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Yvonne Choquet-Bruhat, Charles-Michel Marle, 

and André Revuz

André Lichnerowicz was born January 21, 1915, at
Bourbon l’Archambault in France. His parents were
teachers—one in the humanities, the other in math-
ematics. Early on he studied differential geometry
extensively under the direction of Élie Cartan, and
in 1939 he defended a thesis combining differen-
tial geometry and general relativity written under
the direction of Georges Darmois.

I take the liberty of referring to my dear departed
friend by the affectionate nickname that I have used
for sixty-five years—Lichné. Lichné published more
than 350 articles and books, and he had a great
many thesis students of his own.

In 1941 Lichné was named maître de con-
férences in mechanics at the Faculté des Sciences
in Strasbourg. The university continued to bear this
name even though it had withdrawn to Clermont-
Ferrand, and it was seen as quite evil by the occu-
pying force. In November 1943 this force carried
out a raid, in the course of which Lichné was ar-
rested but, thank God, escaped.

At the end of the war the Faculté returned to
Strasbourg, and it is in 1947 that he published his
first treatise, Algèbre et Analyse Linéaire, pre-
senting theories quite poorly taught in this pe-
riod.

In 1949 Lichné was named to the Faculté des Sci-
ences in Paris, where he established the diploma
Mathematical Methods in Physics, and in 1952 he
was named to a chair in mathematical physics at
the Collège de France. He taught there until 1986,

and he remained scientifically active until his death
on December 11, 1998.

A particularly brilliant mathematician, Lichné
was a singularity among his colleagues for not
closing himself off in the ivory tower of mathe-
matics, bewitching as it is, and for showing an 
active interest in the role of the sciences, and par-
ticularly mathematics, in the life of the city: with-
out belonging to any political formation, he was
in politics in the noblest sense of the word. He was
in particular the organizer of conferences at Caen
(1956) and Amiens (1960) whose object was to
make people aware of the need for reform of the
universities. From December 1966 to June 1973 he
was the president of the famous Ministerial Com-
mission on the Teaching of Mathematics, which
everybody called the “Lichnerowicz Commission”.1

The finest tribute that the whole mathematics
community could render to Lichné would be to re-
sume his efforts at educational reform, in the con-
text of today, and, carefully measuring the formi-
dable obstacles that it is necessary to confront
(sociological inertia, administrative and corporate
rigidity, narrowness of view, mathematical illiter-
acy of most of the population), to bring anew to
mathematics teaching all the qualities that he
wanted it to acquire.

—André Revuz

The segments of this article, except for the one by Jean-
Pierre Bourguignon, are translated and adapted with the
kind permission of the Gazette des Mathématiciens and
the authors. The Gazette articles in question appeared dur-
ing 1999 in issues 81 and 82 of that journal.

André Revuz is professor emeritus at the Université de Paris
VII.
1Details of the work of this commission may be found in
the Gazette articles from which the present article is ex-
tracted.
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Jean-Pierre Bourguignon

Although not his student, I met André Lich-
nerowicz early in my career and later many times,
and he inspired me on several occasions. As far as
I recall, I almost immediately said “tu” to him, in
spite of the age difference between us, but he
knew how to make one feel at ease to share opin-
ions on mathematical or physical problems.

As a person André Lichnerowicz would radiate
incredible energy, and one had to be impressed by
the great variety of his interests. Talking with him
was always stimulating. With his wife, who was
born in Peru and taught Spanish in a Paris high
school for many years, he formed an extremely in-
teresting blend of different sensitivities. The two
of them were sharp, remarkably cultivated, and
open to many cultures. Nothing would escape their
vigilance. An after-conference dinner with the Lich-
nerowicz couple (she often accompanied him on
his scientific trips) was surely an enriching expe-
rience.

Historically, modern differential geometry has
two main sources: on the one hand generalizing
and deepening surface theory (in the spirit of
Gauss and Darboux), and on the other hand look-
ing for adequate spaces as mathematical models
for reality (after Riemann, Helmholtz, Clifford,
Minkowski, and Einstein). Lichnerowicz undoubt-
edly belonged to the second tradition, as testified
by his remarkably prolific scientific production. I
do not think that he ever produced a research
paper in the spirit of the first source. His thesis in
general relativity in the late 1930s is exemplary of
his later work: bringing global geometric consid-
erations in the context of general relativity thanks
to formulas that allowed him to draw deep sig-
nificant physical consequences.

The first time one talked to him one could be a
bit set back by his approach to doing mathemat-
ics. He was always on to some new calculation, and
he kept that urge up to the very end of his life. He
had an exceptional ability to see geometric facts
through formulas. In some sense he was the per-
fect antidote to the Bourbaki approach to mathe-
matics: he kept being motivated by physical con-
siderations and relied heavily on explicit
computations as crystallizations of geometric facts.

His considerable scientific legacy shows his fas-
cinating ability to put himself ahead of fashion: on
topics like holonomy groups, transformation
groups, harmonic maps, symplectic geometry, and
deformations of algebras of observables, he made
substantial contributions precisely when these
topics were not considered as center-stage areas
and were perhaps even marginal.

I owe to his encouragement my interest in the
topic on which I have been concentrating for some
years, namely, the study of spinors and Dirac op-
erators. On several occasions we talked about de-
veloping a complete spinor geometry, a goal that
has not yet been achieved. I recall his telling me
on more than one occasion (the first one I recall
being a meeting in the early 1980s in Metz) that
the proper understanding of the Einstein equa-
tion will require looking at the equation with spino-
rial glasses. The proper angle of attack is yet to be
found.

