < 1 .  For the latter, sum up the inequalities a2 (Fi )  + a2 (Ei- I )  < 
a2 (Ei ) ,  i = 1 ,  2 ,  . . .  , m, obtained from the short diagonals lemma. 

15.4.3. Color the pairs of points; the color of { x, y} is the remainder of 
flog1+e/2 p(x, y)l modulo r, where r is a sufficiently large integer. Show by 
induction that a homogeneous set can be embedded satisfactorily. 

15.5.2(b).  By (a) and Caratheodory's theorem, every metric in .C�fin) is a 
convex combination of at most N +1 line metrics. To get rid of the extra +1 ,  
use the fact that .C�fin) is a convex cone. 

15.5.8( c) . The expectation of � ( 1 - XuXv) is the probability that the hyper
plane through 0 perpendicular to r separates Yu and Yv , and this equals � ,  
where 19 E [0, 1r) is the angle of Yu and Yv · On the other hand, the contribution 
of the edge { u, v} to Mrelax is � ( 1 - (Yu, Yv) ) == ( 1 - cos 'l9)/2. The constant 
0.878 . . .  is the minimum of � · 1 

19 
19 ,  0 < {) < 1r. 71" -cos - -

15.7.5(c).  Suppose that there is a D-embedding f of Tk,m ·  For every leaf £, 
consider f restricted to the path p(e) from the root to l, fix a triple {at , be, ce} 
of vertices as in Exercise 4 (a scaled copy of P2) ,  and label the corresponding 
leaf by the distances of ae, be , ce from the root. Using (b) , choose a T2,m 
subtree where all leaves have the sarne labels, consider leaves f and l' of this 
subtree such that p(£) and p(£' ) first meet at be == b�_, , and use (a) with 
xo = f(at) , Xt == f(bt) ,  x2 == f(c£ ) ,  x� == f(ce' ) . 

15. 7.6(a) . Sum the parallelogram identities (c-
1
a)2 ( I I  (xa - Xb) - (xb - Xc) l l 2 + 

I I (xa - Xb) + (xb - Xc) 1 12 ) == (c_:a)2 ( l lxa - Xb l l 2 + l l xb - Xc l l2 ) over (a, b, c) E r. 
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Index 

The index starts with notation composed of special symbols, and Greek let
ters are listed next . Terms consisting of more than one word mostly appear 
in several variants, for exa1nple, both "convex set" and "set , convex." An 
entry like "armadillo, 19(8.4. 1 ) ,  22(Ex . 4)" means that the term is located in 
theorem (or definition, etc.) 8.4. 1 on page 19 and in Exercise 4 on page 22. 
For many terms, only the page with the term's definition is shown. Names or 
notation used only within a single proof or remark are usually not indexed 
at all. For iinportant theore1ns, the index also points to the pages where they 
are applied. 

l x J (floor function) , xv 
�X l (ceiling function) , XV 
I X I (cardinality) ,  xv 

l l x l l  (Euclidean norm),  xv 

l l x l l 1 (€1-norm) ,  84 

l l x i iP (fp-norm), 357 

l l x l loo (maximum norm), 83, 357 

l l f i iLip (Lipschitz norm),  356 

l l x l lz  (general norm), 344 

l l x l iK  (norm induced by K) , 344 
G (graph complement) ,  290 
(�) (unordered k-tuples) , xvi 
.Fly (restriction of a set system) , 

238 
8A (boundary) ,  xv 
X* (dual set) ,  80(5 . 1 .3) 
(x, y) (scalar product) ,  xv 
A +  B (Minkowski sum), 297 
r(x) (gamma function) ,  312 
0( · )  (asymptotically at least) ,  xv 
<I?( G) (edge expansion),  373 

<I?d(n) = �� 1 (�) , 127(6. 1 )  
8( · )  (both 0( ·) and f2 ( · ) ) ,  xv 

a (G) (independence number) ,  290 
a(n) (inverse Ackermann), 173 
x( G) (chromatic number) ,  290 
x(G, w) (weighted chromatic 

number) , 292 
c-approximation, 242 
E-net, 237(10.2. 1 ) ,  237(10.2.2) 
- size, 239( 10.2.4) 
- weak, 261 (10.6.3) 
- - for convex sets, 253(10.4 . 1 )  
E-pushing, 102 
ry-dense set, 313 
ry-net, 314 
- application, 323, 340, 343, 365 , 

368 
ry-separated set, 314 
r.p(d) (Euler's function) ,  53 
A8 (n) (maximum length of DS 

sequence) ,  167 
v( :F) (packing number) , 232 
v* (:F) (fractional packing 

number), 233 



460 

vk (F) (simple k-packing number) ,  
236(Ex. 4) 

w(G) (clique number) ,  290 
w ( G,  w) (weighted clique 

number) , 291 
1r_r ( · ) (shatter function) , 239 
'V;(m, n) (m-decomposable 

DB-sequence, length) , 178 
p(Y1 ,  . . .  , Yk ) (hypergraph 

density) ,  223 
a (n) (lower envelope of segments, 

complexity) ,  166 
r( :F) (transversal number) ,  232 
r* (F) (fractional transversal 

number) ,  232 

Ak ( n) ( kth function in the 
Acker1nann hierarchy) ,  173 

A(n) (Ackermann function) , 173 
Ackermann function, 173 
AffDep( a) ,  109 
affine combination, 1 
affine dependence, 2 
affine Gale diagram, 1 12  
affine hull, 1 
affine mapping, 3 
affine subspace, 1 
affinely isomorphic arrangements, 

133 
AfNa l (a) ,  109 
Alexandrov-Fenchel inequality, 

301 
algebraic geometry, 131 
algebraic number, 20(Ex. 4) 
algebraic surface patches 
- lower envelope, 189 
- single cell, 191 (7.7.2) 
algebraic surfaces, arrangement, 

130 
- decomposition problem, 162 
algorithm 
- convex hull, 86, 105 
- for f2-embedding, 378 
- for centerpoint, 16 
- for ham sandwich, 16 

Index 

- for volume approximation, 
315, 321 

- Goemans-Williamson for 
MAXCUT, 384(Ex. 8) 

- greedy, 235, 236(Ex. 4) 
- LLL, 25 
- simplex, 93 
- sparsest cut, approximation, 

391 
almost convex set, 38, 39(Ex. 5) 
almost orthogonal vectors, 

362(Ex. 3) 
t-almost spherical body, 341 
almost spherical projection, 353 
almost spherical section 
- of a convex body, 345( 14.4.5) ,  

348(14.6. 1 )  
- of a crosspolytope, 346, 

353(Ex. 2) 
- of a cube, 343 
- of an ellipsoid, 342(14.4. 1 )  
antichain, 295(Ex. 4) 
approximation 
- by a fraction, 19(2.1 .3) ,  

20(Ex. 4) ,  21 (Ex. 5) 
- of a sparsest cut, 391 
- of edge expansion, 391 
- of volume, 321 
- - hardness, 315 
c:-approximation, 242 
arc, 54 
arithmetic progression 
- generalized, 4 7 
- primes in, 53( 4.2.4) 
- Szemeredi's theorem, 227 
arrangement 
- affine isomorphism, 133 
- central, 129 
- isornorphis1n, 133 
- many cells, 43, 46, 58(Ex. 3 ) ,  

152(Ex. 3) 
- of arbitrary sets, 130 
- of hyperplanes, 126 
- - number of cells, 127(6 . 1 . 1 )  



- - unbounded cells, 129(Ex. 2) 
- of lines, 42 
- of pseudolines, 132, 136 
-· of pseudosegments, 270 
- of segments, 130 
- realization space, 138 
- sin1ple, 127 
- stretchable, 134, 137 
-·- triangulation, 72(Ex. 2) ,  160 
art gallery, 246, 250 
atomic lattice, 89 

Bn (unit ball in Rn) ,  xv 
B(x, r) (r-ball centered at x) ,  xv 
balanced line, 280 
Balinski's theorem, 88 
ball 
- £1 , see crosspolytope 
- random point in, 312 
-- smallest enclosing, 13(Ex. 5) 
- - uniqueness, 328(Ex. 4) 
- volume, 31 1  
Banach spaces, local theory, 329, 

336 
Banach-Mazur distance, 346 
bandwidth, 397 
basis (lattice) ,  21  
- reduced, 25 
Bezdek's conjecture, 44 
hi-Lipschitz mapping, 356 
binomial distribution, 240 
bipartite graph, xvi 
bisection width, 57 
bisector, 121 
Blaschke-Santalo inequality, 320 
body, convex 
·- almost spherical, 341 
- almost spherical section, 

345(14.4.5) ,  348(14.6. 1 )  
- approximation by ellipsoids, 

325(13.4. 1 )  
- lattice points in, 17-28 
- volume approximation, 315, 

321 

Index 461 

Borsuk-Ulam theorem, 
application, 15 ,  205 

bottom-vertex triangulation, 160, 
161 

brick set, 298 
Brunn's inequality, 297(12.2. 1 )  
- application, 306 
Brunn-Minkowski inequality, 

