
 1

Dynex: A scalable and reliable platform for computing
beyond Moore’s law

Dynex Developers

September 22, 2022

v1.2

Abstract

With the end of Moore’s law approaching and Dennard scaling ending, the
computing community is increasingly looking at new technologies to enable
continued performance improvements. A neuromorphic computer is a non-
von Neumann computer whose structure and function are inspired by biology
and physics. Today, such systems can be built and operated using existing
technology, even at scale, and are capable of outperforming current
quantum computers1,2.

Dynex is a next-generation platform for neuromorphic computing based on
a new flexible blockchain protocol. It is designed for the development of
software applications and algorithms that utilize neuromorphic hardware and
are capable of accelerating computation. To accomplish this goal, the platform
connects hosts that are running clusters of neuromorphic chips with users and
applications that utilize this next-generation hardware. On the Dynex
platform, computation time is exchanged for the Dynex native token.

Dynex has also developed a proprietary circuit design, the Dynex
Neuromorphic Chip, that complements the Dynex ecosystem and turns any
modern field programmable gate array (FPGA) based chip into a
neuromorphic computing chip that can perform orders of magnitude faster
than classical or quantum methodologies for a wide range of applications. Due
to the dominance of ASICs in the proof-of-work token mining industry, there
is a large amount of dormant FPGA infrastructure available which can be
converted into high performance next-generation neuromorphic computing
clusters.

1 Mniszewski, S. M. Graph partitioning as quadratic unconstrained binary optimization (QUBO)
on spiking neuromorphic hardware. In Proc. International Conference on Neuromorphic
Systems 1–5 (ACM, 2019).

2 Yakopcic, C., Rahman, N., Atahary, T., Taha, T. M. & Douglass, S. Solving constraint
satisfaction problems using the Loihi spiking neuromorphic processor. In 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE) 1079–1084 (IEEE, 2020).

 2

1. Introduction

With the end of Moore’s law approaching and Dennard scaling ending, the
computing community is increasingly looking at new technologies to enable
continued performance improvements. Among these new technologies are
neuromorphic computers. Neuromorphic computing was coined by Carver Mead
in the late 1980s3,4 and at the time primarily refers to analogue-digital
implementations of brain-inspired computing. In recent years, however, the term
neuromorphic has come to encompass a broad range of hardware implementations
as the field continues to evolve and large-scale funding opportunities have become
available for brain-inspired computing systems, including the DARPA Synapse
project and the Human Brain Project of the European Union.

The term neuromorphic computer refers to non-von Neumann computers whose
structure and function are influenced by biology and physics. Data and
instructions are stored in the memory units of Von Neumann computers, which
consist of separate CPUs and memory units. On the other hand, in a neuromorphic
computer, both processing and memory are governed by neurons and synapses.
Unlike Von Neumann computers, neuromorphic computers define their programs
based on the structure of the neural network and the parameters of the network
rather than by explicit instructions. Also, while von Neumann computers encode
information as numerical values expressed in binary terms, neuromorphic
computers receive spikes as input, which are encoded numerically by the associated
time at which they occur, the magnitude and the shape of their output.

Figure 1: Comparison of the von Neumann architecture
with the neuromorphic architecture

3 Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

4 Mead, C. How we created neuromorphic engineering. Nat. Electron. 3, 434–435 (2020).

 3

As a result of the contrasting characteristics between the two architectures (Fig. 1),
neuromorphic computers offer a number of fundamental operational differences:

• Inherently parallel operation is a characteristic of neuromorphic
computers, where all neurons and synapses can potentially operate
simultaneously; however, when compared with the parallelized von
Neumann systems, neurons and synapses perform relatively simple
computations.

• Memory and processing are co-located: in neuromorphic hardware, there

is no concept of separating memory and processing. In many
implementations, neurons and synapses perform processing and store values
in tandem, despite the fact that neurons are sometimes thought of as
processing units and synapses as memory units. By combining the processor
and memory, the von Neumann bottleneck regarding processor/memory
separation is mitigated, resulting in a reduction in maximum throughput.
Furthermore, this collocation reduces the need for data access from the main
memory, which consumes a large amount of energy compared to compute
energy.5.

• Neuromorphic computers have inherent scalability since adding more

neuromorphic chips increases the number of neurons and synapses. . In
order to run larger and larger networks, it is possible to treat multiple
physical neuromorphic chips as a single large neuromorphic
implementation. Several large-scale neuromorphic hardware systems have
been successfully implemented, including SpiNNaker6,7 and Loihi8.

• Neuromorphic computers use event-driven computation (meaning,

computing only when available data is available) and temporally sparse

5 Sze, V., Chen, Y.-H., Emer, J., Suleiman, A. & Zhang, Z. Hardware for machine learning:
challenges and opportunities. In 2017 IEEE Custom Integrated Circuits Conference (CICC) 1–8
(IEEE, 2017).

6 Mayr, C., Hoeppner, S. & Furber, S. SpiNNaker 2: a 10 million core processor system for brain
simulation and machine learning. Preprint at https://arxiv.org/abs/1911.02385 (2019).

7 Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. Proc. IEEE 102,
652–665 (2014).

8 Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99 (2018).

 4

activity to achieve extremely high computational efficiency9,10. There is no
work being performed by neurons and synapses unless there are spikes to
be processed, and typically spikes are relatively sparse in the network
operation.

• Stochasticity can be incorporated into neuromorphic computers, for

instance when neurons fire, to accommodate noise.

Neuromorphic computers are well documented in the literature, and their features
are often cited as motivating factors for their implementation and utilization

11,12,13,14. An attractive feature of neuromorphic computers is their extremely low
power consumption: they consume orders of magnitude less power than
conventional computers. This low-power operation is due to the fact that they are
event-driven and massively parallel, with only a small portion of the entire system
being active at any given time. Energy efficiency alone is a compelling reason to
investigate the use of neuromorphic computers in light of the increasing energy
costs associated with computing, as well as the increasing number of applications
that are energy constrained (e.g. edge computing applications). As neuromorphic
computers implement neural network-style computations inherently, they are a
natural platform for many of today's artificial intelligence and machine learning
applications. The inherent computational properties of neuromorphic computers
can also be leveraged to perform a wide variety of different types of computations15.

9 Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture for solving constraint
satisfaction problems. Nat. Commun. 6, 1–10 (2015).

10 Amir, A. et al. A low power, fully event-based gesture recognition system. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) 7388–7397 (IEEE, 2017).