Marcel Berger

Lichnerowicz was interested in very many as-
pects, or facets, of differential geometry. In a cer-
tain number of cases, I give some of his insights
below; for these his contribution was relatively
specific. In others, by contrast, he pursued his
work over long periods; the case of Kähler geom-
etry is one of the most striking. He kept a re-
markable spirit through a wide-angle curiosity
(had he not envisioned writing a thesis on detec-
tive stories?) and breadth of spectrum that partly
explains his enormous influence as thesis advisor.
The first four sections below seem to me to cover
the areas that he explored at length and in depth.
In the last section I will mention his research that
is more localized in time. I shall ignore here his con-
tributions in symplectic geometry, deformations,
and quantization that are included in the segment
by C.-M. Marle later in this article.

It seems certain to me that his interest in “pure”
differential geometry was motivated by his being
at the same time a geometer and a mathematical
physicist. “Pure” must not be understood nega-
tively: for him, differentiable manifolds had a met-
ric, curvature, and also a Laplacian; they could be
homogeneous spaces, manifolds with a complex
analytic structure, etc.

It is necessary to mention that after World War
II he was one of the first to introduce into France
a closer kind of direction of theses. Instead of the
expectation of being told, “Here is a thesis topic.
Come back and see me in eight years when you fin-
ish,” one knew that one could go see him very
often. He held also to a quality essential if one does
not want to risk possibly causing grave damage
with thesis students: verifying that the offered
thesis topic carried no risk of being carried out
sooner by someone else. To cite my own personal
case, he said to me, “You can work on holonomy
groups. I have just verified that Chevalley is no
longer taking an interest in them.”

Jean-Pierre Bourguignon is director of research at the
Centre National de la Recherche Scientifique (CNRS) and
director of the Institut des Hautes Études Scientifiques
(IHÉS). His e-mail address is jpb@ihes.fr.

Marcel Berger is emeritus director of research at the Cen-
tre National de la Recherche Scientifique (CNRS) and was
director of the Institut des Hautes Études Scientifiques
(IHÉS) from 1985 to 1994. His e-mail address is
berger@ihes.fr.
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France between 1918 and 1955 was consider-
ably backward mathematically, especially as 
regards teaching. Certainly there were Élie Cartan
and Paul Lévy, but they were isolated from the
great mass of widely diverse mathematics teach-
ing. For example, there was, say between 1945 and
1955, not a single reasonably modern mathemat-
ics course at the Sorbonne, with the exception of
the advanced graduate course of Paul Lévy. It
seems that the cause nowadays is acknowledged:
the absolute hemorrhage, except for Julia and Paul
Lévy, from World War I. Books like those of van der
Waerden, Courant-Hilbert, and many others were
unknown by almost all professionals. Of course,
Bourbaki was the great savior from isolation, but
Lichnerowicz was another who participated widely
in the same way. Through numerous courses and
through the book [L47] that summarizes them, he
worked tirelessly to spread throughout France the
modern writing about tensor spaces and vector cal-
culus, the notion of manifold and that of exterior
differential form, Hilbert space, Fourier series and
the Fourier transform, integral equations. These
were a part of his teaching about mathematical
physics in Strasbourg, and the book had consid-
erable influence. The preface by Darmois is in-
structive in revealing French isolation in the area
in question; all the works cited were German and
were from before World War II.

Weitzenböck Formulas, Following Bochner
The relations between curvature and topology
form a very natural topic in Riemannian geometry.
The Bochner article [Boc] will remain an unavoid-
able cornerstone of transcendental methods link-
ing the local geometry to global properties of the
underlying space. Bochner calculated the Laplacian
of the norm squared of a differential 1-form ω on
a Riemannian manifold:

−1
2∆(‖ω‖2) = ‖Dω‖2 + 〈Dω,ω〉 + Ricci(ω,ω).

Here ∆ is the Laplacian on functions and also on
1-forms, D denotes the covariant derivative, and
“Ricci” denotes the Ricci curvature. Since, as a con-
sequence of the general Stokes theorem, the inte-
gral of a divergence (thus of a Laplacian in partic-
ular) on a compact manifold without boundary is
always zero, Bochner deduced from his calculation
that there exists no nonzero harmonic form (i.e.,
no form ω with ∆ω = 0) on any compact Rie-
mannian manifold with positive Ricci curvature.
Thanks to Hodge theory, this implies that the first
real Betti number is zero. Before Bochner one
hardly knew any results except for very weak ones,
apart from the case of negative sectional curvature.
In the direction of “positive curvature”, Bochner
opened a breach through which Lichnerowicz sub-
sequently perceived the revealed horizon. Lich-
nerowicz used this insight in at least four direc-
tions, five if one includes the pure and apparently

simple extension to the
case of forms of degree
greater than one, an ex-
tension developed by
Bochner and Yano, as
well as Lichnerowicz,
and finished conclu-
sively only in 1971 by
D. Meyer. This kind of
formula is now called a
“Weitzenböck formula”.
In effect a certain num-
ber of the generalized
formulas may be found
in the 1923 book [W] of
Weitzenböck as exam-
ples of “absolute” dif-
ferential calculus. But
Weitzenböck made ab-
solutely nothing of
them; moreover, he
would have had diffi-
culty making use of them, since one did not have
at that time any theorem of Hodge-de Rham type.

In the 1950 article by Lichnerowicz for the In-
ternational Congress of Mathematicians, one finds
the calculation that furnishes the Laplacian of the
norm squared of the complete curvature tensor R:

−1
2∆(‖R‖2) = ‖DR‖2 + Univ(R,R,R) +Q(D(Ricci)),

where Univ(R,R,R) is a universal cubic form in R
and where Q is a universal quadratic form in the
Ricci curvature. I am still surprised today at the few
things that people have done with this extraordi-
nary formula. In a 1986 paper of Tricerri and Van-
hecke one sees in a few lines that the formula im-
plies that locally symmetric spaces are
characterized by the precise algebraic form of their
curvature tensor R, a result that generalizes very
partial results obtained previously in a very labo-
rious way.

