


## Linear Standard Units...

## THE ULTIMATE IN QUALITY...

UTC Linear Standard Audio Transformers represent the closest approach to the ideal component from the standpoint of uniform frequency response, low wave form distortion, high efficiency, thorough shielding and utmost dependability.

## UTC Linear Standard Transformers feature . .

- True Hum Balancing Coil Struature mum neutralization of stray fields.
Balanced Variable Impedance Line mils hidest fidelity on every to tine ... pernit highest hdelife reftions or tronsverse couplisal Reversible Mounting . . . permit: above chassis or sub-chassis wiring.
Alloy Shields... maximum shielding from inductive pickup.
Hiperm-Alloy nickel.iren ... a stable, higt permeability material.
- Semi-Toroidal Multiple Coil structure. mininum distributed capacity and leakage re actance.

Precision Winding , accuracy of winding . $1 \%$, perfect balance of inductance and capacity exact impedance reflection.

High Fidelity .. UTC Linear Standard Trans forme:s are the only oudio units with a guaran. reed uniform response of $\pm 1$ DB from $20-20,000$ cycles.

## TYPICAL LS LOW LEVEL TRANSFORMERS

Type Ne.

## TYPICAL LS OUTPUT TRANSFORMERS

| Type No. | Primary will match following typical tubes | Primary Impedance | Secondary <br> Impedance | $\pm \underset{\text { from }}{ \pm 1} d b$ | Max. <br> Level | $\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LS. 52 | 1'ush pull 245, 250, 6V6, 42 or 2.45 a prime | 8.000 ohms |  | 25-20,006 | 15 watts | \$28.00 |
| LS. 55 | $\begin{aligned} & \text { Rush pull 2A3's. 6A5G's, 300A's. } \\ & 275 A \cdot s, 6 A 3 ' s, 6 L 6 ' s \end{aligned}$ | 5.000 ohms blate to plate and 3,000 ohms plate to plate | $\begin{aligned} & 500,33,250, \\ & 200,12,50,30, \\ & 20.15,0,7.5, \\ & 5.2 .5,12 \end{aligned}$ | 25-20,000 | 20 watts | 28.00 |
| LS. 57 | Same as above | 5,000 ohms plate to plate and 3. 000 ohms plate to plate | $\begin{aligned} & 30.20,15,10 . \\ & 7.5,5,2,5,1.2 \end{aligned}$ | 25-20,000 | $\because 0$ watts | 20.00 |
| LS. 58 | $\begin{aligned} & \text { l'ush. pull parallel } 2 \mathrm{~A} 3 \text { 's, } 6 \mathrm{~A} 5 \mathrm{G} \text { 's. } \\ & 300 \mathrm{~A} \text { 's, } 6 \mathrm{~A} 3 \text { 's } \end{aligned}$ | 2.500 ohms plate $t 0$ plate and 1,500 ohms plate to plate | $500,333,250$ 200, 125.50, 30. $20,15,10,7.5$, 5. 2.5, 1.2 | 25-20.000 | 40 watts | 50.00 |
| LS.6LI | Push pull 6Le's self blas | 9.000 ohms plate to plate | $\begin{aligned} & 500,333,250, \\ & 200.125,50.30 . \\ & 20,15,10,7.5 . \\ & 5.25,1.2 \end{aligned}$ | 25-20.000 | 30 watts | 42.00 |



Write for on Cufofog PS-409

# electronics 

## JANUARY • 1950

AGING TV SETS ..... COVEROperating each receiver a minimum of 2 hours with unsynchronized raster reveals defective tubes and componentsin Du Mont's new East Paterson plant. Photo by Syd Karson (See p 118)
CAME THE TV REVOLUTION, by Dorman D. Israel ..... 66
A survey of television's impact on the radio industry and allied arts
NEW AUDIO TRENDS ..... 68Highlights of Audio Fair, including new tape recorders, stylus shadowgraph and $V$-groove, 20,000 -cycle recordsBUILT-IN ANTENNAS FOR TELEVISION RECEIVERS, by Kurt Schlesinger72
Design and construction data for short dipoles and square loops that require no tuning or orientationINDUSTRIAL BRAZING BY PULSE TECHNIQUES, by J. L. Reinartz78
Short-duration high-power r-f pulses speed and improve induction heating process in certain applications
AIRWAYS VHF COMMUNICATIONS RECEIVER, by A. H. Wulfsberg ..... 81
Series and shunt noise limiters and noise balancer are included in circuitry
NEON DIODE RING COUNTER, by J. C. Manley and E. F. Buckley ..... 84Ring circuits employing glow tubes and crystal diodes count up to 30,000 impulses per minute
ACOUSTIC ANEMOMETER-ANEMOSCOPE, by Robert E. Corby ..... 88
Gives a cathode-ray tube presentation of wind direction and velocity
PHOTOTUBE CONTROLS R-F WELDING, by H. H. Wittenberg ..... 91
Control is effected by monitoring color of weld and deenergizing r-f heating generator
AN ULTRA-LOW FREQUENCY OSCILLATOR, by Jay Edlin Stone ..... 94Provides fairly sinusoidal waveform output over frequency range of from 0.1 to 0.02 cycle per second
DOT SYSTEMS OF COLOR TELEVISION, Part II, by Wilson Boothroyd ..... 96
Multiplexing systems of dot sequential color that may be compatible with black and white are described
RECENT DEVELOPMENTS IN TRAVELING-WAVE TUBES, by L. M. Field. ..... 100Survey of advancements in improving characteristics and extending operating ranges of $t$-w tubesDESIGN OF ABSORPTION TRAPS, by Jack Avins.105Universal charts greatly reduce computation time
VARIABLE PULSE-LENGTH GENERATOR, by J. C. May. ..... 109
Pulse length varies linearly from 0.5 to 24 microseconds
Q-METER IMPEDANCE CHARTS, by Robert Miedke ..... 112Nomographs speed utilization of measured data by giving series and parallel values of $R$ and $X$ directly


DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, A. A. McKenzie, Associate Editors; William P. O’Brien, James D. Fahnestock, Assistant Editors; Hal Adams Burleson, Ann Mastropolo, Marilyn Wood, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

## KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Directory Manager; D. H. Miller, H. R. Denmead, Jr., New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Bernard H. Butler, London, England

[^0]
## For Peak Performance...




