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Abstract 
 

With the end of Moore’s law approaching and Dennard scaling ending, the 
computing community is increasingly looking at new technologies to enable 
continued performance improvements. A neuromorphic computer is a non-
von Neumann computer whose structure and function are inspired by biology 
and physics. Today, such systems can be built and operated using existing 
technology, even at scale, and are capable of outperforming current 
quantum computers1,2. 
 
Dynex is a next-generation platform for neuromorphic computing based on 
a new flexible blockchain protocol. It is designed for the development of 
software applications and algorithms that utilize neuromorphic hardware and 
are capable of accelerating computation. To accomplish this goal, the platform 
connects hosts that are running clusters of neuromorphic chips with users and 
applications that utilize this next-generation hardware. On the Dynex 
platform, computation time is exchanged for the Dynex native token. 
 
Dynex has also developed a proprietary circuit design, the Dynex 
Neuromorphic Chip, that complements the Dynex ecosystem and turns any 
modern field programmable gate array (FPGA) based chip into a 
neuromorphic computing chip that can perform orders of magnitude faster 
than classical or quantum methodologies for a wide range of applications. Due 
to the dominance of ASICs in the proof-of-work token mining industry, there 
is a large amount of dormant FPGA infrastructure available which can be 
converted into high performance next-generation neuromorphic computing 
clusters. 

 
1 Mniszewski, S. M. Graph partitioning as quadratic unconstrained binary optimization (QUBO) 
on spiking neuromorphic hardware. In Proc. International Conference on Neuromorphic 
Systems 1–5 (ACM, 2019). 
 
2 Yakopcic, C., Rahman, N., Atahary, T., Taha, T. M. & Douglass, S. Solving constraint 
satisfaction problems using the Loihi spiking neuromorphic processor. In 2020 Design, 
Automation & Test in Europe Conference & Exhibition (DATE) 1079–1084 (IEEE, 2020). 
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1. Introduction 

 
With the end of Moore’s law approaching and Dennard scaling ending, the 
computing community is increasingly looking at new technologies to enable 
continued performance improvements. Among these new technologies are 
neuromorphic computers. Neuromorphic computing was coined by Carver Mead 
in the late 1980s3,4 and at the time primarily refers to analogue-digital 
implementations of brain-inspired computing. In recent years, however, the term 
neuromorphic has come to encompass a broad range of hardware implementations 
as the field continues to evolve and large-scale funding opportunities have become 
available for brain-inspired computing systems, including the DARPA Synapse 
project and the Human Brain Project of the European Union. 
 
The term neuromorphic computer refers to non-von Neumann computers whose 
structure and function are influenced by biology and physics. Data and 
instructions are stored in the memory units of Von Neumann computers, which 
consist of separate CPUs and memory units. On the other hand, in a neuromorphic 
computer, both processing and memory are governed by neurons and synapses. 
Unlike Von Neumann computers, neuromorphic computers define their programs 
based on the structure of the neural network and the parameters of the network 
rather than by explicit instructions. Also, while von Neumann computers encode 
information as numerical values expressed in binary terms, neuromorphic 
computers receive spikes as input, which are encoded numerically by the associated 
time at which they occur, the magnitude and the shape of their output. 
 

 
 

Figure 1: Comparison of the von Neumann architecture 
with the neuromorphic architecture 

 
  

 
3 Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990). 
 
4 Mead, C. How we created neuromorphic engineering. Nat. Electron. 3, 434–435 (2020). 
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As a result of the contrasting characteristics between the two architectures (Fig. 1), 
neuromorphic computers offer a number of fundamental operational differences: 
 

• Inherently parallel operation is a characteristic of neuromorphic 
computers, where all neurons and synapses can potentially operate 
simultaneously; however, when compared with the parallelized von 
Neumann systems, neurons and synapses perform relatively simple 
computations. 

 
• Memory and processing are co-located: in neuromorphic hardware, there 

is no concept of separating memory and processing. In many 
implementations, neurons and synapses perform processing and store values 
in tandem, despite the fact that neurons are sometimes thought of as 
processing units and synapses as memory units. By combining the processor 
and memory, the von Neumann bottleneck regarding processor/memory 
separation is mitigated, resulting in a reduction in maximum throughput. 
Furthermore, this collocation reduces the need for data access from the main 
memory, which consumes a large amount of energy compared to compute 
energy.5. 

 
• Neuromorphic computers have inherent scalability since adding more 

neuromorphic chips increases the number of neurons and synapses. . In 
order to run larger and larger networks, it is possible to treat multiple 
physical neuromorphic chips as a single large neuromorphic 
implementation. Several large-scale neuromorphic hardware systems have 
been successfully implemented, including SpiNNaker6,7 and Loihi8.  

 
• Neuromorphic computers use event-driven computation (meaning, 

computing only when available data is available) and temporally sparse 
 

5 Sze, V., Chen, Y.-H., Emer, J., Suleiman, A. & Zhang, Z. Hardware for machine learning: 
challenges and opportunities. In 2017 IEEE Custom Integrated Circuits Conference (CICC) 1–8 
(IEEE, 2017). 
 
6 Mayr, C., Hoeppner, S. & Furber, S. SpiNNaker 2: a 10 million core processor system for brain 
simulation and machine learning. Preprint at https://arxiv.org/abs/1911.02385 (2019). 
 
7 Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. Proc. IEEE 102, 
652–665 (2014). 
 
8 Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE 
Micro 38, 82–99 (2018). 
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activity to achieve extremely high computational efficiency9,10. There is no 
work being performed by neurons and synapses unless there are spikes to 
be processed, and typically spikes are relatively sparse in the network 
operation. 

 
• Stochasticity can be incorporated into neuromorphic computers, for 

instance when neurons fire, to accommodate noise.  
 

Neuromorphic computers are well documented in the literature, and their features 
are often cited as motivating factors for their implementation and utilization 

11,12,13,14. An attractive feature of neuromorphic computers is their extremely low 
power consumption: they consume orders of magnitude less power than 
conventional computers. This low-power operation is due to the fact that they are 
event-driven and massively parallel, with only a small portion of the entire system 
being active at any given time. Energy efficiency alone is a compelling reason to 
investigate the use of neuromorphic computers in light of the increasing energy 
costs associated with computing, as well as the increasing number of applications 
that are energy constrained (e.g. edge computing applications). As neuromorphic 
computers implement neural network-style computations inherently, they are a 
natural platform for many of today's artificial intelligence and machine learning 
applications. The inherent computational properties of neuromorphic computers 
can also be leveraged to perform a wide variety of different types of computations15. 
  

 
9 Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture for solving constraint 
satisfaction problems. Nat. Commun. 6, 1–10 (2015). 
 
10 Amir, A. et al. A low power, fully event-based gesture recognition system. In 2017 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR) 7388–7397 (IEEE, 2017). 
 