In [L58] appears the idea of applying the Bochner
formula, no longer to a harmonic 1-form, but to the
1-form that is the differential df of an eigenfunc-
tion of the Laplacian: ∆f = λf. One finds, upon in-
tegrating, that

0 =
∫
M
‖Hess f‖2 − λ

∫
M
‖df‖2 +

∫
M

Ricci(df , df ),

where Hess stands for Dd, the Hessian operator.
From this follows easily the conclusion: the first
eigenvalue λ1 of the Laplacian of a compact Rie-
mannian manifold Md with Ricci curvature satis-
fying Ricci ≥ d − 1 satisfies λ1 ≥ d . It seems to me
that this is the first relation historically between
spectrum and curvature. Many followed. Under the
same hypothesis he shows, moreover, that in the
Kähler case one can obtain the stronger conclusion
λ1 ≥ 2d. He points this out because he is in fact in-
terested in holomorphic vector fields ξ ; these

André Lichnerowicz
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satisfy ∆ξ = 2 Ricci(ξ) , and one applies the above
result to the eigenfunction f that is the divergence
of ξ .

In [L61], motivated by mathematical physics,
Lichnerowicz discovered that there exist natural
Laplacians for objects other than just exterior dif-
ferential forms. One has not finished exhausting
that line of investigation; for example, one can
apply it fruitfully to the case of symmetric differ-
ential forms of order two in order to prove that the
set of Einstein structures on a compact manifold
is finite dimensional; see the book [Bes] by Besse.
The text [L61] is important also for other aspects;
one finds in it a complete set of formulas for the
various curvatures of one-parameter variations of
Riemannian or Lorentzian structures and as an
application some results on the variations of the
equations of general relativity.

Last but not least, still motivated by physical
considerations, Lichnerowicz in [L63] applied the
Bochner technique to the spinor fields on a spin
manifold and found the formula, astounding in its
simplicity,

Dir2 = D∗D +
scal

4
,

where Dir is the Dirac operator, D the covariant
derivative, and scal the scalar curvature of the ma-
trix. The index theorem had just been proved by
Atiyah and Singer, and one could identify the index
of the Dirac operator with the Â-genus of Borel-
Hirzebruch. From these things follows a topolog-
ical restriction for the ultra-weak condition “ad-
mitting a metric with positive scalar curvature” (this
was the only known topological restriction, even
under the much stronger hypothesis of existence
of a metric with positive sectional curvature, until
a result of Gromov in 1981). Ramifications of this
formula continue to be exploited. It has spread into
a good part of the present-day literature. In books
one can appreciate it in Berline-Getzler-Vergne
[BGV] and Lawson-Michelsohn [LaM], for example.
Lichnerowicz continued to work on spinor geom-
etry up to the last minute.

The Kähler Kingdom
This kingdom, discovered by Kähler in 1933, re-
mained for a very long time practically unexplored;
see one of its rare historical analyses in [Bou]. But
it seems to me that what launched the subject was
the book [Ho] by Hodge in 1941, for Hodge rec-
ognized that the notion of a Kähler manifold was
broader than that of a nonsingular algebraic vari-
ety. Into this gap after World War II rushed Chern
in 1946, Weil in 1949, and many others. Lich-
nerowicz was one of them. One of his motivations
was Élie Cartan’s long-standing question, Is every
bounded homogeneous domain in Cn symmetric?
This was a question on which he worked furiously
(one knows today that there are counterexamples).
An essential question was to know what remained,

under the hypothesis Kähler only, of the results of
Lefschetz on nonsingular algebraic varieties. Sim-
ilarly, what remained under the hypothesis sym-
plectic only or almost-Kähler? It was Lichnerowicz
who established the equivalence of the following
properties of a Riemannian manifold: the metric
is Kähler, the holonomy group is contained in the
unitary group U (n), and there exists an exterior 2-
form of maximum rank whose covariant derivative
is zero. Although this would appear “elementary”
today, it was not so at that time. He established
also the equivalence, in the Kähler context, be-
tween the vanishing of the Ricci curvature and the
inclusion of the holonomy group in the special
unitary group SU (n) . All this permitted people to
begin to see more clearly what remained of Lef-
schetz’s results.

In a 1969 paper of Lichnerowicz, one finds for
the first time the generalization to Riemannian
manifolds of arbitrary dimension, of the notion of
Albanese variety and the Jacobi mapping on this
variety, notions considered previously only in the
case of Riemann surfaces. An important result on
this topic can be found in a 1971 paper of his: If
the Ricci curvature (alias the first Chern class) of
a compact Kähler manifold is nonnegative, then the
Jacobi mapping is a holomorphic fibration.

Holonomy Groups
The holonomy group attached to a covariant de-
rivative is the group formed by parallel transport
along all loops issuing from a point. This notion,
essential today in mathematical physics as well as
in “pure” mathematics in the case of the Calabi con-
jecture dealing with complex manifolds with van-
ishing first Chern class and with hyper-Kähler
manifolds and quaternion-Kähler manifolds, was
created by Élie Cartan in 1925. For simplicity, in
what follows we restrict our considerations to
loops that are contractible to a point; these form
what is called the restricted holonomy group. Ho-
lonomy groups remained in limbo for a very long
time before being decisively removed from there
by A. Borel and Lichnerowicz [BoL] in 1952. These
two showed the astounding result that the re-
stricted holonomy group of a Riemannian manifold,
even a local one (i.e., an open one), is always a com-
pact Lie group. It is surprising that this group is
compact for manifolds that are open and arbi-
trarily small. The hope of Élie Cartan was to clas-
sify Riemannian manifolds according to their ho-
lonomy groups. One knows today that holonomy
groups are too coarse an invariant for such a clas-
sification, except for the very special case of sym-
metric spaces. For the restricted holonomy groups
of nonsymmetric spaces besides the exceptional
ones, namely, G2 and Spin(9), there are only the
following cases, except for the special orthogonal
group: Kähler, Kähler with Ricci curvature zero,
quaternion-Kähler, and hyper-Kähler. Thanks to the
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solution of the Calabi conjecture in the special
case of vanishing Ricci curvature due to Shing-
Tung Yau, this explains the importance of the spe-
cial manifolds mentioned above. We mentioned
earlier how Lichnerowicz realized the tie between
having an inclusion of the holonomy group in U (n)
and having the metric be Kähler, more so in the
case of Ricci curvature zero. He did not fail to use
holonomy groups in an essential way also for the
results of the following section.

