
PROMISE YOU A ROSE GARDEN

An essay about system management

Mark Burgess

1 January 2007

3

1
2

7

9

5

10

11

14

13

12

6

8

4

15

3

1
2

7

9

15

5

10

11

14

13

12

6

8

4

1



A fable

Once upon a time there was an arrow. This arrow was reputed to have been

tooled in the armoury of Cupid himself. It issued from a bow, from whose

string sprung only pure intentions, and it carried with it a thread of silk so

that it could be reeled in again at such a time that is suited the archer. But

although the arrow was strong and straight and pure, the arrow’s intended

target was clad in a special kind of autonomous armour that resisted the

thrust of its point, and so, when fired, the arrow was not received, but merely

landed close to its target.

Someone close to the target, knowing the nature and circumstances of the

armour, saw the arrow shining in the sun, for arrows from Cupid are made of

the finest golden material, pure and universal in their appeal. The competitor

was so impressed by the arrow, and appreciative of its value, that it fired

a sucker in the direction from which the arrow was aimed, attached to it a

message saying ”if you fire such an arrow at me, I shall not only open my

armour to receive it, but return an arrow of my own, made from the best I

have to offer.”

The arrows were fired, not in violence or coercion, but as an offering of riches.

Each had its strings attached and hence the two were bound together. And so

they lived, each independent of mind and free of choice, but willingly bound in

union of mutual value, all in appreciation of the richness of one another’s of-

fers. And they said to one another: ”Let us call this state of mutually beneficial

union commerce.”

1 Promises, promises...

A promise is like an arrow, something fired from a human, a business, a com-

puter or other party, to another. Each one carries a claim about its originator,

to the receiver (who, by the way, has no direct influence on the content of the

promise)[1]. Each promise is aimed at a single recipient, but the promiser can

fire similar arrows at any number of targets to repeat the promise. Promises

are non-transferable and constrain only the promiser, never the promisee. Du-

plicating a promise to the same recipient has no effect, but repeating a promise

2



with a change added would be a promise broken.

These simple ideas are the basic facts about promises. From these we can

describe the world in which system administration takes place. Promises are

clearly an important part of human interaction, but why talk about promises?

Why not the concrete events which realize and fulfill promises? Surely (in our

pragmatic materialism) they are all that is of interest?

No, that is a mistake. It is a mistake that derives in part of the great Moni-

toring Myth that system management has perpetuated for many years, namely

that “system management” is all about “monitoring and event detection”. Why

is that fable a distraction? One reason, of course, is that by the time you observe

an event, it is too late to do anything about it. Moreover, there is a huge differ-

ence between what you promise and what you need to do to keep a promise

during different events and happenings.

Promises can be constant, but the recipe of actions, procedures and responses

needed to realize a promise might change from moment to moment, if the en-

vironment changes.

Now, it is true that computers cannot really promise anything. They do

not think and they do not have “free will”. The primus motor for machine

promises ultimately comes from humans who control them. But in practice,

we program computers to try to fulfill certain promises that humans decide.

For that reason, it is convenient here to abstract away these unimportant differ-

ences and to speak of machines as if they could make decisions for themselves.

All this means is that decisions can be (and often are) made separately for dif-

ferent computers as if they had made their own decisions. So why bother?

We need to be able to talk about things that are planned for, things that

are purposely avoided, as well as things that actually happen. And in fact all

of these things can be discussed in a single framework of promises, and the

probability with which they are going to be kept.

Management is a fundamentally abstract business: it is not about what hap-

pened, but about what might be. And while a small ‘folksy’ nay-sayer minority

will always decry the suggestion that an abstract idea could contribute usefully

about the real world, we must recognize that no field of study comes of age un-

til it can abstract general principles and frameworks for thinking.

Promises are much more than a theory of events, or a model for planning,

they describe long-term, on-going interactions, they are fundamentally service

oriented but they go far beyond the Service Oriented Architecture. They have

a business flavour to them. They are intuitively something we know about.

3



When we fully understand the implications of promise theory, we shall have

easy tools for management that allow us to surf the ruts of technical detail, or

dive into it at our option.

I place promises on a pedestal as my number one, Single Most Important

Idea To Grasp because they are atomic units of policy, management and most

importantly of all describe voluntary cooperation. Promises are the key to de-

scribing our lack of control over communities and assemblies of components

working together. They are a way of admitting to our most basic limitations

and working around them. This advances a principle of scientific honesty over

wishful thinking.

