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Density Functional Theory - Important Concepts

Strictly speaking, none of the fundamental principles from density functional theory (DFT) has
been used up to now. Instead of adding DFT exchange and correlation energies, we used the exact
exchange result of the Fock term from Hartree-Fock’s theory, which cancelled exactly half of the
Hartree energy in case of the Helium atom.

Theoretically, when using the “correct/exact” exchange-correlation DFT functional we could cal-
culate the exact total energy. Unfortunately, the functional is unknown and we have to cope with
approximations, and as we will see soon, even then we cannot always find analytic expressions but
have to be content with parameterizations.

• Formulate the basic idea behind the Hohenberg-Kohn theorem. What are the fundamental
equations associated with this theorem? In particular, what universal form does the total en-
ergy functional E[n] take and how is this related to the minimum principle? What stationary
condition on the universal functional F [n] follows from this principle?
Optional: Express the kinetic energy, external potential and two-particle interaction opera-
tors in their second quantized form.
Optional: Show that, independent of using the 1st vs. 2nd quantized external potential op-
erator, the same expression for the corresponding energy is obtained when taking the scalar
product with a N particle wave function.

Solution:

Many-Body Formalism and 2nd Quantization

This section follows mainly the text book of Engel and Dreizler [1], especially §2.1 and §3.1.
Since in density functional theory the leading protagonist is the electronic number or charge
density, ρ(x) = (−e)n(x), we should have a quick look on how this quantity is build in the
context of the so called second quantization.
In general, n(x) can be calculated from a N -particle wave function |ΨN〉 ∈ ∧NH by virtue of

n(x) = N

∫
d3x2 . . .

∫
d3xN (ΨN)∗(x,x2, . . . ,xN)Ψ

N(x,x2, . . . ,xN) , (1)

and has to integrate to the total number of electrons

N =

∫
d3xn(x) . (2)

The time-independent Schrödinger equation applies to the many-body wave function as usual,

ĤN |ΨN〉 = E |ΨN〉 , (3)

where the standard Hamiltonian for N particles takes the form1

ĤN = T̂N + V̂ N
ext + ŴN . (4)

1In this section, we add for clarity the superscript ÔN to operators acting on N -particle wave functions. Later we
drop N for better readability since in DFT we usually do not leave HN .
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Here, T̂ denotes the kinetic energy (one-particle) operator2

Q(T̂ ) =

∫
d3x ψ̂†(x)

(
− h̄2

2m
∆

)
ψ̂(x) , T̂N = Q(T̂ )↾HN =

N∑
i=1

|p̂i|2

2m
. (5)

The multiplicative external (one-particle) potential energy operator is given in terms of a time-
independent function vext by virtue of

Q(V̂ext) =

∫
d3x ψ̂†(x)vext(x)ψ̂(x) , V̂ N

ext = Q(V̂ext)↾HN =
N∑
i=1

vext(x̂i) . (6)

By contrast, Ŵ denotes a general two-particle interaction operator determined by an interaction
kernel w(x,x′) in the following manner:

Q(Ŵ ) =
(−e)2

2

∫
d3x

∫
d3x′ ψ̂†(x)ψ̂†(x′)w(x,x′)ψ̂(x′)ψ̂(x) , (7)

ŴN = Q(Ŵ )↾HN =
(−e)2

2

∑
i,j=0
i ̸=j

w(x̂i, x̂j) = (−e)2
∑
i,j=0
i<j

w(x̂i, x̂j) , (8)

where w(x,x′) is not further specified except for symmetry w(x,x′) = w(x′,x), but usually
takes the form of the Coulomb interaction kernel,

w(x,x′) = vc(x− x′) =
1

4πε0

1

|x− x′|
, (9)

when dealing with electron-electron interaction.

