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Abstract. Building upon the theory of 2-dimensional fibrations and
that of (abstract) multicategories, we present the basics of a theory of
fibred multicategories. We show their intrinsic role in the general theory:
a multicategory is representable precisely when it is covariantly fibrant
over the terminal such. Futhermore, such fibred structures allow for a
treatment of algebras for operads in the internal category setting. We
obtain thus a conceptual proof of the ‘slices of categories of algebras
are categories of algebras’ property, which is instrumental in setting up
Baez-Dolan’s opetopes.

1 Introduction

We introduce the notion of fibration for multicategories, the latter understood
in their most general sense of (normal) lax algebras on bimodules, as we recall be-
low. Given the space constraints, we limit ourselves to a brief introduction of the
attendant theory of fibred multicategories, taking it as an opportunity to review
some aspects of our work on 2-fibrations [Her99] and the theory of representable
multicategories [Her00, Her01]. We omit most proofs, occassionally outlining inter-
esting arguments.

In [Her00] we introduced the notion of representable multicategory as an
alternative axiomatisation of the notion of monoidal category, representability
being a universal property of a multicategory; it demands the existence of universal
‘multilinear’ morphisms, 7z : £ -® & for every tuple of objects Z, whose codomain
endows the underlying the underlying category of ‘linear’ morphisms with a ‘tensor
product’. The basics of this theory (axiomatics of universal morphisms, strictness,
and coherence) were developed upon the heuristic

ungversal morphism ~ cocartesian morphism (1)

so that the theory of representable multicategories should parallel that of (co)fibred
categories cf.[Her00, Table I]. Subsequently, in [Her01] we gave a general treatment
of the above transformation

‘ monoidal category — representable multicategory ‘
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in the setting of psuedo-algebras for a cartesian monad M on a ‘2-regular 2-category’
K, i.e. a 2-category admitting a ‘calculus of bimodules’ (the 2-dimensional analogue
of the calculus of relations available in a regular category), so that M induces a
pseudo-monad Bimod(M) : Bimod(X) — Bimod(X) on bimodules. Given these data,
we constructed a 2-category K, (consisting of normal lax algebras for Bimod(M))
equipped with a 2-monad T, such that

1. T, has the adjoint-pseudo-algebra property, i.e. a psuedo-algebra structure
z:T,X — X on an object X is a left-adjoint to the unit nx : X — T,X.

2. The 2-categories of pseudo-algebras, strong morphisms and transformations
of M and T, are equivalent.

This construction achieves the transformation

‘ coherent structure — universally characterised structure ‘

which subsumes the case of monoidal categories above, as well as the classical
Grothendieck transformation of psuedo-functors into (co)fibred categories (see Re-
mark 1.1 below).

In [Her00, footnote p.169] we argued that in the analogy of representable mul-
ticategories with cofibred categories, the former lack a base. Here we rectify this
statement, showing that representable multicategories are precisely those (covari-
antly) fibred over the terminal one (Theorem 4.1), thereby formalising the heuristic
(1) above. Hence, when reasoning about certain categorical structures characterised
by universal properties, we can soundly consider them as (covariantly) fibred struc-
tures. This correspondence provides yet another argument for the importance of
fibred category theory in analysing categorical structure, complementary to the
‘philosophical arguments’ in [Bén85].

Note on Terminology: Fibrations in categories involve the ‘lifting’ of morphisms
from codomain to domain (or target to source) and thus give rise to contravariant
pseudo-functors. For the dual notion, working in the locally dual 2-category Cat®’,
there are two conflicting terminologies in the literature: Gray [Gra66] advocates
the use of the term opfibration while the Grothendieck school would use the term
cofibration. Unfortunately, this latter clashes with the notion of cofibration of
Quillen in the context of model structures on categories. Given that both notions
would come to be used simultaneously in our subsequent work on coherence, it
seems sensible to adopt a dissambiguating terminology right here: we shall refer to
those fibred structures which give rise to covariant psuedo-functors as covariant
fibrations, reserving the term cofibration for the algebraic topologists’ stablished
use.