11 Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in hardware.
Preprint at https://arxiv.org/abs/1705.06963 (2017).

12 James, C. D. et al. A historical survey of algorithms and hardware architectures for neural-
inspired and neuromorphic computing applications. Biol. Inspired Cogn. Archit. 19, 49–64 (2017).

13 Strukov, D., Indiveri, G., Grollier, J. & Fusi, S. Building brain-inspired computing. Nat.
Commun. 10, 4838–2019 (2019).

14 Davies, M. et al. Advancing neuromorphic computing with Loihi: a survey of results and
outlook. Proc. IEEE 109, 911–934 (2021).

15 Aimone, J. B. et al. Non-neural network applications for spiking neuromorphic hardware.
In Proc. 3rd International Workshop on Post Moores Era Supercomputing 24–26 (PMES, 2018).

 5

2. The Dynex Vision

A Dynex neuromorphic chip and its protocol are flexible, and the community can
modify them in the future. In this section, we define the main principles which
Dynex should adhere to. This can be referred to as Dynex's social contract. When
any of these principles are intentionally violated, the resulting chip and protocol
should not be referred to as Dynex.

• Decentralization comes first. It is important that Dynex be as decentralized
as possible: any parties (social leaders, software developers, hardware
manufacturers, miners, funds, and so on) whose absence or malicious
behavior may compromise the security of the network should be avoided.
During the lifetime of Dynex, if any of these parties appear, the community
should consider measures to reduce their impact.

• Designed for regular people. Dynex is a platform for ordinary people, and
their interests should not be compromised to benefit big parties. As such,
centralized mining should be prevented, and regular people should have the
opportunity to run full nodes and mine blocks (albeit with a small
probability).

• A platform for neuromorphic computing of the future. Dynex serves as
the foundation for applications and algorithms built on top of it. Although
it is designed for a variety of applications, its primary objective is to provide
an efficient, secure and easy way to utilize highly efficient next generation
computing systems.

• Reducing energy consumption: In light of the growing threat of climate
change to our environment and our future, it is imperative that we take every
measure necessary to reduce our energy consumption. An accelerated
adoption of neuromorphic computing will therefore benefit our entire
society since neuromorphic computing uses orders of magnitude less energy
compared to traditional computing systems.

• Long-term perspective. In order to ensure the long-term success of Dynex,

all aspects of development should be viewed from a long-term perspective.
The Dynex project should be able to survive for centuries without any hard
forks, hardware or software improvements, or any other unpredictable
changes. Due to the fact that Dynex is designed as a platform, it should also
be possible for applications and algorithms built on top of Dynex to survive
over the long term. Due to Dynex's resiliency and long-term survivability,
it may also have the potential to serve as a good store of value.

 6

• Open and permissionless. Dynex neuromorphic chips and Dynex protocol

do not restrict or limit any categories of usage. A user should be able to join
the network and participate in the protocol without taking any preliminary
steps. Dynex does not allow discrimination or limited access at the core
level, as is the case with traditional supercomputer systems. In contrast,
application developers are free to implement any logic they like, as long as
they are responsible for the ethical and legal implications of their work.

3. Dynex Neuromorphic Chip

A Dynex machine is a class of general-purpose computing machines based on
memory systems, where information is processed and stored at the same physical
location. We analyze the memory properties of the Dynex machine to demonstrate
that they possess universal computing power—they are Turing-complete—,
intrinsic parallelism, functional polymorphism, and information overhead,
namely that their collective states can support exponential data compression
directly in memory through their collective states. Moreover, we show that the
Dynex machine is capable of solving NP-complete problems in polynomial time,
just like a non-deterministic Turing machine. The Dynex machine, however,
requires only a polynomial number of memory cells due to its information
overhead. It is important to note that even though these results do not prove NP=P
within the Turing paradigm, the concept of Dynex machines represents a paradigm
shift from the current von Neumann architecture, bringing us closer to the concept
of brain-like neural computation.

Since Alan Turing invented his ideal machine in 193616,17, mathematicians have
been able to develop this concept into what is now known as computational
complexity theory18, a powerful tool essentially employed to determine how long
does an algorithm take to solve a problem with given input data. It is now known
as the universal Turing machine (UTM) and serves as the conceptual foundation for
all of today's digital computers. The practical realization of a UTM is commonly
done using the von Neumann architecture19, which apart from some inconsequential

16 A. M. Turing, “On computational numbers, with an application to the entscheidungsproblem,”
Proc. of the London Math. Soc., vol. 42, pp. 230–265, 1936.

17 A. M. Turing, The Essential Turing: Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life, Plus The Secrets of Enigma. Oxford University Press,
2004.

18 S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

19 J. von Neumann, “First draft of a report on the edvac,” Annals of the History of Computing,
IEEE, vol. 15, no. 4, pp. 27–75, 1993.

 7

details, it can be viewed as a device that requires a central processing unit (CPU)
that is physically separate from the memory. The CPU contains both the control
unit that directs the operation of the machine, as well as the logic gates and
arithmetic functions needed for execution (arithmetic/logic unit). A large amount
of data must be transferred between the CPU and the memory, thereby limiting the
machine's performance both in terms of time (von Neumann bottleneck20) and
energy consumption21.

While parallel computation mitigates some of these problems, it does not resolve
them: several processors manipulate portions of the whole data, using a physical
"closed" memory. As a result, all the processors will eventually have to
communicate with each other in order to solve the whole problem, still requiring a
substantial amount of data transfer between them and their memory. A
fundamentally new method of manipulating and storing data would be required in
order to overcome this "information latency issue".

Recent research has proposed a new computing paradigm, inspired by the
operations of our own brain, that does not rely on the UTM concept and puts the
entire computation in the memory. The paradigm is known as memcomputing22.
In the same way as the brain, memcomputing machines would compute in memory
without the requirement of a separate processor. The memory allows learning and
adaptive capabilities23,24, bypassing broken connections and self-organizing the
computation into the solution path25,26, much like the brain is able to sustain a
certain amount of damage and still operate seamlessly. In practice, memcomputing

20 J. Backus, “Can programming be liberated from the von neumann style?: A functional style and
its algebra of programs,” Commun. ACM, vol. 21, pp. 613–641, Aug. 1978.

21 J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A Quantitative
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006.

22 M. Di Ventra and Y. V. Pershin, “The parallel approach,” Nature Physics, vol. 9, pp. 200–202,
2013.

23 Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of amoeba learning,”
Phys. Rev. E, vol. 80, p. 021926, Aug 2009.