Density Operator

The density operator is defined by

n̂(x) = ψ̂†(x)ψ̂(x) , n̂(x)↾HN =
N∑
i=1

δ3(x− x̂i) . (10)

where ψ̂(x) is the Schrödinger field operator

ψ̂(†)(x) := â(†)(|x〉) (11)

that acts on a N -particle wave function as

〈x2, . . . ,xN |ψ̂(x)ΨN〉 = (ψ̂(x)ΨN)(x2, . . . ,xN) (12)
=

√
NΨN(x,x2, . . . ,xN) , (13)

and thus transforms a state |ΨN〉 ∈ HN into |ΨN−1〉 ∈ HN−1, because it annihilates a position
state as defined above via the generic annihilator. You should think of the argument x as being

2The deduction of the N -particle Hilbert space restricted operators from their general second quantized form is rather
involved (cf. [2, §6h]), so we will only state the well-known expressions for both in each case.
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externally set to a specific value and is thus not a dynamic variable of Ψ anymore, which leaves
Ψ with (N − 1) remaining dynamic variables.
Equation (1) is recovered by constructing the expectation value of the density operator,

n(x) = 〈ΨN |n̂(x)|ΨN〉 , (14)
and either inserting eq. (12) into

n(x) = 〈ψ̂(x)ΨN |ψ̂(x)ΨN〉HN−1 (15)
with

1HN−1 =

∫
d3x2 . . .

∫
d3xN |x2, . . . ,xN〉 〈x2, . . . ,xN | , (16)

or, for the first quantized version, by first evaluating the scalar product in (14) in position
space and afterwards inserting the second form in (10):

〈ΨN |n̂(x)↾HN |ΨN〉
HN

=

∫
d3x1 . . .

∫
d3xN

N∑
i=1

δ3(x− xi)(Ψ
N)∗(x1, . . . ,xN)Ψ

N(x1, . . . ,xN) . (17)

The action of a function of the position operator evaluated in position space is analogous to
the one-particle version3, 〈x|f(x̂)|ψ〉 = f(x)ψ(x), such that the Dirac-delta will then simply
set the i-th coordinate to x for each term. Because of the antisymmetry of the wave function
w.r.t. the coordinates we obtain N -times the same expression, thus leading back to eq. (1).

External potential

The expectation value of 〈V̂ext〉 = Eext in the 2nd quantized formalism is simply

〈ΨN |Q(V̂ext)|ΨN〉 =
∫

d3x vext(x) 〈ΨN |n̂(x)|ΨN〉 (18)

=

∫
d3x vext(x)n(x) . (19)

On the other hand, for the 1st quantized variant follows under utilization of eq. (1) and the
complete antisymmetry of the many-body wave function ΨN :

〈ΨN |V̂ext|ΨN〉 (6)
=

N∑
i=1

〈ΨN |vext(x̂i)|ΨN〉

=
N∑
i=1

∫
d3x1 . . .

∫
d3xN vext(xi)(Ψ

N)∗(x1, . . . ,xN)Ψ
N(x1, . . . ,xN)

= N

∫
d3x

∫
d3x2 . . .

∫
d3xN vext(x)(Ψ

N)∗(x,x2, . . . ,xN)Ψ
N(x,x2, . . . ,xN)

(1)
=

∫
d3x vext(x)n(x) , (20)

which is obviously identical to the former result.
3Â =

∑
n an |n〉 〈n|, f(Â) =

∑
n f(an) |n〉 〈n|, x̂ =

∫
d3x′ x′ |x′〉 〈x′|, 〈x|x̂|ψ〉 =

∫
d3x′ x′ 〈x|x′〉 〈x′|ψ〉 = xψ(x)
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Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem now states for a N -particle ground state |Ψ0〉 := |ΨN
0 〉 and

corresponding ground state density n0(x) according to eq. (1) (cf. [1, §2.1]):
1. The quantities vext,Ψ0 and n0 uniquely determine each other (vext only up to a constant),

vext(x)
SGL⇐⇒ |Ψ0〉 ⇐⇒ n0(x) = 〈Ψ0|n̂(x)|Ψ0〉 (21)

i.e. the ground state is a unique functional of the ground state density,

|Ψ0〉 = |Ψ[n0]〉 , (22)

where no explicit form for vext is required. Hence, |Ψ[n]〉 is called universal.
2. Consequently, any ground state observable has to be a functional of the density as well,

O[n] = 〈Ψ[n]|Ô|Ψ[n]〉 , (23)

which is in particular true for the ground state energy, i.e. the expectation value of the
Hamiltonian evaluated in the N -particle ground state4,

E[n] := 〈Ψ[n]|Ĥ|Ψ[n]〉 = F [n] +

∫
d3x vext(x)n(x) , (24)

with
F [n] := 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉 (25)

as the universal part. Note, that vext enters exactly once in E[n], namely in the non-
universal part. In fact, this functional can be regarded as a first optimization step where
for a given density, the energy

E[n] = min
|Ψ⟩→n(x)

〈Ψ|Ĥ|Ψ〉 = 〈Ψ[n]|Ĥ|Ψ[n]〉 (26)

is minimized within the subset of wave functions yielding the required density.
3. There exists a (second) minimum principle for E[n] with respect to the density:

E[n0] < E[n′
0] ∀n′

0 6= n0 ⇐⇒ E0 = min
n
E[n] , , (27)

where n0 is the ground state density corresponding to vext and the ground state |Ψ0〉, and
n′
0 another ground state associated with a different v′ext and consquently, because of the

statement in (21), a different ground state |Ψ′
0〉.