297(12.2.2) 
- application, 331 ,  333 
- dimension-free form, 

301 (Ex. 5) 
Busemann-Petty problem, 313 

Cn (Hamming cube) , 335 
cage representation, 93 
canonical triangulation, 

see bottom-vertex triangulation 
cap, 31  
- spherical (volume) , 333 
Caratheodory's theorem, 6 (1 .2.3) , 

8 
- application, 199, 200, 208, 319 
- colorful, 199(8.2 . 1 )  
- - application, 202 
Cauchy-Schwarz inequality, xvi 
cell 
- complexity 
- - in R2 176 ' 
- - in higher dimensions, 191 ,  

193 
- of an arrangement, 43, 126, 

130 
24-cell, 95(Ex. 4) 
center transversal theorem, 

15(1 .4.4) 
centerpoint, 14(1 .4. 1 ) ,  210 
centerpoint theorem, 14(1 .4.2) , 

205 
central arrangement, 129 
chain, 295(Ex. 4) 
chain polytope, 309 
Chebyshev's inequality, 240 
chirotope, 216 
chromatic number, 290 
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circles 
- cutting lemrna, 72 
- incidences, 45, 63(Ex. 1 ) ,  

63(Ex. 2) ,  69, 70(Ex. 2) , 
73(Ex. 4) 

- - application, 50(Ex. 8) 
- touching (and planar graphs) , 

92 
- unit 
- - incidences, 42, 49(Ex. 1 ) ,  

52( 4 .2 .2) ,  58(Ex. 2) ,  
70(Ex. 1 )  

- - Sylvester-like result, 44 
circumradius, 317(13.2.2) 
- approximation, 322 
Clarkson's theorem on levels, 

141(6 .3 .1)  
clique number, 290 
closed from above (or from 

below), 36 
closest pair, computation, 122 
coatomic lattice, 89 
d-collapsible simplicial complex, 

197 
colored Holly theorem, 198(Ex. 2) 
colored Tverberg theorem, 

203(8.3.3) 
- application, 213 
- for r == 2, 205 
colorful Caratheodory theorem, 

199(8.2. 1 )  
- application, 202 
combination 
- affine, 1 
- convex, 6 
combinatorially equivalent 

polytopes, 89(5.3.4) 
combinatorics, polyhedral, 289 
compact set, xvi 
comparability graph, 294(Ex. 4) ,  

309 
complete graph, xvi 
complex plane, point-line 

incidences, 44 

Index 

complex, simplicial 
- d-Leray, 197 
- d-collapsible, 197 
- d-representable, 197 
- Van Kampen-Flores, 368 
compression, path, 175 
concentration 
- for a Hamming cube, 

335( 14.2.3) 
- for a sphere, 331 ( 14. 1 . 1 )  
- for an expander, 384(Ex. 7) 
- for product spaces, 340 
- Gaussian, 334( 14.2.2) 
- of projection, 359(15.2.2) 
(p, q )-condition, 255 
conductance, see edge expansion 
cone 
- convex, 9 (Ex. 6) ,  201 
- metric, 106, 377 
- of squared Euclidean metrics, 

377 
cone(X), 201 
conjecture 
- 1._� 308 3 3 ' 
- d-step, 93 
- Bezdek's, 44 
- Dirac-1-v1otzkin, 50 
- Fiiredi-Hajnal, 177 
- Griinbaum-Motzkin, 261 
- Hirsch, 93 
- Kalai's, 204 
- perfect graph, strong, 291 
- perfect graph, weak, 291 
- Purdy's, 48 
- Rcay's, 204 
- Ryser's, 235 
- Sierksma's, 205 
- Stanley-Wilf, 177 
connected graph, xvi 
constant, lattice, 23 
continuous motion argument, 284 
continuous upper bound theorem, 

114  
conv(X) (convex hull) ,  5 



convex body 
- almost spherical, 341 
-- almost spherical section, 

345(14.4.5), 348( 14.6. 1 )  
- approximation by ellipsoids, 

325(13.4 . 1 )  
- lattice points in, 17-28 
- volume approximation, 315, 

321 
convex combination, 6 
convex cone, 9(Ex. 6) ,  201 
convex function, xvi 
convex hull, 5 
- algorithm, 86, 105 
- of random points, 99, 324 
convex independent set, 30( 3 . 1 . 1 )  
- in a grid, 34(Ex. 2) 
-- in higher dimension, 33 
- size, 32 
convex polygons, union 

complexity, 194 
convex polyhedron, 83 
convex polytope, 83 
- almost spherical, number of 

facets, 343( 14.4.2) 
- integral, 295(Ex. 5) 
- number of, 139(Ex. 3) 
-- realization, 139 
- symmetric, number of facets, 

347(14.4.2) 
- volume 
- - lower bound, 322 
- - upper bound, 315(13.2. 1 )  
convex polytopes, union 

complexity, 194 
convex position, 30 
convex set, 5 (1 .2 . 1 )  
convex sets 
- in general position, 33 
- intersection patterns, 197 
- transversal, 256(10.5. 1 )  
- upper bound theorem, 198 
- VC-dimension, 238 

Index 

copies, similar (counting) , 47, 
51(Ex. 10) 

cr( G) (crossing number) ,  55 
cr(X) (crossing number of the 

halving-edge graph) ,  283 
criterion, Gale's, 97(5.4.4) 
cross-ratio, 47 

463 

crossing (in a graph drawing), 54 
crossing edges, pairwise, 176 
crossing number, 54 
- and forbidden subgraphs, 57 
- odd, 58 
- pairwise, 58 
crossing number theorem, 

55( 4.3 . 1 )  
- application, 56, 61 ,  70, 283 
- for multigraphs, 60( 4.4.2) 
crosspolytope, 83 
- almost spherical section, 346, 

353(Ex. 2) 
- faces, 88 
- projection, 86(Ex. 2) 
cryptography, 26 
cube, 83 
- almost spherical section, 343 
- faces, 88 
- Hamming, 335 
- - embedding into €2 , 369 
- - measure concentration, 

335 ( 14.2 .3) 
cubes, union complexity, 194 
cup, 30 
curve, moment, 97(5.4 . 1 )  
curves 
- cutting into pseudosegments, 

70, 271 , 272(Ex. 5), 272(Ex. 6) 
- incidences, 46 
- lower envelope, 166, 187(7.6 . 1 )  
- single cell, 176 
cut pseudometric, 383(Ex. 3 ) ,  391 
cut, sparsest ,  approximation, 391 
cutting, 66 
- on the average, 68 
cutting lemma, 66( 4.5.3) , 68 
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- application, 66, 261 
- for circles, 72 
- higher-dimensional, 160(6.5.3) 
- lower bound, 71 
- proof, 71 ,  74, 153, 162, 

251 (Ex. 4) 
cutwidth, 57 
cyclic polytope, 97(5.4.3) 
- universality, 99(Ex. 3) 
cylinders, union complexity, 194 

V (duality) ,  81 
Do (duality) ,  78(5. 1 . 1 )  
D ( il) (defining set) ,  1 5  7 
D-embedding, 356(15. 1 . 1) 
d-intervals, transversal, 262, 

262(Ex. 2 )  
d-step conjecture, 93 
Davenport-Schinzel sequence, 167 
- asymptotics, 174 
- decomposable, 178 
- generalized, 174, 176 
- -.. - realization by curves, 

168(Ex. 1 )  
decomposition problem, 162 
decomposition, vertical, 72(Ex. 3) ,  

156 
deep below, 35 
defining set, 158 
deg(x) (degree in halving-edge 

graph) , 283 
degree, xvi 
Dehn-Sommerville relations, 103 
Delaunay triangulation, 1 17, 120, 

123(Ex. 5) 
Delone, see Delaunay 
dense set, 33 
ry-dense set, 313 
density 
- of a graph, local, 397 
- of a hypergraph, 223 
dependence, affine, 2 
det A, 21  
determinant 
- and affine dependence, 3 

Index 

- and orientation, 216 
- and volume, 26(Ex. 1 )  
- of a lattice, 21 
diagram 
- Gale, 1 1 2  
- power, 121  
- Voronoi, 1 15 
- - abstract, 121  
- - - · complexity, 1 19(5. 7.4) , 

122(Ex. 2 ) ,  123(Ex. 3) , 192 
- - farthest-point, 120 
- - higher-order, 122 
- wiring, 133 
diameter 
- and smallest enclosing ball, 

13(Ex. 5) 
- approximation, 322 
- in f 1 ,  computation, 388(Ex. 1 )  
Dilworth's theorem, 294(Ex. 4) 
dim(:F) (VC-dimension) ,  

238(10.2.3) 
dimension 
- of a polytope, 83 
- Vapnik-Chervonenkis, 

see VC-dimension 
- VC-dimension, 238( 10.2.3) 
Dirac-Motzkin conjecture, 50 
Dirichlet tessellation, see Voronoi 

diagram 
Dirichlet's theorem, 53 
disk, largest empty, computation, 

122 
disks 
- transversal, 231 ,  262(Ex. 1)  
- union complexity, 124(Ex. 10) , 

193 
distance, Banach-Mazur, 346 
distances 
- distinct, 42, 59( 4.4. 1 )  
- - bounds, 45 
- unit, 42 
- - and incidences, 49(Ex. 1 )  
- - for convex position, 45 
- - in R2 , 45 