## EL-MENCO CAPACITORS

You can always depend on these tiny but tried and trusted El-Menco capacitors to give peak performance for long periods of time under the most exacting conditions. Rigid test during and after manufacture insures uniformity and assures quality.

Performance proved, these fixed mica dielectric capacitors are specified by nationally-known manufacturers.

When you need peak performance in capacitors, get the best - get El-Menco.

THE ELECTRO MOTIVE MFG. CO., Inc. WILIMANTIC CONNECTICUT

## MOLDED MICA <br> MICA TRIMMER



Write on your
firm letterhead for
Catalog and Samples
foreign radio and electronic manufacturers communicate direct with our export dept. at willimantic. conn. for information.
ARCO ELECTRONICS, INC. 135 Liberty St., New York, N. Y.-Sole Agent for Jobbers and Distributors in U.S. and Canada

## A STANDARD OF ZERO LOSS ANGLE



THIS three-terminal double-screened capacitor is forged with guard rings which ensure that the dielectric of the plate-to-plate sapacitance is composed entirely air. This, together with the special surface treatment of the plates, reduces the plate-to-plate power loss to a quantity which can be disregarded even when measuring the smallest power factors.
SPECIFICATION

CAPACITANCE: Type D-14-A: $1300 \mu \mu \mathrm{~F}$ calibrated. Type D-14-B: $100_{\mu \mu} \mathrm{F}$ to $1000 \mu \mu \mathrm{~F}$ direct reading. LOSS ANGLE: Approx. I micro-radian in a dry atmosphere : 7 micro-radians at $75 \%$ relative humidity, for the frequency range $50 \mathrm{c} / \mathrm{s}$ to $10,000 \mathrm{c} / \mathrm{s}$ and any setting of the capacitor.
DRIVE: Worm reduction gear, 50:1 ratio.


SCALE: 5000 divisions. Subdivision to 1 part in 20,000 by interpolation.
BACKLASH: Not exceeding 1 part in 20,000
DIMENSIONS: $12_{\frac{7}{8}}{ }^{\prime \prime} \times 10^{\prime \prime} \times 13^{5 \prime \prime}(32.7 \times 25 \cdot 4 \times 34 \cdot 6 \mathrm{~cm}$.).
PRICE: Type D-14-A: \$365. Type D-14-B: $\$ 390$ Including packing and freight.

Write for further particulars
ORDER BY CABLE-PAY EY YOUR OWN DOLLAR CHECK MUIRHEAD \& Co. Ltd.

Flexite
ile strength, minimum average
b-ultimate elongation, minimum average ... 300\%
c-dielectric strength, minimum
d-flammability $800 \mathrm{r} / \mathrm{mil}$
resistance - after 100 hours of $300^{\circ} \mathrm{F}$, the tubing is not brittle and when flexed does not crack.
f-heat endurance - recommended for continuous operating tem. peratures up to $105^{\circ} \mathrm{C}$., and when baked at $125^{\circ} \mathrm{C}$. for 2,000 hours does not become brittle.
g-low temperature flexibility
$-30^{\circ}$ C.
h_heat shrinkage
ASTM Standards

$$
\begin{aligned}
& \text { \# } 20-\text { \# } 17 \text { incl - less than } 8 \% \\
& \text { \#16-\# \# incl. - less than } 5 \% \\
& \text { \# } 5 \text { and larger - less than } 3 \%
\end{aligned}
$$

i-oil resistance - highly resistant to effects of transformer and lubricating oils, does not stiffen when continuously exposed to them.
Color\$-black, white, red, green, yellow and blue are standard colors.
Dimensions and Tolerances - standard sizes to fit B \& $S$ wires \#20 to \#0 inclusive, as speicfied by ASTM Spec. D922.47T.
Wall Thickness - in accordance with ASTM Spec. D922-47T, as follows:

$$
\begin{aligned}
& \text { \#20-\#10 incl. }-.016^{\prime \prime} \pm .003^{\prime \prime} \\
& \# 9-\# 0 \text { incl. }-.020^{\prime \prime} \pm .003^{\prime \prime}
\end{aligned}
$$

Standard Lengths - Standard $36^{\prime \prime}$ lengths or continuous lengths in coils. Sizes \#20 - \#10 incl., will be supplied on paperboard spools when so ordered,
Quality - uniform in quality and condition, smooth on both inside and outside, free of defects such as pin-holes, blisters, foreign inclusions and other imperfections.
Test Methods - properties enumerated in above specifications shall be determined according to Tentative Methods of Testing Nonrigid Polyvinyl Tubing, American Society for Testing Materials, Designation D876.46T.

YES, FLEXITE is the electrical insulation tubing that sets new standards for resistance to extreme high temperatures. Compounded of a plasticized copolymer of vinyl chloride and vinyl acetate and manufactured with a true wall thickness, smooth inside and outside, FLEXITE PLASTIC TUB. INGS offer the greatest resistance to high and low temperatures, are extremely flexible and have great tensile strength.
FLEXITE compares more than favorably with tubings of similar nature. Check the specifications of FLEXITE, compare them with the requirements for your products and against other insulations for identical use. . . .

YES, You will find that FLEXITE sets a new high standard for protection against high temperatures, high dielectric, stretching, tearing, abrasion, exposure to acids, oils and alkalies, flammability, etc., etc., etc., - . . samples and additional information will be sent upon request.
And for a Plastic Tubing to Withstand Normal High Temperatures Mitchell-Rand Offers . . Flexite-Norm . . . write for specifications.
 Mitchell-Rand has the answer.