2 The point of the arrow is not to oblige

Why voluntary cooperation? Why not simply force people and machines to

cooperate (i.e. oblige them)? There are two reasons why the notion of promises

is superior that of obligation:

• Obligations are a problematic ideal. Obligation is never entirely enforca-

ble. Obliging someone to empty a lake with a sieve is not going to get us

far. Obliging a server to give a client access to a resource, sounds more

like an attack on its integrity than a policy decision by the server.

• Obligations oversimplify the information ‘dilemma’ in decision-making.

Obligations on an unsuspecting party can originate from many sources

and so an agent does not always have direct knowledge of what is being

required of it.

The obligation model, for all its historical precedence, is simply the wrong way

model cooperative behaviour. Promises, on the other hand, represent a polar

extreme of viewpoint from which all other viewpoints can be constructed, in-

sofar as they are realizable at all. It represents an atomic theory of computer

architecture, and promise types form its table of elements, as we’ll see below.

Promises immediately ‘solve’ the philosophical problems with obligations

because they remove the assumption of absolute guarantee, and they make

every single agent responsible for themselves. If someone promises to empty

a lake with a sieve, the recipient of the promise has the responsibility to judge

whether it is likely that the promise will be kept: it takes the risk, which is

much more reasonable than pretending to oblige the impossible. The model

forces each agent individually to confront the realistic uncertainties that are

inherent in distributed cooperation.

4



Moreover, the agent who will have to complete the task is the only one who

has the relevant information about whether it can be done. If we do away with

obligations, then all of the information required for making and completing a

promise is localized within the promising agent.

Obligations tend to distribute implementation information and requirements,

whereas promises tend to localize all relevant information.

Let’s recap, we have to grasp a basic reality: we can never guarantee what

will actually happen in any system, we can only express our intentions and

hope that all of the things we were not able to take into account will not ruin

our plans. A promise is more than an intention: it implies a best effort, but

offers no guarantees. Nothing is omnipotent, but anyone can offer a service.

Computer modellers are used to assuming that everything they decide will

come true because they have traditionally been able to build local computer

architectures with execution privileges where this could be approximated us-

ing suitable error correction techniques. In system administration we do not

have the luxury of this convenient illusion.

3 Some vocabulary and some philosophy

Let’s write down promises more formally and develop a little philosophy to

make sure that the idea of promises agrees sufficiently with our everyday un-

derstanding of the term. We need to start with a set of ‘agents’, i.e. people,

computers, components etc. which are the elements of a system capable of

making promises either implicitly or explicitly. Let’s call these a1, a2, . . . etc.

We call these agents autonomous, meaning that each agent can freely reject

any impulse or suggestion from another agent. No agent can be forced or con-

trolled against its “will”.

Note that we can think of something as mindless as a computer program

to be an agent, since it makes certain promises in terms of the functionality it

offers. We don’t bother ourselves with the problem of whether it has sufficient

sentience to be able to make autonomous decisions, because this is just a simple

model (an abstraction). Someone imparted that intelligence on its behalf, and

that is enough. We use as many or as few agents as we see fit to model a given

situation; usually, the more the better. We shall see the virtue of this below.

Next we shall need some arrows. A promise of B from a1 to a2 is written:

a1

B
→ a2.

5



which, of course, offers a simple picture, the beginnings of a network:

B

1

2

a

a

and we shall prefer this graphical form over the mathematical expression in

almost all cases, especially as the number and cardinality of the promises in-

creases. The promise body B is a description of what the promise is about. I

think it should contain two things: a promise type, which explains the subject of

the promise, and a constraint or variation, which describes the extent of what is

being promised. An agent can make promises of different types, e.g. promise

a rose garden, or promise to pay a bill. Similarly each promise of a given type

has a constraint, e.g. a rose garden of a certain size or colour, or a bill of up to

a maximum amount.

We assume for simplicity that the promise types do not overlap with one

another (this is just good housekeeping). So having promise types of a rose

garden and a rose bush would be asking for a mess (since a rose bush can be

thought of as a small rose garden). There is no problem if an agent makes

two promises of different types to another agent, e.g. promising a rose garden

and promising to pay a bill. Nor is there a problem in making two completely

identical promises, e.g. I promise to catch you if you fall and I promise to catch

you if you fall (this is the same thing). However, we shall abhor making two

promises of the same type with different constraints, e.g. I promise you will

receive a response from the web server within 2ms, and I promise you will get

a response within 4ms. This is a contradiction, or we shall say broken promise.