24 F. L. Traversa, Y. V. Pershin, and M. Di Ventra, “Memory models of adaptive behavior,”
Neural Networks and Learning Systems, IEEE Transactions on, vol. 24, pp. 1437–1448, Sept
2013.

25 Y. V. Pershin and M. Di Ventra, “Solving mazes with memristors: A massively parallel
approach,” Phys. Rev. E, vol. 84, p. 046703, Oct 2011.

26 Y. V. Pershin and M. Di Ventra, “Self-organization and solution of shortest-path optimization
problems with memristive networks,” Phys. Rev. E, vol. 88, p. 013305, Jul 2013.

 8

can be implemented by utilizing physical properties of many materials and systems
that exhibit a degree of time non-locality (memory) in their response functions at
particular frequencies27,28,29.

This type of machine has been mathematically proven to have the same
computational power as a non-deterministic Turing machine30, but unlike the
latter, it is fully deterministic and, as such, can be constructed. These three
properties are responsible for its computational power: intrinsic parallelism -
interacting memory cells change their states simultaneously and collectively when
performing computations; functional polymorphism - the same interacting
memory cells can calculate different functions based on the signals applied; and
finally information overhead - memory cells interacting can store a quantity of
information in a manner that is not directly proportional to the number of memory
cells.

This property is derived from a different type of architecture: the topology of this
architecture is described by a network of interacting memory cells, and its dynamics
are described by a collective state that is capable of storing and processing
information simultaneously. Collective states are similar to the collective
(entangled) states of many qubits in quantum computation, where the entangled
state can be used to solve certain types of problems efficiently.

3.1 Memprocessors

In a Dynex architecture, memprocessors are the basic building blocks. We define a
memprocessor as an object defined by the fourtuple (x, y, z, σ) where x is the state
of the memprocessor, y is the array of internal variables, z the array of variables
that connect from one memprocessor to other memprocessors, and σ an operator
that defines the evolution

σ[x, y, z] = (x‘ , y‘).

27 T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith,
M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science, vol. 325, no. 5947, pp. 1518–
1521, 2009.

28 Y. V. Pershin and M. Di Ventra, “Memory effects in complex materials and nanoscale systems,”
Advances in Physics, vol. 60, no. 2, pp. 145– 227, 2011.

29 M. Di Ventra and Y. V. Pershin, “On the physical properties of memristive, memcapacitive and
meminductive systems,” Nanotechnology, vol. 24, p. 255201, 2013.

30 F. L. Traversa and M. Di Ventra. Universal Memcomputing Machines. (preprint on
arXiv:1405.0931) IEEE Transaction on Neural Networks and Learning Systems, DOI:
10.1109/TNNLS.2015.2391182, 2015.

 9

When two or more memprocessors are connected, we have a network of
memprocessors (computational memory). In this case we define the vector x as the
state of the network (i.e., the array of all the states xi of each memprocessor), and z
= ∪izi the array of all connecting variables, with zi the connecting
array of variables of the memprocessor i-th.

Let zi and zj be respectively the vectors of connecting variables of the
memprocessors i and j, then if zi∩zj != ∅ we say that the two memprocessors are
connected. Alternatively, a memprocessor is not connected to any other
memprocessor (isolated) when we have z = z(x, y) (i.e., z is completely determined
by x and y) and

σ[x, y, z(x, y)] = (x, y),

which means that the memprocessor has no dynamics. A network of
memprocessors has the evolution of the connecting variables z given by the
evolution operator Ξ defined as

Ξ[x, y, z, s] = z‘

where y = ∪iyi and s is the array of the external signals that can be applied to a
subset of connections to provide stimuli for the network. Finally, the complete
evolution of the network is defined by the system

 σ[x1, y1, z1] = (x‘1 , y‘1)

. . .
σ[xn, yn, zn] = (x‘n , y‘n)
Ξ[x, y, z, s] = z‘.

The evolution operators σ and Ξ can be interpreted either as discrete or continuous
evolution operators. The discrete evolution operator interpretation includes also the
artificial neural networks31, while the continuous operator interpretation represents
more general dynamical systems.

31 S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2nd ed., 1998.

 10

3.2 Dynex machine

An ideal Dynex machine consists of an interconnected bank of memory cells
(memprocessors) capable of performing either digital (logic) or analog (functional)
operations under the control of a control unit. The computation with and in memory
can be illustrated as follows. When two or more memprocessors are connected, a
signal sent by the control unit causes the memprocessors to change their internal
states according to both their initial states and the signal, producing intrinsic
parallelism as well as functional polymorphism.

We define the Dynex machine as the eight-tuple

Dynex machine = (M, ∆,P, S, Σ, p0, s0, F),

where M is the set of possible states of a single memprocessor. It can be either a
finite set Md (digital regime), a continuum or an infinite discrete set of states Ma
(analog regime), thus M can be expressed as M = Md OR Ma. ∆ is a set of functions

δα : Mmα \F × P → Mm‘α × P2 × S

where mα < ∞ is the number of memprocessors used as input of (read by) the
function δα, and m‘α < ∞ is the number of memprocessors used as output (written
by) the function δα; P is the set of the arrays of pointers pα that select the
memprocessors called by δα and S is the set of indexes α; Σ is the set of the initial
states written by the input device on the computational memory; p0 ∈ P is the initial
array of pointers; s0 is the initial index α and F ⊆ M is the set of final states.

Note that the two important features of the Dynex machine, namely parallelism
and polymorphism, are clearly embedded in the definition of the set of functions
δα. Indeed the Dynex machine, unlike the UTM, can have more than one transition
function δα (functional polymorphism), and any function δα simultaneously acts on
a set of memprocessors (intrinsic parallelism). The Dynex machine also differs
from the UTM in that it does not distinguish between machine states and symbols
recorded on tape. It is rather the states of the memprocessors that encode this
information. It is imperative to have this component in order to build a machine that
is capable of storing data and performing computations simultaneously.

As another important point, unlike a UTM, which has a finite number of discrete
states and unlimited tape storage, a Dynex machine can operate, in principle, on an
infinite number of continuous states, even if the number of memory processors
is limited. In essence, each memprocessor is an analog device with a continuous set
of state values.

 11

Finally, it can be noticed that the formal definition of memprocessor and network
of memprocessors is compatible with the function δα defined above. In fact, the
topology and evolution of the network is associated with the stimuli s, while the
control unit defines all possible δα ∈ ∆ in the sense that those can be obtained by
applying a certain signal sα (which selects the index vector pα) to the network. The
network evolution then determines x‘ while β and pβ (or better sβ) are defined by
the control unit for the next processing step.