11 Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in hardware. 
Preprint at https://arxiv.org/abs/1705.06963 (2017). 
 
12 James, C. D. et al. A historical survey of algorithms and hardware architectures for neural-
inspired and neuromorphic computing applications. Biol. Inspired Cogn. Archit. 19, 49–64 (2017). 
 
13 Strukov, D., Indiveri, G., Grollier, J. & Fusi, S. Building brain-inspired computing. Nat. 
Commun. 10, 4838–2019 (2019). 
 
14 Davies, M. et al. Advancing neuromorphic computing with Loihi: a survey of results and 
outlook. Proc. IEEE 109, 911–934 (2021). 
 
15 Aimone, J. B. et al. Non-neural network applications for spiking neuromorphic hardware. 
In Proc. 3rd International Workshop on Post Moores Era Supercomputing 24–26 (PMES, 2018). 
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2. The Dynex Vision 

 
A Dynex neuromorphic chip and its protocol are flexible, and the community can 
modify them in the future. In this section, we define the main principles which 
Dynex should adhere to. This can be referred to as Dynex's social contract. When 
any of these principles are intentionally violated, the resulting chip and protocol 
should not be referred to as Dynex. 
 

• Decentralization comes first. It is important that Dynex be as decentralized 
as possible: any parties (social leaders, software developers, hardware 
manufacturers, miners, funds, and so on) whose absence or malicious 
behavior may compromise the security of the network should be avoided. 
During the lifetime of Dynex, if any of these parties appear, the community 
should consider measures to reduce their impact. 
 

• Designed for regular people. Dynex is a platform for ordinary people, and 
their interests should not be compromised to benefit big parties. As such, 
centralized mining should be prevented, and regular people should have the 
opportunity to run full nodes and mine blocks (albeit with a small 
probability). 
 

• A platform for neuromorphic computing of the future. Dynex serves as 
the foundation for applications and algorithms built on top of it. Although 
it is designed for a variety of applications, its primary objective is to provide 
an efficient, secure and easy way to utilize highly efficient next generation 
computing systems. 
 

• Reducing energy consumption: In light of the growing threat of climate 
change to our environment and our future, it is imperative that we take every 
measure necessary to reduce our energy consumption. An accelerated 
adoption of neuromorphic computing will therefore benefit our entire 
society since neuromorphic computing uses orders of magnitude less energy 
compared to traditional computing systems. 

 
• Long-term perspective. In order to ensure the long-term success of Dynex, 

all aspects of development should be viewed from a long-term perspective. 
The Dynex project should be able to survive for centuries without any hard 
forks, hardware or software improvements, or any other unpredictable 
changes. Due to the fact that Dynex is designed as a platform, it should also 
be possible for applications and algorithms built on top of Dynex to survive 
over the long term. Due to Dynex's resiliency and long-term survivability, 
it may also have the potential to serve as a good store of value.  
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• Open and permissionless. Dynex neuromorphic chips and Dynex protocol 

do not restrict or limit any categories of usage. A user should be able to join 
the network and participate in the protocol without taking any preliminary 
steps. Dynex does not allow discrimination or limited access at the core 
level, as is the case with traditional supercomputer systems. In contrast, 
application developers are free to implement any logic they like, as long as 
they are responsible for the ethical and legal implications of their work.  
 

3. Dynex Neuromorphic Chip 
 
A Dynex machine is a class of general-purpose computing machines based on 
memory systems, where information is processed and stored at the same physical 
location. We analyze the memory properties of the Dynex machine to demonstrate 
that they possess universal computing power—they are Turing-complete—, 
intrinsic parallelism, functional polymorphism, and information overhead, 
namely that their collective states can support exponential data compression 
directly in memory through their collective states. Moreover, we show that the 
Dynex machine is capable of solving NP-complete problems in polynomial time, 
just like a non-deterministic Turing machine. The Dynex machine, however, 
requires only a polynomial number of memory cells due to its information 
overhead. It is important to note that even though these results do not prove NP=P 
within the Turing paradigm, the concept of Dynex machines represents a paradigm 
shift from the current von Neumann architecture, bringing us closer to the concept 
of brain-like neural computation. 
 
Since Alan Turing invented his ideal machine in 193616,17, mathematicians have 
been able to develop this concept into what is now known as computational 
complexity theory18, a powerful tool essentially employed to determine how long 
does an algorithm take to solve a problem with given input data. It is now known 
as the universal Turing machine (UTM) and serves as the conceptual foundation for 
all of today's digital computers. The practical realization of a UTM is commonly 
done using the von Neumann architecture19, which apart from some inconsequential 

 
16 A. M. Turing, “On computational numbers, with an application to the entscheidungsproblem,” 
Proc. of the London Math. Soc., vol. 42, pp. 230–265, 1936. 
 
17 A. M. Turing, The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, 
Artificial Intelligence, and Artificial Life, Plus The Secrets of Enigma. Oxford University Press, 
2004. 
 
18 S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cambridge University 
Press, 2009. 
 
19 J. von Neumann, “First draft of a report on the edvac,” Annals of the History of Computing, 
IEEE, vol. 15, no. 4, pp. 27–75, 1993. 
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details, it can be viewed as a device that requires a central processing unit (CPU) 
that is physically separate from the memory. The CPU contains both the control 
unit that directs the operation of the machine, as well as the logic gates and 
arithmetic functions needed for execution (arithmetic/logic unit). A large amount 
of data must be transferred between the CPU and the memory, thereby limiting the 
machine's performance both in terms of time (von Neumann bottleneck20) and 
energy consumption21. 
 
While parallel computation mitigates some of these problems, it does not resolve 
them: several processors manipulate portions of the whole data, using a physical 
"closed" memory. As a result, all the processors will eventually have to 
communicate with each other in order to solve the whole problem, still requiring a 
substantial amount of data transfer between them and their memory. A 
fundamentally new method of manipulating and storing data would be required in 
order to overcome this "information latency issue". 
 
Recent research has proposed a new computing paradigm, inspired by the 
operations of our own brain, that does not rely on the UTM concept and puts the 
entire computation in the memory. The paradigm is known as memcomputing22. 
In the same way as the brain, memcomputing machines would compute in memory 
without the requirement of a separate processor. The memory allows learning and 
adaptive capabilities23,24, bypassing broken connections and self-organizing the 
computation into the solution path25,26, much like the brain is able to sustain a 
certain amount of damage and still operate seamlessly. In practice, memcomputing 

 
 
20 J. Backus, “Can programming be liberated from the von neumann style?: A functional style and 
its algebra of programs,” Commun. ACM, vol. 21, pp. 613–641, Aug. 1978. 
 
21 J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A Quantitative 
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006. 
 
22 M. Di Ventra and Y. V. Pershin, “The parallel approach,” Nature Physics, vol. 9, pp. 200–202, 
2013. 
 
23 Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of amoeba learning,” 
Phys. Rev. E, vol. 80, p. 021926, Aug 2009. 
 