Following the minimum principle (27), the functional derivative has to vanish for the true
ground state density,

δE[n]

δn(x)

∣∣∣∣
n=n0

= 0 . (28)

This is, however, a highly simplified approach to the minimum principle where the allowed
densities are always subject to the normalization condition eq. (2). The question if this func-
tional derivative exists in the first place is non-trivial and beyond the scope of this exercise.
The keyword associated with this issue is interacting v-representability and has been discussed

4Multiply (3) with 〈ΨN | and insert (4).
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thoroughly by Levy and Lieb (see e.g. [1, §2.3] for a more detailed discussion), representing a
far more mathematical access.
A third approach often found in text books on DFT (e.g. [3, §7.2.1]) is postulating the existence
of the functional derivative of E[n] (and so F [n]) w.r.t. a density n(x) = n0(x) + ηδn(x) near
the true ground state density n0 and using a functional Taylor expansion of E[n] around n = n0,

E[n] = E[n0] +

∫
d3x

δE[n]

δn(x)

∣∣∣∣
n=n0

[n(x)− n0(x)] +O(δn2) , (29)

which is (using eq. (24)) equivalent to

E[n0 + ηδn]− E[n0] = η

∫
d3x

(
δF [n]

δn(x)
+ vext(x)

)
δn(x) +O(δn2) . (30)

The last equation gives a reason why the functional derivative has to vanish: In case it would
not, the energy could always be lowered by appropriately choosing the sign of η.
In any of these cases, the condition

δF [n]

δn(x)
= −vext(x) (31)

follows for the universal functional F [n] from the minimum principle in one or another way.

• What is the basic concept behind the Kohn-Sham approach? Formulate their ansatz for the
universal functional F [n]. What is the exchange-correlation energy? Sketch the connection of
Kohn-Sham’s ansatz to the implications of Hohenberg-Kohn’s theory.

Solution:

Kohn-Sham Effective Single Particle Equations

We consider a non-interacting N -particle system, i.e. a system of the form eq. (4) with Ŵ = 0
and a multiplicative external single-particle (= effective Kohn-Sham) potential vs 6= vext. The
N -particle ground state is assumed to be non-degenerate and of the form

|Φ0〉 := |ΦN
0 〉 = |SL(φ1, . . . , φN)〉 (32)

and
〈x1, . . . ,xn|Φ0〉 = Φ0(x1, . . . ,xN) =

1√
N !

det(φi(xk)) (33)

with
〈φi|φj〉 = δij , (34)

i.e. a Slater determinant constructed of the energetically lowest solutions of the single-particle
Schrödinger equation, (

− h̄2

2m
∆+ vs(x)

)
φi(x) = εiφi(x) . (35)

Note, that these orbitals (= single particle wave functions) are density functionals themselves.
By construction, we have ε1 ≤ . . . ≤ εN = εF ≤ εN+1 ≤ . . ., where the Fermi energy is identified
with the eigenvalue of the highest occupied single-particle level (cf. [1, §3.1]).
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Under these conditions, the expression for the density (eq. (1)) simplifies to

n0s(x) =
N∑
i=1

φ∗
i (x)φi(x) . (36)

or equivalently5,
n0s(x) =

∑
i

Θ(εF − εi)φ
∗
i (x)φi(x) . (37)

According to the Hohenberg-Kohn theorem, the ground state of this non-interacting system has
to be again a unique functional of the corresponding ground state density, i.e. |Φ0〉 = |Φ[n0s]〉,
and so has the energy (cf. eq. (24)),

Es[n] = 〈Φ[n]|T̂ |Φ[n]〉+
∫

d3x vs(x)n(x) . (38)

Following the same arguments as in the interacting case, we find that this functional has the
same properties (e.g. the existence of a minimum principle), but is not identical to eq. (24).
Applying the minimum principle (eq. (27)) to Es[n] leads in the non-interacting case to the
stationary condition