## REDESIGNED

## FOR IMPROVED PERFORMANCE

POWERSTAT variable transformers Types 116 and 216 have been redesigned. It wasn't a mere "face-lifting" operation, although a streamlined appearance has resulted. It has incorporated many of your worthwhile suggestions and the latest technical knowledge of variable transformer design and manufacture. All improvements have been made within the old standard mounting dimensions to conform to your existing panel layouts, assuring easy replacement if desired.

## JUST A FEW OF THE IMPROVEMENTS

New fusing arrangement employed on cord-plug models. Twist-lock holder on side of terminal box gives easy access and simple replacement New diecast aluminum terminal box on cord-plug models adds strength and longer service. On all models, the new, extra heavy and rugged terminal board of phenolic plastic prevents breakage. Solder-screw terminals arranged for better spacing for quicker, easier and more positive connections. Barriers between terminals reduce short-circuit hazards • Heavy-duty "ON-OFF" switch on cord-plug models is in a more convenient position to eliminate interference with input cord and output receptacle - Coil and core design provides excellent regulation, high efficiency and conservative rating for both 50 and 60 cycle duty Polarity identification provided on cord-plug models for requirements involving ground loads.
Ratings of Types 116 and 216 remain the same. Type 116 operates from a 115 V ., $50 / 60$ cycle, 1 phase source to deliver $0-135 \mathrm{~V} ., 7.5 \mathrm{amps}$. Type 216 has an output of $0-270 \mathrm{~V} ., 3.0 \mathrm{amps}$ from 230 V ., $50 / 60$ cycle, 1 phase. As in the past, the current rating is the current available over the entire range of output voltage. There's no need to refer to a graph to determine the allowable current at a specified value of output voltage. Write today for complete details on these completely redesigned POWERSTAT Types 116 and 216.

## 4010 MEADOW STREET, BRISTOL, CONNECTICUT


"Trere is hardly anything in this world that some man cannol make a little wo-se and sell a litile checper and the people who cons der only price ore this men's lawful prey." ——eskin


## TEGHNIGAL ADVANTAGES: ERSIN FIUX

- Ersin Flux is axclusive to dulfitare and will not be found in any other soldor. It is a high grade, waten white rosin. homogeneovily activaled.
- Ersin Flux has o vigorous fuxing action and possesse the non-corrasive ond proteclive featres of the oiginal resin.
- Soldered jonts made wih Ersin Flum do not correle even after prolonged ex: posure to ayy degree of humidity. It has been teted under s imatic conditions ranging from the Arctic to the Tropics.
- Etsin Flux reduces the sulace tension of molten solder, causing it to wat metals rapidly, increasing speed of operation with resultant production .economies.
- Free from mijectionable edor. Non-loxic in use.
- Leaves notining tut pure rosin on the work ofter soldering, ond moy be ussd wherever pain rosin is mperified. Complies with all pertinent Federal Specifieations.


## MULTICORE SOLEER

- Three saperote corss of nux eliminate possibility of no nux in a portion of the wire, which may excur in single cored solder. Guarantead continutio of the flux s ream prevent "dry" joirts, i. e. those having hign elestricol resistance.
- Although there are thrze cores of tux in Multicare, the tola percentoge of Mux to soder is less thon mony single cored solters.
- Very rapd melting rasults from the multiple sore construcion which provides thiener wolls of solder thon aro found in same gauge single cored solder.
- Multicores unique properties make perfect joins possible on difícult metals and alloys, even if axtlized.
- Ability to tin rapidly produces perfect joints wi h less solder. Greater coveroge per pound.



Every pockage of Ersin Mufticore is labeled with the exact tin/lead content. This precise labeling results from Multicare's precise manufacturing methods. Where precision counts in your plant, use Ersin Multicore Solder.


Ersin Multicore Solder meet: all requirements of Federol Speci ication QQ-S-571. b. Every pounid wou buy conforms to these specifiations. No matter what soldering ob you hove, use Ersin Multicore, the finest solder ever made. Soves tine and money! Guarontees finer performance!

Essin Mullicore Solder is non-foxic in use. Cadmium is completely eliminated. The quaniily of Antimony is even less than government standards allow. When you use Ersin Multicore there is no danget of harmiful effects caused by these impurifies.

## Pin point accuracy is

## for resistors too.

And IRC provides it. Witness leading manufacturers who specify IRC resistors
for advanced electronic circuits. In
instrumentation and industrial applications, IRC resistors excel in every important characteristic.

in Critical instrumentation, ifc Precision Wire Wounds offer a fine balance of accuracy and dependability. Tolerances of $1 \%$ are standard, but $1 / 2 \%, 1 / 4 \%$ and $1 / 10 \%$ are available. IRC Precisions also afford maximum tert perature coefficient of $.002 \%$ per ${ }^{\circ} \mathrm{C}$. at no extra cost. And in addition, their design and construction assure stability-even where recurring surges are encountered. Labels are acetate. May wie send you complete technical data? Just check the coupon.

# essential 



SEALED PRECISION Voltmeter Multipliers find many critical applications such as are encountered in marine service because of absolute dependability under the most severe humidity conditions. Type MF's are compact, rugged, stable, fully moisture proof and easy to install. They consist of individual wire wound precision resistors, mounted, interconnected and encased in glazed ceramic tubes-and these may be either inductive or non-inductive, for use on $A C$ as well as DC. Send coupon for technical data bulletin.

ACCURACY AND ECONOMY in close tolerance applications make IRC Deposited Carbon PRECISTORS ideal for television and similar circuits. They are outstanding in meir ability to provide dependable performance in circuits where the characteristics of carbon composition resistors are unsuitable and wire-wound precisions too expensive. Manufactured in two sizes, 200 ohms to 20 megohms in $1 \%, 2 \%$ and $5 \%$ tolerance. Coupon brings full details.

For fast, local service on standard IRC resistors, simply phone your IRC Distributor. IRC's Industrial Service Plan keeps him well supplied with the most popular types and rangesenables him to give you prompt, round-thecorner delivery. We'll be glad to send you his name and address.