Now, some people might argue (and you know, this means they already

have and therefore I’m going to kill this before it gets out of hand) that it would

be okay to promise a server response within 2ms if you had already promised

in 4ms, since 2ms is better than 4ms and certainly falls within the bounds. But

this opens up a Pandora’s box of problems, not least of which is a promise

ordering ambiguity which I know is going to get us into trouble. Besides, this

is based on a prejudice: who are we to say that 2ms is better than 4ms? That

is a subjective judgement and it doesn’t work for rose gardens. If I ask for a

bush and get a garden (or vice versa), I might not be happy. Perhaps there was

important reason to ask for exactly what was asked. So let’s not even open that

box. This is why theories use models: we make up rules to avoid obvious traps

that less considered folks might fall into.

6



So, to summarize, repeating the same promise twice is okay. Promises are

idempotent: repetition confirms but they don’t add up cumulatively. A con-

tradictory promise, on the other hand, is at best muddying the waters, so we

simply say that this is bad and call it a broken promise. In principle, we might

like to disallow broken promises, but we’ve already said that we cannot force

agents to do anything, so we can’t stop them either. We know from experience

that people make all kinds of contradictory promises, sometimes to obfuscate

but often out of ignorance, and this is part of the problem that promise theory

will help us to solve. So we recognize this as bad, but we should not make the

mistake of ignoring it. Another rule to keep the theory simple:

The promise body cannot explicitly refer to the identities of agents. Only the

arrow can route promises.

As with any system, the rules we invent allow us to build ‘valid’ and ‘in-

valid’ worlds from the building blocks. These rules are very lightweight com-

pared to many formal logics: the rules will only affect the very highest meta-

levels of cooperation within a system, but these are the levels at which man-

agement often goes awry. Detail technicians do not often make mistakes, but

planning errors or architecture misunderstandings are two a penny.

Promises are not transitive in general. If a1 promises B to a2 and a2 promises

B′ to a3, then it is not true that a1 has promised anything whatsoever to a3. The

graph looks like this:

B

1

2

a

a

a3

B’

but we should not make the mistake of assuming that promises are like a flow

of communication. Promises are not like routing (although routing involves

many promises between autonomous nodes).

Last but by no means least, because promises anchor a sender to a receiver

with a directional arrow, they form networks and hence there are two kinds of

promises: promises to give and to receive. We write these using a + (give)

and a − (receive) sign. For example, to ensure a remote file copy, such as data

backup we would need two promises:

1

2

a

a
+data

−data
source

backup

7



Here, the source of the data a1 promises to make the data available to a2 (per-

haps by running an appropriate daemon and granting some access controls

(for a cfengine-like download) or by starting an rdist-like “push” of data to the

receiver ). Note, however, that this does not (and cannot) oblige the backup

agent a2 to download anything or receive the data. It must, of its own ‘free

will’ promise to receive the data. This could mean instigating a network copy

(if the copy is based on a “pull” model), or opening appropriate access con-

trols (if it is based on a “push” model). The promises are agnostic towards the

implementation details, but they encapsulate the features of the interaction.

4 Example

Let’s see how promise theory helps us to understand something we think is

obvious: the Domain Name Service. Given that promises are service oriented,

we might think that it is trivial to model this service by a single promise from a

server to each client. The promise made by the DNS server to reply to requests

is certainly important:

+DNS reply

server

client

The client, after all, makes no promise to send requests to the server. It might,

it might not, but there is no promise involved. The server, on the other hand,

makes a general promise (usually to all agents with IP addresses) to provide

information. This, in fact, involves two promises:

+DNS reply
client

server −DNS request

Here we have a promise to receive the requests from clients and a promise to

provide data in reply. Again, this is an entirely one-sided affair. This might

make us suspicious: what do these promises correspond to? Does the client

have no responsibilities in this matter?

Doesn’t the client have to send something in order to get a reply? Yes,

but forget about that. When you think at this level, you are thinking about a

8



communication protocol, not about promises. In promise theory we are way

above that level of thinking. A promise is not a message. The promise made

by the server to reply is not the reply itself, it goes beyond any single reply.

It is a responsibility to be fulfilled. In fact, Jan Bergstra of the University of

Amsterdam and I have decided to use the term commitment for a promise that

requires a non-returnable investment of resources on the part of the promiser.

That name applies here, since a DNS server undergoes some costly load in

performing its function.

