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Abstract

Background: It is necessary to consider myopic optic disc tilt as it seriously impacts normal ocular parameters.
However, ophthalmologic measurements are within inter-observer variability and time-consuming to get. This study
aimed to develop and evaluate deep learning models that automatically recognize a myopic tilted optic disc in
fundus photography.

Methods: This study used 937 fundus photographs of patients with normal or myopic tilted disc, collected from
Samsung Medical Center between April 2016 and December 2018. We developed an automated computer-aided
recognition system for optic disc tilt on color fundus photographs via a deep learning algorithm. We preprocessed
all images with two image resizing techniques. GoogleNet Inception-v3 architecture was implemented. The
performances of the models were compared with the human examiner’s results. Activation map visualization was
qualitatively analyzed using the generalized visualization technique based on gradient-weighted class activation
mapping (Grad-CAM++).

Results: Nine hundred thirty-seven fundus images were collected and annotated from 509 subjects. In total, 397
images from eyes with tilted optic discs and 540 images from eyes with non-tilted optic discs were analyzed. We
included both eye data of most included patients and analyzed them separately in this study. For comparison, we
conducted training using two aspect ratios: the simple resized dataset and the original aspect ratio (AR) preserving
dataset, and the impacts of the augmentations for both datasets were evaluated. The constructed deep learning
models for myopic optic disc tilt achieved the best results when simple image-resizing and augmentation were
used. The results were associated with an area under the receiver operating characteristic curve (AUC) of 0.978 ±
0.008, an accuracy of 0.960 ± 0.010, sensitivity of 0.937 ± 0.023, and specificity of 0.963 ± 0.015. The heatmaps
revealed that the model could effectively identify the locations of the optic discs, the superior retinal vascular
arcades, and the retinal maculae.
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Conclusions: We developed an automated deep learning-based system to detect optic disc tilt. The model
demonstrated excellent agreement with the previous clinical criteria, and the results are promising for developing
future programs to adjust and identify the effect of optic disc tilt on ophthalmic measurements.

Keywords: Fundus photographs, Myopic tilted optic disc, Deep learning algorithm, Automated computer-aided
recognition

Background
Tilted discs can be classified into two groups based on
etiology: congenital tilted disc syndrome, which is an
anomaly of the eye and is characterized by inferior or
inferonasal tilting of the optic disc [1, 2], and myopic
tilted disc, which is an acquired change related to pro-
gression of myopia [1]. Previous studies have illustrated
optic disc tilt development and temporal crescent forma-
tion over time, and disc tilting develops in the relatively
early stages of mild myopia in some patients.
The prevalence of myopia has increased and is ex-

pected to continue increasing globally [3]. The expected
population of individuals affected by myopia is reported
to be 4758 million by 2050 [3]. The prevalence is signifi-
cantly higher in countries of the Asia-Pacific region
compared with other regions and is dramatically increas-
ing in East Asia [3, 4]. Consequently, the clinical signifi-
cance of myopic optic disc tilt might also be increasing.
Optic disc tilt can lead to significant changes in optic

disc appearance [5–7] and affects ocular parameters
used in the majority of ophthalmic devices, such as op-
tical coherence tomography [8, 9] and visual field ana-
lyzers [10–12], which are the most widely used devices
in ophthalmology. However, it is difficult to obtain nor-
mal measurement results for patients with tilted optic
discs using most ophthalmologic instruments, and the
ophthalmic measurements in these patients are inter-
preted based on the supervising physician’s discretion.
Medical image analysis that uses deep learning algo-

rithms has recently gained attention due to the variety of
technological applications, including image recognition
and speech recognition, as well as medical applications
[13, 14]. Numerous studies have used deep learning al-
gorithms to characterize and diagnose several diseases
from fundus images [15–18]. However, to the best of
our knowledge, there is limited research that has focused
on tilted optic discs using deep learning, even though it
is significant for ophthalmologic diagnosis systems or
disease progression recognition systems.
To construct an ophthalmologic automatic diagnosis

system or disease progression recognition system, it is
necessary to consider myopic optic disc tilt as it ser-
iously impacts normal ophthalmological measurements.
This will be of greater clinical significance with the in-
creasing population of myopic patients. The first step in

developing a technology for a fully automated diagnosis
system is to automatically recognize the presence of a
tilted disc. This can be the basis of an automated clinical
decision support system that enables calibration of the
tilted disc to distinguish abnormal from normal ocular
measurements.
Thus, this study aimed to develop a fully automated

system for detecting tilted disc in fundus photographs
using deep learning algorithms. This system can provide
a framework for deep learning-based research that is fo-
cused on other tilted disc-related diseases. We evaluated
the algorithm’s ability to differentiate between subjects
with from those without tilted optic discs under various
experimental settings. Activation map visualizations are
also provided and show which parts of the fundus im-
ages are related to the algorithm decision process.