3.3 Dynex Neuromorphic Chip

The Dynex machine can be realized physically as a non-linear dynamical system,
which is composed of point attractors that represent the solutions to the problem. It
is possible to numerically integrate Dynex machines' equations of motion, since
they are non-quantum systems. The performance of similar machines on a wide
variety of combinatorial optimization problems has already been demonstrated to
be orders of magnitude faster than that of traditional algorithmic
approaches32,33,34,35,36.

Subsequently, by employing topological field theory37, it was shown that the
physical reason behind this efficiency rests on the dynamical long-range order that
develops during the transient dynamics where avalanches (instantons in the field
theory language) of different sizes are generated until the system reaches an

32 Massimiliano	Di	Ventra	and	Fabio	L.	Traversa.	Perspective:	Memcomputing:	Leveraging	
memory	and	physics	to	compute	efficiently.	Journal	of	Applied	Physics,	123(18):180901,	
2018.	

33 F.	L.	Traversa,	P.	Cicotti,	F.	Sheldon,	and	M.	Di	Ventra.	Evidence	of	expo-	nential	speed-up	in	
the	solution	of	hard	optimization	problems.	Complexity,	2018:7982851,	2018.	

34 F.	L.	Traversa	and	M.	Di	Ventra.	Memcomputing	integer	linear	programming.	
arXiv:1808.09999,	2018.	

35 Forrest	Sheldon,	Fabio	L.	Traversa,	and	Massimiliano	Di	Ventra.	Taming	a	nonconvex	
landscape	with	dynamical	long-range	order:	Memcomputing	ising	benchmarks.	Phys.	Rev.	E,	
100:053311,	Nov	2019.	

36 Haik	Manukian,	Fabio	L	Traversa,	and	Massimiliano	Di	Ventra.	Accelerating	deep	learning	
with	memcomputing.	Neural	Networks,	110:1–7,	2019.	

37 M.	Di	Ventra,	Fabio	L.	Traversa,	and	Igor	V.	Ovchinnikov.	Topological	field	theory	and	
computing	with	instantons.	Ann.	Phys.	(Berlin),	529:1700123,	2017.	

 12

attractor38. The transient phase of the solution search therefore resembles that of
several phenomena in Nature, such as earthquakes39, solar flares40 or quenches41.

Our Dynex Neuromorphic Chip utilizes field programmable gate arrays (FPGAs)
to achieve close to real-time performance of a Dynex machine. It can be adapted
freely to the problem to be computed and it can also be interconnected and operated
as part of a cluster.

Using the Dynex Neuromorphic Chip, problems that cannot be solved with classical
or quantum methods can be solved, therefore eliminating the barrier posed by the
von Neumann bottleneck. It may be used to solve hard optimization problems, to
implement integer linear programming (ILP), to carry out machine learning (ML),
to train deep neural networks or to improve computing efficiency generally.

4. Dynex Protocol

Bitcoin has been a successful implementation of the concept of p2p electronic cash.
Both professionals and the general public have come to appreciate the convenient
combination of public transactions and proof-of-work as a trust model. Today, the
user base of electronic cash is growing at a steady pace; customers are attracted to
low fees and the anonymity provided by electronic cash and merchants value its
predicted and decentralized emission. Bitcoin has effectively proved that electronic
cash can be as simple as paper money and as convenient as credit cards.
Unfortunately, Bitcoin suffers from several deficiencies.

The core component of any blockchain system is its consensus protocol and Dynex
utilizes an egalitarian Proof of Work (PoW) consensus protocol which shows
several advantages over traditional one-CPU-one-vote algorithms:

It is well known that one of the most significant problems with a PoW system is the
development of specialized hardware (ASICs), which allows a small group of

38 Forrest	Sheldon,	Fabio	L.	Traversa,	and	Massimiliano	Di	Ventra.	Taming	a	nonconvex	
landscape	with	dynamical	long-range	order:	Memcomputing	ising	benchmarks.	Phys.	Rev.	E,	
100:053311,	Nov	2019.	

39 Per	Bak	and	Chao	Tang.	Earthquakes	as	a	self-organized	critical	phenomenon.	Journal	of	
Geophysical	Research:	Solid	Earth,	94(B11):15635–15637,	1989.	

40 E.	T.	Lu	and	R.	J.	Hamilton.	Avalanches	and	the	distribution	of	solar	flares.	The	
Astrophysical	Journal,	380:L89–L92,	October	1991.	

41 Gunnar	Pruessner.	Self-Organised	Criticality:	Theory,	Models	and	Characteri-	sation.	
Cambridge	University	Press,	2012.	

 13

ASIC-equipped miners to solve PoW puzzles orders of magnitude faster and more
efficiently than anyone else. Memory-hard PoW schemes can solve this problem
by reducing the disparity between ASICs and commodity hardware. We believe
that the most promising approach is to use asymmetric memory-hard PoW schemes
that require significantly less memory to verify a solution than to discover it42,43.

Secondly, a PoW network's decentralization is threatened by the fact that even large
miners tend to form mining pools, leading to a situation in which just a few pool
operators (5 in Bitcoin and 2 in Ethereum at the time of writing) control more than
51% of computing power. Our protocol is both memory-hard and pool-resistant.

4.1. Egalitarian Proof-of-work

In this section we detail our proof-of-work algorithm. Our primary goal is to close
the gap between CPU (majority) and GPU/FPGA/ASIC (minority) miners. It is
appropriate that some users can have a certain advantage over others, but their
investments should grow at least linearly with the power. More generally,
producing special-purpose devices has to be as less profitable as possible.

The original Bitcoin proof-of-work protocol uses the CPU-intensive pricing
function SHA-256. It mainly consists of basic logical operators and relies solely on
the computational speed of processor, therefore is perfectly suitable for
multicore/conveyer implementation. However, modern computers are not limited
by the number of operations per second alone, but also by memory size. While some
processors can be substantially faster than others, memory sizes are less likely to
vary between machines.

Memory-bound price functions were first introduced by Abadi et al and were
defined as “functions whose computation time is dominated by the time spent
accessing memory”. The main idea is to construct an algorithm allocating a large
block of data (“scratchpad”) within memory that can be accessed relatively slowly
(for example, RAM) and “accessing an unpredictable sequence of locations” within
it. A block should be large enough to make preserving the data more advantageous
than recomputing it for each access. The algorithm also should prevent internal
parallelism, hence N simultaneous threads should require N times more memory at
once.