3 -·-- - in R 45 ' 
- - in R4, 45, 49(Ex. 2) 
... ____ - lower bound, 52( 4.2.2) 
-- - on a 2-sphere, 45 
-- - upper bound, 58(Ex. 2) 
distortion, 356(15. 1 . 1 )  
distribution 
- binomial, 240 
--- normal, 334, 352 
divisible point, 204 
domains of action, 120 
dominated (pseudo )metric, 389 
double-description method, 86 
drawing (of graph) , 54 
- on a grid, 94 
- - rub her-band, 92 

dual polytope, 90 
dual set, 80(5. 1 .3) 
dual set system, 245 
dual shatter function, 242 
duality 
-- of linear programming, 

233(10.1 .2)  
- of planar graphs, 80 
- transform, 78(5 . 1 . 1 ) ,  81(5 .1 .4) 
Dvoretzky's theorem, 348(14.6. 1 ) ,  

352 
Dvoretzky-Rogers lemma, 

349(14.6.2), 352 

E [·] (expectation) , xv 
E(  -< )  (linear extensions) , 303 
e ( -<) = IE(-<) I ,  303 
E( G) (edge �et ) ,  xvi 
e(Y1 ,  • • •  , Yk ) (number of edges on 

the Yi),  223 
edge 
-- k-edge, 266 
- halving, 266 
- of a polytope, 87 
- of an arrangement, 43, 130 
edge expansion, 373 
- approximation, 391 
edges 
- pairwise crossing, 176 

Index 

- parallel, 176 
Ed1nond�' Inatching polytope 

theorem, 294 
efficient comparison theorem, 

303( 12.3. 1 )  

465 

eigenvalue, second, 37 4, 381 
Elekes-R6nyai theorem, 48 
elimination, Fourier-Motzkin, 86 
ellipsoid 
- almost spherical section, 

342(14.4. 1 )  
- definition, 325 
- Lowner-John, 327 
- smallest enclosing 
- - computation, 327 
- - uniqueness, 328(Ex. 3) 
ellipsoid method, 381 
e1nbedding 
- distortion and dimension, 368 
- -- lower bound, 364(15.3.3) 
- into f 1 ,  378, 379, 396 
- into £2 , 399(Ex. 5 ) ,  400(Ex. 6) , 

400(Ex. 7) 
- - algorithm, 378 
- - dimension reduction, 

358(15.2 . 1 ) ,  362(Ex. 3) ,  
369(Ex. 4) 

- - lower bound, 366, 
370( 15.4. 1 )

' 
375( 15 .5. 1 ) '  

380 
- - testability, 376(15.5.2) 
- - upper bound, 388(Ex. 3) ,  

389(15. 7 . 1 )  
- into f(X) 
- - isometric, 385( 15.6. 1 )  
- - upper bound, 386(15.6.2) 
- into fp, 379, 391 , 398(Ex. 2) ,  

398(Ex. 1 )  
- - isometric, 383(Ex. 5) ,  

383(Ex. 2) 
- into arbitrary normed space, 

367 
- isometric, 356 
- of planar-graph metrics, 393 
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- of tree metrics, 392, 
399(Ex. 5) , 400(Ex. 6) , 
400(Ex. 7) , 400(Ex. 9) 

- volume-respecting, 396 
D-embedding, 356(15 . 1 . 1 )  
entropy (graph) ,  309 
envelope, lower 
- of curves, 166, 187(7.6. 1 )  
- of segments, 165 
- - lower bound, 169(7.2. 1 )  
- of simplices, 186 
- of triangles, 183(7 .5 . 1 ) ,  186 
- superimposed projections, 192 
epsilon net theorem, 239(10.2.4) 
- application, 24 7, 251 (Ex. 4) 
- if and only if form, 252 
equivalent polytopes, 

combinatorially, 89(5.3.4) 
equivalent radius, 297 
Erdos-Sachs construction, 

368(Ex. 1 )  
Erdos-Simonovits theorem, 

213(9.2.2) 
Erdos-Szekeres lemma, 295(Ex. 4) 
Erdos-Szekeres theorem, 

30(3. 1 . 3) 
- another proof, 32 
- application, 35 
- generalizations, 33 
- positive-fraction, 220(9.3.3) , 

222(Ex. 4) 
- quantitative bounds, 32 
Euler function, 53 
excess, 154 
Excl (H) (excluded minor class) ,  

393 
excluded minor, and metric, 393 
expander, 373, 381 -382 
- measure concentration, 

384(Ex. 7) 
exposed point, 95(Ex. 9) 
extension 
- linear, 302 
-· of Lipschitz mapping, 361 

Index 

extremal point, 87, 95(Ex. 9), 
95(Ex. 10) 

extreme (in arrangement) ,  
145(Ex. 1 )  

fk (P) (nu1nber of k-faces) ,  96 
!-vector, 96 
- of a representable complex, 

197 
face 
- of a polytope, 86( 5.3. 1 )  
- of an arrangement, 126, 130 
- popular, 151 
face lattice, 88 
facet 
- k-facet, 265 
- halving, 266 
- - interleaving lemma, 

2 77 ( 1 1 .3 . 1 )  
- -· interleaving lemma, 

application, 279, 284, 287 
- of a polytope, 87 
- of an arrangement, 126 
factorization, of polynomial, 26 
Fano plane, 44 
Farkas lemma, 7(1 .2 .5) ,  8, 

9(Ex. 7) 
farthest-point Voronoi diagram, 

120 
fat objects, union complexity, 194 
fat-lattice polytope, 107(Ex. 1)  
finite projective plane, 44, 66 
first selection lemma, 208 ( 9 . 1 . 1) 
- application, 253 
- proofs, 210 
flag, 105, 129(Ex. 6) 
flat, 3 
flattening lemma, 358( 15.2. 1)  
- application, 366 
- lower bound, 362(Ex. 3), 

369(Ex. 4) 
fii pping ( Delaunay triangulation),  

120 
forbidden 
- permutation, 177 



- short cycles, 362 
- subgraph, 64 
- - and crossing number, 57 
- subhypergraph, 213(9.2.2) 
- submatrix, 177 
- subsequence, 17 4 
forest, regular, 18(2.1 .2) 
form, linear, 27(Ex. 4) 
four-square theorem, Lagrange's, 

28(Ex. 1 )  
Fourier-Motzkin elimination, 86 
fraction, approximation by, 

19(2. 1 .3) ,  20(Ex. 4) , 21 (Ex. 5) 
fractional Helly theorem, 

195(8 . 1 . 1) 
- application, 209, 2 1 1 ,  258 
- for line transversals, 

260(10.6.2) 
fractional packing, 233 
fractional transversal, 232 
- bound, 256(10.5.2) 
- for infinite systems, 235 
Freiman's theorem, 47 
Frechet's embedding, 385 
function 
- Ackermann, 173 

. 
- convex, xv1 
-- dual shatter, 242 
-- Euler's, 53 
- Lipschitz, 337 
- -- concentration, 337-341 
-- primitive recursive, 17 4 
- rational, on Cartesian product� 

48 
- shatter, 239 
functional, Laplace, 340 
Fiiredi-Hajnal conjecture, 177 

g(  n) (number of distinct 
distances) , 42 

g-theorem, 104 
g-vector, 104 
Gale diagram, 1 12 
Gale transform, 107 
- application, 210, 282(Ex. 6) 

Index 

Gale's criterion, 97(5.4.4) 
Gallai-type problem, 231 
gallery, art , 246, 250 
Gaussian distribution, 352 
Gaussian integers, 52 
Gaussian measure, 334 
- concentration, 334 (14.2.2) 
general position, 3 
- of convex sets, 33 
generalized arithmetic 

progression, 4 7 

467 

generalized Davenport-Schinzel 
sequence, 174, 176 

generalized lower bound theorem, 
105 

- application, 280 
generalized triangle, 66( 4 .5.3) 
genus, and VC-dimension, 

251 (Ex. 6) 
geometric graph, 56, 176 
geometry 
- of numbers, 1 7, 20 
- real algebraic, 131 
Geronimus polynomial, 380 
girth, 362 
- and £2-embeddings, 380 
Goemans-Williamson algorithm 

for MAXCUT, 384(Ex. 8) 
graded lattice, 89 
graph, xvi 
- bipartite, xvi 
- comparability, 294(Ex. 4) ,  309 
- complete, xvi 
- connected, xvi 
- determines a simple polytope, 