Turning high level promises into low level details is part of a discipline

that helps us to understand systems from the top down. Conversely, you can

see how to replace a high level promise with many more specific low level

promises, or build high level ones from low level ones bottom-up. At the man-

agement level, we are interested in the promises, but at the technical level we

need to know how to implement them. In this case, the answer is quite easy:

a promise by the server to use data from the client can be implemented by

making sure that there is a server process with an open port 53 and appropri-

ate firewall access rules to admit requests from the client receiving the promise

(usually this is everyone, but it need not be). The promise to provide answers is

also covered by running the daemon and having updated zone files containing

the data.

Breaking a promise up into sub-parts is like procedural decomposition in pro-

gramming, but it happens at the level of goals, not procedural recipes.

The client, sure enough, has no promises to make to the server, but let us

suppose that we look at the client more realistically. What really happens is

that we have a client program (say a web browser) that needs to look up data

in the name service. There is an interloper: a local name resolver that promises

name resolution locally:

+DNS reply

+name reply

−name request

−DNS request

server resolver browser

Now it is the web browser that makes no promises, but the local resolver

promises to give some answer to the web browser and to accept its requests. In

9



all modern operating systems, this promise is guaranteed by the kernel archi-

tecture so we do not have to do anything special here. This already indicates a

number of things that can go wrong with the DNS system. Every promise is a

potential cause of failure, but let’s not get ahead of ourselves: we are not done,

because the system does not yet work.

There is no automatic connection in the promise graph above between the

promise of name resolution and a promise of DNS resolution. The resolver

can fulfill its promise by saying “I don’t know” to every request. It agreed to

heed the request, it agreed to reply, but it did not agree to forward the request

to an authoritative database in order to relay its response. We need two more

promises:

server resolver browser

−name request

+DNS reply

−DNS request

−DNS reply
+forward name request

+name reply/DNS reply

i.e. a promise by the resolver to the client forward the request to a known DNS

server, and a promise from the resolver to the client to use the reply it gets from

that source. This promise can be implemented for instance by configuring the

Solaris nsswitch.conf file or equivalent.

Notice that the guarantees are directed towards the party that is interested

in them. If we were thinking communications bindings we might think that

the promise to use or receive the DNS reply would go to the agent that sent it

(the DNS server), but the server doesn’t care whether we use the reply or not. It

has discharged its responsibilities by simply replying. What the promise says

is that the resolver should not merely ignore the reply but use it in formulating

a reply to the client.

You might think that I am being deliberately obtuse here, and you would

be right. In order to understand how independent (autonomous) components

need to be bound together in cooperation, we, must follow this discipline of

breaking things down into interactions between dumb components and their

promises. You are probably surprised at how complicated the DNS system ac-

tually is. We tend to think of it just as a simple server process, or a resolv.conf

10



file, but these are just a couple of the requirements to fulfill the promises above.

Moreover, we’ve only just started to model the DNS system. What about the

promises that are needed to model master and slave servers?

Currently the client in this example does not promise anything, because it

is only a casual end-user. DNS service provision is not contingent on what the

client wants. The matter is different however if we consider the interaction

between a master server and a slave server. There a master has to promise its

data to the slave and the slave has to promise to use the data, as well as provide

the same kind of service as the master. All this requires the coordination of

even more promises.

When we add all of these things we end up with this picture

server resolver browser

−name request

server
slave master

+DNS reply
−DNS request

+zone
−zone

−DNS reply
+forward name request

+name reply/DNS reply

Now we start to see a number of things that can go wrong, but also a certain

amount of redundancy in the graph. The promises allow us to see where things

can go wrong if one of the promise arrows does not deliver on its promise.

The point is not that we could not have figured this out without the promises,

but that we can start from the simplest drawings, without knowing the details

of BIND or gethostbyname() or different operating systems etc.; we have

predicted all of the potential problems by sketching out the main agents and by

considering what kinds of promises are needed to get them working together.

5 The art of promising

Since I started to think about promises, I have noticed just how easily and ca-

sually people make promises that they have no chance of being able to fulfil.

Given that we make promises so lightly, none of us should be surprised that

systems involving human beings fail from time to time.

The example above shows how the discipline of decomposing into agents

and promises allows us to see how a system works. Even in the simple exam-

ple you probably saw something that you likely would have taken for granted,

11



even without getting “down dirty” into configuration files etc. One of the

strengths of this way of thinking is that it does not let you take things for

granted.