In our foray into the theory of fibrations for multicategories, we would like
the reader to keep in mind the following three levels of (increasing) generality and
abstraction:

1. The ordinary Set-based notion of multicategory introduced by Lambek [Lam69].

2. Multicategories as monads in a ‘Kleisli bicategory of spans’ Spny,(B), where
M :B — B is a cartesian monad on a category with pullbacks, as in [Her00]( cf.
[Bur71, Lei00]).
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3. Multicategories as normal lax algebras in Bimod(/C), the bicategory of bi-
modules in a 2-regular 2-category X ([Her02]), with respect to the pseudo-
monad Bimod(M) induced by a 2-monad M : K — K, compatible with the
calculus of bimodules, as in [Her01].

1.1. Remark. Since the Grothendieck correspondence between covariant psuedo-
functors and cofibrations (covariant fibrations)

Ps-[C, Cat] ~ CoFib/C
on a category C is not exhibited explicitly in [Her01, §11] as a consequence of the
general theory, we outline here how it can be achieved. This example shows that
our ‘abstract multicategories’ may not look like multicategories at first sight.
Recall that a bimodule a: X 4 Y is called reprepresentable when it is of the
form x4 = x]id (the span given by the two projections out of the comma-object)
for a functor z: X — Y. We observe that pseudo-functors out of C correspond
to pseudo-algebras in the 2-category [Co,Cat], where Cj is the object-of-objects
of C (we are in an internal category setting [Cy,Cat] = Cat[Co,Set]). The ap-
propriate 2-monad is M = Cat(C * _), whose (1-dimensional) cartesian monad
Cx_:[Co,Set] = [Co, Set] expresses the free action of the (morphisms of) C on
a Co-family of sets. Remark 11.3 of ibid. shows that

Ps-[C, Cat] ~ Representable—Laxy,[C, Bimod(Cat)]

where Laxep[C, Bimod(Cat)] is the 2-category of lax functors into bimodules and rep-
resentable transformations between them (that is, induced by functors), obtained
by our transformation process out of the 2-monad M and the 2-category [Co, Set].
The Representable— qualificative means the adjoint pseudo-algebras over such with
respect to the 2-monad induced by the ’envelope’ adjunction, which we recall in
§2.1. See also Remark 2.2.(1) below for a reminder of the characterisation of such
pseudo-algebras.

We want to show that the new basis of aximotisation is equivalent to the 2-
category Cat/C. Theorem 8.2 of ibid. entails :

Laxyey[C, Bimod(Cat)] ~ Multicat, ([Co, Set])

where Cy is the object-of-objects of C. This equivalence means that since we are
working in an internal category setting we can simplify from bimodules to spans
(and their easy composition via pullbacks). We now appeal to the well-known (and
easy) equivalence [Co, Set] ~ Set/Co, which expresses the two canonical ways of
viewing a family of sets. We obtain the following equivalences of 2-categories:

Multicat, ([Co, Set]) ~ Multicatp, (Set/Co) ~ Cat/C

the last equivalence resulting from a mere inspection of the diagrams involved.
Hence, ‘multicategories’ in this situation amount to functors into the category C.
Remark 11.2 of ibid. completes the argument, in the sense that the resulting adjoint
pseudo-algebras over Cat/C obatined by our transformation are indeed cofibrations
(covariant fibrations):

Representable—Cat/C ~ CoFb/C O

In [Str73], Street develops some basic aspects of the theory of fibrations inter-
nally in a 2-category /C in a representable fashion, i.e. a morphism p: £ — B is a
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fibration iff £(X,p) : K(X, E) — K(X, B) is a fibration in Cat, for every object X.
Starting with the concrete setting 1) above, we expect a fibration of multicategories
to involve a lifting of (multi)morphisms. Here we ran into the problem that in the 2-
category Multicat, the 2-cells refer only to linear morphisms, i.e. those morphisms
whose domain lies in the image of the unit of the monad M (a ‘singleton sequence’).
Hence the representable definition is unsuitably weak for multicategories.

The expected lifting of (multi)morphisms is obtained, abstractly, by means of
the ‘fundamental’ monadic adjunction

Env
Lax-Bimodr(K)-alg _—— 1 T-alg
U

so that the left adjoint ‘envelope’ 2-functor reflects (covariant) fibrations (Theorem
2.4). This point of view allows us to reduce the situation to the ordinary case
of (representable) fibrations in a 2-category mentioned above. We could draw an
analogy with modules for a Lie algebra &, which correspond to ordinary modules
for its universal envelope U®.