INTERNATIONAL

## RESISTANCE COMPANY

## Wherever the Circuit Says -M-

Power Resistors • Voltmeter Multiplies - Irsulated Com>osition Resistors * Low Wattage Wire Wounds - Controls - Rheostats - Valtage Dividers. Precisians - Deposited Carben Precistors - $\mathrm{H}=$ and High Voltage Resistors - Insuicted Chokes

401 N. Broad Streef, Philadelphio 8, Pa.

[^1]
## international resistance co.

403 N. BROAD ST., PHILADELPHIA \&, PA.
Please send me complete information on the items checked below
$\square$ Precision Wire Wounds $\square$ Deposited Carbon Precisters $\square$ Wire Wound Controls $\square$, Voltmeter Multipliers $\square$ Matched Pair Resistors $\square$ Name of Local IRC Distributor
name.
title.
COMPANY
adoréss

## you can be SURE. . IF It's Westinghouse



## Instruments "Check-Rein" 240,000 Horsepower!

When the power load builds up and up, it's Westinghouse Instruments that give the tip-off! Another generator is called into action-steady voltage flows over the network...

This is a familiar routine at the new B. C. Cobb Station, owned by Consumers Power Company. This modern steam electric generating plant, located on the shores of Lake Muskegon, Michigan, has a rated capacity of 180,000 kw , or 240,000 horsepower. W/estinghouse Instruments have been standardized on herekeep a vigilant watch over power that is generated at 14,400 volts, then transformed to $22,000,44,000$ and 140,000 volts.

Serving as the "eyes" for this massive power system calls for instrument reliability to the nth degree. We believe Westinghouse Instruments
meet this challenge. You can be sure of the complete line of Westinghouse Instruments-from calling the turn on a microamp. to keeping a "check-rein" on all the concentrated horsepower America's genius can devise.

Westinghouse Instrument Specialists are available in the field for consultation. Call your nearest Westinghouse office, or write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania. J.40379

## Westinghouse INSTRUMENTS

## ADVENTURES IN ELECTRONIC DESIGN



CENTRALAB HELPS SOLVE A TV TUNER DESIGN PROBLEM！
similar problems beset the hard－pressed design engineers
final adjustments of circuit balance
 electronic art．Stability
for a small


Centralab engineers
dug down into their bag
and came up with the answer

first－our new Tubular Trimmer
Result－the industry has welcomed this simple answer to a serious problem and a sizable percentage
 incorporate this new trimmer
 in their design．Investigate for yourself the considerable variety
 available capacity ranges．It is the answer to your problem where a small，simple， inexpensive trimmer
 the inherent stray 00 capacities in all high frequency circuits フワフー为

## 

## Centralab reports to



# Electronic Industry 




4For hy-pass or coupling applications, check Centralab's original line of ceramic disc Hi-Kaps. Disc Hi-Kaps are smaller than a dime!

5
Couplate consists of plate and grid resistors, plate hy-pass and coupling capacitors. Minimum soldered connections speed production.

6
This is the new CRL Vertical Integrator Network used in TV sets. Variations of this Centralab Network are available on special order.


7
Model "1" Radiohm control, rated $1 / 10$ watt - plain and switch types. No larger than a dime. Designed for miniature uses. diobm Controls specifically designed for TV, radio, other electronic equipment. Lower noise level, longer life.


9 Great step forward in switching is CRL's New Rotary, Coil, Spring and Cam Index Switch. It gives you smoother action, longer life.

## IMPORTANT BULLETINS FOR YOUR TECHNICAL LIBRARY!



Centralab Printed Electronic Circuits
973 - Ampec - three-tube P. E. C. amplifier.
42-6 - Couplate - P.E. C interstage coupling plate
42-22 - Vfrtical integrator - for TV application.
42-24 - Ceramic Plate Componfents - for use in lowpower miniature electronic equipment.
42-27 - Model 2 Couplate - for small or portable set applications.
999 - Pentode Couplati; - specialized P. E. C. coupling plate.
42-9 - Filpec - Printed Electronic Circuit filter.

## Centralab Capacitors

42-3-BC Tubular Hi-Kaps - capacitors for use where temperature compensation is unimportant.
42-4-BC DisC HI-Kaps-miniature ceramic BC capacitors.
42-10- HI-Vo-Kaps - high voltage capacitors for TV appli cation.
695 - Ceramic Trimmirs - CRL trimmer catalog.
981 - Hi-Vo-Kaps - capacitors for TV application. For jobbers.

## ,

42-18 - TC Capacitors - temperature compensating capaci-
814 - Capachrors - high-veltage capaciters.
975 - FT Hı-KAPS - feed-thru capacitors.

## Centralab Switches

953 - Sude Swith - applies to AM and FM switching cir cuits.
970 - Lever Switcu - shows indexing combinations.
995 - Rotary Switch - schematic application diagrams
722 - Switch Catalog - facts un CRL's complete line of switches.

## Centralab Contrals

42-7 - Model. "1" Radohm - world's smallest commercially produced control.

## Centralab Ceramics

967 - Ceramic Capacitor Diflectric Materlals
720 - Ceramic Catalog - CrI. steatite. ceramic products.

## General

26 - General Catalog - Combines Centralah's life of products for johber, ham, experimemer, serviceman or industrial user.

Look to CENTRALAB in 1950! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralal's sales and engineering service work with you. Foo complete information on all CRL products, get in touch with your Centralab Representative. Or write direct.