This is a useful planning discipline: each time you draw a component, or

agent, you should ask: why should I expect this agent to behave as I want it to?

Then you should turn that desired behaviour into a list of promises the agent

needs to make to ensure the behaviour you want, bearing in mind that agents

do know about each other’s decisions or promises, unless they are a recipient

of promises.

This way of thinking might seem like a small step, but its implications are

huge: it is forcing us to ask what are responsibilities of each component of the

system? We must confront every expectation of behaviour, not just the ones

that we think are big and important. Not just the components for which there

is an O’Reilly book. The entire chain of responsibility begins to appear as we

start thinking in these terms. Of course, we shall still want to suppress many

of the details. Every promise that we need to make a distributed system work

is a promise that can potentially be unreliable. It is a potential mode of failure.

This allows us to plan redundancy.

But there is something else to be said about promises: they allow us to

understand the real source of fatal attraction between independent decision-

making bodies: commerce.

6 Promise of riches

People, systems, or businesses work together only when it is beneficial to them

to do so. There is profit to be had in delegating (or “outsourcing”) to a specialist

or building on others’ successes (like the DNS).

In fact, each agent can attach a value to the promises it either makes or re-

ceives. An exchange of promises then becomes a currency for trade. “I promise

you X if you promise me Y ”, and vice versa. No dollar payment necessarily

has to take place (though one can easily include money in the battery of pos-

sible promises). One could trade access to web services for an accurate time

service, or a hotel could trade network service for all guests for cheaper rooms

for its employees. A whole economic network of commerce and cooperation

can be understood in terms of the promises that are made.

12



When promises do not go in both directions, a relationship is in danger of

falling apart and we should be suspicious of single promises that are not bal-

anced by a counter-promise. It is a sign of potential instability.

For example, in a normal trade interaction one kind of goods is exchanged

for another in such a way that the individual agents’ personal valuations of the

goods measure the values to be equal. This exchange is easy to understand. If

one party stopped promising goods, the other would soon stop too.

A less obvious example is what happens when we recycle waste. Users of

glass, paper, metals etc promise the collection company to separate these ma-

terials into appropriate containers to be collected by an appropriate company.

The company promises us that it will remove the used materials and do some-

thing productive with them. The value to us:

Vuser

(

user
separate

→ collector

)

of that promise to separate the goods is negative – it costs us some effort to do

this, so it is unclear at this stage what we are getting out of this deal. The value

of this promise to the collector, on the other hand:

Vcollector

(

user
separate

→ collector

)

is a saving. This separation of materials will dramatically reduce their costs

in reclaiming materials from waste and this could be the difference between

making a profit and not. What about their promise to us?

Vuser

(

collector
collect
→ user

)

The fact that they collect our waste is valuable to us. If they didn’t we would

have to pay someone to do the job, or do it ourselves at much greater cost. This

much is obvious. There is also some moral value to this, not hard cash but a

feeling that we are doing something good. Such abstract currencies should not

be underestimated where humans are involved. And finally, the value of the

promise to them is the recycled value of the materials themselves:

Vcollector

(

collector
collect
→ user

)

It is easy to see that there is a flaw in this model. Suppose users do not

bother to separate their waste, what is going to happen? The garbage collectors

do not inspect our bins for transgressions and refuse to take the garbage if we

13



don’t separate, so the economic threat of non-compliance with our promise

to separate is not that strong. In practice most people do this out of a sense

of moral gain or civic duty. This is a fine example of voluntary cooperation

for abstract currency, and it is an effect that is more common than hard-line

economists might think. But we see a vulnerability in the thinking.

Why are we looking at promises? Why not goods or services exchanged?

Well, business plans are based on the potential value of promises, not on actual

transactions. Promises do not necessarily go away when they are fulfilled, e.g.

when someone collects the trash. Promises persist and what is interesting to us

is how stable cooperation can arise and remain. Promises allow us to discuss the

value of stable and persistent (business) arrangements, not merely to address

fire-fighting measures.

The stock market itself also values shares and even currencies on the promise

of companies and economies rather than their physical assets. It is all about

how much someone might promise to pay (hypothetically). It is all abstract.

Businesses do this kind of thing all the time, of course, but is this any kind of

scheme for computers?

We already have one premier example of voluntary cooperation between

autonomous systems (at a scale larger than businesses) and that is peering be-

tween service providers, i.e. mutual promises to transport packets between

each others’ networks. This is not a traditional computer science relationship

of event handling. Indeed, recent studies showed that the value to companies

from peering is less to do with the dollar value of the transmissions. It is the

promises themselves that are considered to be of value, even if no packets are

actually exchanged. It is a matter of being seen to be connected to the right

people[2, 3].