The Kingdom of Homogeneous Spaces
Always motivated by Élie Cartan’s question about
bounded homogeneous domains, Lichnerowicz
was constantly haunted by homogeneous spaces.
Geometries, in the sense of Klein, are always ho-
mogeneous. The whole book [L58] is devoted to
them. Starting from 1953, Lichnerowicz classified
almost completely in the semisimple case the com-
pact homogeneous Kähler spaces, a classification
finished by Borel in 1954; see the book [Bes]. But
he did not stop there; a 1990 paper by Lichnerowicz
finishes completely the question for the case of
Kähler groups.

Insights
• Harmony of Spheres. In 1943 Lichnerowicz

showed that all “harmonic spaces” of dimension
four are symmetric. Harmonic spaces are Rie-
mannian manifolds for which the Laplacian admits
an elementary solution depending only on the dis-
tance. They may be defined by many other equiv-
alent conditions: for example, the value of a har-
monic function at any point is equal to its mean
value over balls centered at the point. All the sym-
metric spaces of rank 1 are obviously symmetric,
since their isotropy subgroup is transitive on di-
rections. One knows now that harmonicity, in the
presence of compactness, implies symmetry. By
contrast, there are counterexamples in the non-
compact case.

• Well before Riemannian Submersions. In
1949 Lichnerowicz considered fiber bundles from
a Riemannian point of view. This was well before
their systematic study by B. O’Neill in 1966. Lich-
nerowicz’s idea was to see what one could do with
geometric conditions on the fibers using Hodge-
de Rham theory. He obtained topological results
on the bundle when the fibers are minimal sub-
manifolds of the total space.

• Harmonic versus Holomorphic. Several times,
typically for the Jacobi “fibration” above, where he
used it in a major way, Lichnerowicz was interested
in relationships between holomorphic mappings
and harmonic mappings. In fact, he was one of the
first to realize the importance of harmonic map-
pings created by Eells and Sampson in 1964. For
example, Lichnerowicz wrote a fine study of this
relationship in 1970, and in particular he extended
known results to the almost-Kähler case. There

one again finds his concern for extending as many
results as possible to the symplectic context.

Yvonne Choquet-Bruhat

I was still only a high school student when I
heard my father2 speak highly of a young mathe-
matician, André Lichnerowicz, who combined with
his mathematical gifts a profound sense of physics
and a remarkable teaching ability. The only son of
brilliant parents, a literary father who was secre-
tary-general of the Alliance française and a math-
ematician mother from the École Normale
Supérieure de Sèvres, André Lichnerowicz was an
immensely cultured man, interested throughout his
life in the most varied problems, scientific or philo-
sophical, and in their impact on the world in which
we live. His mind was brilliant, clear, rapid, and tire-
lessly active. A great intellectual, Lichnerowicz
was also very human. He had a strong desire to
communicate his ideas and a sure loyalty to his
friends. Lichnerowicz considered himself respon-
sible for everyone who had been his student, and
he had many of them. He carried for them unfail-
ing support, particularly when they had difficul-
ties in their professional or private lives. Lich-
nerowicz knew how to choose for each a thesis
topic appropriate to the person’s tastes and ca-
pacities, a topic that would permit the person, en-
couraged and helped as much as necessary, al-
most certainly to obtain the looked-for diploma.
This diversity of choice offered by Lichnerowicz
to his students came from the variety of his own
interests. I shall speak only of Lichnerowicz’s works
in general relativity; others are better able to re-
port on other areas.

The first and fundamental contribution of Lich-
nerowicz to general relativity was in 1939 in his
thesis defended under the direction of Georges Dar-
mois, namely, to provide a global differential geo-
metric point of view to general relativity: every
relativistic model is a differentiable manifold
equipped with a metric of hyperbolic signature
satisfying the Einstein equations, with or without
sources. He made explicit in the appropriate gen-
eral context the linking conditions given by Dar-
mois in particular coordinates: these are the nec-
essary and sufficient conditions for a metric to be
a global classical solution of the Einstein equa-
tions with the second member possibly discon-
tinuous. Lichnerowicz’s methodology has been
used in the construction of numerous models and
could be extended without real difficulty to weak
solutions, whose concept was developed later.