42 A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-work based on the
generalized birthday problem,” Ledger, vol. 2, pp. 1–30, 2017.

43 Ethash. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3

 14

Dwork et al investigated and formalized this approach leading them to suggest
another variant of the pricing function: “Mbound”. One more work belongs to F.
Coelho, who proposed the most effective solution: “Hokkaido”. To our knowledge
the last work based on the idea of pseudo-random searches in a big array is the
algorithm known as “scrypt” by C. Percival. Unlike the previous functions it
focuses on key derivation, and not proof-of-work systems. Despite this fact scrypt
can serve our purpose: it works well as a pricing function in the partial hash
conversion problem such as SHA-256 in Bitcoin.

By now scrypt has already been applied in Litecoin and some other Bitcoin forks.
How- ever, its implementation is not really memory-bound: the ratio “memory
access time / overall time” is not large enough because each instance uses only 128
KB. This permits GPU miners to be roughly 10 times more effective and continues
to leave the possibility of creating relatively cheap but highly-efficient mining
devices. Moreover, the scrypt construction itself allows a linear trade-off between
memory size and CPU speed due to the fact that every block in the scratchpad is
derived only from the previous. For example, you can store every second block and
recalculate the others in a lazy way, i.e. only when it becomes necessary. The
pseudo-random indexes are assumed to be uniformly distributed, hence the
expected value of the additional blocks’ recalculations is 21 ·N, where N is the
number of iterations. The overall computation time increases less than by half
because there are also time independent (constant time) operations such as
preparing the scratchpad and hashing on every iteration. Saving 2/3 of the memory
costs 31 · N + 13 · 2 · N = N additional recalculations; 9/10 results in 1 ·N +...+ 1
·9·N = 4.5N. It is easy to show that storing only 1 of all blocks 1010 s increases the
time less than by a factor of s−1 . This in turn implies that a machine with a CPU 2
200 times faster than the modern chips can store only 320 bytes of the scratchpad.

Our algorithm is a memory-bound algorithm for the proof-of-work pricing function.
It relies on random access to a slow memory and emphasizes latency dependence.
As opposed to scrypt every new block (64 bytes in length) depends on all the
previous blocks. As a result a hypothetical “memory-saver” should increase his
calculation speed exponentially. It requires around 2MB per instance:

• fits in the L3 cache (per core) of modern processors, which should become
mainstream in a few years;

• A megabyte of internal memory is an almost unacceptable size for a modern
ASIC pipeline;

• GPUs may run hundreds of concurrent instances, but they are limited in
other ways: GDDR5 memory is slower than the CPU L3 cache and
remarkable for its bandwidth, not random access speed.

• Significant expansion of the scratchpad would require an increase in
iterations, which in turn implies an overall time increase. “Heavy” calls in

 15

a trust-less p2p network may lead to serious vulnerabilities, because nodes
are obliged to check every new block’s proof-of-work. If a node spends a
considerable amount of time on each hash evaluation, it can be easily
DDoSed by a flood of fake objects with arbitrary work data (nonce values).

4.2. Untraceable Transactions

In this section we describe the scheme of fully anonymous transactions satisfying
both untraceability and unlinkability conditions. An important feature of our
solution is its autonomy: the sender is not required to cooperate with other users or
a trusted third party to make his transactions; hence each participant produces a
cover traffic independently.

Our scheme relies on the cryptographic primitive called a group signature. First
presented by D. Chaum and E. van Heyst44, it allows a user to sign his message on
behalf of the group. After signing the message the user provides (for verification
purposes) not his own single public key, but the keys of all the users of his group.
A verifier is convinced that the real signer is a member of the group, but cannot
exclusively identify the signer. The original protocol required a trusted third party
(called the Group Manager), and he was the only one who could trace the signer.
The next version called a ring signature, introduced by Rivest et al. in45, was an
autonomous scheme without Group Manager and anonymity revocation. Various
modifications of this scheme appeared later: linkable ring signature46,47,48 allowed
to determine if two signatures were produced by the same group member, traceable
ring signature49,50 limited excessive anonymity by providing possibility to trace the
signer of two messages with respect to the same metainformation (or “tag” in terms
of50). A similar cryptographic construction is also known as a ad-hoc group
signature51,52. It emphasizes the arbitrary group formation, whereas group/ring
signature schemes rather imply a fixed set of members. For the most part, our
solution is based on the work “Traceable ring signature” by E. Fujisaki and K.

44 David Chaum and Eug`ene van Heyst. Group signatures. In EUROCRYPT, pages 257–265,
1991.
45 Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASIACRYPT, pages
552–565, 2001.
46 Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In ACISP, pages 325–335, 2004.
47 Joseph K. Liu and Duncan S. Wong. Linkable ring signatures: Security models and new
schemes. In ICCSA (2), pages 614–623, 2005.
48 Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang. Short linkable ring
signatures revisited. In EuroPKI, pages 101–115, 2006.
49 Eiichiro Fujisaki. Sub-linear size traceable ring signatures without random oracles. In CTRSA,
pages 393–415, 2011.
50 Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public Key Cryptography,
pages 181–200, 2007.
51 Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Ad-hoc-group signatures from hijacked
keypairs. In in DIMACS Workshop on Theft in E-Commerce, 2005.
52 Qianhong Wu, Willy Susilo, Yi Mu, and Fangguo Zhang. Ad hoc group signatures. In IWSEC,
pages 120–135, 2006.

 16

Suzuki53. In order to distinguish the original algorithm and our modification we will
call the latter a one-time ring signature, stressing the user’s capability to produce
only one valid signature under his private key. We weakened the traceability
property and kept the linkability only to provide one-timeness: the public key may
appear in many foreign verifying sets and the private key can be used for generating
a unique anonymous signature. In case of a double spend attempt these two
signatures will be linked together, but revealing the signer is not necessary for our
purposes.

4.2.1 Elliptic curve parameters

As our base signature algorithm we chose to use the fast scheme EdDSA, which is
developed and implemented by D.J. Bernstein et al.54. Like Bitcoin’s ECDSA it is
based on the elliptic curve discrete logarithm problem, so our scheme could also be
applied to Bitcoin in future.