Promise valuations answer the “why” question: why would the parts of a

system choose to cooperate voluntarily?

It turns out that traditional economic models, like the Principal-Agent model

of contract economics, can be formulated very easily in promise theory (see the

coming Handbook of Network and System Administration, eds. J. Bergstra

and M. Burgess, Elsevier 2007). This economic interpretation, based on a com-

mon currency, has led some reviewers of my work to claim that:

• Promise theory is just game theory.

• Promise theory is just the Service Oriented Architecture.

14



Both of these claims are false, but both are rooted in correct observations:

namely that promises combined with agent valuations lead to competitive game

scenarios in some cases; and the service-like nature of a promise (the promise

of service) between agents is superficially like interacting web services, though

far more general.

Certain constellations of promises lead to economic games, and promis-

ing certainly involves service oriented thinking when realizing promises. But

promises can exist and be analyzed before anyone has begun to fulfill them,

as a management planning exercise. All you need is a pen, some paper, and a

thinking cap. Sometimes the promise of something is enough to make some-

thing actually happen, e.g. in peering agreements. So it is more than the con-

crete realization of services through the web in SOA. Moreover, in SOA you

might remember to model the client and server actions, but you would not

consider to model the access control to that service as part if the model (the

“receive” promise). Thus you would still be leaving out essential pieces of the

puzzle.

7 Pansies in the rose garden?

People who have not grasped the essential point being made have said to me:

why would you want to do away with the certainty of control and replace it by

this wishy-washy federated pansy-boy nonsense?

This is missing a point. I am not necessarily advocating this as a solution

(such things are a matter for policy decision, although wherever humans are in-

volved human-rights groups tend to prefer this kind of thing), I am saying that

it is inevitable. We are already there. The so-called “certainty” of “control” that

we have partially enjoyed in the past was only an illusion that worked under

very special circumstances, and those circumstances are rapidly evaporating in

the environment of the Internet.

To effectively remove any doubt about cooperation, to impose laws etc, so-

ciety must be able to retain the option to wield omnipotent, irresistible force

against potential transgressors. Guess what, we can’t. Military dictatorships

do this to a reasonable approximation, but still imperfectly, as dissidents prove.

The current situation in Afghanistan and Iraq shows how fragile our taken for

granted lawfulness is. What we can try to do is business, commerce.

You can huff and puff or pray or beg, or jump up and down, shoot (only in

Texas) or kick your servers, and even crash a plane into a building, but none

of these things will force the electricity to come out of a broken power line. We

15



cannot oblige the electricity company to prevent this from happening: it is not

possible. The electricity company can promise to do its best. And that is as

good as it gets.

Well, you say, this is an extreme example to be sure. We can certainly force

people to pay their bills. You can’t. At best you can ask the police to inter-

vene, or try to sue them, each of which are voluntary acts by you which in no

way compels them. These threats might help to persuade them, but that is an

entirely different thing. Without their cooperation, you can only try to punish

their non-compliance.

The mistake people make is in assuming a causal connection between event

and effect, when none is present. Someone can pay a bill without ever having

used a service, or never pay in spite of using a service. There is absolutely

nothing linking these actions other than voluntary cooperation. The fact that

service and remuneration promises are strongly correlated, i.e. that they usually

occur together is what makes the collaboration a potential economic success:

“when you do X , I’ll do Y ”. There is thus a kind of natural selection taking

place, of an economic variety.

I ask you, as a reader, to stop and think about this, because if you don’t

“get” this simple idea, that we are essentially powerless to force anyone to do

anything, then the rest of this diatribe will be lost on you and you will be stuck

in the mythological Control Age.

At best we can put together an irresistible portfolio of services and incen-

tives to coax autonomous parts of a system to work together. This could be a

complicated matter, understanding what makes people tick. Welcome to the

world of commerce. Understanding how this works requires network science,

it requires us to know how relationships are held together in a web of in-

teractions. Promise theory encourages us to draw this web as a network of

promises, and then to attach valuations of each promise by each agent to un-

derstand their perceived gains or losses.

Today, much business is carried out by voluntary cooperation and decen-

tralized operation. The main tool for this is the Service Level Agreement (SLA).