Yvonne Choquet-Bruhat is professor emeritus at the Uni-
versité de Paris VI. Her e-mail address is ycb@
ccr.jussieu.fr.
2Editor’s Note: Georges Bruhat was one of the most in-
fluential French physicists in the period before World War
II, in particular through a series of advanced textbooks
notable for their clarity.

mem-lichnerowicz.qxp  10/19/99 2:14 PM  Page 1391



1392 NOTICES OF THE AMS VOLUME 46, NUMBER 11

The global point of view adopted by Lich-
nerowicz permitted him in 1939 to prove in com-
plete generality a fundamental result obtained in
particular cases by Einstein and Pauli. It earned him
their admiration. Lichnerowicz established, thanks
to his mastery of tensor calculus, two fundamen-
tal identities that permitted him to show that there
exists no gravitational soliton—that is, no sta-
tionary solution nontrivial in the sense of having
nonzero curvature—to the Einstein equations for
a vacuum on a manifold of type S ×R, where S is
spacelike and is asymptotically Euclidean and com-
plete or compact. Lichnerowicz extended this re-
sult, with his student Y. Thiry, to the 5-dimen-
sional unitary theory (gauge group U (1)) in the
case, as he emphasized, in which the circle bun-
dle is trivial. Some thirty years later E. Witten con-
structed a counterexample in the case where this
bundle is not trivial. It has been necessary to wait
until this last decade for a proof that solitons exist
when the gauge group is nonabelian. The Einstein
equations are invariant under diffeomorphisms. As
with gauge theories, the integration of these equa-
tions divides into a problem of evolution and a
problem of constraints, a constraint called Hamil-
tonian and a momentum constraint—equations
that must be satisfied by the initial data. In 1944
Lichnerowicz used the relationship between the
scalar curvatures of two conformal metrics to
transform the momentum constraint into a linear
system independent of the conformal factor when
the initial manifold is a maximal submanifold of
space-time, and the Hamiltonian constraint into an
elliptic semilinear equation for the conformal fac-
tor. This equation, called since then the Lich-
nerowicz equation, still plays an essential role in
solving the problem of constraints.

Subsequently, until the 1970s and from time to
time later on, Lichnerowicz tackled most of the fun-
damental problems tied to general relativity. He
gave a systematic treatment of them without being
disheartened by calculations that were sometimes
very complicated. He published clear and detailed
articles, including mention of contributions of his
students, which have often served as a basis for
later works. Lichnerowicz was interested through-
out his career in the representation of material
sources in relativity. He was the first to obtain, in
1940 in collaboration with R. Marrot, a coherent
mathematical formulation of the relativistic ki-
netic theory. Starting in the 1950s, he found good
extensions of various general theorems in the clas-
sical mechanics of fluids. In the 1970s, on the oc-
casion of a course at the Collège de France and in
the United States, he took up again work on hy-
drodynamics and relativistic magnetohydrody-
namics, including thermodynamic considerations
due to Taub and Pichon. His original study of
shock waves in magnetohydrodynamics represents
a considerable work. As in many of the other works

of Lichnerowicz, he succeeded after very complex
calculations that others would have been unable
to do. This work has clear, physically significant
conclusions.

I shall now cite the works of Lichnerowicz on
gravitational radiation, spinor fields, quantization
of fields on curved space-time—all of which were
a prelude to his later works on quantization tied
to the theory of deformations.

In 1960 in a memoir [L60] of almost one hun-
dred pages, Lichnerowicz gave a complete theo-
retical study first of electromagnetic radiation on
curved space-time, then of what is called gravita-
tional radiation tied to the curvature tensor, finally
to the coupling of these two quantities. This arti-
cle, like many others of the same author, remains
a basic reference used in later developments in the
subject.

In his article on gravitational radiation, Lich-
nerowicz was already studying quantization. In
an important article [L64a] published in 1964, he
introduced tensor propagators which generalize to
curved space-time the propagator of Jordan-Pauli.
He used them in the construction of the quan-
tized commutator on curved space-time first of the
electromagnetic field and then of the variation of
the gravitational field. This work is a great classic
and contains numerous intermediate results that
have been used many times. He introduced in par-
ticular the equations called of higher order. These
equations and the Bel tensor, studied by Luis Bel
in his thesis, are fundamental for the a priori es-
timates used in the past few years in research on
solutions valid for all time. The fine results of
Lichnerowicz on the quantization of bosonic fields
on curved space-time have naturally led to the
problem of quantization of spinor fields on curved
space-time. In two other long articles [L64b] and
[L64c] in 1964, Lichnerowicz got completely under
way the theory of spinors on a pseudo-Riemann-
ian manifold. He gave the intrinsic definition of the
operators in current use in physics, charge conju-
gation and Dirac adjoint. The formulas that he es-
tablished have been essential for the success of the-
ories of supergravity. The important contributions
of Lichnerowicz to Riemannian geometry that are
tied to the theory of spinors have been noted in
the above segment by M. Berger. The last article of
Lichnerowicz, which appeared some weeks before
his death, treated the Dirac operator on a Kähler
manifold.

Lichnerowicz founded in 1957, with the Amer-
ican J. A. Wheeler and the Russian V. Fock, the In-
ternational Society for General Relativity and Grav-
itation. At the beginning this was a kind of club
having a relatively small number of members who
met at a conference every two and then every three
years. There reigned among the relativists a warm
convivial atmosphere, as was always the case in the
company of Lichnerowicz. Since these distant
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beginnings, the number of interactions through
general relativity of physics and mathematics has
grown, and the number of relativists has increased
considerably. However, the points of view of global
differential geometry introduced by Lichnerowicz
have been adopted by all, and his name is always
cited with admiration.

Charles-Michel Marle

Symplectic geometry, which has close ties with
mechanics and, more generally, with the mathe-
matical representation of the physical universe,
aroused the interest of André Lichnerowicz, who
was both a geometer and a physicist. His work in
this area is vast and important; I am going to make
an effort to present some aspects (the ones I know
the best), without claiming that they are exhaus-
tive.

Poisson Manifolds
A symplectic manifold (W,F ) is a differentiable
manifold W , of even dimension 2n, equipped with
a differentiable 2-form F , closed in the sense that
dF = 0 and everywhere having maximum rank 2n,
i.e., satisfying Fn = F ∧ · · · ∧ F 6= 0. The mapping
µ : TW → T∗W defined by µ(X) = −i(X)F is an iso-
morphism of vector bundles that extends to the
exterior powers, thereby allowing us to consider
the field of contravariant antisymmetric 2-tensors
Λ = µ−1(F ). To simplify, we are going to say k-ten-
sor instead of field of contravariant antisymmet-
ric tensors of degree k in what follows.