Common parameters are:

q: a prime number; q = 2255 − 19;
d: an element of Fq; d = −121665/121666;
E: an elliptic curve equation; −x 2 + y 2 = 1 + dx2y 2 ;
G: a base point; G = (x, −4/5);
l: a prime order of the base point; l = 2252 + 27742317777372353535851937790883648493;
Hs: a cryptographic hash function {0, 1} ∗ → Fq;
Hp: a deterministic hash function E(Fq) → E(Fq).

4.2.2 Terminology

Enhanced privacy requires a new terminology which should not be confused with
Bitcoin entities.

private ec-key is a standard elliptic curve private key: a number a ∈ [1, l − 1];
public ec-key is a standard elliptic curve public key: a point A = aG;
one-time keypair is a pair of private and public ec-keys;
private user key is a pair (a, b) of two different private ec-keys;
tracking key is a pair (a, B) of private and public ec-key (where B = bG and a 6= b);
public user key is a pair (A, B) of two public ec-keys derived from (a, b);
standard address is a representation of a public user key given into human friendly string with
error correction;
truncated address is a representation of the second half (point B) of a public user key given into
human friendly string with error correction.

53 Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public Key Cryptography,
pages 181–200, 2007.
54 Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. J. Cryptographic Engineering, 2(2):77–89, 2012.

 17

The transaction structure remains similar to the structure in Bitcoin: every user can
choose several independent incoming payments (transactions outputs), sign them
with the corresponding private keys and send them to different destinations.

Contrary to Bitcoin’s model, where a user possesses unique private and public key,
in the proposed model a sender generates a one-time public key based on the
recipient’s address and some random data. In this sense, an incoming transaction
for the same recipient is sent to a one-time public key (not directly to a unique
address) and only the recipient can recover the corresponding private part to redeem
his funds (using his unique private key). The recipient can spend the funds using a
ring signature, keeping his ownership and actual spending anonymous. The details
of the protocol are explained in the next subsections.

4.3. Unlinkable payments

Classic Bitcoin addresses, once being published, become unambiguous identifier
for incoming payments, linking them together and tying to the recipient’s
pseudonyms. If someone wants to receive an “untied” transaction, he should convey
his address to the sender by a private channel. If he wants to receive different
transactions which cannot be proven to belong to the same owner he should
generate all the different addresses and never publish them in his own pseudonym.

Our solution is allowing a user to publish a single address and receive unconditional
unlinkable payments. The destination of each Dynex output (by default) is a public
key, derived from recipient’s address and sender’s random data. The main
advantage against Bitcoin is that every destination key is unique by default (unless
the sender uses the same data for each of his transactions to the same recipient).
Hence, there is no such issue as “address reuse” by design and no observer can
determine if any transactions were sent to a specific address or link two addresses
together.

First, the sender performs a Diffie-Hellman exchange to get a shared secret from
his data and half of the recipient’s address. Then he computes a one-time destination
key, using the shared secret and the second half of the address. Two different ec-
keys are required from the recipient for these two steps, so a standard Dynex address
is nearly twice as large as a Bitcoin wallet address. The receiver also performs a
Diffie-Hellman exchange to recover the corresponding secret key.

A standard transaction sequence goes as follows:

1. Alice wants to send a payment to Bob, who has published his standard address.
She unpacks the address and gets Bob’s public key (A, B).

 18

2. Alice generates a random r ∈ [1, l−1] and computes a one-time public key P =
Hs(rA)G+ B.

3. Alice uses P as a destination key for the output and also packs value R = rG (as
a part of the Diffie-Hellman exchange) somewhere into the transaction. Note that
she can create other outputs with unique public keys: different recipients’ keys (Ai
, Bi) imply different Pi even with the same r.

4. Alice sends the transaction.

5. Bob checks every passing transaction with his private key (a, b), and computes
P 0 = Hs(aR)G + B. If Alice’s transaction for with Bob as the recipient was
among them, then aR = arG = rA and P 0 = P.

6. Bob can recover the corresponding one-time private key: x = Hs(aR) + b, so as
P = xG. He can spend this output at any time by signing a transaction with x.

As a result, Bob gets incoming payments, associated with one-time public keys
which are unlinkable for a spectator. Some additional notes:

• When Bob “recognizes” his transactions (see step 5) he practically uses only half
of his private information: (a, B). This pair, also known as the tracking key, can be
passed to a third party (Carol). Bob can delegate her the processing of new
transactions. Bob doesn’t need to explicitly trust Carol, because she can’t recover
the one-time secret key p without Bob’s full private key (a, b). This approach is
useful when Bob lacks bandwidth or computation power (smartphones, hardware
wallets etc.).

• In case Alice wants to prove she sent a transaction to Bob’s address she can either
discloser or use any kind of zero-knowledge protocol to prove she knows r (for
example by signing the transaction with r).

• If Bob wants to have an audit compatible address where all incoming transaction
are linkable, he can either publish his tracking key or use a truncated address. That
address represent only one public ec-key B, and the remaining part required by the
protocol is derived from it as follows: a = Hs(B) and A = Hs(B)G. In both cases
every person is able to “recognize” all of Bob’s incoming transaction, but, of
course, none can spend the funds enclosed within them without the secret key b.

 19

4.4. One-time ring signatures

A protocol based on one-time ring signatures allows users to achieve unconditional
unlinkability. Unfortunately, ordinary types of cryptographic signatures permit to
trace transactions to their respective senders and receivers. Our solution to this
deficiency lies in using a different signature type than those currently used in
electronic cash systems.

We will first provide a general description of our algorithm with no explicit
reference to electronic cash. A one-time ring signature contains four algorithms:

GEN: takes public parameters and outputs an ec-pair (P, x) and a public key I.

SIG: takes a message m, a set S 0 of public keys {Pi}i6=s, a pair (Ps, xs) and outputs
a signature σ and a set S = S 0 ∪ {Ps}.

VER: takes a message m, a set S, a signature σ and outputs “true” or “false”.

LNK: takes a set I = {Ii}, a signature σ and outputs “linked” or “indep”.

The idea behind the protocol is fairly simple: a user produces a signature which can
be checked by a set of public keys rather than a unique public key. The identity of
the signer is indistinguishable from the other users whose public keys are in the set
until the owner produces a second signature using the same keypair.

GEN: The signer picks a random secret key x ∈ [1, l − 1] and computes the
corresponding public key P = xG. Additionally he computes another public key I =
xHp(P) which we will call the “key image”.