This is a document that essentially contains bundles of mutually agreeable

promises by two parties. To make the agreement, both parties then promise

to honour their respective promise bundles. The deal is easily expressed in

terms of promises between the two parties, and potential problems or broken

promises. This is not a nice predictable, controllable regime; it is a mess, but a

self-sustaining mess.

So, I beg your pardon, I didn’t put the thorns and the weeds in the rose

16



garden. They are just getting harder to control, and that means we need to

understand the real ecological problem of system management. Kings and dic-

tators are out of fashion. Blame it on the Internet.

8 Pointing to a new direction

When I started writing cfengine, no one had much of an idea about configura-

tion management or how the world would look in the coming years. I drew my

inspiration from a combination of a federated model, existing tool syntax and

an intuition about how a declarative syntax could sieve out the golden rules

from the irrelevant gravel of loops and decisions within imperative scripting

languages. The initial effort was about user-friendliness, i.e. simplifying the

appearance of the problem. However, as the years progressed, it became clear

that there was a need to build in safety features and principles of operation to

avoid problems and have guarantees.

Later, dissatisfied with the ad hoc discussions and opinions surrounding

cfengine and other configuration management tools, I wanted a language for

reasoning about systems in a way that would include the essential princi-

ples that cfengine endorses, as all previous modelling techniques make as-

sumptions about obligation that cfengine refuses to make. Only then would

we be able to discover whether a given configuration management system

was right/wrong, better/worse, to be able to compare different ideas and find

faults and weaknesses in the existing implementations.

I assumed that this language, whatever it was, would give some insight into

how I could tidy up the evolutionary mess in cfengine’s language interface,

without sacrificing the principles that have made it relatively safe and reliable

over the years. Little did I know that promise theory would be good enough

to define it completely, and that it would unify many management different

issues under a common framework.

Promises are a goal based approach to modelling, mostly order indepen-

dent, which fits cfengine’s goal based approach to configuration, but it also

offers some insight into how we can understand sequential changes. Even im-

perative, sequences of actions are compositions of many intermediate goals,

hence we can also represent time ordered sequences in this way too. Con-

versely, unnecessary time ordering is suppressed.

At about the same time that I was developing cfengine, two researchers

Marriot and Sloman were pursuing a related idea at Imperial College in Eng-

land: policy based management, a term I later came to use in deference to them.

17



Whereas I started with a prototype ‘autonomic’ system, they developed ideas

first and only later began to implement a kind of language for policy based

access control. They have explored many alternatives that are unlike promise

theory. How do promises relate to these? Most of them are about obligation.

Modal logic was one possibility that was explored as a language. There

are many kinds of logic. Deontic logic is the logic of obligations and has been

proposed for that reason, but only with reservations as it has many problems.

I have already explained why obligations are bad.

In case you are thinking that every promise implies an obligation, let me

persuade you otherwise. An obligation means that you are not free to with-

draw a promise once made (an obligation is half of a threat). A promise is a

unit of voluntary cooperation.

9 Aspects, bundles, genes and ontologies

No, not oncology nor odontology. Ontology is a form of knowledge classifi-

cation and management, which is becoming important for mapping out infor-

mation systems including policy and requirement engineering. The designers

of the Semantic Web are studying this, for instance.

It is also something for promise theory. The reason is straightforward. How

shall we decide on a lingua franca for promises, i.e. the list of promise types

and their parameters? This is somewhat analogous to looking for the genetic

code, (which represents a set of promises for making protein parts).

Alva Couch[4] and I proposed recently an approach to management build-

ing on the idea of promises. Because promises are very low level objects (re-

member they form our most elemental, atomic theory of management) it could

be hard to understand higher level concerns in terms of promises without a

way of organizing them, just as it would be difficult to understand the func-

tioning of a motor car at the level of atoms, or an eyeball at the level of genes.

Aspects are a way of organizing promises into distributed bundles and con-

stellation.

The philosophy of aspects has entered into computing in several ways over

recent years. The idea is simple and has to do with convenient separation of con-

cerns. It is universally agreed that the ability to keep logically separate issues

separate is a desirable goal in organizing systems. The trouble is that it is not

always clear how this can be done, especially when other philosophies are in

play. Object orientation, for instance, can propose one model for organizing

a computer program, only to find that certain issues “cross-cut” the OO class

18



model. For example, suppose you built a number of class containers to manage

Text, Image and Style Sheet objects. All of these potentially contain colour in-

formation. An aspect of web pages that affects all of these is “colour contrast”.