The condition of maximality imposed on the
rank of F turns out to be too restrictive for a num-
ber of applications, notably to mechanics. Nu-
merous authors have also considered the notion
of presymplectic manifold, namely, a differentiable
manifold W equipped with a closed differentiable
2-form, but not necessarily of maximum rank. De-
spite the ingenuity of the researchers who have
been interested in these objects, the results have
been disappointing and poorly adapted to the ap-
plications considered, except perhaps in the very
particular case where the rank of F is constant.
André Lichnerowicz was, to my knowledge, the
first to see clearly that a fruitful generalization of
symplectic manifolds should use the contravariant
tensor Λ rather than the 2-form F [L77]. He con-
sidered a pair (W,Λ) , where W is a differentiable
manifold and Λ is a 2-tensor on W . The Poisson
bracket of two functions u and v in N = C∞(W,R)
is then defined by {u, v} = i(Λ)(du∧ dv), and the
Hamiltonian vector field Xu associated to a func-
tion u ∈ N is the field such that for every v ∈ N,
i(Xu)dv = {u, v} . Lichnerowicz showed that the
Poisson bracket of functions satisfies the Jacobi

identity if and only if the tensor Λ satisfies the con-
dition [Λ,Λ] = 0, the latter bracket being the
“Schouten-Nijenhuis bracket”, whose precise def-
inition we do not need. (It is discussed in [Kos].)
When this condition is satisfied, the space N of dif-
ferentiable functions on W , with Poisson bracket
as composition law, is a Lie algebra, and the map-
ping u 7→ Xu is a homomorphism of Lie algebras.
One then says that (W,Λ) is a Poisson manifold, 
for which Λ is the Poisson tensor. The 2-tensor Λ
allows one to define a morphism of vector 
bundles Λ] : T∗M → TM by putting 〈Λ]α,β〉 =
i(Λ)(α∧ β) , where α and β are two elements of the
same fiber of T∗W . This morphism extends to ex-
terior powers. Of course, a Poisson manifold (W,Λ)
of even dimension 2n whose Poisson tensor is
everywhere of rank 2n is a symplectic manifold:
the morphism Λ] is then an isomorphism, and
the symplectic 2-form is F = (Λ])−1(Λ) .

Jacobi Manifolds
A contact form on a differentiable manifold W of
odd dimension 2n + 1 is a differentiable 1-form ω
such that ω∧ (dω)n is a volume form. With Lich-
nerowicz we will say then that (W,ω) is a Pfaffian
manifold. Like that of a symplectic manifold, the
structure of a Pfaffian manifold can be defined by
means of contravariant objects instead of by a co-
variant object (the contact 1-form ω). But while for
a symplectic manifold a single contravariant ob-
ject (the tensor Λ ) is sufficient, two contravariant
objects are now necessary (corresponding roughly
to the 1-form ω and its exterior derivative dω),
namely, a vector field E called a Reeb field (because
it was considered for the first time by G. Reeb in
1952) and a 2-tensor Λ . Lichnerowicz proved that
these two objects satisfy the identities

(*) [E,Λ] = 0 , [Λ,Λ] = 2E ∧Λ ,
the bracket figuring in these expressions being
the Schouten-Nijenhuis bracket. More generally he
considered a differentiable manifold W equipped
with a vector field E and a 2-tensor Λ . By means
of the following formulas he defined the Jacobi
bracket {u, v} of two differentiable functions u and
v in N = C∞(W,R), and he associated to every dif-
ferentiable function u ∈ N a vector field Xu, called
the Hamiltonian field associated to u:

(**)
{u, v} = i(Λ)(du∧ dv) + 〈udv − v du, E〉,

Xu = Λ](du) + uE.
Lichnerowicz showed that the Jacobi bracket sat-
isfies the Jacobi identity if and only if E and Λ sat-
isfy the identities (∗ ). When this is the case,
(W,Λ, E) is a Jacobi manifold [L78]; the space N of
differentiable functions on W , equipped with a Ja-
cobi bracket, is a Lie algebra, and the mapping
u 7→ Xu is a homomorphism of Lie algebras. When
W is of odd dimension 2n + 1 and the tensor
E ∧Λn is nowhere vanishing, the manifold W is in
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fact a Pfaffian manifold whose contact 1-form ω
can be expressed in terms of E and Λ . Moreover,
a Jacobi manifold whose Reeb field is identically
zero is a Poisson manifold. Jacobi manifolds there-
fore generalize at the same time symplectic man-
ifolds, Pfaffian manifolds, and Poisson manifolds.
The introduction of conformal Jacobi manifolds per-
mitted Lichnerowicz to include as well contact
manifolds (whose structure is defined by the datum
of a subbundle of rank 1 of the cotangent bundle
generated locally, in a neighborhood of each point,
by a contact 1-form) and locally conformal sym-
plectic manifolds.