Methods
This study was performed at a single center and was
performed in accordance with the tenets of the Declar-
ation of Helsinki. This study was approved by the Insti-
tutional Review Board of Samsung Medical Center
(Seoul, Republic of Korea, Approval No.: 2018–11-018).
Informed consent was waived for the patients in this
study.

Patients
Nine hundred thirty-seven fundus photographs of nor-
mal patients and patients with myopic tilted discs were
collected from Samsung Medical Center between April
2016 and December 2018. Fundus photographs were ac-
quired using a TRC-50IX digital camera (Topcon,
Tokyo, Japan) or Kowa nonmyd 10 megapixel fundus
camera (Kowa, Torrance, CA). Enrollment criteria for
myopic tilted discs were as follows: an optic disc with a
ratio of minimal to maximal disc diameter of 0.75 or less
on the fundus photograph, as described in previous
studies [19, 20], a white semilunar patch of sclera adja-
cent to the optic disc [21–23], and − 0.5 diopters (D) or
more of myopia.
Only temporally tilted discs were considered myopic

tilted discs, and discs tilted in another direction, includ-
ing nasally, superiorly, or inferiorly, were excluded to
avoid including tilted discs with a congenital etiology.
Tilted discs with axes beyond 45 degrees of the vertical
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meridian were also excluded. Normal controls had nor-
mal optic disc shapes without semilunar patches of
sclera adjacent to the optic disc.
Fundus photographs with poor image quality that

could not be used for analysis were also excluded. Exclu-
sion criteria for both patients with myopic tilted discs
and healthy controls included previous eye trauma or
eye surgery and any ocular pathology that may affect
fundus photography, with the exception for refractive
error. Patient demographics and refractive data were col-
lected from medical records. Figure 1 is an illustration of
included and excluded anatomical findings of the optic
disc.

Data preprocessing
The original dataset included various image sizes be-
cause of different device settings. Several images were of
both eyes in one photograph; therefore, we split those
images so that each side represented one of the eyes.
Some of the original images also contained text informa-
tion about the patients; this information was cropped to
optimize extraction.
To obtain a fixed size of an input image for training,

we resized all the images to a resolution of 524 × 400
pixels. However, such image resizing could lead to dis-
tortion of the aspect ratio (AR). Inevitably, in regions of
the optic disc, locations of objects in the fundus could
be distorted. Because the angle between the disc and the
other retinal sections is correlated with disc tilt angle,
simple image resizing could affect deep learning model
training [24–26]. Consequently, another preprocessing
method was applied to resize images to try and preserve
the AR of the original images. The image preprocessing
for the AR-preserving dataset included the following
steps: (1) crop the black borders of both the left and

right sides from the fundus images to fit the exact area
of the retinal fundus; (2) calculate the AR distribution of
the border-cropped dataset; (3) select the most common
aspect ratio from the distribution; (4) preserve the ori-
ginal height of each image and either crop or zero-pad
the left and right sides to establish it as the selected AR;
(5) resize each image to a resolution of 524 × 436 pixels
for the AR-preserving dataset.
Figure 2 is an overview of data preprocessing for the

AR-preserving dataset. Steps (1)–(3) above are illustrated
in Fig. 2b. The original fundus images are composed of
the actual fundus portion and the black border on both
the left and right sides. Thus, we implemented a method
that automatically crops the black background on both
sides based on the intensity of the middle row of each
image because the background has low intensity. Figure
2c illustrates step (4) to place the background-cropped
image into the template. Finally, we resized the template
image by preserving the AR of the original image, as in
Fig. 2d.