CENTRALAB
Division of Globe-Union Inc.
900 East Keefe Avenue, Milwaukee, Wisconsin
fes-I would like to have the CRL bulletins, checked below, for my technical library!
$\begin{array}{lllllllllllll}\square & 973 & \square & 42.24 & \square & 42.9 & \square & 42.10 & \square & 42-18 & \square & 953 & \square\end{array} 42.7$
$\begin{array}{lllllllllll}\square & 42-6 & \square & \square 2.27 & \square & 42-3 & \square & \square 95 & \square & \square 14 & \square\end{array} 970 \quad \square 967$
$\begin{array}{lllllllllll}\square & \square 2.22 & \square & \square 99 & \square & \square 2-4 & \square & \square 81 & \square & 975 & \square\end{array} 995 \quad \square 720$

Name
203-5
■
-
-
-
State

## TEAR OUT COUPON

for the Bulletins you want



Above: Du Mont bent.gun pinciple, utilizing single ionirap magnet. Space saved by eliminating double beam jending magnet results in shorter neck length. Focussed spot distortion eliminated by use of electrode parts de signed to form symmetrical electrostatic fields in $\mathrm{C}_{3}$ space. Lower-cost magnet.

3elow: Conventional siraight-cun design. Ion and electron beam is twisted by slanting elestrcstatic field between second grid and anode, requiring TWO bending magnetic fields. More costly beam-bender. Longer neck. Focussed spot distortion.

## Write for latest literature.




The exacting requirements of this pioneering Jet Airliner demand the finest equipment obtainable. This extract from a press report (26.10.49) confirms the choice
of de Havilland. "Radio reception was wonderful 7 miles up. I (Group Capt. John Cunningham) could talk to London Airport over the radio telephone when flying over the outskirts of Paris".

The de Havilland Comet, in continuing to gather honours for British Aviation, also provides further testimony to the quality of

## Standard Radio

# the hook that became a hadit 

THE ANNUAL ELECTRONICS BUYERS' GUIDE, NOW IN ITS 10TH YEAR, HAS EARNED INDUSTRY-WIDE ACCEPTANCE AS THE ONLY COMPLETE AND ACCURATE SOURCE OF DATA FOR SPECIFYING AND BUYING. THE GUIDE IS IN CONSTANT USE THROUGHOUT THE YEAR BY DESIGN ENGINEERS; CONTROL ENGINEERS; MAINTENANCE, PRODUCTION AND METHODS MEN; AND P.A.'S. THESE MEN HAVE LEARNED, THROUGH EXPERIENCE, TO JUST NATURALLY REACH FOR THE GUIDE WHEN THEY NEED TECHNICAL OR BUYING INFORMATION.

Use of the "Guide" has become, through the years, an instinctive habit with those who have need of technical data or where-to-buy-it information on electronic components, equipment or allied products. And need of that information is by no means confined to electronic manufacturing. There are countless others whose interests may be in electronic applications in candy making, weaving or cosmetics, for example, as well as in the more technical fields of industrial processing. Electronics plays an important role in practically every industry, and the men in those industries whose function is to apply electronics to their manufacturing, processing or control problems rely on the GUIDE for the technical and buying information they need.

This industry-wide use of the GUIDE presents to every manufacturer whose products are used in electronic manufacturing or in industry generally, an unusual opportunity. There can be no more effective, nor more economical method of bringing the characteristics or operational qualities of those products to customers or prospects for them, than in the GUIDE - the publication which is constantly referred to by those very men. Manufacturers can have no greater assurance of an interested, buying readership of their advertisements than that which the ELECTRONICS Buyers' Guide actually gives them.

Manufacturers can add a large safety factor in their sales planning by putting this "habit-use" of the GUIDE to work for them. Advertising in the GUIDE cannot be considered in the class of a door opener for a manufacturer's salesman. It is, in fact, a most potent salesman in its own right due to the peculiar purchasing habits in the science-industry of electronics. Surveys have proven that products are bought by specifications in the designing stage, on the drafting board... where the GUIDE is at the design engineer's elbow . . . where a salesman can't be. And in the industrial use of electronic controls - well, a salesman would have quite a job finding the right plants and the right men in those plants. The GUIDE goes straight to those men - quickly and with the background of acceptance and recognition. Be sure your advertising plans for 1950 include the use of ELECTRONICS Buyers' Guide.

THE 13th ISSUE OF electronics The Annual BUYERS' GUIDE

## THE ONLY COMPLETE REFERENCE BOOK

 IN THIS INDUSTRYUsed in every industry by designers, specifiers and buyers of electronic components, equipment and allied products.

MAILED AS...A BONUS TO EVERY PAID SUBSCRIBER

## FOR COMPLETE DETAILS

on the use, acceptance and selling effectiveness of the ELECTRONICS BUYERS' GUIDE watch for the complete story which will be mailed to you shortly. You will find factual evidence in it on why you should include the GUIDE in your 1950 advertising plans.

## CONDENSED DATA ON THE 1950-1951 ELECTRONICS BUYERS' GUIDE

CIRCULATION: The ELECİRONICS Buyers' Guide will have the same large and selective circulation as the regular issues of ELECTRONICS. According to the June 1949 ABC Statement ELECTRONICS Total Net Paid Circulation was $30,050$. In addition there's a pass-on readership of approximately 120,000 . No other publication in the electronic field begins to approach this full coverage of the men who buy and influence the purchase of electronic components, equipment, and allied products.

PENETRATION INTO INDUSTRY: The large, selective circulation of the Buyers' Guide means industry penetration that can't be equalled in the field . . . penetration on a wide industry front giving complete horizontal coverage, as well as deep penetration to the men who influence and buy in every major company. Ask an ELECTRONICS representative to show you "Examples of ELECTRONICS' PENEIRATION THROUGHOUT INDUSTRY" for complete proof that you'll reach the men you want to influence in the Buyers' Guide.

PRODUCTS ADVERTISED: Products advertised include a full line of communication equipment, industrial electronic equipment, components, measuring equipment, and allied products . . . the same products for which we list product sources in our comprehensive Index. Electronic engineers design-in many products which are not, strictly speaking, "electronic" but which are, nevertheless, essential parts of complete circuits. These engineers use the Buyers' Guide for sources and specifications of all products entering into the design of electronic circuits.
RATES: Advertisers will be entitled to the rate earned in 12 regular issues of ELECTRONICS or to the rate they earn in the Buyers' Guide, whichever is most advantageous. Space used in the Buyers' Guide will not help earn a rate in the regular issues of ELECTRONICS. But the rate earned in the regular issues will determine the rate for the Buyers' Guide issue.