Poisson and Jacobi Geometries
The importance of Poisson manifolds was recog-
nized rapidly, notably by A. Weinstein (1983), who
studied their local properties. Let us make note also
of other work that has permitted a new vision of
Jacobi manifolds. A local Lie algebra on a differ-
entiable manifold W is a vector bundle (V,π,W )
with base W whose space of differentiable sec-
tions is equipped with a composition law
(s1, s2) 7→{s1, s2} making it into a Lie algebra, this
composition law being local in the sense that the
support of {s1, s2} is contained in the intersection
of the supports of s1 and s2. This notion, intro-
duced by Shiga (1974), has been studied by A. Kir-
illov (1976) in the case where the dimension of the
fibers of V is 1. It turns out to be equivalent to that
of a conformal Jacobi manifold. When V = W ×R
and π : V → W is the first projection, the space of
differentiable sections of the bundle (W ×R, π,W )
is identified with the space N = C∞(W,R) of dif-
ferentiable functions on W . The datum of a com-
position law on this space is equivalent with that
of a composition law on N. When this law is local
and satisfies the Jacobi identity, Kirillov showed
that there exists on W a tensor Λ and a vector field
E such that, for every pair (u, v) of differentiable
functions on W , the bracket {u, v} is given by the
first formula of (∗∗) above. Since this bracket sat-
isfies the Jacobi identity, Λ and E satisfy the iden-
tities (∗ ). In other words, (W,Λ, E) is a Jacobi man-
ifold.

With F. Guédira, Lichnerowicz carried out a deep
study of local Lie algebras and their relations to
Poisson manifolds [GuL]. They notably showed
that the total space V of a Jacobi bundle (V,π,W )
whose fibers are of dimension 1 is canonically
equipped with a homogeneous Poisson structure,
the Poisson bracket of two homogeneous func-
tions on V corresponding to the bracket of the two
sections with which they are canonically associated.

Let (W,Λ, E) be a Jacobi manifold. The field of
directions generated by the vector field E and by
the image of the morphism Λ] is called the char-
acteristic field. It is not in general a vector
subbundle of TW because its rank is not necessarily
constant. However, Kirillov proved that the

characteristic field is, in a generalized sense, com-
pletely integrable. That field determines a Stefan
foliation of W , namely, a partition of W into max-
imal connected immersed submanifolds, called
leaves, whose tangent space at each point is the
value at this point of the characteristic field. The
leaves are not necessarily all of the same dimen-
sion; those of even dimension are symplectic man-
ifolds, and those of odd dimension are Pfaffian
manifolds. When the Jacobi manifold under con-
sideration is in fact a Poisson manifold (W,Λ) , the
leaves, all of even dimension, are called symplec-
tic leaves. This result highlights the fact that the
singularities of the pair (Λ, E), that is, the points
in the neighborhood of which the rank of the char-
acteristic field is not constant, organize them-
selves into immersed submanifolds and are there-
fore much simpler than the singularities of the rank
and of the class of a Pfaff form. Similarly for a Pois-
son manifold (W,Λ) , the singularities of the Pois-
son tensor Λ , namely, the points in a neighborhood
of which the rank of the morphism Λ] is not con-
stant, are much nicer than the singularities of
presymplectic forms. It is perhaps for this reason
that Poisson manifolds are much better adapted
for applications to mechanics and physics than are
presymplectic manifolds.

Poisson-Lichnerowicz Cohomology
Let (W,Λ) be a Poisson manifold. From his first
publication on Poisson manifolds [L77], Lich-
nerowicz noticed that the operator ∂Λ that asso-
ciates to each p-tensor P the (p + 1) -tensor
∂ΛP = [Λ, P ] (this bracket being the Schouten-Ni-
jenhuis bracket) has square 0. Thus ∂Λ allows one
to define a cohomology on W by using as p-
cochains the contravariant antisymmetric p-ten-
sors. This cohomology, commonly called Poisson
cohomology—but it will be more judicious to call
it Poisson-Lichnerowicz cohomology—is in general
complicated because it reflects certain topological
properties of the manifold W and of the Stefan fo-
liation formed by its symplectic leaves. Lich-
nerowicz began the study of it; at the present time
this study is being very actively pursued by nu-
merous researchers (for a recent account, see for
example the books by Vaisman [Va] and by Can-
nas da Silva and Weinstein [CaW]). Notably, Lich-
nerowicz showed that the morphism of vector
bundles Λ] : T∗W → TW , extended to exterior
powers, is such that for any differentiable p-form
η on W , Λ](dη) = ∂Λ(Λ]η). Consequently, Λ] de-
termines a homomorphism of de Rham cohomol-
ogy into Poisson-Lichnerowicz cohomology. When
the Poisson manifold under consideration is in
fact a symplectic manifold, this homomorphism is
an isomorphism.

Let us mention again an important property of
Poisson manifolds, although its discovery (made
independently by several authors, including 
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B. Fuchssteiner, F. Magri and C. Morosi, A. Wein-
stein, P. Dazord) is not attributable to André Lich-
nerowicz: the cotangent bundle T∗W of a Poisson
manifold (W,Λ) possesses a Lie algebroid structure
whose anchor is the morphism of vector bundles
Λ] : T∗W → TW . This means that there exists, on
the space of differentiable sections of this bundle
(that is, on the space of differential 1-forms on W ),
a composition law denoted (ζ,η) 7→ [ζ,η] that
makes a Lie algebra satisfying, for every pair (ζ,η)
of differential 1-forms and every differentiable
function f on W ,

Λ][ζ,η] = [Λ]ζ,Λ]η] ,

[ζ, fη] =
(
L(Λ]ζ)f

)
η + f [ζ,η].

The bracket of two exact 1-forms du and dv is tied
to the Poisson bracket {u, v} by the relation
[du, dv] = d{u, v} .

In 1985 J.-L. Koszul [Kos] proved that the bracket
of differential 1-forms on a Poisson manifold
(W,Λ) extends to a composition law on the graded
vector space of differential forms of all degrees,
making this space into a graded Lie algebra. The
morphism Λ], extended to exterior powers, is a ho-
morphism of graded Lie algebras (the graded vec-
tor space of contravariant antisymmetric tensors
being equipped with the Schouten-Nijenhuis
bracket as composition law). Certain of these prop-
erties have since been extended to general Lie al-
gebroids, which appear closely tied to Poisson
manifolds. Thus, for example, the total space of the
dual bundle of a Lie algebroid possesses a canon-
ical homogeneous Poisson structure. Thus, the im-
portance of Poisson manifolds is confirmed!