SIG: The signer generates a one-time ring signature with a non-interactive zero-
knowledge proof using the techniques from [21]. He selects a random subset S 0 of
n from the other users’ public keys Pi , his own keypair (x, P) and key image I. Let
0 ≤ s ≤ n be signer’s secret index in S (so that his public key is Ps). He picks a
random {qi | i = 0 . . . n} and {wi | i = 0 . . . n, i 6= s} from (1 . . . l) and applies the
following transformations:

 20

The next step is getting the non-interactive challenge:

Finally the signer computes the response:

The resulting signature is σ = (I, c1, . . . , cn, r1, . . . , rn).

VER: The verifier checks the signature by applying the inverse transformations:

Finally, the verifier checks if

If this equality is correct, the verifier runs the algorithm LNK. Otherwise the verifier
rejects the signature.

LNK: The verifier checks if I has been used in past signatures (these values are
stored in the set I). Multiple uses imply that two signatures were produced under
the same secret key. The meaning of the protocol: by applying L-transformations
the signer proves that he knows such x that at least one Pi = xG. To make this proof
non-repeatable we introduce the key image as I = xHp(P). The signer uses the same
coefficients (ri , ci) to prove almost the same statement: he knows such x that at
least one Hp(Pi) = I · x −1 .

If the mapping x → I is an injection:

1. Nobody can recover the public key from the key image and identify the signer;
2. The signer cannot make two signatures with different I’s and the same x.

4.5. A Dynex transaction

By combining both methods (unlinkable public keys and untraceable ring signature)
Bob achieves new level of privacy in comparison with the original Bitcoin scheme.
It requires him to store only one private key (a, b) and publish (A, B) to start
receiving and sending anonymous transactions. While validating each transaction
Bob additionally performs only two elliptic curve multiplications and one addition
per output to check if a transaction belongs to him. For his every output Bob
recovers a one-time keypair (pi , Pi) and stores it in his wallet. Any inputs can be
circumstantially proved to have the same owner only if they appear in a single

 21

transaction. In fact this relationship is much harder to establish due to the one-time
ring signature.

With a ring signature Bob can effectively hide every input among somebody else’s;
all possible spenders will be equiprobable, even the previous owner (Alice) has no
more information than any observer.

When signing his transaction Bob specifies n foreign outputs with the same amount
as his output, mixing all of them without the participation of other users. Bob
himself (as well as anybody else) does not know if any of these payments have been
spent: an output can be used in thousands of signatures as an ambiguity factor and
never as a target of hiding. The double spend check occurs in the LNK phase when
checking against the used key images set. Bob can choose the ambiguity degree on
his own: n = 1 means that the probability he has spent the output is 50% probability,
n = 99 gives 1%. The size of the resulting signature increases linearly as O(n+ 1),
so the improved anonymity costs to Bob extra transaction fees. He also can set n =
0 and make his ring signature to consist of only one element, however this will
instantly reveal him as a spender.

5. Resiliency and Survivability

Due to its nature as a platform, Dynex is expected to support long-term contracts
for at least the lifetime of an average person. Despite this, even young smart
contract platforms are experiencing performance degradation and inability to adapt
to external conditions. Therefore, a cryptocurrency will depend on a small group of
developers to provide a hard-fork to fix this problem, or else it will not be able to
survive. As an example, the Ethereum network has been using the Proof-of-Work
consensus algorithm and promises to switch to Proof-of-Stake in the near future.
Nevertheless, delays in Proof-of-Stake development have resulted in several fixing
hard forks55 and the community is still reliant on the core developers to implement
the next hard fork.

The first common survivability issue is that developers often implement ad-hoc
solutions in pursuit of popularity without conducting adequate research and testing.
Inevitably, such solutions will result in bugs, which will in turn lead to hasty bug
fixes, which will then lead to bug fixes of those bug fixes, etc., making the network
unreliable and even less secure. Rather than seeking short-term innovation, Dynex
focuses on using stable, well-tested solutions. Many of the solutions used in

55 Ethereums blockchain is once again feeling the difficulty bomb effect. [Online]. Available:
https://www.coindesk.com/ ethereum-blockchain-feeling-the-difficulty-bomb-effect

 22

Dynex have been formalized in papers that have been presented at peer-reviewed
conferences56,57,58,59,60,61 and have been widely discussed in the community.

Decentralization (and thus survivability) is also challenged by the absence of secure
trustless light clients. Dynex aims to solve this problem without creating new
ones. Since Dynex is a Proof-of-Work blockchain, a small header can easily be
extracted from the block content. This header alone allows for the validation of the
work done on it, and a headers chain is sufficient to select the optimal chain for
synchronization with the network. Headers-chains, although much smaller than
the full blockchain, still grow linearly over time. Recent research on light clients
has demonstrated a way for light clients to synchronize with the network by
downloading an even smaller amount of data, thus enabling untrusted low-end
devices, such as mobile phones, to join the network62,63. Dynex uses an
authenticated state and allows clients to download proofs of the correctness of
transactions included in a block. In this way, Dynex is accessible to anyone using a
mobile phone, regardless of the blockchain size.

There is also a third potential problem, namely that while light clients solve the
problem for Dynex users, they still do not solve it for Dynex miners, who must still

56 L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov, “Improving authenticated dynamic
dictionaries, with applications to cryptocurrencies,” in International Conference on Financial
Cryptography and Data Security. Springer, 2017, pp. 376–392.

57 D. Meshkov, A. Chepurnoy, and M. Jansen, “Short paper: Revisiting difficulty control for
blockchain systems,” in Data Privacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 2017, pp. 429–436.

58 A. Chepurnoy, V. Kharin, and D. Meshkov, “A systematic approach to cryptocurrency fees,”
IACR Cryptology ePrint Archive, vol. 2018, p. 78, 2018.

59 A. Chepurnoy, V. Kharin, and D. Meshkov, “Self-reproducing coins as universal turing
machine,” in Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer,
2018, pp. 57–64.

60 A. Chepurnoy and M. Rathee, “Checking laws of the blockchain with property-based testing,” in
Blockchain Oriented Software Engineering (IWBOSE), 2018 International Workshop on. IEEE,
2018, pp. 40–47.

61 T. Duong, A. Chepurnoy, and H.-S. Zhou, “Multi-mode cryptocurrency systems,” in
Proceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts. ACM,
2018, pp. 35–46.
62 A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proofof-work,” Cryptology
ePrint Archive, Report 2017/963, 2017. Accessed: 2017-10-03, Tech. Rep., 2017.