24 F. L. Traversa, Y. V. Pershin, and M. Di Ventra, “Memory models of adaptive behavior,” 
Neural Networks and Learning Systems, IEEE Transactions on, vol. 24, pp. 1437–1448, Sept 
2013. 
 
25 Y. V. Pershin and M. Di Ventra, “Solving mazes with memristors: A massively parallel 
approach,” Phys. Rev. E, vol. 84, p. 046703, Oct 2011. 
 
26 Y. V. Pershin and M. Di Ventra, “Self-organization and solution of shortest-path optimization 
problems with memristive networks,” Phys. Rev. E, vol. 88, p. 013305, Jul 2013. 
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can be implemented by utilizing physical properties of many materials and systems 
that exhibit a degree of time non-locality (memory) in their response functions at 
particular frequencies27,28,29. 
 
This type of machine has been mathematically proven to have the same 
computational power as a non-deterministic Turing machine30, but unlike the 
latter, it is fully deterministic and, as such, can be constructed. These three 
properties are responsible for its computational power: intrinsic parallelism - 
interacting memory cells change their states simultaneously and collectively when 
performing computations; functional polymorphism - the same interacting 
memory cells can calculate different functions based on the signals applied; and 
finally information overhead - memory cells interacting can store a quantity of 
information in a manner that is not directly proportional to the number of memory 
cells. 
 
This property is derived from a different type of architecture: the topology of this 
architecture is described by a network of interacting memory cells, and its dynamics 
are described by a collective state that is capable of storing and processing 
information simultaneously. Collective states are similar to the collective 
(entangled) states of many qubits in quantum computation, where the entangled 
state can be used to solve certain types of problems efficiently. 
 
3.1 Memprocessors 
 
In a Dynex architecture, memprocessors are the basic building blocks. We define a 
memprocessor as an object defined by the fourtuple (x, y, z, σ) where x is the state 
of the memprocessor, y is the array of internal variables, z the array of variables 
that connect from one memprocessor to other memprocessors, and σ an operator 
that defines the evolution 
 

σ[x, y, z] = (x‘ , y‘). 
 

27 T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, 
M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science, vol. 325, no. 5947, pp. 1518–
1521, 2009. 
 
28 Y. V. Pershin and M. Di Ventra, “Memory effects in complex materials and nanoscale systems,” 
Advances in Physics, vol. 60, no. 2, pp. 145– 227, 2011. 
 
29 M. Di Ventra and Y. V. Pershin, “On the physical properties of memristive, memcapacitive and 
meminductive systems,” Nanotechnology, vol. 24, p. 255201, 2013. 
 
30 F. L. Traversa and M. Di Ventra. Universal Memcomputing Machines. (preprint on 
arXiv:1405.0931) IEEE Transaction on Neural Networks and Learning Systems, DOI: 
10.1109/TNNLS.2015.2391182, 2015. 
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When two or more memprocessors are connected, we have a network of 
memprocessors (computational memory). In this case we define the vector x as the 
state of the network (i.e., the array of all the states xi of each memprocessor), and z 
= ∪izi the array of all connecting variables, with zi the connecting 
array of variables of the memprocessor i-th. 
 
Let zi and zj be respectively the vectors of connecting variables of the 
memprocessors i and j, then if zi∩zj != ∅ we say that the two memprocessors are 
connected. Alternatively, a memprocessor is not connected to any other 
memprocessor (isolated) when we have z = z(x, y) (i.e., z is completely determined 
by x and y) and 
 

σ[x, y, z(x, y)] = (x, y), 
 
which means that the memprocessor has no dynamics. A network of 
memprocessors has the evolution of the connecting variables z given by the 
evolution operator Ξ defined as 
 

Ξ[x, y, z, s] = z‘ 
 
where y = ∪iyi and s is the array of the external signals that can be applied to a 
subset of connections to provide stimuli for the network. Finally, the complete 
evolution of the network is defined by the system 
 
     σ[x1, y1, z1] = (x‘1 , y‘1 )  

. . .  
σ[xn, yn, zn] = (x‘n , y‘n )  
Ξ[x, y, z, s] = z‘. 

 
The evolution operators σ and Ξ can be interpreted either as discrete or continuous 
evolution operators. The discrete evolution operator interpretation includes also the 
artificial neural networks31, while the continuous operator interpretation represents 
more general dynamical systems.  
 
  

 
31 S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ, USA: 
Prentice Hall PTR, 2nd ed., 1998. 
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3.2 Dynex machine 
 
An ideal Dynex machine consists of an interconnected bank of memory cells 
(memprocessors) capable of performing either digital (logic) or analog (functional) 
operations under the control of a control unit. The computation with and in memory 
can be illustrated as follows. When two or more memprocessors are connected, a 
signal sent by the control unit causes the memprocessors to change their internal 
states according to both their initial states and the signal, producing intrinsic 
parallelism as well as functional polymorphism. 
 
We define the Dynex machine as the eight-tuple  
 

Dynex machine = (M, ∆,P, S, Σ, p0, s0, F), 
 
where M is the set of possible states of a single memprocessor. It can be either a 
finite set Md (digital regime), a continuum or an infinite discrete set of states Ma 
(analog regime), thus M can be expressed as M = Md OR Ma. ∆ is a set of functions 
 

δα : Mmα \F × P → Mm‘α × P2 × S 
 
where mα < ∞ is the number of memprocessors used as input of (read by) the 
function δα, and m‘α < ∞ is the number of memprocessors used as output (written 
by) the function δα; P is the set of the arrays of pointers pα that select the 
memprocessors called by δα and S is the set of indexes α; Σ is the set of the initial 
states written by the input device on the computational memory; p0 ∈ P is the initial 
array of pointers; s0 is the initial index α and F ⊆ M is the set of final states. 
 
Note that the two important features of the Dynex machine, namely parallelism 
and polymorphism, are clearly embedded in the definition of the set of functions 
δα. Indeed the Dynex machine, unlike the UTM, can have more than one transition 
function δα (functional polymorphism), and any function δα simultaneously acts on 
a set of memprocessors (intrinsic parallelism). The Dynex machine also differs 
from the UTM in that it does not distinguish between machine states and symbols 
recorded on tape. It is rather the states of the memprocessors that encode this 
information. It is imperative to have this component in order to build a machine that 
is capable of storing data and performing computations simultaneously.  
 
As another important point, unlike a UTM, which has a finite number of discrete 
states and unlimited tape storage, a Dynex machine can operate, in principle, on an 
infinite number of continuous states, even if the number of memory processors 
is limited. In essence, each memprocessor is an analog device with a continuous set 
of state values.  
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Finally, it can be noticed that the formal definition of memprocessor and network 
of memprocessors is compatible with the function δα defined above. In fact, the 
topology and evolution of the network is associated with the stimuli s, while the 
control unit defines all possible δα ∈ ∆ in the sense that those can be obtained by 
applying a certain signal sα (which selects the index vector pα) to the network. The 
network evolution then determines x‘ while β and pβ (or better sβ) are defined by 
the control unit for the next processing step. 
 