MECHANICAL REQUIREMENTS

|  | Width | Depth | Width | Depth |
| :---: | :---: | :---: | :---: | :---: |
| 1 page | 7 | 10 | $\ldots$ | $\ldots$ |
| $2 / 3$ page | $4-9 / 16$ | 10 | $\boxed{3}$ | $\ldots$ |
| $1 / 3$ page | $4-9 / 16$ | $4-7 / 8$ | $2-3 / 16$ | 10 |
| $1 / 6$ page | $4-9 / 16$ | $2-5 / 16$ | $2-3 / 16$ | $4-7 / 8$ |

Page is 3 columns, each column $23 / 16$ inches wide.
Composition-no charge.
Halftone screens-all halftones should be $100-110$ line screen. They should be etched to the depth of .003 of an inch in the highlights, 002 of an inch in the middle tones, and .0015 of an inch in the shadows. Typographical rights reserved.

COLOR AND BLEED: McGraw-Hill standard colors: yellow, orange, red, blue, and green, $\$ 100$ per page for any one color. Special matched color $\$ 120$ per page for any one color. Rates for metallic inks and more than one extra color quoted on request.
Bleed pages: per page, extra $\$ 75.00$. Plate size $83 / 8$ inches by $11 / 2$ inches, which allows $1 / 8$ inch additional at top, bottom, and outer edge for trim. Keep essential elements $3 / 8$ inch within plate size. Trim size $81 / 4$ inches by $11 \frac{1}{4}$ inches.

INSERTS (Letter Press): Regular space rates apply on complete inserts which are ready for binding when received. Before making plates or ordering printing please check with your local ELECTRONICS representative as to number of pages, quantity required, trim size. Maximum acceptable weight 100 lb . coated 25 inches by 38 inches basis, or equivalent. See closing dates below.

INSERTS (Offsef): inserts prepared by our Copy Service Department can be produced by photo offset at a saving in production costs to the adverfiser. If the advertiser desires reprints of his advertisement, the offset method will have the additional advantage of permitting us to supply him with preprints rather than reprints. See closing dates below.

REPRINTS: Regular run of book stock will be used unless special stock is supplied by the advertiser. For information on the cost of reprints consult your local ELECTRONICS representative.

COPY SERVICE: Copy and layout service by specialists in the catalog type of presentation best adapted to this type of issue is available at a moderate cost to all advertisers and advertising agencies. Complete details including all product data, availability of photographs, cuts, choice of color, if color is being used, etc. should be in our nearest district office not later than March 10th. It is to the distinct advantage of each advertiser to get all the information in the hands of our copy department as soon as possible in order that careful and individual attention can be given to the presentation of his advertisements.

## CLOSING DATES

Copy to prepare: All details must be in our New York Office not later than March 15th. Layout and copy sent to the advertiser for his OK and also final proofs.
Copy to set . . April 1st. If no proof required . . April 10th
Complete plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May Ist
Inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 25th


#### Abstract

ADVERTISERS' NAMES BOLDFACED IN DIRECTORY SECTION: Advertisers in the Buyers' Guide will have their names boldfaced in the product listing section and reference will also be made to the page number(s) on which their advertisements appear. This permits the engineer seeking product information the two vitally important elements of the Guide - namely, 1 . Where he can buy it, and 2. Technical data, when he turns to the page to which he is referred. And that is all he needs in order to specify or buy. The non-advertiser doesn't get this opportunity to sell his products.




## Sorensen's

## NEW LINE

## OF ELECTRONIC VOLTAGE REGULATORS



The Standard line of Sorensen Electronic Regulators, both AC and DC, has always been famous for outstanding features, low cost. Now, many additional features, previously available only in special models at extra cost, have been incorporated as regular features of the NEW SORENSEN STANDARD LINE - at no extra cost! Some Improved Models cost less than the former standard models. Write for the
 <br> \section*{\title{
the <br> \section*{\title{
the <br> <br> <br> Newo!
}} <br> <br> <br> Newo!
}}

VACUOM TUBE VOLT-OHMMETER
. . . A Worthy Companion of the 260

## SPECIFICATIONS

DC Voltage
Ranges-1, 12, 60 300, $1200(30,000$ with Accessory High Voltage Probe)
Input Resistance- 10 megobms for all ranses Inp"f Resistance-10 megorm isolating resistor Polarify retcrsing suitch
Ohms
Ohms
Ranges-1000 (10 ohms center)
100,000 ( 1000 obms center)
megohm ( 10,000 ohms center)
10 megobms ( 100,000 obms center) 1000 megohms ( 10 megobms center)

## AC Voltage

Ranges-1.2, $12,60,300,1200.200 \mathrm{mmf}$ shuried by 275,000 ohms

## AF Voltage

Ranges-l.2,12,60
Rrequency Response-Flat so 100,000 cycles
Decibels
Decibels
Ranges $-2010+3,-1010+23,+410+37$
Zaro Power Leal-3, $+3010+63$
Level-1 1, , 6000 hms
Galvanometer
Zero center for FM discrininator alignment aze otber galimaneter applications
R. F. Voltage
(Signal fracing with Accessory High Frequen:y (al Probe)
ge -20 volts maximum
Irequency-Flat 20 KC to 100 M.C.
105.125 V .60 cycles

Size $51 / 4 " x 7^{\prime \prime} x 3^{1 / 8^{\prime \prime}}$ (bake!ite case). Weight: 4 !bs Shipping Wh.: $6^{1 / 2}$ lbs.
Dealer's Net Price Mode! 303, including DC
Probe, ACV-Obms prove and Ground Leaa-
\$58.75; Accessory High Frequency
Accessory Higb Voltage Probe. $\$ 14.85$
Also available with roll top cose, Model $303 R T-\$ t-75$

## Smaller and Handier for Greater Portability

A worthy companion of the world-famous Model 260 is this brand new addition to the Simpson line-the Model 303!
Skilled Simpson engineers spent months of painstaking research in the laboratory to produce the Model 303, which is one of the most versatile instruments ever made for TV servicing. This ruggedly constructed instrument offers the maximum in portability because it is approximately $60 \%$ smaller than other vacuum tube volt-ohmmeters. However, no sacrifice has been made in readability. The 303 has a large $41 / 2^{\prime \prime}$ meter, despite its handy compactness.