93 
- entropy, 309 
- geometric, 56, 176 
- intersection, 139(Ex. 2) 
- isomorphism, xvi 
- Kr,8-free, 65, 68 
- Moore, 367 
- of a polytope, 87 
- - connectivity, 88, 95(Ex. 8) 
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- perfect, 290-295 
- regular, xvi 
- shattering, 251 (Ex. 5) 
- without short cycles, 362 
graph drawing, 54 
- on a grid, 94 
- rubber-band, 92 
Grassmannian, 339 
greedy algorithm, 235, 236(Ex. 4) 
growth function, see shatter 

function 
Griinbaum-Motzkin conjecture, 

261 

h( a) (height in poset), 305 
H-polyhedron, 82(5.2. 1 )  
H-polytope, 82(5.2 . 1 )  
h-vector, 102 
Hadwiger's transversal theorem, 

262 
Hadwiger-Deb runner 

(p, q)-problem, 255 
Hahn-Banach theorem, 8 
half-space, 3 
half-spaces, VC-dimension, 

244( 10.3. 1 )  
Hall's marriage theorem, 235 
halving edge, 266 
halving facet, 266 
- interleaving lemma, 

277(11 .3 . 1 )  
- - application, 279, 284, 287 
ham-sandwich theorem, 15(1 .4.3) 
- application, 218 
Hammer polytope, 348(Ex. 1 )  
Hamming cube, 335 
- embedding into f2 , 369 
Harper's inequality, 335 
HDd (P, q) ( (p, q)-theorem) ,  

256(10.5 . 1 )  
height, 304 
Helly number, 12  
Helly order, 263(Ex. 4) 
Belly's theorem, 10( 1 .3.2) 

Index 

- application, 12(Ex. 2), 
13 (Ex. 5) , 14 ( 1 . 4 . 1 )  , 8 2 (Ex. 9), 
196(8. 1 .2)

' 
200 

- colored, 198(Ex. 2) 
- fractional, 195(8. 1 . 1 )  
- - application, 209, 2 1 1 ,  258 
- - for line transversals, 

260(10.6.2) 
Belly-type theorem, 261 ,  

263(Ex. 4) 
- for containing a ray, 13(Ex. 7) 
- for lattice points, 295(Ex. 7) 
- for line transversals, 82(Ex. 9) 
- for separation, 13(Ex. 10) 
- for visibility, 13(Ex. 8) 
- for width, 12(Ex. 4) 
HFACd(n) (number of halving 

facets) , 26 7 
hierarchically well-separated tree, 

398 
high above, 35 
higher-order Voronoi diagram, 

122 
Hilbert space, 357 
Hirsch conjecture, 93 
k-hole, 34 
- modulo q, 38 
Horton set, 36 
- in Rd , 38 
hull 
- affine 1 ' 
- convex, 5 
- - algorithm, 86, 105 
hypergraph, 2 1 1  
hyperplane, 3 
- linear, 109 
hyperplane transversal, 

259(10.6. 1 ) ,  262 
hyperplanes, arrangement, 126 

/(�) (intersecting objects) ,  154 
I ( m, n) (number of point-line 

incidences) , 41 
I ( P, L) (point-line incidences) ,  41 



Index 

Jlcirc (m, n) (number of point-unit 
circle incidences) , 42 

Icirc (m, n) (number of 
point-circle incidences) ,  45 

incidence matrix, 234 
incidences, 41  
- point-circle, 45, 63(Ex. 1 ) ,  

63(Ex. 2) , 69, 70(Ex. 2) ,  
73(Ex. 4) 

- - application, 50(Ex. 8) 
- point-curve, 46 
- point-line, 41  ( 4. 1 . 1 )  
- - in the complex plane, 44 
- - lower bound, 51 (4.2. 1)  
- point-plane, 46 
- point-unit circle, 42, 49(Ex. 1 ) ,  

52( 4.2.2) , 70(Ex. 1 )  
- - upper bound, 58(Ex. 2) 
independence number, 290 
independent set, 290 
induced subgraph, 290 
inequality 
- Alexandrov-Fenchel, 301 
- Blaschke-Santal6, 320 
- Brunn's, 297( 12.2. 1 )  
- - application, 306 
� Brunn-Minkowski, 297(12.2.2) 
- - application, 331 ,  333 
- - dimension-free form, 

301(Ex. 5) 
- Cauchy-Schwarz, xvi 
- Chebyshev's, 240 
- Harper's, 335 
- isoperimetric, 333-337 
- - reverse, 337 
- Jensen's, xvi 
- Prekopa-Leindler, 300, 

302(Ex. 7) 
- Sobolev, logarithmic, 337 
inradius, 317(13.2.2) 
- approximation, 322 
integer programming, 25 
k-interior point, 9 
interpolation, 1 17 

intersection graph, 139(Ex. 2) 
d-intervals, transversal, 262, 

262(Ex. 2) 
inverse Blaschke-Santal6 

inequality, 320 
isometric embedding, 356 
isomorphism 
- of arrangements, 133 
- - affine, 133 
- of graphs, xvi 
- of hypegraphs, 211  

469 

isoperimetric inequality, 333�337 
- reverse, 337 

Jensen's inequality, xvi 
John's lemma, 325(13 .4 . 1 )  
- application, 347, 350 
Johnson-Lindenstrauss flattening 

lemma, 358( 15 .2 .1 )  
- application, 366 
- lower bound, 362(Ex. 3 ) ,  

369(Ex. 4) 
join, 89 

Kn (complete graph) , xvi 
Kr,s (complete bipartite graph) , 

64 
Kr,s-free graph, 65, 68 
Kk ( t)  (complete k-partite 

hypergraph) , 212 
/C2 (planar convex sets) ,  238 
K(m, n) (number of edges of m 

cells) ,  43 
k-edge, 266 
k-facet ,  265 
k-fiat, 3 
k-hole, 34 
- modulo q, 38 
k-interior point, 9 
k-partite hypergraph, 21 1 
k-set, 265 
- polytope, 273(Ex. 7) 
k-uniform hypergraph, 2 1 1  
Kovari-Sos-Turan theorem, 

65( 4.5.2) 
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Kakeya problem, 44 
Kalai's conjecture, 204 
kernel, 13 (Ex. 8) 
KFACd(n, k) (maxin1um number 

of k-facets) , 266 
KFAC(X, k) (number of 

k-facets) , 266 
Kirchberger's theorem, 13(Ex. 10) 
knapsack problem, 26 
Koebe's representation theorem, 

92 
Konig's edge-covering theorem, 

235, 294(Ex. 3) 
Krasnosel'skii's theorem, 13(Ex. 8) 
Krein-Milman theorem, in Rd, 

96(Ex. 10) 
Kruskal-Hoffman theorem, 

295(Ex. 6) 

£2 (squared Euclidean metrics) ,  
377 

.eP (countable sequences with 
fp-norm) ,  357 

fp-norm, 35 7 
£� (Rd with fp-norm) , 357 
£1 -ball, see crosspolytope 
Lagrange's four-square theorem, 

28(Ex. 1 )  
Laplace functional, 340 
Laplacian matrix, 37 4 
largest empty disk, computation, 

122 
lattice 
- face, 88 
- general definition, 22 
- given by a basis, 2 1  
- shortest vector, 25 
lattice basis theorem, 22(2.2.2) 
lattice constant, 23 
lattice packing, 23 
lattice point, 1 7  
- computation, 24 
- Helly-type theorem, 295(Ex. 7) 
Lawrence's representation 

theorem, 137 

Index 

lemma 
- cutting, 66( 4.5.3) , 68 
- - application, 66, 261 
- - for circles, 72 
- - higher-dimensional, 

160(6.5.3) 
- - lower bound, 71 
- - proof, 71 , 7 4 , 153, 162, 

251(Ex. 4) 
- Dvoretzky-Rogers, 

349(14.6 .2) ,  352 
- Erdos-Szekeres, 295(Ex. 4) 
- Farkas, 7(1 .2 .5) , 8, 9 (Ex. 7) 
- first selection, 208(9. 1 . 1) 
- - application, 253 
- - proofs, 210 
- halving-facet interleaving, 

277(1 1 .3 . 1 )  
- - application, 279, 284, 287 
- John's, 325( 13.4. 1 )  
- - application, 347, 350 
- Johnson-Lindenstrauss 

flattening, 358(15.2 . 1 )  
- - application, 366 
- - lower bound, 362(Ex. 3) , 

369(Ex. 4) 
- Levy's, 338(14.3.2) , 340 
- - application, 340, 359 
- Lovasz, 278 ( 1 1 .3.2) 
- - exact, 280, 281 (Ex. 5) 
---- - planar, 280(Ex. 1 )  
- positive-fraction selection, 

228(9 .5 .1 )  
- Radon's, 9 (1 .3. 1 ) ,  12 
- - application, 1 1 ,  12(Ex. 1 ) ,  

222(Ex. 3 ) ,  244 
- --- positive-fraction, 220 
- regularity 
- - for hypergraphs, 226 
- - for hypergraphs, weak, 

223(9.4 .1) 
- - for hypergraphs, weak, 

application, 227(Ex. 2), 229 
- - Szemeredi's, 223, 226 



-- same-type, 217(9.3 .1 )  
- - application, 220, 229 
- - partition version, 220 
- second selection, 2 1 1 (9 .2 . 1 )  
- --- application, 228, 279 