This incipient theory of fibred structures in a multicategory scenario has sev-
eral foreseeable applications besides our motivational correspondence with repre-
sentability above. We illustrate this by elucidating some aspects of the theory of
algebras for operads (in the non-¥ case), giving a conceptual proof of the fact that
the ‘slices’ of such a category of algebras are categories of algebras for a multicat-
egory (Theorem 5.2). Among the topics we have left out for lack of space are the
pseudo-functorial (or ‘indexed’) version of the fibred structures, the ‘comprehen-
sive’ factorisation system associated to (discrete) covariant fibrations and a related
Yoneda structure, which we will present elsewhere.

As for related work, we should mention that quite independently of our devel-
opments, Clementino, Hofmann and Tholen have used V-enriched multicategories
(relative to a monad) as an abstract setting for categorical topology, with emphasis
on the theory of descent [CT01, CH02, CHTO03]. In particular, their analysis of
exponentiability involves liftings of factorisations of ‘multimorphisms’, analogous
to Giraud’s characterisation of exponentiability in Cat [Gir64] (so that covariant
fibrations in our sense are exponentiable, just like in Cat). While their setting
of V-enriched modules cannot deal with internal structures (which has been our
emphasis), their developments and ours can be put into a common framework of
‘abstract proarrows’ in the sense of [Woo085]. In fact, as we pointed out in [Her01,
§2], the theory developed therein is essentially based on such an axiomatic of ‘bi-
categories of bimodules’.

2 Fibrations for multicategories

We start concretely with Set-based multicategories and introduce the elemen-
tary definitions of (covariant) fibrations for them. The covariant situation features
more prominently in our applications than the contravariant one.

2.1. Definition. Let p: T — B be a morphism of multicategories.

e A morphism f:(2;...2,) = y in T is (p-)cocartesian iff every morphism
g:{®1...z,) — 2, with the same image on the base pg = pf, admits a
unique factorisation g = §o f, with §:y — z a vertical morphism (p§ =
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idpy = idp,). Diagrammatically,

e The morphism p: T — B is a covariant fibration if the following hold:

1. for every list of objects £ = (z1,...,2,) in T and every morphism
u: pf — j in B, there is a cocartesian morphism u : & — wZ over u
(pu = u).

2. Cocartesian morphisms are closed under composition.
2.2. Remarks.

1. Just like in the ordinary categorical situation, we could have phrased the def-
inition of covariant fibration appealing to a stronger notion of cocartesian
morphism (so that its universal property holds with respect to morphisms
which factorise through its projection) and thereby dispense with the com-
position requirement above. But one of our basic results [Her01, Theorem
5.4] shows that the given formulation is more fundamental: a lax algebra
a: MA 4 A admits an adjoint pseudo-T,-algebra structure iff

(a) the bimodule « is representable (which in our context amounts to the
existence of cocartesian morphisms), and

(b) the structural 2-cell i : @ ® @ = « is an isomorphism (cocartesian mor-
phisms are closed under multicategory composition).

2. We shall distinguish between fibration of multicategories, as defined above,
and fibrations in Multicat (in the representable sense), which have cartesian
liftings of linear morphisms only.

Dually, we have a notion of (p-)cartesian morphism and of fibration (contravari-

ant lifting).

2.3. Examples.

1. Given a functor q : E — C in Cat, consider the induced morphism of mul-
ticategories gp : Ep, — C, (the multicategories of discrete cocones [Her00,
Example 2.2(2)]):

e If ¢ is a fibration in Cat, gy is a fibration of multicategories (carte-
sian cocones consist of cartesian morphisms in E). In particular the
multicategory C,. is fibred over the terminal multicategory.

e If ¢ is a covariant fibration, and E has cofibred coproducts (coprod-
ucts in the fibres preserved by direct images), g, is a covariant fibra-
tion of multicategories: given a list of objects (z1,...,2,) of E, and
a morphism (u! : gz; — 7,...,u"™ : gz, — j) we obtain a cocartesian
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lifting by considering individual cocartesian liftings u® : gz; — ui(z;)
and forming the coproduct @(Z) = [[; u{(z;) in E; with coproduct
injections x* : u}(x;) — @ (). The composite cocone (k*ou?); is a co-
cartesian lifting of .