3.3 Dynex Neuromorphic Chip 

The Dynex machine can be realized physically as a non-linear dynamical system, 
which is composed of point attractors that represent the solutions to the problem. It 
is possible to numerically integrate Dynex machines' equations of motion, since 
they are non-quantum systems. The performance of similar machines on a wide 
variety of combinatorial optimization problems has already been demonstrated to 
be orders of magnitude faster than that of traditional algorithmic 
approaches32,33,34,35,36. 

Subsequently, by employing topological field theory37, it was shown that the 
physical reason behind this efficiency rests on the dynamical long-range order that 
develops during the transient dynamics where avalanches (instantons in the field 
theory language) of different sizes are generated until the system reaches an 

 

32 Massimiliano	Di	Ventra	and	Fabio	L.	Traversa.	Perspective:	Memcomputing:	Leveraging	
memory	and	physics	to	compute	efficiently.	Journal	of	Applied	Physics,	123(18):180901,	
2018.	 

33 F.	L.	Traversa,	P.	Cicotti,	F.	Sheldon,	and	M.	Di	Ventra.	Evidence	of	expo-	nential	speed-up	in	
the	solution	of	hard	optimization	problems.	Complexity,	2018:7982851,	2018.	 

34 F.	L.	Traversa	and	M.	Di	Ventra.	Memcomputing	integer	linear	programming.	
arXiv:1808.09999,	2018.	 

35 Forrest	Sheldon,	Fabio	L.	Traversa,	and	Massimiliano	Di	Ventra.	Taming	a	nonconvex	
landscape	with	dynamical	long-range	order:	Memcomputing	ising	benchmarks.	Phys.	Rev.	E,	
100:053311,	Nov	2019.	 

36 Haik	Manukian,	Fabio	L	Traversa,	and	Massimiliano	Di	Ventra.	Accelerating	deep	learning	
with	memcomputing.	Neural	Networks,	110:1–7,	2019.	 

37 M.	Di	Ventra,	Fabio	L.	Traversa,	and	Igor	V.	Ovchinnikov.	Topological	field	theory	and	
computing	with	instantons.	Ann.	Phys.	(Berlin),	529:1700123,	2017.	 
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attractor38. The transient phase of the solution search therefore resembles that of 
several phenomena in Nature, such as earthquakes39, solar flares40 or quenches41. 
 
Our Dynex Neuromorphic Chip utilizes field programmable gate arrays (FPGAs) 
to achieve close to real-time performance of a Dynex machine. It can be adapted 
freely to the problem to be computed and it can also be interconnected and operated 
as part of a cluster. 
 
Using the Dynex Neuromorphic Chip, problems that cannot be solved with classical 
or quantum methods can be solved, therefore eliminating the barrier posed by the 
von Neumann bottleneck. It may be used to solve hard optimization problems, to 
implement integer linear programming (ILP), to carry out machine learning (ML), 
to train deep neural networks or to improve computing efficiency generally. 
 

4. Dynex Protocol 
 
Bitcoin has been a successful implementation of the concept of p2p electronic cash. 
Both professionals and the general public have come to appreciate the convenient 
combination of public transactions and proof-of-work as a trust model. Today, the 
user base of electronic cash is growing at a steady pace; customers are attracted to 
low fees and the anonymity provided by electronic cash and merchants value its 
predicted and decentralized emission. Bitcoin has effectively proved that electronic 
cash can be as simple as paper money and as convenient as credit cards.  
Unfortunately, Bitcoin suffers from several deficiencies.  
 
The core component of any blockchain system is its consensus protocol and Dynex 
utilizes an egalitarian Proof of Work (PoW) consensus protocol which shows 
several advantages over traditional one-CPU-one-vote algorithms: 
 
It is well known that one of the most significant problems with a PoW system is the 
development of specialized hardware (ASICs), which allows a small group of 

 
38 Forrest	Sheldon,	Fabio	L.	Traversa,	and	Massimiliano	Di	Ventra.	Taming	a	nonconvex	
landscape	with	dynamical	long-range	order:	Memcomputing	ising	benchmarks.	Phys.	Rev.	E,	
100:053311,	Nov	2019.	 

39 Per	Bak	and	Chao	Tang.	Earthquakes	as	a	self-organized	critical	phenomenon.	Journal	of	
Geophysical	Research:	Solid	Earth,	94(B11):15635–15637,	1989.	 

40 E.	T.	Lu	and	R.	J.	Hamilton.	Avalanches	and	the	distribution	of	solar	flares.	The	
Astrophysical	Journal,	380:L89–L92,	October	1991.	 

41 Gunnar	Pruessner.	Self-Organised	Criticality:	Theory,	Models	and	Characteri-	sation.	
Cambridge	University	Press,	2012.	 
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ASIC-equipped miners to solve PoW puzzles orders of magnitude faster and more 
efficiently than anyone else. Memory-hard PoW schemes can solve this problem 
by reducing the disparity between ASICs and commodity hardware. We believe 
that the most promising approach is to use asymmetric memory-hard PoW schemes 
that require significantly less memory to verify a solution than to discover it42,43.  
 
Secondly, a PoW network's decentralization is threatened by the fact that even large 
miners tend to form mining pools, leading to a situation in which just a few pool 
operators (5 in Bitcoin and 2 in Ethereum at the time of writing) control more than 
51% of computing power. Our protocol is both memory-hard and pool-resistant. 
 

4.1. Egalitarian Proof-of-work 
 
In this section we detail our proof-of-work algorithm. Our primary goal is to close 
the gap between CPU (majority) and GPU/FPGA/ASIC (minority) miners. It is 
appropriate that some users can have a certain advantage over others, but their 
investments should grow at least linearly with the power. More generally, 
producing special-purpose devices has to be as less profitable as possible. 
 
The original Bitcoin proof-of-work protocol uses the CPU-intensive pricing 
function SHA-256. It mainly consists of basic logical operators and relies solely on 
the computational speed of processor, therefore is perfectly suitable for 
multicore/conveyer implementation. However, modern computers are not limited 
by the number of operations per second alone, but also by memory size. While some 
processors can be substantially faster than others, memory sizes are less likely to 
vary between machines.  
 
Memory-bound price functions were first introduced by Abadi et al and were 
defined as “functions whose computation time is dominated by the time spent 
accessing memory”. The main idea is to construct an algorithm allocating a large 
block of data (“scratchpad”) within memory that can be accessed relatively slowly 
(for example, RAM) and “accessing an unpredictable sequence of locations” within 
it. A block should be large enough to make preserving the data more advantageous 
than recomputing it for each access. The algorithm also should prevent internal 
parallelism, hence N simultaneous threads should require N times more memory at 
once.  
 