Deep learning model training
In this study, we used K-fold stratified cross-validation
[27, 28] to evaluate the performance accuracy of our
proposed model so that each fold has the same distribu-
tions of classes as the whole dataset.
The preprocessed input dataset is divided into K non-

overlapping subsets balancing the number of images per
class. K-1 subsets are used for training, and the
remaining set is used for validation. This process is re-
peated for all K partitions. There were several cases for
which we collected multiple fundus images from a single
subject. Those cases had inconsistent clinical imaging
findings since we collected images from both eyes and
on different dates. We split the dataset into 5 subsets

Fig. 1 Illustration that shows the included and the excluded anatomical findings of the optic disc. a, a representative myopic tilted optic disc
(included in the study); b, nasally tilted disc (excluded from the study); c, vertically tilted disc (excluded from the study); d, obliquely tilted disc
(excluded from the study)
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with respect to the patient IDs so that data with the
same ID would not be distributed to both training and
test sets. The dataset was split patient-wise according to
the proportion of 0.6:0.4 for normal and abnormal class
across each fold.
The images of the training dataset were augmented by

mirror flipping, brightness control, and intensity control
to enhance the size and quality. Since regions in the fun-
dus have bilateral symmetry, we flipped some images
horizontally. We also assigned lighting bias with a value
between 0.8 and 1.2 and increased the pixel values in
range of 0–4. Even though these transformations are
among the most common for image classification prob-
lems, we cannot ensure that the labels of the original im-
ages are not altered. Therefore, augmentation options
had to be carefully estimated, and the generated images
were observed by clinicians manually. Consequently, the
amount of training data was increased by 50 times after
augmentation.
The input dataset included RGB images with a range

of 0–255 pixel values for each RGB channel. We used
global centering for the datasets by calculating and sub-
tracting the mean values per pixel of the training data
across all the color channels. Pixel-wise mean subtrac-
tion allowed the distribution of pixel values to be cen-
tered at zero [29, 30]. Next, each channel was
normalized to the range of 0–1 [31, 32]. Both the simple
image resized dataset and the original AR preserved
dataset were prepared following the procedures de-
scribed above.
GoogleNet Inception-v3 architecture was implemented

as a base model [33]. The model was initialized by the
ImageNet pre-trained model [34, 35] and fine-tuned
with our datasets [36–38]. The weights of the pre-
trained model were used to initialize each layer of the
model and were updated as training proceeded. The per-
formance of this algorithm was compared with that of a
human examiner, who is an expert in identifying myopic
disc appearance. Areas under the receiver operating

characteristic curves, sensitivity, and specificity were
computed for each of the models [39–41].

Results
Nine hundred thirty-seven fundus images were collected
and annotated. Among those, 397 images were from eyes
with tilted optic discs and 540 images were from eyes
with non-tilted optic discs. A total of 509 subjects par-
ticipated in this study. The mean age in the cases with
myopic tilted disc was 10.8 (standard deviation, SD = 3.5;
range, 1–55) years, and that in normal cases was 10.3
(SD = 5.2; range, 2–70) years. There was no statistical
difference in age between the two groups (p = 0.45).
Mean spherical equivalent refraction (SER) of the
cases with tilted optic discs was - 5.57D ± 3.74D in the
range of − 19.5 to 3.5D, and the mean SER of cases with
non-tilted optic discs was − 1.17D ± 1.76D in the range
of − 11 to 4D.
Training was performed for 50 epochs for each experi-

ment, and a mini-batch of 16 was used. We achieved the
best fine-tuning result with He initialization with normal,
the Adam optimizer [42], a 1e-4 learning rate, and a 1e-3
learning decay rate [43, 44]. The dropout rate was set at
50% [45]. Categorical cross-entropy was used as a loss
function for model training and validation. Our implemen-
tation incorporated the Keras and Tensorflow frameworks.
Table 1 summarizes the performance of the deep

learning model. Two aspect ratios were compared for
each dataset to assess the simple resized dataset and the
original AR-preserving dataset. Areas under receiver op-
erating characteristic curves (AUCs) of the models using
the simple image resizing (0.960 ± 0.017) were better
than those that used preprocessing for original aspect ra-
tio preservation (0.927 ± 0.083). The impact of augmen-
tation was also evaluated. The AUCs were higher in the
models that used 50 times the augmentation than in
those that used the non-augmented dataset for both
ARs. We found the best results when using the simple
image resizing and augmentation, as follows: an AUC of

Fig. 2 Overview of data preprocessing for the AR-preserving dataset. a, data cleansing; b, cropping the black border area and determining the
aspect ratio distribution of the actual fundus area; c, cropping or zero-padding while keeping the height intact; d, resizing each image to a
resolution of 524 X 436
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0.978 ± 0.008, an accuracy of 0.960 ± 0.010, sensitivity of
0.937 ± 0.023, and specificity of 0.963 ± 0.015. Figure 3
shows the mean receiver operating characteristic curve
for the 5-fold cross-validation results of the best models.
Our model generates both a classification result based