· · · · ---- lower bounds, 215(Ex. 2) 
- - one-dimensional, 215(Ex. 1 )  
- shatter function, 239( 10.2.5) 
- - application, 245, 248 
lens (in arrangement) ,  272(Ex. 5) , 

272(Ex. 6) 
d-Leray simplicial complex, 197 
level, 73, 141 
-·- and k-sets 266 ' 
- and higher-order Voronoi 

diagrams, 122 
- at most k, complexity, 

141 (6.3. 1 )  
- for segments, 186(Ex. 2) 
- for triangles, 183 
- simplification, 7 4 
Levy's lemma, 338(14.3.2), 340 
- application, 340, 359 
LinDep(a) , 109 
line pseudometric, 383(Ex. 2) ,  389 
line transversal, 82(Ex. 9) ,  

259(10.6. 1 ) ,  262 
line, balanced, 280 
linear extension, 302 
linear form, 27(Ex. 4) 
linear hyperplane, 109 
linear ordering, 302 
linear programming, 7 
- algorithm, 93 
- duality, 233(10 . 1 .2) 
linear subspace, 1 
linearization, 244 
lines, arrangement, 42 
Lin Va I (a) , 1 09 
Lipschitz function, concentration, 

337-341 
Lipschitz mapping, 337 
- extension, 361 
Lipschitz norm, 356 
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Lipton-Tarjan separator theorem, 
57 

LLL algorithm, 25 
local density, 397 
local theory of Banach spaces, 

329, 336 
location, in planar subdivision, 

1 16 
log* x (iterated logarithm) , xv 
Lovasz lemma, 278(1 1.3.2) 
- exact, 280, 281 (Ex. 5) 
- planar, 280(Ex. 1 )  
lower bound theorem, 

generalized, 105 
· · ······ application, 280 
lower envelope 
- of curves, 166, 187(7.6. 1 )  
- of segments, 165 
- - lower bound, 169(7.2 . 1 )  
- of simplices, 186 
- of triangles, 183(7.5. 1 ) ,  186 
- superimposed projections, 192 
Lowner--·John ellipsoid, 327 

m(f, n) (maximum number of 
edges for girth > f) , 362 

Manhattan distance, see £1-norm 
many cells, complexity, 43, 46, 

58(Ex. 3) ,  152(Ex. 3) 
. 

mapping 
- affine, 3 
- bi-Lipschitz, 356 
- Lipschitz, 337 
- - extension, 361 
- Veronese, 244 
marriage theorem, Hall's, 235 
matching, 232 
matching number, see packing 

number 
matching polytope, 289, 294 
matrix 
- forbidden pattern, 177 
- incidence, 234 
- Laplacian, 374 
- rank and signs, 140(Ex. 4) 
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matroid, oriented, 137 
MAXCUT problem, 384(Ex. 8) 
maximum norm, see £CX)-norm 
measure 
- Gaussian, 334 
- on k-dimensional subspaces, 

339 
- on sn- l ,  uniform, 330 
- on SO(n) (Haar) , 339 
- uniform, 237 
n1easure concentration 
- for a Hamming cube, 

335(14.2.3) 
- for a sphere, 331 (14. 1 . 1 )  
- for an expander, 384(Ex. 7) 
- for product spaces, 340 
- Gaussian, 334(14.2 .2) 
med(f) (median of f) ,  337 
medial axis transform, 120 
median, 14, 337 
meet, 89 
method 
- double-description, 86 
- ellipsoid, 381 
metric 
- cut, 383(Ex. 3) ,  391 
- line, 383(Ex. 2) ,  389 
- of negative type, 379 
- planar-graph, 393 
- shortest-path, 392 
- squared Euclidean, cone, 377 
- tree, 392, 398, 399(Ex. 5) ,  

400(Ex. 6) ,  400(Ex. 7) ,  
400(Ex. 9) 

metric cone, 106, 377 
metric polytope, 106 
metric space, 355 
Milnor-Thorn theorem, 131 ,  135 
minimum spanning tree, 

123(Ex. 6) 
minimum, successive, 24 
Minkowski sum, 297 
Minkowski's second theorem, 24 
Minkowski's theorem, 17(2. 1 . 1 )  

Index 

- for general lattices, 22(2.2.1 )  
Minkowski-Hlawka theorem, 23 
minor, excluded, and metric, 393 
mixed volume, 301 
molecular modeling, 122 
moment curve, 97(5.4. 1 )  
x-monotone (curve) , 73 
monotone subsequence, 295(Ex. 4) 
Moore graph, 367 
motion planning, 1 16, 122, 193 
multigraph, xvi 
multiset, xv 

nearest neighbor searching, 1 16 
neighborhood, orthogonal, 318 
nerve, 197 
17-net, 314 
- application, 323, 340, 343, 365, 

368 
e-net , 237(10.2 . 1 ) ,  237( 10.2.2) 
- size, 239(10.2.4) 
- weak, 261 ( 10.6.3) 
- - for convex sets, 253(10.4. 1)  
nonrepetitive segment, 178 
norm, 344 

- foc n  357 
- fp, 357 
- Lipschitz, 356 
- maximum, see RCX)-norm 
normal distribution, 334, 352 
number 
- algebraic, 20(Ex. 4) 
- chromatic, 290 
- clique, 290 
- crossing, 54 
- - and forbidden subgraphs, 

57 
- -- odd 58 ' 
- - pairwise, 58 
--- fractional packing, 233 
- fractional transversal, 232 
- Helly, 12  
-- independence, 290 
- matching, see packing number 
- packing, 232 
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- piercing, see transversal 
nutnber 

--- transversal, 232 
-- - bound using r* , 236, 

242 (10.2. 7) 

0( · ) (asymptotically at most) ,  xv 
o( · ) (asymptotically smaller) , xv 
octahedron, generalized, 

see crosspolytope 
odd crossing number, 58 
odd-er( G) (odd crossing number) ,  

58 
�-� conjecture, 308 
oracle (for convex body), 316, 321 
order polytope, 303(12.3.2) 
order type, 216, 221(Ex. 1 )  
order, Helly, 263(Ex. 4) 
ordering, 302 
- linear, 302 
orientation, 216 
oriented matroid, 137 
orthogonal neighborhood, 318 

P( -<) (order polytope) ,  303 
p [ . ] (uniform measure on sn-l ) ' 

330 
P d,D (sets definable by 

polynomials) ,  244(10.3.2) 
packing, 232 
- fractional, 233 
-- lattice, 23 
packing number, 232 
pair, closest, computation, 122 
pair-cr( G) (pairwise crossing 

number) , 58 
pairwise crossing edges, 176 
pairwise crossing number, 58 
Pappus theorem, 134 
paraboloid, unit, 1 18 
parallel edges, 176 
partially ordered set, 302 
k-partite hypergraph, 21 1 
partition 
- Radon, 10 

- Tverberg, 200 
partition theorem, 69 
patches, algebraic surface 
- lower envelope, 189 
- single cell, 191 (7.7.2) 
path compression, 175 
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pattern, sign, of polynomials, 131 
- on a variety, 135 
pencil, 132 
pentagon, similar copies, 

51 (Ex. 10) 
perfect graph, 290-295 
permanent, approximation, 322 
permutahedron, 78, 85 
- faces, 95(Ex. 3) 
permutation, forbidden pattern, 

1 77 
perturbation argument, 5, 101 
planar-graph metric, 393 
plane, 3 
- Fano, 44 
- projective, 2 
- topological, 136 
planes, incidences, 46 
point 
- r-divisible, 204 
- exposed, 95(Ex. 9) 
- extremal, 87, 95(Ex. 9) , 

95(Ex. 10) 
- k-interior, 9 
- lattice, 17  
- - computation, 24 
- - Helly-type theorem, 

295(Ex. 7) 
- Radon, 10 ,  13(Ex. 9) 
- random, in a ball, 312 
- Tverberg, 200 
point location, 1 16 
point-line incidences, 41  ( 4. 1 . 1 )  
- in the complex plane, 44 
points, random, convex hull, 99, 

324 
polarity, see duality 
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polygons, convex, union 
complexity, 194 

polyhedral combinatorics, 289 
polyhedron 
- convex, 83 
- H-polyhedron, 82(5.2 . 1 )  
polymake, 85 
polynomial 
- factorization, 26 
- Geronimus, 380 
- on Cartesian products, 48 
polytope (convex), 83 
- almost spherical, number of 

facets, 343(14.4.2) 
- chain, 309 
- combinatorial equivalence, 

89(5.3.4) 
- cyclic, 97(5.4.3) 
- - universality, 99(Ex. 3) 
- dual, 90 
- fat-lattice, 107(Ex. 1 )  
- graph, 87 
- - connectivity, 88, 95(Ex. 8) 
- Hammer, 348(Ex. 1 )  
·