δEs[n]

δn(x)

∣∣∣∣
n=n0

= 0 ⇐⇒ δTs[n]

δn(x)

∣∣∣∣
n=n0

= −vs(x) , (39)

where the kinetic energy functional Ts[n] represents the expectation value of the kinetic energy
operator, but not evaluated in the state |Ψ〉 but in its non-interacting equivalent |Φ〉,

Ts[n] = 〈Φ[n]|T̂ |Φ[n]〉 =
∑
i

Θ(εF − εi)

∫
d3xφ∗

i (x)

(
− h̄2

2m
∆

)
φi(x) . (40)

Note, that in DFT this constitutes a non-trivial functional6, since φi(x) = φi[n](x) per
Hohenberg-Kohn theorem.
The essential assumption of Kohn and Sham was, that the ground state density of this auxiliary
system (with a yet to be determined effective Kohn-Sham potential vs) is simultaneously the
ground state density of the interacting system (eq. (4)), i.e. n0(x) ≡ n0s(x). If such an
auxiliary system (a.k.a. Kohn-Sham system) exists in the first place is subject to the question of
noninteracting v-representability (cf. [1, §3.2]) and exceeds the scope of this exercise. However,
taking for granted that the earlier assumption is correct, we decompose the universal functional
F [n] (and thus E[n]) according to Kohn-Sham in a more convenient fashion:

F [n] = Ts[n] + EH[n] + Exc[n] . (41)

The classical Hartree energy introduced in the last equation should already be familiar,

EH[n] =
(−e)2

2

∫
d3x

∫
d3x′ n(x)vc(x,x

′)n(x′) =
1

2

∫
d3x vH(x)n(x) , (42)

5In case of finite temperature T > 0, the Heaviside step function Θ(x−x0) is replaced by the Fermi-Dirac distribution
in many DFT codes. Definition Heaviside function: Θ : R → {0, 1}, x 7→ (0 : x < 0, 1: x ≥ 0)

6By contrast, in the Thomas-Fermi theory this functional is modelled using the homogeneous interaction-free fermion
gas, i.e. n(x) ∝ k3f and ϵ ∝ k2f , such that Ekin ≈

∫
d3xn(x)ϵkin(x) = Cf

∫
d3xn5/3(x), with Cf ≈ 2.8712 [4, §3.1].
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and the kinetic energy is given by eq. (40). By contrast, the so called exchange-correlation
functional Exc[n] is unknown and just said to “absorb[.] all the complicated many-body effects
not contained in Ts, EH and Eext” [1, p. 61].7 In fact, it is defined by eq. (41) and is thus a
universal density functional just like F [n]. It can also be written more suggestively as

Exc[n0] = 〈Ψ0|T̂ + Ŵ |Ψ0〉 − Ts[n0]− EH[n0] . (43)

By inserting eq. (39) and eq. (41) into the stationary condition of the interacting system
(eq. (28)), we find an expression for the yet unknown effective Kohn-Sham potential,

vs[n0](x) = vH[n0](x) + vxc[n0](x) + vext(x) , (44)

where vxc is the functional derivative of the Kohn-Sham energy with respect to the density,

vxc[n0](x) =
δExc[n]

δn(x)

∣∣∣∣
n=n0

. (45)

Obviously, this so called Kohn-Sham potential is a functional of the density itself. In fact,
the solutions of the single-particle Schrödinger equation (35) determine the orbitals φi(x) that
construct the density via eq. (36), which is passed to eq. (44) to build the Kohn-Sham potential.
This set of equations is known as Kohn-Sham (effective single particle) equations and because
of their nonlinearity, they have to be solved iteratively. The connection of the Kohn-Sham
ansatz and the Hohenberg-Kohn theorem is sketched in fig. 1.

Ĥ n0(x) n0s(x) ĤKS

|Ψi〉 |Ψ0〉 |Φ0〉 φKS
i (x)

HK

MB-SEQ (3)

i = 0

(1)

HK

SP-SEQ (35)

SL (32)

(1) (36)

KS

Figure 1: Scheme combining the Hohenberg-Kohn theorem with the Kohn-Sham equations. In the
left hand side, the density n0 determines the Hamiltonian Ĥ that, by virtue of the many-
body Schrödinger equation, leads to the many-bmany-body states |Ψi〉 and in particular
the ground state |Ψ0〉. The density build from this wave function shall now be identical
to the one of the right hand side, where per density functionals the effective single-particle
Hamiltonian ĤKS is constructed, leading via the single-particle Schrödinger equation to
the Kohn-Sham orbitals φKS

i (x). An auxiliary many-body wave function |Φ0〉 in the form
of a single Slater determinant can be constructed or the Kohn-Sham orbitals can be used
directly to finally come back to the density n0s = n0.