on the presence of the tilted optic disc and a heatmap
that highlights the location of focus of the deep learning
model. We used the Grad-CAM++ [46], which is a gen-
eralized visualization technique based on gradient-
weighted class activation mapping [47], to generate the
heatmaps. This is a powerful tool that can be used to
identify visual features in input images that help inter-
pret the results of the trained model. The generated
heatmap is a single-channel image whose intensity
values are normalized. The last convolutional layer from
GoogleNet Inception-v3 was used to designate a gradi-
ent layer of the activation map. Figure 4 shows the
Grad-CAM++ heatmaps and the corresponding original
input images. When the AI model classifies an input
image as an abnormal case, it focuses on the optic disc
and retinal maculae, as illustrated in Fig. 4a (true posi-
tive) and c (false positive). In contrast, when it identifies
an image to be a normal case, the heatmap highlights

the wider area around the optic disc, often with superior
retinal vascular arcades, as in Fig. 4b (false negative) and
d (true negative). Accordingly, for images with the same
prediction results, the model concentrated in similar
areas and shapes to the heatmaps. However, it was diffi-
cult to understand why the model pays attention to
those areas in the incorrectly classified cases.

Discussion
In this study, we implemented and tested a deep learn-
ing approach to detect optic disc tilt using fundus pho-
tographs. We demonstrated that the proposed algorithm
showed excellent agreement with the case definition of
optic disc tilt in this study.
The algorithm showed reliable results for tilted optic

disc classification (Table 1). Conventionally, the role and
impact of image size have been emphasized, as has
consistency in aspect ratio (AR) of a dataset maintaining
intact shapes of objects of interest, which is crucial for
accuracy [25]. In this study, we established a process to
resize the dataset while preserving the original AR. How-
ever, the performance of the model showed unexpected
results. Using the simple image resizing increased the

Table 1 Cross validation results of the proposed models for myopic tilted discs

Dataset Area Under the Curve Average Validation Accuracy Sensitivity Specificity

AR Preserved 0.927 ± 0.083 0.910 ± 0.010 0.852 ± 0.082 0.916 ± 0.081

AR Preserved × 50 0.939 ± 0.010 0.921 ± 0.011 0.816 ± 0.054 0.935 ± 0.026

AR Distorted 0.960 ± 0.017 0.920 ± 0.013 0.867 ± 0.028 0.941 ± 0.015

AR Distorted × 50 0.978 ± 0.008 0.960 ± 0.010 0.937 ± 0.023 0.963 ± 0.015

Fig. 3 The mean receiver operating characteristic (ROC) curve derived from the stratified 5-fold cross-validation and the area under the curve
(AUC) of the deep learning myopic tilted disc algorithm
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scores compared with using the original AR preserva-
tion. Therefore, we proposed that preprocessing for ori-
ginal AR preservation might impact the deep learning
model training for feature extraction, which further im-
pacted the accuracy in a negative way.
Our deep learning approach exported the heatmaps to

visualize the feature maps to generate outputs from the
activation maps and determine the presence of tilted
optic disc. In this study, Grad-CAM++ visualization re-
vealed that the models were able to identify the location
of the optic disc in most photographs, even though the
models were trained without additional information
about anatomical locations. The model seemed to not
only highlighted the optic disc, but also traced signifi-
cant retinal sections such as the superior retinal vascular
arcade and the retinal macula. One interesting finding
was that the heat map revealed difference between the
two classes. The heatmap showed a ring-shaped region
along the rim of the disc for cases predicted as negative
(Fig. 4b and d), while it showed a round shape for cases
classified as abnormal (Fig. 4 a and c). The model
seemed to be focusing on the superior retinal vascular
arcade for most of the abnormal cases even when the
prediction was false. Meanwhile, the retinal macula was

highly regarded in some of the cases with a positive pre-
diction. Importantly, those retinal sections play a signifi-
cant role in interpretation of the tilted optic disc by
clinicians. Thus, we expect that heatmap visualization
can help clinicians understand the result of the deep
learning model [48]. However, interpretation of Grad-
CAM++ visualization is subjective. We cannot entirely
trust the heatmaps to locate anatomical findings. The
primary goal was to demonstrate if the machine learning
approach can distinguish myopic optic disc tilt in the
fundus image. Our approach used weakly annotated data
and tried to identify the visualized area used by the AI
for the decision. Therefore, further research is needed to
verify the relationship between interpretation results and
actual ophthalmological anatomy. A segmentation-based
future study will help provide clear interpretation.
Developing an algorithm that automatically discrimi-

nates disc tilt should precede development of an algo-
rithm that corrects significant effects of disc tilt on
ophthalmic instrumentation. Given the rapidly increas-
ing myopic prevalence [3, 4], these types of algorithms
can be integral parts of automated ophthalmologic diag-
nostic programs. Combined alteration of the optic nerve
head in myopic optic disc tilt can vary and can include