- H-polytope, 82(5.2. 1 )  
- integral, 295(Ex. 5) 
- k-set, 273(Ex. 7) 
- matching, 289, 294 
- metric, 106 
- number of, 139(Ex. 3) 
- order, 303( 12.3.2) 
- product, 107(Ex. 1 )  
- realization, 94, 1 13, 139 
- simple, 90(5.3.6) 
- - determined by graph, 93 
- simplicial, 90(5.3.6) 
- spherical, 124(Ex. 1 1 )  
- stable set, 293 
- symmetric, number of facets, 

347(14.4.2) 
···-- traveling salesman, 289 
- union complexity, 194 
- volume 
- - lower bound, 322 

Index 

- - upper bound, 315(13.2. 1 )  
- V-polytope, 82(5.2 . 1 )  
popular face, 151 
poset, 302 
position 
- convex, 30 
- general, 3 
positive-fraction 
- Erdos-Szekeres theorem, 

220(9.3.3), 222(Ex. 4) 
- Radon's lemma, 220 
- selection lemma, 228 ( 9 .  5 . 1 )  
- Tverberg's theorem, 220 
post-office problem, 116 
power diagram, 121 
(p, q )-condition, 255 

(p, q)-theorem, 256(10.5. 1)  
- for hyperplane transversals, 

259(10.6 . 1 )  
Pn§kopa-Leindler inequality, 300, 

302(Ex. 7) 
pr1me 
- in a ring, 52 
- in arithmetic progressions, 

53( 4.2.4) 
prime number theorem, 52 
primitive recursive function, 17  4 
Prob [·] (probability) , xv 
probabilistic method, application, 

55, 61 ,  71 , 142, 148, 153, 184, 
240, 268, 281 (Ex. 5) , 340, 352, 
359, 364, 386-391 

problem 
- art gallery, 246, 250 
-- Busemann-Petty, 313 
- decomposition, for algebraic 

surfaces, 162 
- Gallai-type, 231 
- Hadwiger-Debrunner, (p, q) , 

255 
- k-set , 265 
- Kakeya, 44 
- knapsack, 26 
- post-office, 116 



-- set cover, 235 
-- subset sum, 26 
- Sylvester's, 44 
- UNION-FIND, 175 
- Zarankiewicz, 68 
product space, measure 

concentration, 340 
product , of polytopes, 107(Ex. 1)  

. 

programming 
--- integer, 25 
- linear, 7 
- - algorithm, 93 
- -- duality, 233(10 .1 .2) 
- semidefinite, 378, 380 
projection 
- almost spherical, 353 
- concentration of length, 

359(15.2.2) 
- polytopes obtained by, 

86(Ex. 2) 
projective plane, 2 
-- finite, 44, 66 
pseudocircles, 271 
pseudodisk, 193 
pseudolattice, pentagonal, 

51 (Ex. 10) 
pseudolines, 132, 136 
pseudometric, line, 383(Ex. 2) ,  

389 
pseudoparabolas, 272(Ex. 5) , 

272(Ex. 6) 
pseudosegments 
- cutting curves into, 70, 271 , 

272(Ex. 5) ,  272(Ex. 6) 
- extendible, 140(Ex. 5) 
- ········ level in arrangement, 270 
Purdy's conjecture, 48 
c-pushing, 102 

QSTAB(G) , 293 
quadratic residue, 27 
quasi-isometry, 358 

Rd 1 
' 

r-divisible point, 204 

Index 

radius, equivalent , 297 
Radon point, 10, 13(Ex. 9) 
Radon's lemma, 9(1 .3 . 1  ) ,  12 
- application, 1 1 ,  12(Ex. 1 ) ,  

222(Ex. 3) , 244 
- positive-fraction, 220 
rainbow simplex, 199 
Ramsey's theorem, 29 
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- application, 30, 32, 34(Ex. 3) , 
39(Ex. 6) ,  99(Ex. 3) ,  373(Ex. 3) 

random point in a ball, 312 
random points, convex hull, 99, 

324 
random rotation, 339 
random subspace, 339 
rank, and signs, 140(Ex. 4) 
rational function on Cartesian 

product, 48 
ray, Helly-type theorem, 13(Ex. 7) 
real algebraic geometry, 131 
realization 
- of a polytope, 94, 113 
- of an arrangement, 138 
Reay's conjecture, 204 
reduced basis, 25 
Reg, 157 
reg(p) (Voronoi region) ,  1 15 
regular forest, 18(2. 1 .2) 
regular graph, xvi 
regular simplex, 84 
- volume, 319 
regularity lemma 
- for hypergraphs, 226 
- - weak, 223(9.4. 1 )  
- for hypergraphs, weak 
- - application, 227(Ex. 2) 
- for hypergraphs, weak, 

application, 229 
- Szemeredi 's, 223, 226 
relation, Dehn-Sommerville, 103 
d-representable simplicial 

complex, 197 
residue, quadratic, 27 
restriction (of a set system) , 238 
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reverse isoperimetric inequality, 
337 

reverse search, 106 
ridge, 87 
robot motion planning, 1 16, 122,  

193 
rotation, random, 339 
Ryser's conjecture, 235 

sn (unit sphere in Rn+l  ) ,  313 
same-type lemma, 217(9.3 .1 )  
- application, 220, 222(Ex. 5) ,  

229 
- partition version, 220 
same-type transversals, 217 
searching 
- nearest neighbor, 1 16 
- reverse, 106 
second eigenvalue, 37 4, 381 
second selection lemma, 

2 1 1 (9.2. 1 )  
- application, 228, 279 
- lower bounds, 215(Ex. 2) 
- one-dimensional, 215(Ex. 1 )  
section, almost spherical 
- of a convex body, 345( 14.4.5) , 

348( 14.6 . 1 )  
- of a crosspolytope, 346, 

353(Ex. 2) 
- of a cube, 343 
- of an ellipsoid, 342( 14.4. 1 )  
segments 
- arrangement, 130 
- intersection graph, 139(Ex. 2) 
- level in arrangement , 

186(Ex. 2) 
- lower envelope, 165 
- - lower bound, 169(7.2. 1 )  
- Ramsey-type result, 

222(Ex. 5) ,  227(Ex. 2) 
- single cell, 1 76 
- zone, 150 
selection lemma 
- first, 208(9. 1 . 1 )  
- - application, 253 

Index 

- - proofs, 210 
- positive-fraction, 228(9.5 . 1 )  
- second, 2 1 1 (9.2 . 1 )  
- - application, 228, 279 
- - lower bounds, 215(Ex. 2) 
- - one-dimensional, 215(Ex. 1 )  
semialgebraic set, 189 
- and VC-dimension, 245 
semidefinite programming, 378, 

380 
ry-separated set, 314 
separation theorem, 6 ( 1 .2.4) 
- application, 8, 80, 323, 377 
separation, Helly-type theorem, 

13(Ex. 10) 
separator theorem, 57 
sequence, Davenport�·Schinzel, 

167 
- asymptotics, 174 
- decomposable, 178 
- generalized, 174, 176 
- realization by curves, 

168(Ex. 1 )  
set 
- almost convex, 38, 39(Ex. 5) 
- brick, 298 
- convex, 5(1 .2 . 1 )  
- convex independent, 30(3. 1 . 1) 
- - in a grid, 34(Ex. 2) 
- - in higher dimension, 33 
- - size, 32 
- defining, 158 
- dense, 33 
- dual, 80(5 . 1 .3) 
- Horton, 36 
- - in Rd 38 ' 

- independent, 290 
- partially ordered, 302 
- polar, see d. ual set 
- semialgebraic, 189 
- - a-nd VC�4hnension, 245 
- k-set, 265 
- - polytope, 273(Ex. 7) 
- shattered, 238( 10.2.3) 



·- stable, see independent set 
set cover problem, 235 
set system, dual, 245 
sets, convex 
- intersection patterns, 197 
- transversal, 256(10.5. 1 )  
- upper bound theorem, 198 
- VC-dimension, 238 
seven-hole theorem, 35(3.2.2) 
shatter function, 239 
- dual, 242 
shatter function lemma, 

239(10.2.5) 
- application, 245, 248 
shattered set, 238(10.2.3) 
shattering graph, 251 (Ex. 5) 
shelling, 104 
shortest vector (lattice) ,  25 
shortest-path metric, 392 
Sierksma's conjecture, 205 
sign matrix, and rank, 140(Ex. 4) 
sign pattern, of polynomials, 131 
- on a variety, 135 
sign vector (of a face) , 126 
similar copies (counting) , 4 7, 

51 (Ex. 10) 
simple arrangement, 127 
simple k-packing, 236(Ex. 4) 
simple polytope, 90( 5.3.6) 
- determined by graph, 93 
simplex, 84(5.2.3) 
- circumradius and inradius, 

317(13.2.2) 
- faces, 88 
- projection, 86(Ex. 2) 
- rainbow, 199 
- regular, 84 
- X -simplex, 208 
- volume, 319 
simplex algorithm, 93 
simplices 
- lower envelope, 186 
- single cell, 193 
simplicial complex 