2. Let Rng be the category of commuatitive rings with unit and Rng,, the
corresponding multicategory of multilinear maps: Rng,,((R1,...,Ry),S) =
Rng(R; ® ...®R,,S). Let Mod,, be the multicategory whose objects
are pairs (R, M), with R a ring and M an R-module. A morphism in
Mod,, ({(Ry, M1) ... (Ry, My)), (S, N)) consists of a pair of morphisms (h, a),
with h: R ® ...®QR, — S in Rng and a R; ® ...®R,-module morphism
a:M; ®...9M, — N (the tensor product of the abelian groups M;s has
componentwise action by the tensor product of the rings). The evident for-
getful functor U : Mod,,, = Rng,,, is a covariant fibration of multicategories:
a cocartesian lifting of ((R1,M1)...(R,, M,)) at h: R1 @ ...®QR,, — S is
the direct image (M ® ...®My) ®Rr,s..9r, h*(S), where h*(S) is S re-
garded as a (R; ® ... ®R,)-module via h.

A sophisticated variation of this example is explored in [Sny02], where
the total multicategory has ‘multilinear maps with singularities’ and the
(implicit) base category consists of the full subcategory of Rng on the tensor
powers of a Hopf algebra H. It provides a framework for vertex algebras.

2.1 Fibrations and the enveloping adjunction. We recall that the monadic
adjunction F 4 U : Mon(Cat — Multicat (for our second view of multicategories (2)
as monads in in the Kleisli bicategory of spans Spny(B)) acts as follows: given a
monoidal category C with objects Cy and arrows C1, UC is

» M(Co)001 a
BN,
d @ c id M) mo d @ c
N 2 Y 7 N
Co Co M(Co) Co Co

where M is the free-monoid monad in the ambient category (in Set, MX = X* the
monoid of sequences under concatenation). Given a multicategory DD with objects
Dy and arrows Dy, the free monoidal category FD is

M(Dx)
Md Mc
/ \
. D, — u M2 (Do) M(Dy)
c Do
M(Do) Do M(Do)

For more details of how this construction works, see [Her00, §8.3]. A more in-
volved construction (via a lax colimit for a monad in Bimod(/C) [Her01, §2.2])
yields F 4 U : M-alg — Lax-Bimodnm(K)-alg, with the same intuitive content: a
generalised 2-cell (or ‘morphism’) of Fz is a ‘tuple’ of ‘morphims’ of z (generalised
2-cells of the top object of the bimodule z) whose domain is the ‘concatenation’
of the domains of its components. The adjunction induces a cartesian 2-monad
T, : Lax-Bimodn (K)-alg — Lax-Bimodng (K)-alg.

The basic relationship between the notions of fibrations for multicategories and
for categories is the following:
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2.4. Theorem. Let p: T — B be a morphism of multicategories. Tfae:

1. p is a (covariant) fibration of multicategories.

2. Fp: FT — FB is a (covariant) fibration of categories.

3. Fp: FT — FB is a (covariant) fibration of monoidal categories.

4. Top: T.T — T.B is a (covariant) fibration in Multicat (in the sense of Re-
mark 2.2.(2)).

A fibration of monoidal categories in (3) above is the one-object case of a 2-
fibration in the sense of [Her99]. We remind the reader that a 2-functor P : & — #
is a 2-fibration if it is a fibration at the 1-dimensional level and every ‘local hom’
functor Pxy : £(X,Y) - B(PX, PY) is a fibration, whose cartesian (2-)cells are
preserved by precomposition with 1-cells (they have a pointwise nature). Hence, a
fibration of strict monoidal categories amounts to a fibration of categories whose
cartesian morphisms are closed under tensoring.

Notice that both (2) and (4) in the above characterisation make sense for our
abstract multicategories as lax algebras in Bimod(KC) and either of them can be
adopted as a definition of (covariant) fibration in this setting.