63 L. Luu, B. Buenz, and M. Zamani, “Flyclient super light client for cryptocurrencies,” IACR
Cryptology ePrint Archive, 2019. [Online]. Available: https://eprint.iacr.org/2019/226

 23

keep the entire state for efficient transaction validation. Currently, blockchain
systems allow users to store arbitrary data in this state. Due to the fact that this data
lasts forever, it creates a lot of dust, which grows in size infinitely over time64. In
situations where the state is too large for random-access memory, an adversary may
be able to generate transactions that are very slow to validate as they require random
access to the miner's storage. As a result, DoS attacks such as the one that occurred
on Ethereum in 2016 may occur65. The community's fear of such attacks as well as
the problem of "state bloat" without compensation for miners and users may have
prevented scaling solutions from being implemented (such as larger block sizes, for
instance). For this reason, Dynex contains a storage rent component: if an output
remains in the state for four years without being moved, a miner may charge a small
fee per byte.

Similarly to regular cloud storage services, this concept has only recently been
proposed for cryptocurrencies66 and has several important implications. In the first
place, it ensures that Dynex mining will always be stable, as opposed to Bitcoin and
other proof-of-work currencies, where mining may become unstable once emission
is completed67. Second, the growth of the state's size becomes predictable and
controllable, so Dynex miners are able to manage their hardware requirements more
effectively. Finally, by collecting storage fees from outdated boxes, miners can
return coins to circulation, thus preventing the steady decrease of circulating supply
due to lost keys68. It is expected that all of these factors will support Dynex's long-
term viability, both technically and economically.

64 C. P´erez-Sol`a, S. Delgado-Segura, G. Navarro-Arribas, and J. HerreraJoancomart´ı, “Another
coin bites the dust: an analysis of dust in utxobased cryptocurrencies,” Royal Society open
science, vol. 6, no. 1, p. 180817, 2019.

65 Ethereum network attackers ip address is traceable. [Online]. Available:
https://www.bokconsulting.com.au/blog/ ethereum-network-attackers-ip-address-is-traceable/

66 A. Chepurnoy and D. Meshkov, “On space-scarce economy in blockchain systems.” IACR
Cryptology ePrint Archive, vol. 2017, p. 644, 2017.

67 M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On the instability of bitcoin
without the block reward,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 154–167.
68 E. Krause, “A fifth of all bitcoin is missing. these crypto hunters can help,” 2018.

 24

6. Dynex’s Native Token

Dynex's native token is called DNX and can be divided into 109 smaller units called
nanoDNX (one nanoDNX equals one billionth of a DNX). There will be a total of
maximum 100,000,000.0 DNX available. DNX are vital to the stability and security
of the Dynex platform for a number of reasons as outlined below. Tokens will be
emitted according to a predetermined and hard-coded schedule.

6.1. Emission

There’s no initial coin offering („ICO“), no pre-mining and no coin drop for
developers or any other hidden incentive built into the token. Upon launch of the
Dynex mainnet, all 100,000,000.0 DNX tokens will be available according tot he
emission schedule. To ensure the smoothness of the emission process we use the
following formula for block rewards:

BaseReward = (MSupply − A) ≫ 18,

where A is amount of previously generated coins. The following graphic displays
the emission graphically:

Figure 2: The DNX Emission Schedule

 25

7. Next Generation Neuromorphic Computing

The next generation of computing capabilities should be accessible to everyone,
according to our opinion. As a platform for liberating and accelerating
neuromorphic computing, which we believe will be the future of computing, Dynex
combines proprietary circuitry (such as Dynex's Neuromorphic Chip) with
general available neuromorphic computing infrastructure (such as Intel Lohi69,
IBM TrueNorth70 or the University of California's NeuRRAM71) and software and
algorithm developers.

Dynex provides the foundation for applications and algorithms that will be built
upon it. A platform enables users and applications to access this next-generation
hardware by connecting hosts that are operating clusters of neuromorphic chips.
The Dynex native token is used to exchange computation time on the platform.

• Dynex operators maintain and operate neuromorphic computing
infrastructure. This can be achieved by using general hardware such as Intel
Lohi, IBM TrueNorth or University of California‘s NeuRRAM, or by
programming FPGAs with the Dynex Neuromorphic Chip circuit
design. Due to the dominance of ASICs in proof-of-work token mining,
there is a significant amount of dormant FPGA infrastructure available,
which can be repurposed into high performance next generation
neuromorphic computing clusters. Dynex's operators offer their computing
resources in exchange for DNX, Dynex's native token.

• Software developers develop applications that run on neuromorphic

computing infrastructure provided by operators. With Dynexscript, a simple
and easy-to-learn scripting language, problems and computational tasks can
be reformulated for execution on neuromorphic computing clusters. Having
access to this infrastructure allows software developers and researchers to
implement high-performance, highly efficient computing systems that can
outperform current and Quantum methodologies. Dynex's native token
DNX is used as compensation for the use of its computing resources.

69 https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

70 Krishna, R. & Nandini, Usha & Mayan, J. & Sawarn, Nidhi. (2021). Neuromorphic Computing –
The Principal of Development. 10.4108/eai.7-6-2021.2308573.

71 https://www.sciencedaily.com/releases/2022/08/220817114253.htm

 26

• Besides the environmental benefits associated with repurposing hardware,
users may also obtain Dynex’s native token DNX and thus take part in the
growing post Moore’s law computing market segment, a market that will
likely grow exponentially in the near future as a result of repurposing
hardware. Our vision is for ordinary people to be able to benefit from the
rapidly increasing computing power in the future.

7.1. Example

To illustrate the superior performance of neuromorphic computing, the following
example showcases an implementation of a constraint satisfaction problem, where
a problem formulation with complexity O(n100,000) is being solved using the Dynex
Neuromorphic Chip. The problem consists of 100,000 unique variables. Existing
methodologies based on current and Quantum technology (reducing the complexity
with Shor’s algorithm72 to O(n50,000) cannot solve this problem today as it would
require longer than the existence of the universe to find a solution. The Dynex
Neuromorphic Chip solves the problem in 2.23s because of its inherent
parallelization, it’s long-range order and its capability to utilize instantons (Fig.2).

Current Quantum Dynex
Method Method Neuromorphic Chip

O(n100,000) O(n50,000) 2.23s

*Longer than *Longer than
the universe exits the universe exists

Note: these results can be verified and reproduced with our reference implementations
 published in our GitHub repository.

72 Mosca, M., Verschoor, S.R. Factoring semi-primes with (quantum) SAT-solvers. Sci Rep 12,
7982 (2022). https://doi.org/10.1038/s41598-022-11687-7