Index 

- d-Leray, 197 
- d-collapsible, 197 
- d-representable, 197 
simplicial polytope, 90( 5.3.6) 
simplicial sphere, 103 
simplification (of a level) , 7 4 
single cell 
- in R2 , 176 

477 

- in higher dimensions, 191 ,  193 
site (in a Voronoi diagram), 1 15 
smallest enclosing ball, 13(Ex. 5) 
- uniqueness, 328(Ex. 4) 
smallest enclosing ellipsoid 
- computation, 327 
- uniqueness, 328(Ex. 3) 
SO(n) , 339 
- measure concentration, 335 
Sobolev inequalities, logarithmic, 

337 
sorting with partial information, 

302-309 
space 
- Hilbert, 357 
- Rp, 357 
- metric, 355 
- realization, 138 
spanner, 369(Ex. 2} 
spanning tree, minimum, 

123{Ex. 6) 
sparsest cut, approximation, 391 
sphere 
- measure concentration, 

331 ( 14. 1 . 1 )  
- simplicial, 103 
spherical cap, 333 
spherical polytope, 124(Ex. 1 1 )  
STAB(G) (stable set polytope) , 

293 
stable set, see independent set 
stable set polytope, 293 
Stanley-Wilf conjecture, 177 
star-shaped, 13(Ex. 8) 
Steinitz theorem, 88(5.3.3), 92 
- quantitative, 94 
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d-step conjecture, 93 
stretchability, 134, 137 
strong perfect graph conjecture, 

291 
strong upper bound theorem, 104 
subgraph, xvi 
- forbidden, 64 
- induced, 290 
subgraphs, transversal, 262 
subhypergraph, 2 1 1  
subsequence, monotone, 

295(Ex. 4) 
subset sum problem, 26 
subspace 
- affine, 1 
- linear, 1 
- random, 339 
successive minimum, 24 
sum 
- Minkowski, 297 
- of squared cell complexities, 

152(Ex. 1 )  
sums and products, 50(Ex. 9) 
superimposed projections of lower 

envelopes, 192 
surface patches, algebraic 
- lower envelope, 189 
- single cell, 191 (7. 7.2) 
surfaces, algebraic, arrangement , 

130 
- decomposition problem� 162 
Sy Ivester's problem, 44 
Szemeredi regularity lemma, 223, 

226 
Szemeredi-Trotter theorem, 

41 (4. 1 . 1) 
- application, 49(Ex. 5) ,  

50(Ex. 6 ) ,  50(Ex. 7) , 50(Ex. 9 ) , 
60, 63(Ex. 1 )  

- in the complex plane, 44 
- proof, 56, 66, 69 

T(d, r) (Tverberg number) , 200 
Tcol ( d, r) (colored Tverberg 

number) , 203 

Index 

tessellation, Dirichlet, see Voronoi 
diagram 

theorem 
- Balinski's, 88 
- Borsuk-Ulam, application, 15, 

205 
- Caratheodory's, 6(1 .2.3) , 8 
- - application, 199, 200, 208, 

319 
- center transversal, 15(1 .4.4) 
- centerpoint, 14( 1 .4.2) , 205 
- Clarkson's, on levels, 

141 (6.3. 1)  
- colored Helly, 198(Ex. 2) 
- colored Tverberg, 203(8.3.3) 
- - application, 213 
- - for r = 2, 205 
- colorful Caratheodory, 

199(8.2 . 1)  
- - application, 202 
- crossing number, 55(4.3 .1 )  
- - application, 56, 61 ,  70, 283 
- - for multigraphs, 60( 4.4.2) 
- Dilworth's, 294(Ex. 4) 
---- - Dirichlet's, 53 
- Dvoretzky's, 348(14.6. 1 ) ,  352 
- Edmonds', matching polytope, 

294 
- efficient comparison, 

303(12.3 . 1 )  
-· Elekes- -R6nyai, 48 
-- epsilon net, 239(10.2.4) 
- - application, 247, 251 (Ex. 4) 
- - if and only if form, 252 
- Erdos-Simonovits, 213(9.2.2) 
- Erdos-Szekeres, 30(3 .1 .3) 
- - another proof, 32 
- - application, 35 
- - generalizations, 33 
- - positive-fraction, 

220(9.3.3) , 222(Ex. 4) 
- - quantitative bounds, 32 
- fractional Helly, 195(8. 1 . 1 )  
- - application, 209, 2 1 1 ,  258 



- for line transversals, 
260(10.6.2) 

Freiman's, 4 7 
g-theorem, 104 
Hadwiger's transversal, 262 
Hahn-Banach, 8 
Hall's, marriage, 235 
ham-sandwich, 15 (1 .4.3) 
- application, 218 
Belly's, 10(1 .3.2) 
- application, 12(Ex. 2) , 

13(Ex. 5) ,  14(1 .4. 1 ) ,  
82(Ex. 9) ,  196(8. 1 .2) ,  200 

Helly-type, 261 ,  263 (Ex. 4) 
- for containing a ray, 

13 (Ex. 7) 

Index 

- for lattice points, 295 (Ex. 7) 
- for line transversals, 

82(Ex. 9) 
- for separation, 13(Ex. 10) 
- for visibility, 13(Ex. 8) 
- for width, 12(Ex. 4) 
Kovari-S6s-Thran, 65( 4.5.2) 
Kirchberger's, 13(Ex. 10) 
Koebe's, 92 
Konig's, edge-covering, 235, 
294(Ex. 3) 
Krasnosel'skii's, 13(Ex. 8) 
Krein-Milman, in Rd, 
96(Ex. 10) 
Kruskal-Hoffman, 295(Ex. 6) 
Lagrange's, four-square, 
28(Ex. 1 )  
lattice basis, 22(2.2.2) 
Lawrence's, representation, 
137 
lower bound, generalized, 105 
·-·· application, 280 
Ivlilnor-Thom, 131 ,  135 
Minkowski's, 17(2. 1 . 1 )  
- for general lattices, 

22(2.2 . 1 )  
- second, 24 
Ivlinkowski-Hlawka, 23 

479 

- Pappus, 134 
- (p, q), 256 ( 10.5 .1)  
- - for hyperplane transversals, 

259(10.6. 1 )  
- prime number, 52 
- Ramsey's, 29 
- - application, 30, 32, 

34(Ex. 3) ,  39(Ex. 6) , 
99(Ex. 3 ) ,  373(Ex. 3) 

- separation, 6 (1 .2 .4) 
- - application, 8, 80, 323, 377 
- separator, Lipton-Tarjan, 57 
- seven-hole, 35(3.2.2) 
- Steinitz, 88(5.3.3) , 92 
- - quantitative, 94 
- Szemeredi-Trotter, 41 ( 4. 1 . 1) 
- - application, 49(Ex. 5) , 

50(Ex. 6) , 50( Ex. 7) , 
50(Ex. 9 ) ,  60, 63(Ex. 1 )  

- - in the complex plane, 44 
- - proof, 56, 66, 69 
- Tverberg's, 200(8.3. 1 )  
- - application, 208 
- - positive-fraction, 220 
- - proofs, 203 
- two-square, 27(2.3. 1 )  
- upper bound, 100(5.5 . 1 ) ,  103 
- - and k-facets, 280 
- - application, 1 19 
----- - continuous analogue, 1 14 
- - for convex sets, 198 
- - formulation with h-vector, 

103 
- - proof, 282(Ex. 6) 
- - strong, 104 
- weak epsilon net, 253( 10.4.2) 
- - another proof, 254(Ex. 1 )  
- zone, 146(6.4. 1 )  
- - planar, 168(Ex. 5) 
Thiessen polygons, 120 
topological plane, 136 
torus, n-dimensional, measure 

concentration, 335 
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total unimodularity, 294, 
295 (Ex. 6) 

trace (of a set system) , 238 
transform 
- duality, 78(5 . 1 . 1 ) , 81 (5.1 .4) 
- Gale, 107 
- - application, 210, 282 (Ex. 6) 
- medial axis, 120 
transversal, 82 (Ex. 9) , 231 
- criterion of existence, 

218(9.3.2) 
- fractional, 232 
- - bound, 256(10.5.2) 
- - for infinite systems, 235 
- hyperplane, 259 (10.6 .1 ) , 262 
- line, 262 
- of convex sets, 256 (10.5. 1 ) 
- of disks, 231 ,  262 (Ex. 1 ) 
- of d-intervals, 262, 262 (Ex. 2) 
- of subgraphs, 262 
- same-type, 217 
transversal number, 232 
- bound using r*, 236, 

242 (10.2. 7) 
transversal theorem, Hadwiger's, 

262 
traveling salesman polytope, 289 
tree 
- hierarchically well-separated, 

398 
. . . - spanning, minimum, 

123(Ex. 6) 
tree metric, 392 , 398, 399(Ex. 5) , 

400(Ex. 6) , 400(Ex. 7) , 
400(Ex. 9) 

tree volume, 396 
tree-width, 262 
triangle, generalized, 66 ( 4.5.3) 
triangles 
- fat,  union complexity, 194 
- level in arrangement, 183 
- lower envelope,  183 (7.5 .1 ) , 186 
- VC-dimension, 250(Ex. 1 ) 
triangulation 