From the above characterisation theorem, since both F' and T, preserve pull-
backs (because M is a cartesian monad), we deduce a change-of-base result for
fibrations of multicategories, i.e. they are stable under pullback. Let Fib(Multicat)
denote the 2-category whose objects are fibrations of multicategories, morphisms
are commuting squares where the top morphism preserves cartesian morphisms of
the total multicategories, and the evident 2-cells (cf. [Her99]).

2.5. Proposition. The forgetful 2-functor base : Fib(Multicat) — Multicat taking
a fibration to its base multicategory, is a 2-fibration.

Hence all the basic results of 2-fibrations of [Her99] (factorisation of adjunctions,
construction of Kleisli objects, etc.) carry through to the setting of multicategories.

2.2 Adjoint characterisation. In [Str73] Street gave a characterisation of
fibrations internal to a 2-category admitting comma-objects; the existence of carte-
sian liftings amounts to the existence of a right adjoint to the unit mapping a
morphism (object over B) to its free fibration. We reformulate this characteri-
sation using Hom_ (cotensors with the — category) and pullbacks, which we can
fruitfully reinstantiate in the setting of lax algebras on bimodules.

2.6. Lemma. A functor p:E — B in Cat is fibration iff the functor n canonically
induced into the pullback

admits a right adjoint in Cat/(B™).

While in Cat the situation for covariant fibrations is entirely dual (simply replac-
ing cod by dom and right by left above), the asymmetry between the domain and
codomain of (multi)morphisms means that we have to state the characterisations
of covariant and contravariant fibrations of multicategories separately:

2.7. Proposition (Adjoint characterisation of fibrations of multicategories).



8 Claudio Hermida

Consider a morphism p: E — B in Lax-Bimodn(K)-alg, with laz algebras on bi-
modules E = M E, & E1 5 Ey and B = MB, & B, 5 By

1. pis a fibration iff po : Eo — By is a fibration (in K) and the canonical mor-
phism n into the pullback

admits a right adjoint in K/Bj.
2. pis a covariant fibration iff po : Eg — Bo is a covariant fibration (in K) and
the canonical morphism n into the pullback

P1
¢1r ¢MP0

admits a left adjoint in K/Bj.

2.8. Corollary. Given algebras x : MX — X andy : MY — Y, and a morphism
f:x =y, such that the underlying morphism f: X — Y is a covariant fibration
in IC, the induced morphism Uf : x3 — y4 between lax algebras is a cofibration

Proof Applying Proposition 2.7.(2), the corresponding left adjoint is obtained
from the given one characterising f as a covariant fibration in I, by pulling this
latter back along the algebra structure z : M X — X.

([l

3 Coherence for fibrations of multicategories

Fixing a base multicategory B, let Fib/B denote the fibre over B of the 2-
fibration base : Fib(Multicat) — Multicat and similarly let Split(Fib/B) the corre-
sponding sub-2-category of split fibrations (i.e. those with a choice of cartesian
liftings closed under composition and identities) and morphisms between such pre-
serving the splittings. Using the usual coherence theorem for fibrations of cate-
gories, the characterisation Theorem 2.4, and the fact that the unit of the monadic
adjunction F' - U is cartesian, we deduce the following coherence result:

3.1. Theorem. The inclusion Split(Fib/B) — Fib/B has a left biadjoint whose
unit is a pseudo-natural equivalence (with a section). Thus, every fibration is equiv-
alent to a split one.

The dual statement for covariant fibrations also holds.

3.2. Remark. An equivalence with a section is a split-epi at the ‘object’ level
and thus both a covariant and (contravariant) fibration in any 2-category (in the
representable sense). By Theorem 2.4, the same holds for equivalences with sections
between abstract multicategories.



Fibrations for abstract multicategories 9

4 Covariant fibrations and representability

When the 2-category IC has a terminal object 1, it bears a unique M-algebra
structure, which makes it the terminal object in M-alg. Consequently, U1 is the
terminal object in Lax-Bimodm(K)-alg. For any M-algebra z : MX — X, the unique
morphism ! : X — 1 is (rather trivially) a (covariant) fibration, since the terminal
object is discrete. For multicategories, the situation is interestingly different (we
work in the framework of a 2-regular 2-category in the sense of [Her02]):

4.1. Theorem. A multicategory B (qua laz algebra) is representable iff the unique
morphism ! : B — 1 is a covariant fibration of multicategories.