 
42 A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-work based on the 
generalized birthday problem,” Ledger, vol. 2, pp. 1–30, 2017. 
 
43 Ethash. [Online]. Available: https://github.com/ethereum/wiki/wiki/ 
Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3 
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Dwork et al investigated and formalized this approach leading them to suggest 
another variant of the pricing function: “Mbound”. One more work belongs to F. 
Coelho, who proposed the most effective solution: “Hokkaido”. To our knowledge 
the last work based on the idea of pseudo-random searches in a big array is the 
algorithm known as “scrypt” by C. Percival. Unlike the previous functions it 
focuses on key derivation, and not proof-of-work systems. Despite this fact scrypt 
can serve our purpose: it works well as a pricing function in the partial hash 
conversion problem such as SHA-256 in Bitcoin. 
 
By now scrypt has already been applied in Litecoin and some other Bitcoin forks. 
How- ever, its implementation is not really memory-bound: the ratio “memory 
access time / overall time” is not large enough because each instance uses only 128 
KB. This permits GPU miners to be roughly 10 times more effective and continues 
to leave the possibility of creating relatively cheap but highly-efficient mining 
devices. Moreover, the scrypt construction itself allows a linear trade-off between 
memory size and CPU speed due to the fact that every block in the scratchpad is 
derived only from the previous. For example, you can store every second block and 
recalculate the others in a lazy way, i.e. only when it becomes necessary. The 
pseudo-random indexes are assumed to be uniformly distributed, hence the 
expected value of the additional blocks’ recalculations is 21 ·N, where N is the 
number of iterations. The overall computation time increases less than by half 
because there are also time independent (constant time) operations such as 
preparing the scratchpad and hashing on every iteration. Saving 2/3 of the memory 
costs 31 · N + 13 · 2 · N = N additional recalculations; 9/10 results in 1 ·N +...+ 1 
·9·N = 4.5N. It is easy to show that storing only 1 of all blocks 1010 s increases the 
time less than by a factor of s−1 . This in turn implies that a machine with a CPU 2 
200 times faster than the modern chips can store only 320 bytes of the scratchpad. 
 
Our algorithm is a memory-bound algorithm for the proof-of-work pricing function. 
It relies on random access to a slow memory and emphasizes latency dependence. 
As opposed to scrypt every new block (64 bytes in length) depends on all the 
previous blocks. As a result a hypothetical “memory-saver” should increase his 
calculation speed exponentially. It requires around 2MB per instance: 
 

• fits in the L3 cache (per core) of modern processors, which should become 
mainstream in a few years;  

• A megabyte of internal memory is an almost unacceptable size for a modern 
ASIC pipeline;  

• GPUs may run hundreds of concurrent instances, but they are limited in 
other ways: GDDR5 memory is slower than the CPU L3 cache and 
remarkable for its bandwidth, not random access speed.  

• Significant expansion of the scratchpad would require an increase in 
iterations, which in turn implies an overall time increase. “Heavy” calls in 
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a trust-less p2p network may lead to serious vulnerabilities, because nodes 
are obliged to check every new block’s proof-of-work. If a node spends a 
considerable amount of time on each hash evaluation, it can be easily 
DDoSed by a flood of fake objects with arbitrary work data (nonce values).  

 
4.2. Untraceable Transactions 

 
In this section we describe the scheme of fully anonymous transactions satisfying 
both untraceability and unlinkability conditions. An important feature of our 
solution is its autonomy: the sender is not required to cooperate with other users or 
a trusted third party to make his transactions; hence each participant produces a 
cover traffic independently. 
 
Our scheme relies on the cryptographic primitive called a group signature. First 
presented by D. Chaum and E. van Heyst44, it allows a user to sign his message on 
behalf of the group. After signing the message the user provides (for verification 
purposes) not his own single public key, but the keys of all the users of his group. 
A verifier is convinced that the real signer is a member of the group, but cannot 
exclusively identify the signer. The original protocol required a trusted third party 
(called the Group Manager), and he was the only one who could trace the signer. 
The next version called a ring signature, introduced by Rivest et al. in45, was an 
autonomous scheme without Group Manager and anonymity revocation. Various 
modifications of this scheme appeared later: linkable ring signature46,47,48 allowed 
to determine if two signatures were produced by the same group member, traceable 
ring signature49,50 limited excessive anonymity by providing possibility to trace the 
signer of two messages with respect to the same metainformation (or “tag” in terms 
of50). A similar cryptographic construction is also known as a ad-hoc group 
signature51,52. It emphasizes the arbitrary group formation, whereas group/ring 
signature schemes rather imply a fixed set of members. For the most part, our 
solution is based on the work “Traceable ring signature” by E. Fujisaki and K. 

 
44 David Chaum and Eug`ene van Heyst. Group signatures. In EUROCRYPT, pages 257–265, 
1991. 
45 Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASIACRYPT, pages 
552–565, 2001. 
46 Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group 
signature for ad hoc groups (extended abstract). In ACISP, pages 325–335, 2004. 
47 Joseph K. Liu and Duncan S. Wong. Linkable ring signatures: Security models and new 
schemes. In ICCSA (2), pages 614–623, 2005. 
48 Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang. Short linkable ring 
signatures revisited. In EuroPKI, pages 101–115, 2006. 
49 Eiichiro Fujisaki. Sub-linear size traceable ring signatures without random oracles. In CTRSA, 
pages 393–415, 2011. 
50 Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public Key Cryptography, 
pages 181–200, 2007. 
51 Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Ad-hoc-group signatures from hijacked 
keypairs. In in DIMACS Workshop on Theft in E-Commerce, 2005. 
52 Qianhong Wu, Willy Susilo, Yi Mu, and Fangguo Zhang. Ad hoc group signatures. In IWSEC, 
pages 120–135, 2006. 
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Suzuki53. In order to distinguish the original algorithm and our modification we will 
call the latter a one-time ring signature, stressing the user’s capability to produce 
only one valid signature under his private key. We weakened the traceability 
property and kept the linkability only to provide one-timeness: the public key may 
appear in many foreign verifying sets and the private key can be used for generating 
a unique anonymous signature. In case of a double spend attempt these two 
signatures will be linked together, but revealing the signer is not necessary for our 
purposes. 
 
4.2.1 Elliptic curve parameters 
 
As our base signature algorithm we chose to use the fast scheme EdDSA, which is 
developed and implemented by D.J. Bernstein et al.54. Like Bitcoin’s ECDSA it is 
based on the elliptic curve discrete logarithm problem, so our scheme could also be 
applied to Bitcoin in future.  
 
Common parameters are:  
 
q: a prime number; q = 2255 − 19;  
d: an element of Fq; d = −121665/121666;  
E: an elliptic curve equation; −x 2 + y 2 = 1 + dx2y 2 ;  
G: a base point; G = (x, −4/5);  
l: a prime order of the base point; l = 2252 + 27742317777372353535851937790883648493;  
Hs: a cryptographic hash function {0, 1} ∗ → Fq;  
Hp: a deterministic hash function E(Fq) → E(Fq). 
 