Index 

- bottom-vertex, 160, 161 
- canonical, see bottom-vertex 

triangulation 
- Delaunay, 1 17, 120, 123(Ex. 5) 
- of an arrangement, 72(Ex. 2) 
Tverberg partition, 200 
Tverberg point, 200 
Tverberg's theorem, 200(8.3. 1 ) 
- application, 208 
- colored, 203(8.3.3) 
- - application, 213 
- - for r = 2, 205 
- positive-fraction, 220 
- proofs, 203 
24-cell, 95(Ex. 4) 
two-square theorem, 27(2.3.1 ) 
type, order, 216, 221 (Ex. 1 ) 

U ( n) (number of unit distances) , 
42 

unbounded cells, number of, 
129 (Ex. 2) 

k-uniform hypergraph, 211  
uniform measure, 237 
unimodularity, total, 294, 

295 (Ex. 6) 
union, complexity, 193-194 
- for disks, 124(Ex. 10) 
UNION-FIND problem, 175 
unit paraboloid, 1 18 
unit circles 
- incidences, 42, 49 (Ex. 1 ) , 

52 (4.2.2) , 58(Ex. 2) , 70(Ex. 1 ) 
- Sylvester-like result , 44 
unit distances, 42 
- and incidences, 49 (Ex. 1 ) 
- for convex position, 45 
- in R2, 45 
- in R3 , 45 
- in R4, 45, 49(Ex. 2) 
- lower bound, 52 ( 4.2.2) 
- on a 2-sphere, 45 
- upper bound, 58 (Ex. 2) 
universality of cyclic polytope, 

99(Ex. 3) 



up-set , 304 
upper bound theorem, 100(5.5. 1 ) ,  

103 
- and k-facets, 280 
----- application, 1 19  

- continuous analogue, 1 14 
- for convex sets, 198 
- formulation with h-vector, 103 
- proof, 282(Ex. 6) 
- strong, 104 

V (G) (vertex set) , xvi 
Vr, (volume of the unit n-ball) , 

311  
V(x) (visibility region) ,  247 
V-polytope, 82(5.2. 1 )  
Van Kampen-Flores simplicial 

co1nplex, 368 
Vapnik-Chervonenkis dimension, 

see VC-dimension 
VC-dimension, 238( 10.2.3) 
- bounds, 244(10.3.2) ,  

245(10.3.3) 
- for half-spaces, 244( 10.3. 1 )  
--- for triangles, 250(Ex. 1)  
vector 
- /-vector, 96 
- - of a representable complex, 

197 
-- g-vector, 104 
-- h-vector 102 ' 
---- shortest (lattice) ,  25 
- sign (of a face) ,  126 
vectors, almost orthogonal, 

362(Ex. 3) 
Veronese mapping, 244 
vertex 
- of a polytope, 87 
- of an arrangement, 43, 130 
vertical decomposition, 72(Ex. 3) ,  

156 
visi hili ty, 246 
- Helly-type theorem, 13(Ex. 8) 
vol( · ) ,  xv 
volume 
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- approximation, 321 
- - hardness, 315 
- mixed, 301 
- of a ball, 3 1 1  
- of a polytope 
- - lower bound, 322 
- - upper bound, 315(13.2 . 1 )  
- of a regular simplex, 319 
- tree, 396 
volume-respecting embedding, 

396 
Voronoi diagram, 1 15 
- abstract, 121  
- complexity, 1 1 9(5.7.4) , 

122(Ex. 2) , 123(Ex. 3) ,  192 
- farthest-point, 120 
- higher-order, 122 

weak E-net, 261 ( 10.6.3) 
- for convex sets, 253(10.4. 1)  
weak epsilon net theorem, 

253 (10.4.2) 
- another proof, 254(Ex. 1 )  
weak perfect graph conjecture, 

291 
weak regularity lemma, 223(9.4 . 1 )  
- application, 227 (Ex. 2) , 229 
width, 12 (Ex. 4) 
- approximation, 322, 322(Ex. 4) 
- bisection, 57 
Wigner-Seitz zones, 120 
wiring diagram, 133 

X -simplex, 208 
x-rnonotone (curve) ,  73 

Zarankiewicz problem, 68 
zone 
- ( <k)-zone, 152(Ex. 2} 
- in a segment arrangement, 150 
- of a hyperplane, 146 
- of a surface, 150, 151  
- of an algebraic variety, 150, 

151 
zone theorem, 146( 6.4. 1 )  
- planar, 168(Ex. 5} 


	Cover
	Title page
	Preface
	Contents
	Notation and Terminology
	1 Convexity
	1.1 Linear and Affine Subspaces, General Position
	1.2 Convex Sets, Convex Combinations, Separation
	1.3 Radon's Lemma and Helly's Theorem
	1.4 Centerpoint and Ham Sandwich

	2 Lattices and Minkowski's Theorem
	2.1 Minkowski's Theorem
	2.2 General Lattices
	2.3 An Application in Number Theory

	3 Convex Independent Subsets
	3.1 The Erdös-Szekeres Theorem
	3.2 Horton Sets

	4 Incidence Problems
	4.1 Formulation
	4.2 Lower Bounds: Incidences and Unit Distances
	4.3 Point-Line Incidences via Crossing Numbers
	4.4 Distinct Distances via Crossing Numbers
	4.5 Point-Line Incidences via Cuttings
	4.6 A Weaker Cutting Lemma
	4.7 The Cutting Lemma: A Tight Bound

	5 Convex Polytopes
	5.1 Geometric Duality
	5.2 H-Polytopes and V-Polytopes
	5.3 Faces of a Convex Polytope
	5.4 Many Faces: The Cyclic Polytopes
	5.5 The Upper Bound Theorem
	5.6 The Gale Transform
	5.7 Voronoi Diagrams

	6 Number of Faces in Arrangements
	6.1 Arrangements of Hyperplanes
	6.2 Arrangements of Other Geometric Objects
	6.3 Number of Vertices of Level at Most k
	6.4 The Zone Theorem
	6.5 The Cutting Lemma Revisited

	7 Lower Envelopes
	7.1 Segments and Davenport-Schinzel Sequences
	7.2 Segments: Superlinear Complexity of the Lower Envelope
	7.3 More on Davenport-Schinzel Sequences
	7.4 Towards the Tight Upper Bound for Segments
	7.5 Up to Higher Dimension: Triangles in Space
	7.6 Curves in the Plane
	7.7 Algebraic Surface Patches

	8 Intersection Patterns of Convex Sets
	8.1 The Fractional Helly Theorem
	8.2 The Colorful Carathéodory Theorem
	8.3 Tverberg's Theorem

	9 Geometric Selection Theorems
	9.1 A Point in Many Simplices: The First Selection Lemma
	9.2 The Second Selection Lemma
	9.3 Order Types and the Same-Type Lemma
	9.4 A Hypergraph Regularity Lemma
	9.5 A Positive-Fraction Selection Lemma

	10 Transversals and Epsilon Nets
	10.1 General Preliminaries: Transversals and Matchings
	10.2 Epsilon Nets and VC-Dimension
	10.3 Bounding the VC-Dimension and Applications
	10.4 Weak Epsilon Nets for Convex Sets
	10.5 The Hadwiger-Debrunner (p,q)-Problem
	10.6 A (p,q)-Theorem for Hyperplane Transversals

	11 Attempts to Count k-Sets
	11.1 Definitions and First Estimates
	11.2 Sets with Many Halving Edges
	11.3 The Lovasz Lemma and Upper Bounds in All Dimensions
	11.4 A Better Upper Bound in the Plane

	12 Two Applications of High-Dimensional Polytopes
	12.1 The Weak Perfect Graph Conjecture
	12.2 The Brunn-Minkowski Inequality
	12.3 Sorting Partially Ordered Sets

	13 Volumes in High Dimension
	13.1 Volumes, Paradoxes of High Dimension, and Nets
	13.2 Hardness of Volume Approximation
	13.3 Constructing Polytopes of Large Volume
	13.4 Approximating Convex Bodies by Ellipsoids

	14 Measure Concentration and Almost Spherical Sections
	14.1 Measure Concentration on the Sphere
	14.2 Isoperimetric Inequalities and More on Concentration
	14.3 Concentration of Lipschitz Functions
	14.4 Almost Spherical Sections: The First Steps
	14.5 Many Faces of Symmetric Polytopes
	14.6 Dvoretzky's Theorem

	15 Embedding Finite Metric Spaces into Normed Spaces
	15.1 Introduction: Approximate Embeddings
	15.2 The Johnson-Lindenstrauss Flattening Lemma
	15.3 Lower Bounds By Counting
	15.4 A Lower Bound for the Hamming Cube
	15.5 A Tight Lower Bound via Expanders
	15. 6 Upper Bounds for foo-Embeddings
	15.7 Upper Bounds for Euclidean Embeddings

	What Was It About? An Informal Summary
	Hints to Selected Exercises
	Bibliography
	Index

