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1. Introduction

It is well known [2, p. 187] that two intersecting circlé R) andO; (R;) are
the circumcircle and an excircle respectively of a triangle if and only if the Euler
formula
d?> = R?> + 2RR;, (1)
whered = |00 |, holds. We present a possibly new proof and an application to
the Poncelet porism.

Figurel Figure 2

Theorem 1. Intersecting circles (O) and (O, ) arethe circumcircle and an excircle
of atriangle if and only if the tangent to (O, ) at an intersection of the circles meets
(O) again at the touch point of a common tangent.

Proof. (Sufficiency) LetO(R) andO;(R;) be intersecting circles. (These circles
are not assumed to be related to a triangle as in Figure 1.) Of the two lines tangent
to both circles, letAK be one of them, as in Figure 2. Let= AK N OO,. Of
the two points of intersection df0) and (O,), let C be the one not on the same
side of lineOO; as pointA. Line AC is tangent to circleD; (R;) if and only
if |AC| = |AK]|. Let B and M be the points other thafi where linePC meets
circlesO(R) andO; (R;), respectively. Triangled BC andK C M are homothetic

. . AB . .
with ratio P%, SO thatﬁ = R% Also, trianglesABC andC AK are similar,
sinceZ/ABC = Z/CAK andZBAC = LZACK. Therefore,@ = &

|AC| — |CK]|
that@ . E — ﬂ and

|AC| Ry |CK|
Ry
CK|=|AC|\] —=. 2
CK| = |AC|y/ 7 2)
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Also,
|AK| = |AC|cos(£LCAK)+ |CK|cos(LCKA)

[, _ [ACP? [CK]?
= |AC|\/1— +|CK|([1— : (3)
4R? 4AR2

If |AC| = |AK|, then equations (2) and (3) imply

i

|AK |2 Ry  JAK?
AK|=|AK|x/1 - AK|\W — —
which simplifies td AK |> = 4RR; — R?. Since|AK | = d> — (R — R;)?, where
d = |00 |, we have the Euler formula given in (1). O

We shall prove the converse below from Poncelet’s porism.

2. Poncelet porism

Suppose trianglel BC' has circumcircleD(R) and incircleI(r). The Poncelet
porism is the problem of finding all triangles having the same circumcircle and
incircle, and the well known solution is an infinite family of triangles. Unless
triangle ABC is equilateral, these triangles vary in shape, but even so, they may be
regarded as “rotating” about a fixed incircle and within a fixed circumcircle.

Figure 3

Continuing with the proof of the necessity part of Theorem 1jlet; ) be the
excircle corresponding to vertex. Since Euler’'s formula holds for this configu-
ration, the conditions for the Poncelet porism (e.g. [2, pp. 187-188]) hold. In the
family of rotating trianglesA BC there is one whose verticesand B coincide in
a point, D, and the limiting lineA B is, in this case, tangent to the excircle. More-
over, linesC A and BC' coincide as the line tangent to the excircle at a point of
intersection of the circles, as in Figure 3. This completes the proof of Theorem 1.

Certain points of triangled BC, other than the centers of the two fixed circles,
stay fixed during rotation ([1, p.16-19]). We can also find a fixed line in the Pon-
celet porism.
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Theorem 2. For each of the rotating triangles ABC' with fixed circumcircle and
excircle corresponding to vertex A, the feet of bisectors BB, and C'C; traverse
line DE, where E isthe touch point of the second common tangent.

3. Proof of Theorem 2

We begin with the pole-polar correspondence between points and lines for the
excircle with centery, as in Figure 4.

The polars ofA, B, C'are LM, M K, K L, respectively, wherd K LM is the
A-extouch triangle. AsBB; is the internal bisector of anglB and B, is the
external bisector, we havB B; 1 BI;, and the pole ofBB; lies on the polar of
B, namelyM K. Therefore the pole oB B is the midpointP of segmentM K.
Similarly, the pole of the bisectar’C} is the midpointQ of segmentK L. The
polar of B; is the line passing through the poles®Bf3; and LBy, i.e. line PL.
Likewise, M Q is the polar ofC;, and the pole ofB;C; is centroid of triangle
K LM, which we denote a&.

We shall prove that; is fixed by proving that the orthocentéf; of triangle
KLM is fixed. (Gallatly [1] proves that the orthocenter of the intouch triangle
stays fixed in the Poncelet porism with fixed circumcircle and incircle; we offer a
different proof, which applies also to the circumcircle and an excircle.)

Lemma 3. The orthocenter H; of triangle K LM stays fixed as triangle ABC
rotates.

Proof. Let K LM be the extouch triangle of triangléBC, let RST be the orthic
triangle of triangleK' LM, and letH; and E; be the orthocenter and nine-point
center, respectively, of triangl& LM, as in Figure 5.

(1) The circumcircle of triangl&.ST" is the nine-point circle of trianglé& LM,
so that its radius is equal %)Rl, and its centerr; is on the Euler linel; H; of
triangle K LM.

(2) Itis known that altitudes of an obtuse triangle are bisectors (one internal and
two external) of its orthic triangle, so thaf is the R-excenter of triangldR.ST.
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Figure 5

(3) Triangle RST and triangleABC are homothetic. To see, for example, that
AB||RS, we have/KRL = Z/KSL = 90°, so thatL, R, S, K are concyclic.
Thus,/KLR = /KSR = ZRSM. On the other handy K LR = /KLM =
ZKMBandZRSM = ZSM B. ConsequentlyAB||RS.

(4) The ratiok of homothety of triangleABC' and triangleRST is equal to
the ratio of their circumradii, i.ek = %. Under this homothetyp)) — E; (the
circumcenters) andi — H; (the excenter). It follows thab ;|| Ey H;. SinceE;,
1, Hy are collinear,0O, I;, H, are collinear. Thu®)1; is the fixed Euler line of
every triangleK LM .

The place ofH stays fixed orO becauseF H = % remains constant. There-
fore the centroid of, trianglé’ LM also stays fixed. a

To complete the proof of Theorem 2, note that by Lemmé&33is fixed on line
O1I,. Therefore, lineB; 4, as the polar of~, is fixed. Moreover,B,C;_LOI.
Considering the degenerate case of the Poncelet porism, we concludg dhat
coincides withD E, as in Figure 3.
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