4.2.2 Terminology 
 
Enhanced privacy requires a new terminology which should not be confused with 
Bitcoin entities.  
 
private ec-key is a standard elliptic curve private key: a number a ∈ [1, l − 1];  
public ec-key is a standard elliptic curve public key: a point A = aG;  
one-time keypair is a pair of private and public ec-keys; 
private user key is a pair (a, b) of two different private ec-keys;  
tracking key is a pair (a, B) of private and public ec-key (where B = bG and a 6= b);  
public user key is a pair (A, B) of two public ec-keys derived from (a, b);  
standard address is a representation of a public user key given into human friendly string with 
error correction;  
truncated address is a representation of the second half (point B) of a public user key given into 
human friendly string with error correction.  
 

 
53 Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public Key Cryptography, 
pages 181–200, 2007. 
54 Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed 
high-security signatures. J. Cryptographic Engineering, 2(2):77–89, 2012. 
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The transaction structure remains similar to the structure in Bitcoin: every user can 
choose several independent incoming payments (transactions outputs), sign them 
with the corresponding private keys and send them to different destinations.  
 
Contrary to Bitcoin’s model, where a user possesses unique private and public key, 
in the proposed model a sender generates a one-time public key based on the 
recipient’s address and some random data. In this sense, an incoming transaction 
for the same recipient is sent to a one-time public key (not directly to a unique 
address) and only the recipient can recover the corresponding private part to redeem 
his funds (using his unique private key). The recipient can spend the funds using a 
ring signature, keeping his ownership and actual spending anonymous. The details 
of the protocol are explained in the next subsections. 
 
4.3. Unlinkable payments 
 
Classic Bitcoin addresses, once being published, become unambiguous identifier 
for incoming payments, linking them together and tying to the recipient’s 
pseudonyms. If someone wants to receive an “untied” transaction, he should convey 
his address to the sender by a private channel. If he wants to receive different 
transactions which cannot be proven to belong to the same owner he should 
generate all the different addresses and never publish them in his own pseudonym. 
 
Our solution is allowing a user to publish a single address and receive unconditional 
unlinkable payments. The destination of each Dynex output (by default) is a public 
key, derived from recipient’s address and sender’s random data. The main 
advantage against Bitcoin is that every destination key is unique by default (unless 
the sender uses the same data for each of his transactions to the same recipient). 
Hence, there is no such issue as “address reuse” by design and no observer can 
determine if any transactions were sent to a specific address or link two addresses 
together. 
 
First, the sender performs a Diffie-Hellman exchange to get a shared secret from 
his data and half of the recipient’s address. Then he computes a one-time destination 
key, using the shared secret and the second half of the address. Two different ec-
keys are required from the recipient for these two steps, so a standard Dynex address 
is nearly twice as large as a Bitcoin wallet address. The receiver also performs a 
Diffie-Hellman exchange to recover the corresponding secret key. 
 
A standard transaction sequence goes as follows:  
 
1. Alice wants to send a payment to Bob, who has published his standard address. 
She unpacks the address and gets Bob’s public key (A, B).  
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2. Alice generates a random r ∈ [1, l−1] and computes a one-time public key P = 
Hs(rA)G+ B.  
 
3. Alice uses P as a destination key for the output and also packs value R = rG (as 
a part of the Diffie-Hellman exchange) somewhere into the transaction. Note that 
she can create other outputs with unique public keys: different recipients’ keys (Ai 
, Bi) imply different Pi even with the same r. 
 
4. Alice sends the transaction.  
 
5. Bob checks every passing transaction with his private key (a, b), and computes 
P 0 = Hs(aR)G + B. If Alice’s transaction for with Bob as the recipient was 
among them, then aR = arG = rA and P 0 = P. 
 
6. Bob can recover the corresponding one-time private key: x = Hs(aR) + b, so as 
P = xG. He can spend this output at any time by signing a transaction with x. 
 
As a result, Bob gets incoming payments, associated with one-time public keys 
which are unlinkable for a spectator. Some additional notes: 
 
• When Bob “recognizes” his transactions (see step 5) he practically uses only half 
of his private information: (a, B). This pair, also known as the tracking key, can be 
passed to a third party (Carol). Bob can delegate her the processing of new 
transactions. Bob doesn’t need to explicitly trust Carol, because she can’t recover 
the one-time secret key p without Bob’s full private key (a, b). This approach is 
useful when Bob lacks bandwidth or computation power (smartphones, hardware 
wallets etc.). 
 
• In case Alice wants to prove she sent a transaction to Bob’s address she can either 
discloser or use any kind of zero-knowledge protocol to prove she knows r (for 
example by signing the transaction with r). 
 
• If Bob wants to have an audit compatible address where all incoming transaction 
are linkable, he can either publish his tracking key or use a truncated address. That 
address represent only one public ec-key B, and the remaining part required by the 
protocol is derived from it as follows: a = Hs(B) and A = Hs(B)G. In both cases 
every person is able to “recognize” all of Bob’s incoming transaction, but, of 
course, none can spend the funds enclosed within them without the secret key b. 
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4.4.  One-time ring signatures 
 
A protocol based on one-time ring signatures allows users to achieve unconditional 
unlinkability. Unfortunately, ordinary types of cryptographic signatures permit to 
trace transactions to their respective senders and receivers. Our solution to this 
deficiency lies in using a different signature type than those currently used in 
electronic cash systems. 
 
We will first provide a general description of our algorithm with no explicit 
reference to electronic cash. A one-time ring signature contains four algorithms: 
 
GEN: takes public parameters and outputs an ec-pair (P, x) and a public key I. 
 
SIG: takes a message m, a set S 0 of public keys {Pi}i6=s, a pair (Ps, xs) and outputs 
a signature σ and a set S = S 0 ∪ {Ps}. 
 
VER: takes a message m, a set S, a signature σ and outputs “true” or “false”. 
 
LNK: takes a set I = {Ii}, a signature σ and outputs “linked” or “indep”. 
 
The idea behind the protocol is fairly simple: a user produces a signature which can 
be checked by a set of public keys rather than a unique public key. The identity of 
the signer is indistinguishable from the other users whose public keys are in the set 
until the owner produces a second signature using the same keypair. 
 
GEN: The signer picks a random secret key x ∈ [1, l − 1] and computes the 
corresponding public key P = xG. Additionally he computes another public key I = 
xHp(P) which we will call the “key image”. 
 