If we wanted to increase or decrease the contrast on a web page this would

require coordinated changes in all of these ‘separate’ classes for text, images

and style. Contrast is therefore an aspect that is distributed across several OO

classes.

In a similar way, aspects that affect the functioning of a collaborative en-

terprise can be distributed across many agents. These agents will then have

to promise to collaborate, and share relevant information, if they are to imple-

ment the collective wish to coordinate their ‘contrast’ or whatever property we

are interested in. This is how businesses work, as long as it is economically

viable.

If we are astute we choose promises so that they do not have overlapping

concerns, because then we would be able to compile any kind of aspect of

system management down into a number of cleanly defined, obviously non-

contradictory promises. But a promise to have a certain colour value can ap-

pear in any number of separate promise bundles (representing text, images

etc), thus aspects are also simply bundles that cross-cut others. Bundles can

overlap, but not atomic promises.

If two promise types could overlap there is clearly the danger that one

could end up with broken promises in non-obvious ways (making manage-

ment harder), so as long as we can find a clean ontology of basic promise types

to cover the whole spectrum of aspects we need to govern, then it will be pos-

sible to find errors of design trivially by counting promises of a certain type.

Imagine how awkward it would be if we had genes that switched on contra-

dictory processes in our bodies. Such genes would not survive long in the

selection pool.

Coming up with such a taxonomy of promise types is a challenge in its

own right. Promise types are not uniquely definable. Anyone could come up

with their own set of “genes” and build a whole new chemistry of cooperation.

This is why we need ontologies to understand these different chemistries. On-

tologies will bring back logic into the set of tools for designing management

systems, but promises themselves are graphs and there is also logic in the com-

position of the graph. Ultimately, we see how promise theory can meld the

three essential ingredients of a stable network of cooperative behaviour: who,

what and why.

19



10 A rose garden perhaps

Sometimes it takes years to make the crucial observation that reveals the sim-

ple and obvious essence of something. I believe that promise theory has this

potential for all kinds of management. It is both simple, easy to grasp and

powerful. With a few tools, it could be a powerful modelling framework. I am

so convinced that I am basing cfengine 3 entirely on this model.

Apart from being a promising theory, not least for pun-loving archers, it

is an easy theory to understand. You don’t need a degree in mathematics to

be able to get something out of it. Conversely, with a degree in mathematics,

you might be able to make some exciting discoveries. As an intuition aid, it is

helpful. Moreover, the principles unveil a simplicity behind the potential com-

plexity of network activity, provided you don’t violate the rules of autonomy.

When people make mistakes thinking about promise theory, it is usually in

assuming the promises are obligations. This seems to be a hard habit to break.

Complexity in management arises from networking effects, just as the com-

plexity of biology is in networking not genes. It is the ecological (economic)

thinking that is truly challenging. Promises help us to unravel this by going

back to primitive, elemental assumptions. Perhaps DNA networks too can

be thought of in terms of the promises they make. Genes give us different

promise types, alleles give different promise variations, and the networks of

cells making such promises form organisms. What promises are necessary to

make self-replicating systems and hence drive evolution?

Finding a simple theory is never easy. It is always easier to make something

complicated. One of the strengths of the simple theory of promises is that it

separates the identities of the agents from the promise bodies being made. This

simple feature alone (which we can call a design feature of the model) avoids

countless problems of recursive logic that have plagued previous attempts. If

we can hold to that discipline, management does not have to be difficult.

The dialogue between theory and practice can now be drawn in pictures

and made just as formal or as informal as suits your taste. If promises are

adopted as a path towards getting system administration into a more engi-

neering frame of mind, then I will be more than pleased.

And so they all promised to live cooperatively and economically ever after.

FOR FURTHER INFORMATION SEE HTTP://RESEARCH.IU.HIO.NO

20



References

[1] Mark Burgess. An approach to understanding policy based on autonomy

and voluntary cooperation. In IFIP/IEEE 16th international workshop on dis-

tributed systems operations and management (DSOM), in LNCS 3775, pages

97–108, 2005.

[2] W.B. Norton. The art of peering: The peering playbook. Technical report,

Equinix.com, 2001.

[3] W.B. Norton. Internet service providers and peering. Technical report,

Equinix.com, 2001.

[4] M. Burgess and A. Couch. Modelling next generation configuration man-

agement tools. In Proceedings of the Twentieth Systems Administration Confer-

ence (LISA XX) (USENIX Association: Berkeley, CA), pages 131–147, 2006.

21