Deformations of the Algebra of Functions
on a Manifold
In papers in 1976 to 1982 with M. Flato, D. Stern-
heimer, F. Bayen, and C. Fronsdal, Lichnerowicz ap-
plied the theory of deformations of algebraic struc-
tures (initiated by M. Gerstenhaber in 1964) to the
associative and Lie algebra structures of the space
of functions on a symplectic (or contact) mani-
fold. Let us indicate briefly the point of departure
of these works by considering, as an example, the
space N = C∞(W,R) of functions on a Poisson man-
ifold (W,Λ) . Let (u, v) 7→ u∗ν v be a bilinear 
mapping of N ×N into the space E(N,ν) of 
formal series in a parameter ν with coefficients 
in N , of the form u∗ν v = uv +

∑∞
r=1 νrCr (u, v) .

The Cr : N×N → N are bilinear mappings called
cochains. One says that (u, v) 7→ u∗ν v is a formal
deformation of the associative algebra structure of
N (briefly, a ∗ν-product) if the associative property
(u∗ν v)∗ν w = u∗ν (v ∗ν w ) is satisfied for-
mally. Two formal deformations, denoted
(u, v) 7→ u∗ν v and (u, v) 7→ u∗′ν v, are said to be
equivalent if there exists a formal endomorphism
Tν = idN +

∑∞
s=1 νsTs , where the Ts are linear

endomorphisms of N such that one has formally
Tν (u∗′ν v) = (Tνu)∗ν (Tνv) .

Lichnerowicz and his coworkers immediately
saw that it is convenient to choose C1(u, v) = {u, v},
the Poisson bracket. They showed that when one
tries to determine successively the cochains Cr
for r = 2, 3, …, one encounters, at each order of
the development in formal series, an obstruction
represented by an element in a certain cohomol-
ogy space. That cohomology space is the third
“Hochschild cohomology” space. For each integer
p ≥ 0, the space of p-cochains of Hochschild co-
homology, used for the construction of the p-th co-
homology space, is the space of p-multilinear map-
pings of Np into N. The vanishing of this class is
the necessary and sufficient condition for push-
ing the development in formal series to the next
higher order. Similarly, the study of the equivalence
of two deformations of the associative algebra
structure of N makes appear, at each order, an ob-
struction represented by an element in the second
Hochschild cohomology space.

In an analogous manner, one can define and
study the formal deformations of the Lie algebra
structure of N. The role above played by the iden-
tity, expressing the associativity, is played by the
Jacobi identity. The obstructions are then classes
of another cohomology, the Chevalley cohomology,
whose p-cochains are the alternating p-multilinear
mappings of Np into N. From each formal defor-
mation of the associative algebra structure of N,
one can deduce by antisymmetrization a formal de-
formation of the Lie algebra structure.

Lichnerowicz and his coworkers showed that the
formal deformations of the associative algebra N
of differentiable functions on a symplectic (or
Poisson) manifold offer a method of quantization
of classical Hamiltonian systems, different from the
method based on the geometric quantization of 
B. Kostant and J.-M. Souriau.

Ever since the works of H. Weyl (1931) and 
J. Moyal (1949), one has known an example of a
nontrivial deformation of the associative algebra
of differentiable functions on R2n equipped with
its canonical symplectic structure, called the Moyal-
Weyl bracket. Numerous researchers have studied
the existence of formal deformations of the asso-
ciative or Lie algebra structure of the space of dif-
ferentiable functions on a general symplectic (or
Poisson) manifold. The first results are due to 
J. Vey (1975) for the Lie algebra structure and to
O. Neroslavsky and A. Vlassov (1981) for the as-
sociative structure under a topological hypothesis
(the vanishing of the third Betti number). This hy-
pothesis has been dropped first by M. Cahen and
S. Gutt (1982) in the case of the cotangent bundle,
then by M. de Wilde and P. Lecomte (1983) in the
case of an arbitrary symplectic manifold. Simpler
proofs of the existence theorem were subsequently
given by several authors—notably Karasev and
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Maslov [KM] in 1993,
Omori-Maeda-Yoshioka
(1991), and Fedosov
(1994). Recently M.
Kontsevich obtained, as
a consequence of a con-
jecture which he for-
mulated in 1993 and
proved in 1997, a very
deep result: on any dif-
ferentiable manifold,
there is an equivalence
between the classes of
formal deformations of
the associative algebra
of differentiable func-
tions and the classes of
formal deformations of
the trivial Poisson
structure (whose Pois-
son tensor is identically
zero).

By Way of
Conclusion
For lack of space I had
to give up trying to pre-
sent many other as-
pects of the work of
André Lichnerowicz in
symplectic geometry
that deserve a detailed
description: the study
of Lie algebras associ-
ated to symplectic

manifolds, contact manifolds, Poisson manifolds,
Jacobi manifolds; the geometry of canonical trans-
formations; homogeneous contact spaces; … .

I had the privilege of being a student of André
Lichnerowicz and receiving his help and encour-
agement. I have the deepest respect for his human
qualities as well as for his scientific achievements.
When in the 1960s I took his courses at the Col-
lège de France, I admired his exceptional virtuos-
ity in calculation and the perfect arrangement of
difficult proofs, which he always explained in a
complete manner. With more hindsight I realize
now that the most admirable of his mathematical
skills was the depth of his vision, which permit-
ted him to abstract key concepts of today’s and to-
morrow’s mathematics.
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Aix en Provence, 1990. Left to right:
André Lichnerowicz, Claude Itzykson,

and Jean-Marie Souriau.
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