Proof
(«) Since the unit 1 : id = T, of the adjunction

F 4 U : M-alg — Lax-Bimodm(K)-alg

is cartesian with respect to (representable) covariant fibrations (this is where the
axioms of 2-regularity come into play), the following square is a pullback

BQT_{]B

17 LT

The existence of a left adjoint to the bottom morphism (1 is clearly representable,
since it comes from a M-algebra), the lifting of adjoints in a 2-fibration ([Her99,
Lemma 4.1]) implies the existence of the ‘dashed’ left adjoint on top, which shows
that B is representable.
(=) For an M-algebra X, the unique !: X — 1 is a covariant fibration, and so is
U!':UX — U1 (Corollary 2.8). By coherence [Her01, Thm.7.4], any representable
B is equivalent (via a covariant fibration, see Remark 2.8) to some UX (a strict
M-algebra). The composite B — UX — 1 is then a covariant fibration, as required.
O

4.2. Remark. In the setting of Set-based multicategories, the above theorem has
the following concrete interpretation:

e The terminal multicategory has underlying multigraph

v
N 1
where N is the set of natural numbers. Thus we have a unique arrow n > o
for every n. Notice that this object is ‘discrete’ with respect to 2-cells into
it, but it has non-trivial (multi)morphisms.
e Universal morphisms in a multicategory C, 7z : £ »® &, are precisely the
cocartesian morphisms for ! : C — 1 over |Z] > e (see our heuristic (1) in
§1).
Of course, in this simple setting, the above correspondence can be seen by mere
inspection of the definitions involved. The general proof however requires vastly
different methods. It is worth emphasizing that the (=) argument is quintessen-
tially 2-fibrational. In the opposite direction, we have used coherence for adjoint
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pseudo-algebras. Although this use of coherence is not strictly necessary, the given
argument does show several pieces of the theory at work.

4.3. Corollary. The assignment M +— (!: M — 1) yields an equivalence of the
2-categories of representable multicategories and covariant fibrations over the ter-
minal:
Rep Multicat = CoFib/1

Notice that the coherence theorem 3.1 and the above corollary do allow us to
recover the coherence theorem for (abstract) representable multicategories.

The relationship between representability and covariant fibrations is completed
by the following two results:

4.4. Proposition. Let p: T — B be a morphism of multicategories.

o If both T and B are representable and p preserves universals, then p is a co-
variant fibration of multicategories iff p is a covariant fibration in Multicat.

e If p is a covariant fibration of multicategories and B is representable, then
E is representable and p preserves universals.

The first item above means that a covariant fibration between representable
multicategories is the same thing as a fibration of categories (assuming that the
induced functor is strong monoidal). The second result has the following logical
interpretation: as we have argued in [Her99] and the references therein, the notion of
logical relation between models of (various kinds of) type-theories can be fruitfully
understood in terms of categorical structure in the total category of a fibration
(over the base ‘models’). The above result shows how to obtain a logical tensor
in a multicagory of predicates, which is one covariantly fibred over a representable
multicategory, that is, a base which admits a ‘tensor’. For instance, in Example
2.3.(2), since the base multicategory Rng,, is representable, so is the multicategory
Mod,,,.

5 Operads and algebras

As an application of the theory of covariant fibrations, we show their role in
the theory of operads and their algebras. From their origin in algebraic topol-
ogy [KM95], these tools have found their way into various approaches to higher-
dimensional category theory ([Bat98, BD98, Lei00]).