SIG: The signer generates a one-time ring signature with a non-interactive zero-
knowledge proof using the techniques from [21]. He selects a random subset S 0 of 
n from the other users’ public keys Pi , his own keypair (x, P) and key image I. Let 
0 ≤ s ≤ n be signer’s secret index in S (so that his public key is Ps). He picks a 
random {qi | i = 0 . . . n} and {wi | i = 0 . . . n, i 6= s} from (1 . . . l) and applies the 
following transformations: 
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The next step is getting the non-interactive challenge: 

 
Finally the signer computes the response: 

 
The resulting signature is σ = (I, c1, . . . , cn, r1, . . . , rn). 
 
VER: The verifier checks the signature by applying the inverse transformations: 

 
Finally, the verifier checks if 

 
If this equality is correct, the verifier runs the algorithm LNK. Otherwise the verifier 
rejects the signature. 
 
LNK: The verifier checks if I has been used in past signatures (these values are 
stored in the set I). Multiple uses imply that two signatures were produced under 
the same secret key. The meaning of the protocol: by applying L-transformations 
the signer proves that he knows such x that at least one Pi = xG. To make this proof 
non-repeatable we introduce the key image as I = xHp(P). The signer uses the same 
coefficients (ri , ci) to prove almost the same statement: he knows such x that at 
least one Hp(Pi) = I · x −1 .  
 
If the mapping x → I is an injection:  
 
1. Nobody can recover the public key from the key image and identify the signer;  
2. The signer cannot make two signatures with different I’s and the same x.  
 
4.5. A Dynex transaction 
 
By combining both methods (unlinkable public keys and untraceable ring signature) 
Bob achieves new level of privacy in comparison with the original Bitcoin scheme. 
It requires him to store only one private key (a, b) and publish (A, B) to start 
receiving and sending anonymous transactions. While validating each transaction 
Bob additionally performs only two elliptic curve multiplications and one addition 
per output to check if a transaction belongs to him. For his every output Bob 
recovers a one-time keypair (pi , Pi) and stores it in his wallet. Any inputs can be 
circumstantially proved to have the same owner only if they appear in a single 
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transaction. In fact this relationship is much harder to establish due to the one-time 
ring signature.  
 
With a ring signature Bob can effectively hide every input among somebody else’s; 
all possible spenders will be equiprobable, even the previous owner (Alice) has no 
more information than any observer.  
 
When signing his transaction Bob specifies n foreign outputs with the same amount 
as his output, mixing all of them without the participation of other users. Bob 
himself (as well as anybody else) does not know if any of these payments have been 
spent: an output can be used in thousands of signatures as an ambiguity factor and 
never as a target of hiding. The double spend check occurs in the LNK phase when 
checking against the used key images set. Bob can choose the ambiguity degree on 
his own: n = 1 means that the probability he has spent the output is 50% probability, 
n = 99 gives 1%. The size of the resulting signature increases linearly as O(n+ 1), 
so the improved anonymity costs to Bob extra transaction fees. He also can set n = 
0 and make his ring signature to consist of only one element, however this will 
instantly reveal him as a spender. 
 

5. Resiliency and Survivability 
 
Due to its nature as a platform, Dynex is expected to support long-term contracts 
for at least the lifetime of an average person. Despite this, even young smart 
contract platforms are experiencing performance degradation and inability to adapt 
to external conditions. Therefore, a cryptocurrency will depend on a small group of 
developers to provide a hard-fork to fix this problem, or else it will not be able to 
survive. As an example, the Ethereum network has been using the Proof-of-Work 
consensus algorithm and promises to switch to Proof-of-Stake in the near future. 
Nevertheless, delays in Proof-of-Stake development have resulted in several fixing 
hard forks55 and the community is still reliant on the core developers to implement 
the next hard fork. 
 
The first common survivability issue is that developers often implement ad-hoc 
solutions in pursuit of popularity without conducting adequate research and testing. 
Inevitably, such solutions will result in bugs, which will in turn lead to hasty bug 
fixes, which will then lead to bug fixes of those bug fixes, etc., making the network 
unreliable and even less secure. Rather than seeking short-term innovation, Dynex 
focuses on using stable, well-tested solutions. Many of the solutions used in 

 
55 Ethereums blockchain is once again feeling the difficulty bomb effect. [Online]. Available: 
https://www.coindesk.com/ ethereum-blockchain-feeling-the-difficulty-bomb-effect 
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Dynex have been formalized in papers that have been presented at peer-reviewed 
conferences56,57,58,59,60,61 and have been widely discussed in the community. 
 
Decentralization (and thus survivability) is also challenged by the absence of secure 
trustless light clients. Dynex aims to solve this problem without creating new 
ones. Since Dynex is a Proof-of-Work blockchain, a small header can easily be 
extracted from the block content. This header alone allows for the validation of the 
work done on it, and a headers chain is sufficient to select the optimal chain for 
synchronization with the network. Headers-chains, although much smaller than 
the full blockchain, still grow linearly over time. Recent research on light clients 
has demonstrated a way for light clients to synchronize with the network by 
downloading an even smaller amount of data, thus enabling untrusted low-end 
devices, such as mobile phones, to join the network62,63. Dynex uses an 
authenticated state and allows clients to download proofs of the correctness of 
transactions included in a block. In this way, Dynex is accessible to anyone using a 
mobile phone, regardless of the blockchain size. 
 
There is also a third potential problem, namely that while light clients solve the 
problem for Dynex users, they still do not solve it for Dynex miners, who must still 

 
56 L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov, “Improving authenticated dynamic 
dictionaries, with applications to cryptocurrencies,” in International Conference on Financial 
Cryptography and Data Security. Springer, 2017, pp. 376–392. 
 
57 D. Meshkov, A. Chepurnoy, and M. Jansen, “Short paper: Revisiting difficulty control for 
blockchain systems,” in Data Privacy Management, Cryptocurrencies and Blockchain Technology. 
Springer, 2017, pp. 429–436. 
 
58 A. Chepurnoy, V. Kharin, and D. Meshkov, “A systematic approach to cryptocurrency fees,” 
IACR Cryptology ePrint Archive, vol. 2018, p. 78, 2018. 
 
59 A. Chepurnoy, V. Kharin, and D. Meshkov, “Self-reproducing coins as universal turing 
machine,” in Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer, 
2018, pp. 57–64. 
 
60 A. Chepurnoy and M. Rathee, “Checking laws of the blockchain with property-based testing,” in 
Blockchain Oriented Software Engineering (IWBOSE), 2018 International Workshop on. IEEE, 
2018, pp. 40–47. 
 
61 T. Duong, A. Chepurnoy, and H.-S. Zhou, “Multi-mode cryptocurrency systems,” in 
Proceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts. ACM, 
2018, pp. 35–46. 
62 A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proofof-work,” Cryptology 
ePrint Archive, Report 2017/963, 2017. Accessed: 2017-10-03, Tech. Rep., 2017. 
 