The great advantage of Kohn and Sham’s formulation is, that it is no longer necessary to
approximate the entire universal functional F [n], but only its exchange-correlation part (and
its functional derivative vxc). Since Exc is usually smaller than EH, the errors in approximating
Exc will hopefully have only a small impact on the result of e.g. solid-state calculations.

7Interestingly, the other three energy contributions usually dominate over the exchange-correlation energy. Thus,
even when completely ignoring Exc, we obtain qualitatively good results, e.g. when calculating band structures
or just the plain total energy. Unfortunately, this will not work in the case of helium, as we verified in the last
exercise.
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• The exchange-correlation energy defined in the last problem is not identical to the one from
quantum chemistry. In fact, it is not even identical to the difference between the full interaction
energy of the interacting system and its classical counterpart. Find the reason.
Solution: A proof is straight forward (cf. [1, Eq. 3.27-3.31]): Let

E|Ψ0⟩
xc = 〈Ψ0|Ŵ |Ψ0〉 − EH[n0] (46)

be the difference between the quantum mechanical and the classical interacting energy and
EDFT

xc defined by eq. (43). The difference between the two xc-energies,

EDFT
xc − E|Ψ0⟩

xc = 〈Ψ0|T̂ |Ψ0〉 − 〈Φ0|T̂ |Φ0〉 , (47)

originates in the difference between the kinetic energy of the interacting and non-interacting
system and will not vanish since in general |Ψ0〉 6= |Φ0〉.89 Empirical studies on closed-subshell
atoms showed, that this difference is of the same order of magnitude as the complete correlation
energy (cf. [1, p. 62]). Note that E|Ψ0⟩

xc 6= EQC
xc in general.

• For practical purposes, the “total energy” (= energy functional) is calculated differently than
suggested by the Kohn-Sham energy functional, because the latter involves a differentiation of
the KS orbitals per Laplace operator in Ts[n]. Work around this annoyance by eliminating the
kinetic energy functional using the single-particle Schrödinger equation.
Solution: Inserting eq. (35) into eq. (40) yields

Ts[n] =
N∑
i=1

∫
d3xφ∗

i (x) (εi − vs(x))φi(x)

=
N∑
i=1

εi −
∫

d3x vs(x)n(x) , (48)

where in the last step, we have used the normalization of the KS orbitals. Replacing Ts in
eq. (41) and subsequently in eq. (24) we find an alternative way to calculate the total energy:

E =
N∑
i=1

εi −
∫

d3x (vext + vH + vxc)(x)n0(x) + Eext + EH + Exc . (49)

This result may be simplified using the definitions in eq. (18) and eq. (42) for Eext and EH,
leading to (cf. [5, Eq. 2.16], [1, Eq. 3.52])

E0 =
N∑
i=1

εi − EH[n0] + Exc[n0]−
∫

d3x vxc[n0](x)n0(x) . (50)

Apparently, this not only saves us from calculating second derivatives of KS orbitals, but
also eliminates the need to explicitly calculate the external energy. Note, that the exchange-
correlation energy and integral over its potential do not cancel each other since from eq. (45)
does not necessarily follow a form of Exc[n] like e.g. in eq. (18).
Finally note, that it is common practice to decompose Exc into a pure exchange Ex and a
remaining correlation part Ec . A more detailed treatment of this concept will be content of
the next exercise sheet.

9In fact one can show that 〈Φ0|T̂ |Φ0〉 = infΨ→n0
〈Ψ|T̂ |Ψ〉 and 〈Φ0|T̂ |Φ0〉 ≤ 〈Ψ0|T̂ |Ψ0〉 thus EDFT

xc ≥ E
|Ψ0⟩
xc . Engel and

Dreizler state the difference with ∆Exc = 2.903 724 a.u. for the non-relativistic helium calculation and 0.0737 a.u.
for berylium. The magnitude of ∆Exc is thus found to be in the typical range of the correlation energy. [1, p. 62].
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