Fig. 4 The confusion matrix of representative heat maps. a is correctly classified as myopic tilted disc images; b shows abnormal cases where the
classifier was predicted as normal; c shows the opposite; d is correctly classified as normal optic disc images. Note that we used a threshold of
0.5 to generate the prediction outputs and heatmaps
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stretched vertical and/or horizontal dimension, with lar-
ger and shallower cups [49]. The degree of tilt and direc-
tion of disc tilt can also vary [49]. Nakazawa et al.
reported one nasally tilted optic disc among 10 patients
with mild or moderate myopia [22]. Although a peripa-
pillary crescent developes gradually in the optic disc in
most myopic patients [22], it is not a pathognomonic
finding for myopic optic disc tilt. However, this study
only considered temporally tilted discs with white semi-
lunar patches of sclera adjacent to the optic discs as my-
opic tilted discs, and discs tilted in other directions were
excluded. In addition, an optic disc with a ratio of min-
imal to maximal disc diameter of 0.75 or less was
regarded as a definite tilted disc and was included in this
study. As we mentioned earlier, appearance of the tilted
disc may vary, and the definition varies among studies. It
may be difficult to discriminate the excluded anatomical
findings of this study from the myopic tilted disc using
the developed algorithm. In photographs with false posi-
tives, the long to short axis ratio was greater than 0.75,
but they had enlarged discs that deviated from the shape
of the normal optic nerve head. In the study, based on
the 0.75 long to short axis ratio, the cases where the
optic nerves were ovoid and accompanied by slight peri-
papillary atrophy were included as tilted disc when visu-
ally discriminated. However, using the algorithms, they
were excluded from the tilted disc. It may be that the al-
gorithms detected the rotation of a three-dimensional
disc more intrinsically than a deliberate research criter-
ion. Further investigation of a wider range of myopic
configurations of the optic disc using diverse devices
such as optical coherence tomography is needed to en-
hance the accuracy and broader application of the pro-
gram. Finally, a program that can analyze ophthalmic
images and measurement values while correcting the ef-
fect of various degrees of optic disc tilt is needed for this
patient population.
An ophthalmologic automatic diagnosis system can be

of great help even for non-experts. For example, it can
be useful in routine checkup or for non-tertiary hospi-
tals. It might be effective and time-saving if an AI system
could indicate or pre-select cases with non-tilted optic
discs with a high confidence level as an automated
screening tool. This research showed the possibility of
AI-based automated tilted optic disc recognition. Since
we already have trained a tilted optic disc detection
model, we can train an advanced model with additional
data for other anatomical changes as well as the ex-
cluded data by fine-tuning. We also can adopt various
few-shot learning approaches [50] even if the amount of
data is small. This could reduce the workload of oph-
thalmologists and non-experts. Also, further research
could use the model that effectively employs a confi-
dence level such as SelectiveNet [51].

There were several limitations to this study. First, we
compared the accuracy of the algorithm with the results
based on previous criteria of tilted optic disc [19, 20]. In
the literature to date, optic disc tilt has been classified
based on observations that are based on fundus photog-
raphy [52–54]. Several studies have examined the optic
nerve head of a patient with a myopic tilted disc using
three-dimensional optical coherence tomography [52–
54] or observed vascular abnormalities in a patient with
a tilted disc using angiography [55, 56]. However, these
previous approaches are not used as diagnostic stan-
dards. Therefore, because there are no accurate diagnos-
tic criteria for using an objective device, this study used
one of the previously published criteria that include an
optic disc with a ratio of minimal to maximal disc diam-
eter of 0.75 or less on the fundus photograph [19, 20]
with a white semilunar patch of sclera adjacent to the
optic disc. Second, we analyzed only temporally tilted
discs, and it should be noted that the results of our study
might not be valid when considering non-temporally
tilted discs. Third, there may be limitations associated
with using both eye data in this study due to possible
inter-eye correlations. In future studies, the use of single
eye data will be more desirable.

Conclusions
In conclusion, we developed an automated system that
detected optic disc tilt. The approach demonstrated ex-
cellent agreement with the previous clinical criteria
which provides promising results for future programs
that can help identify this condition. In addition, the ap-
proach for adjusting the effect of optic disc tilt on oph-
thalmic measurements can also be adapted, based on
this novel approach.
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