63 L. Luu, B. Buenz, and M. Zamani, “Flyclient super light client for cryptocurrencies,” IACR 
Cryptology ePrint Archive, 2019. [Online]. Available: https://eprint.iacr.org/2019/226 
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keep the entire state for efficient transaction validation. Currently, blockchain 
systems allow users to store arbitrary data in this state. Due to the fact that this data 
lasts forever, it creates a lot of dust, which grows in size infinitely over time64. In 
situations where the state is too large for random-access memory, an adversary may 
be able to generate transactions that are very slow to validate as they require random 
access to the miner's storage. As a result, DoS attacks such as the one that occurred 
on Ethereum in 2016 may occur65. The community's fear of such attacks as well as 
the problem of "state bloat" without compensation for miners and users may have 
prevented scaling solutions from being implemented (such as larger block sizes, for 
instance). For this reason, Dynex contains a storage rent component: if an output 
remains in the state for four years without being moved, a miner may charge a small 
fee per byte. 
 
Similarly to regular cloud storage services, this concept has only recently been 
proposed for cryptocurrencies66 and has several important implications. In the first 
place, it ensures that Dynex mining will always be stable, as opposed to Bitcoin and 
other proof-of-work currencies, where mining may become unstable once emission 
is completed67. Second, the growth of the state's size becomes predictable and 
controllable, so Dynex miners are able to manage their hardware requirements more 
effectively. Finally, by collecting storage fees from outdated boxes, miners can 
return coins to circulation, thus preventing the steady decrease of circulating supply 
due to lost keys68. It is expected that all of these factors will support Dynex's long-
term viability, both technically and economically. 
 
  

 
64 C. P´erez-Sol`a, S. Delgado-Segura, G. Navarro-Arribas, and J. HerreraJoancomart´ı, “Another 
coin bites the dust: an analysis of dust in utxobased cryptocurrencies,” Royal Society open 
science, vol. 6, no. 1, p. 180817, 2019. 
 
65 Ethereum network attackers ip address is traceable. [Online]. Available: 
https://www.bokconsulting.com.au/blog/ ethereum-network-attackers-ip-address-is-traceable/ 
 
66 A. Chepurnoy and D. Meshkov, “On space-scarce economy in blockchain systems.” IACR 
Cryptology ePrint Archive, vol. 2017, p. 644, 2017. 
 
67 M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On the instability of bitcoin 
without the block reward,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer 
and Communications Security. ACM, 2016, pp. 154–167. 
68 E. Krause, “A fifth of all bitcoin is missing. these crypto hunters can help,” 2018. 
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6. Dynex’s Native Token 

 
Dynex's native token is called DNX and can be divided into 109 smaller units called 
nanoDNX (one nanoDNX equals one billionth of a DNX). There will be a total of 
maximum 100,000,000.0 DNX available. DNX are vital to the stability and security 
of the Dynex platform for a number of reasons as outlined below. Tokens will be 
emitted according to a predetermined and hard-coded schedule. 
 

6.1. Emission 
 
There’s no initial coin offering („ICO“), no pre-mining and no coin drop for 
developers or any other hidden incentive built into the token. Upon launch of the 
Dynex mainnet, all 100,000,000.0 DNX tokens will be available according tot he 
emission schedule. To ensure the smoothness of the emission process we use the 
following formula for block rewards:  
 

BaseReward = (MSupply − A) ≫ 18, 
 
where A is amount of previously generated coins. The following graphic displays 
the emission graphically: 
 

 
Figure 2: The DNX Emission Schedule 
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7. Next Generation Neuromorphic Computing 
 
The next generation of computing capabilities should be accessible to everyone, 
according to our opinion. As a platform for liberating and accelerating 
neuromorphic computing, which we believe will be the future of computing, Dynex 
combines proprietary circuitry (such as Dynex's Neuromorphic Chip) with 
general available neuromorphic computing infrastructure (such as Intel Lohi69, 
IBM TrueNorth70 or the University of California's NeuRRAM71) and software and 
algorithm developers. 
 
Dynex provides the foundation for applications and algorithms that will be built 
upon it. A platform enables users and applications to access this next-generation 
hardware by connecting hosts that are operating clusters of neuromorphic chips. 
The Dynex native token is used to exchange computation time on the platform. 
 

• Dynex operators maintain and operate neuromorphic computing 
infrastructure. This can be achieved by using general hardware such as Intel 
Lohi, IBM TrueNorth or University of California‘s NeuRRAM, or by 
programming FPGAs with the Dynex Neuromorphic Chip circuit 
design. Due to the dominance of ASICs in proof-of-work token mining, 
there is a significant amount of dormant FPGA infrastructure available, 
which can be repurposed into high performance next generation 
neuromorphic computing clusters. Dynex's operators offer their computing 
resources in exchange for DNX, Dynex's native token. 

 
• Software developers develop applications that run on neuromorphic 

computing infrastructure provided by operators. With Dynexscript, a simple 
and easy-to-learn scripting language, problems and computational tasks can 
be reformulated for execution on neuromorphic computing clusters. Having 
access to this infrastructure allows software developers and researchers to 
implement high-performance, highly efficient computing systems that can 
outperform current and Quantum methodologies. Dynex's native token 
DNX is used as compensation for the use of its computing resources. 

 
 

69 https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html 
 
70 Krishna, R. & Nandini, Usha & Mayan, J. & Sawarn, Nidhi. (2021). Neuromorphic Computing – 
The Principal of Development. 10.4108/eai.7-6-2021.2308573. 
 
71 https://www.sciencedaily.com/releases/2022/08/220817114253.htm 
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• Besides the environmental benefits associated with repurposing hardware, 
users may also obtain Dynex’s native token DNX and thus take part in the 
growing post Moore’s law computing market segment, a market that will 
likely grow exponentially in the near future as a result of repurposing 
hardware. Our vision is for ordinary people to be able to benefit from the 
rapidly increasing computing power in the future.  
 

 
7.1. Example 

 
To illustrate the superior performance of neuromorphic computing, the following 
example showcases an implementation of a constraint satisfaction problem, where 
a problem formulation with complexity O(n100,000) is being solved using the Dynex 
Neuromorphic Chip. The problem consists of 100,000 unique variables. Existing 
methodologies based on current and Quantum technology (reducing the complexity 
with Shor’s algorithm72 to O(n50,000) cannot solve this problem today as it would 
require longer than the existence of the universe to find a solution. The Dynex 
Neuromorphic Chip solves the problem in 2.23s because of its inherent 
parallelization, it’s long-range order and its capability to utilize instantons (Fig.2).  
 
Current   Quantum  Dynex  
Method   Method   Neuromorphic Chip 

 
O(n100,000)  O(n50,000)  2.23s 
 
*Longer than  *Longer than 
the universe exits  the universe exists 
 

Note: these results can be verified and reproduced with our reference implementations 
 published in our GitHub repository. 

 
 

 
 

 
72 Mosca, M., Verschoor, S.R. Factoring semi-primes with (quantum) SAT-solvers. Sci Rep 12, 
7982 (2022). https://doi.org/10.1038/s41598-022-11687-7 
 