The basic setting of [KM95] is a (symmetric) monoidal category C. In order to
treat these notions with our multicategorical formulation, we would assume that C
has finite limits and admits a free-monoid cartesian monad M, so that we consider
multicategories as monads in Spny,(C). We have the following identification:

‘ one-object multicategory = (non-permutative) operad ‘

Indeed, a one-object multicategory amounts to an N-indexed family O = {O,,}
(elements of O,, should be thought of as n-ary operations) closed under composition
and identities. Thus, an operad is a structure which groups together the operations
of a (restricted) algebraic theory. On the other hand, a monad describes the result
of applying such operations to some generators, thereby describing the free algebras
of the theory. With these identifications in mind, it is easy to see that an operad
O gives rise to a monad (-) ®u O: the category C embeds in Spny,(C)(1,1)
(J : C — Spny, (C)(1,1) regards an object X as a span M1 <~ 1 + X — 1), while
taking the top object of the span gives a functor D : Spny (C)(1,1) — C. Given
an operad O as an object in Spny,(C)(1,1), we set (L) ®u O = Do (_)eOoJ, which
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inherits the monoid structure from O, thereby yielding a monad () ®y O : C — C.
Notice that the composite (-)eO is the application of the operations to generators,
the latter suitably reinterpreted as a family of operations. We can identify algebras
for the operad O with those of its associated monad:

‘ O-algebras = (_ @\ 0)-alg ‘

In concrete terms, an O-algebra amounts to an object A of C endowed with
actions a(o) : A™ — A for every m-ary operation o, associative and unitary (with
respect to the monoid structure on O). By inspection of the resulting diagrams, we
notice that such actions can be equivalently phrased in terms of discrete covariant
fibrations:

, A®nm O
2| N,

MA q A

p.b.
M! (0] !
% \
N 1
where N = M1 and the left-hand square is a pullback. The top span is then a
multicategory (because the actions are associative and unitary), which we write
(A,a)t,and!: A — 1 is a covariant fibration. The pullback square means that the

fibres are discrete, so that a (multi)morphism of (4, a)" is uniquely determined by
its source and its image in 0. We arrive to the following:

5.1. Proposition.

‘ O-algebras = discrete covariant fibrations over the multicategory O

This identification indicates that we can consider more generally a notion of
algebra for a multicategory as a discrete covariant fibration over it. From the
algebraic-theory perspective above, operads correspond to single-sorted restricted
theories (equations must involve the same variables in the same order on both
sides [CJ95], in the non-permutative case), while multicategories correspond to the
many-sorted version.

We now consider slice categories of algebras. In order to see that such slice
categories are themselves categories of algebras, we appeal to the following two
‘fibrational facts’:

e Given covariant fibrations of multicategories p: A - B and ¢: C — B, a

morphism of covariant fibrations h : p — ¢ is a covariant fibration in CoFib/B
iff it is a covariant fibration of multicategories h : A — C. More concisely

{CoFib — in(CoFib/C)}/q = CoFib/C

This property can be deduced from the corresponding one for ordinary fi-
brations in a 2-category, via the 2-fibrational argument in [Her99, §4.3] and
the adjoint characterisation of covariant fibrations in Proposition 2.7.

e In the same situation, if the base covariant fibration ¢ has discrete fibres,
any morphism into it is a covariant fibration:

{CoFib — in(CoFib/C)}/q = (CoFib/CT)/q

Combining these two facts we obtain the following slicing result:
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5.2. Theorem. For a multicatgory O, any slice of the category of O-algebras is
again a category of algebras:

‘ O—algebras/(4,a) = (A, a)* —algebras ‘

5.3. Remark. For brevity we do not deal here with permutative operads (those
whose operations have symmetric-group actions), which we will take us into the
more involved setting of lax algebras on bimodules rather than spans (we would
work with Lax-Bimods(K)-alg, where S is the free-symmetric-monoidal-category
monad). This is the set-up of [BD98]: an operad in their sense is a lax algebra.
One technical subtlety of this extension is that S is not quite compatible with the
calculus of bimodules and the resulting gadget Bimods (/) is only a laz bicategory.
Nevertheless, the notion of monad applies equally to this setting and the concep-
tual identifications above regarding algebras carry through. In particular Theorem
5.2 gives an alternative (fibrational) view of the slicing result claimed in ibid. See
[Che00] for a more detailed account of the slicing process.

We conclude pointing out that the consideration of algebras for an operad O
via the endomorphism operad End(A4, A) of an object A (O-algebra structure on
A = operad morphism O — End(4, 4)) is available in our setting if the ambient
category C is locally cartesian closed, but we forego the details for lack of space.

Acknowledgments: The author thanks the organizers of the Workshop, especially
George Janelidze, for the opportunity to present and publish the above material.
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