One of the many features of the 303 is its low current consumption. The AC voltage range is wider than on any other similar instrument-from 1.2 volts minimum to 1,200 maximum. Like all other instruments bearing the Simpson name, the Model 303 is an instrument of highest quality at an amazingly low price.

SIMPSONELECTRIC COMPANY
5200-5218 West Kinzie Street, Chicago 44, Ilinois
In Canada: Bach.Simpson, Itd., Iondon. Ontario


## PLUS ALL THESE OTHER FEATURES

- Moilsture-proof

Radio Quiet
图 Single-piece Inserts

- Vibration-proof
il Light Weight
Hill High Insulation Resistance
- Easy Assembly and Disassembly

間 Fewer Parts than any other Connector

- No additional solder required


## PRESSURE TIGHT SOCKET CONTACT ARRANGEMENTS!

Outstanding design and fine workmanship, combined with materials that meet the requirements, assure the splendid performance of Bendix-Scintilla "pressurized" electrical connectors. These units include both pin and socket arrangements for all sizes of contacts.

[^2]Write our Saies Department for detailed information.

[^3]

## FADA BendirRadio EROStey

Magnavor Motorola Admiral Emerson Andra Farnsworth Tele-tone RAYTHEN
QELMONT $d$ IIII nea Vicron Shentan envim нит Westinghouse
.... and most other radio and TV producers specify and use $\mathrm{HI}_{\mathrm{I}}$-Q Components.
 Cal., is num sered among the more than $\approx 00$ users of $\mathrm{H} \cdot \mathrm{Q}$ Conponents.
Most leading radio and TV builders... and scores of other electronic manufacturers too ...are consistent users of $\mathrm{H}_{1}-\mathbf{Q}$ Components. The fact that they order again...and again ..., and again is the best recommendation we know for $\mathrm{H}_{\mathrm{H}}-\mathbf{Q}$ service, dependability and performance.
$H_{1}-Q$ engineers are ready to work with you in the development and production of ceramic capacitors, trimmers, wire-wound resistors and choke coils to meet your specific needs. Your phone call, wire or letter will receive a considered and prompt response.

JObBERS-Address Room 1332, 101 Park Ave., New York, N. Y.


Electrical Reactance Parp.
Plants: Franklinville, N. Y.- Jessup, Pa. - Myrtle Beach, S. C.
Sales Offices: New Yerk. Philadelphia, Detroit, Chicage, Los Angeles

## Floating Rotor Prevents Motor Lag or Slippage

Specially designed light-weight rotor virtually floats in a rotating magnetic field. Rotor shaft rotates on a film of oil ... no metal to metal contact with its bearing. These features, together with capillary oiling system, account for the fact that All Telechron Timing Motors Are Instantly, Constantly Synchronous.

That is why so many designers concerned with split-second timing or control of light-weight moving parts specify Telechron motors.

If you have such a problem, why not turn it over to a Telechron Application Engineer? Drawing on the experience that makes all electric timing possible (virtually all frequency-controlling master clocks in power stations are made by Telechron), he can probably show you how a standard Telechron motor can do you job, too. Consult him early in your planning for big savings in time and money. Use handy coupon below for complete data. TELECHRON INC. A General Electric Affiliate.


Telechron Type B Synchronous Motor. For medium duty purposes such as switches, recording-controlling mechanisms and other control equipment. Other models with lower or higher torque for light or heavy duty applications.


Typical of Telechron Type H3 light duty motor applications is this 60 -minute timer, the purpose of which is to operate a switch or signal at the end of a pre-selected period.


Practically all time-stamps and recorders employ Telechron Type B motors to operate their timing mechanisms. Obviously a motor that is instantly, constantly synchronous is needed for such applications.





## -bsoletes worc in electrical instruments

RUGGEDIZED Meters . . . a whole new family of panel instruments created to perform perfectly under extreme conditions of physical shock or vibration, mechanical stress or strain . . . instruments impervious to extreme weather conditions in all climates . . . instruments that open whole new horizons of application.
Marion Ruggedized Meters are completely new and better instruments. Developed by Marion for the U. S. Army Signal Corps, Fort Monmouth, N. J. (under contract No. W36.039 SC 33668)


## MEET THIS METER THAT

HAS MET STRENUOUS TESTS


Ruggedized Meters meet the dimensional requirements of JAN-I. 6 and are completely interchangeable with existing standard JAN $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ types. They offer electrical and mechanical performance far in excess of existing JAN requirements.

Marion Ruggedized Meters set new standards in Performance and Application for Science and Industry.

# For Tough Machininn Jobs, Get REVERE FREE-CUTTING BRASS 




Abowe, Model CS, smallent condenser, air space .009". Below, Model B, largesi, air space .013". Rotor shafts, shown in top illustration, are Revere FreeCutting. Brass, plates aluminum. Made by The American Steel Package Co., Defiance, Ohio, an important supplier to the electronics industry.

HERE are several examples of the fact that Revere FreeCutting Brass is really good. These rotor shafts for variable condensers are cut on automatic machines at 3600 r.p.m. Circular tools are used to cut the concentric slots which are $050^{\prime \prime}$ deep. Only one cut has to he taken. Approximately 425 pieces are produced per hour on a 6 -second cycle. The American Steel Package Company, Defiance, Ohio, produces a number of different condenser models, with air spacing ranging from $.009^{\prime \prime}$ up to $.042^{\prime \prime}$. The slots in the shaft of Revere Free-Cutting Brass are all of the same width, regardless of air spacing, namely $.014^{\prime \prime}$ plus or minus 0002 ". It takes good machines, good tools, good men, and good metal to work that closely. A report from a Revere Technical Advisor who had collaborated with the company states: "Customer is outstanding in his praise of Revere Rod." . . . If you have a problem in the machining of brass, why not give Revere an opportunity to work with you? The Revere Technical Advisory Service is at your command.


# COPPER AND BRASS INCORPORATED 

Founded by Paul Revere in 1801

230 Park Avenue, New York 17, New York
Mills: Baltimore, Md.; Chicago, Ill.; Detroit, Mich.; Los Angeles and Riverside, Calif.; New Bedford, Mass.; Rome, N. Y Sales Offices in Principal Cities, Distributors Everywhere.

## ANOTHER -hp- SERVICE

## Person-to-Person Help With Your Measuring Problems

Atmost anwhere in America, -bp- field representatives can give you personal help with your measuring problems. They have complete data on -bp-instruments, their perfornance, servicing and adaptability: Call the nearest -bp-field representative whenever, wherever you need hilp with a measuring problem.

## BOSTON 16, MASSACHUSETTS

Burlingame Associates
270 Commonwealth Ave
KEnmote 6-8100
CHICAGO 40, ILLINOIS
Alfred Crossley $\kappa$ Associates
4501 Ravenswood Ave
UPrown 8-1141
CLEVELAND 12, OHIO
M. P. Odell

1748 Northfield Avenue
Potomac 6960
DALLAS 5, TEXAS
Earl W. Lipscomb
4433 Stantord Street
Logan 6-5097
DENVER 10, COLORADO
Ronald G. Bowen
1896 So. Humbold Street Spruce 9368
FORT MYERS, FLORIDA
Arthur Lynch and Associates
P. O. Box 466

Fort Myers 1269 M
HIGH POINT, NORTH CAROLINA

> Bivins \& Caldwell
> Room 807, Security Bank Building Phone 3672

LOS ANGELES 46, CALIFORNIA
Norman B. Neely Enterprises
7422 Melrose Avenue Whitney 1147
NEW YORK 13, NEW YORK
Burlingame Associates
103 Lafayette St .
Digby 9-12i0
SAN FRANCISCO 3, CALIFORNIA
Norman B. Neely Enterprises
954 Howard Street
DOuglas 2-2609

## TORONTO 1, CANADA

Atlas Radio Corporation. Lad
560 King Street West
Waverley 4761

## WASHINGTON 9, D. C

Burlingatme Associates
2017 S. Stree N W
2017 S. Streer N. W.
Decatur 8000

-hp- MODEL 200C
From $1 / 2$ cps to 10 mc , there's an -bp-resistance tuned oscillator engineered to your exact need. Ten precision oscillators in all, including a portable unit that operates from batteries. Each has the familiar -bpadvantages of high stability, constant output, wide frequency range, low distortion and no zero set during operation. --hp-precision oscillators are used by radio stations, manufacturers, research laboratories and scientists throughout the world.

| SPECIFICATIONS OF -hp- OSCILLATORS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INSTRUMENT | freq. RANGE | ourput | OISTORTION | FREQ RESPONSE | PRICE |
| -hp-200A | $35 \mathrm{c} 3) 1035 \mathrm{kc}$ | 1 walt/22 5v | Less than 1\% | $\pm 1 \mathrm{db} 1015 \mathrm{kc}$ | \$120.00 |
| -hp-200B | 20 cps to 20 kc | 1 watt/22.5v | Less than 1\% | $\pm 1 \mathrm{db}: 015 \mathrm{kc}$ | 120.00 |
| -hp-200C | 20 eps 10200 ke | $100 \mathrm{~mm} / 10 \mathrm{v}$ | $\begin{aligned} & \text { Less than } 1 \% \\ & \text { to } 20 \mathrm{kc} \end{aligned}$ | $\pm 1 \mathrm{db} 10150 \mathrm{kc}$ | 150.00 |
| -hp- 2000 | 7 cps 1070 kc | $100 \mathrm{mw} / 10 \mathrm{v}$ | $\begin{aligned} & \text { Less than } 1 \% \\ & 10 \mathrm{cps} \text { to } 70 \mathrm{kc} \end{aligned}$ | $\pm 1 \mathrm{db}$ throughout range | 175.00 |
| -hp-200H | 60 cps to 600 kc | $10 \mathrm{mw} / \mathrm{lv}$ | Less than 3\% | $\begin{aligned} & \pm 1 \mathrm{db}, 60 \mathrm{cps} \\ & \text { to } 600 \mathrm{kc} \end{aligned}$ | 350.00 |
| -hp- 200 I | 6 cps to 6 kc | $100 \mathrm{mw} / 10 \mathrm{v}$ | Less than $\%$ above 10 cps | $\pm 1 \mathrm{db}, 6$ to 6000 cps | 225.00 |
| -hp-2018 | 20 cps 1020 ks | $3 \mathrm{w} / 42.5 v$ | Less than $1 / 2 \%$ (1 walt output) | $\pm 1 \mathrm{db}$ throughout range | 250.00 |
| -hp- 202B | $1 / 2 \mathrm{cps} 1050 \mathrm{kc}$ | $100 \mathrm{mw} / 10 \mathrm{v}$ | Less than $1 \%$ 1101000 cps | $\begin{aligned} & \pm 1 \mathrm{db}, 10 \mathrm{to} \\ & 50,000 \mathrm{cps} \end{aligned}$ | 350.00 |
| -hp-202D | 2 cps to 70 kc | $100 \mathrm{mw} / 10 \mathrm{v}$ | Less than $2 \%$ 10 cps to 70 kc | $\begin{aligned} & 1 \mathrm{db}, 7 \mathrm{cps} \\ & 1070 \mathrm{kc} \end{aligned}$ | 275.00 |
| $\begin{aligned} & -h p-204 \mathrm{~A} \\ & (\text { Bottery Op'd) } \end{aligned}$ | 2 cps 1020 kc | $2.5 \mathrm{mw} / \mathrm{s}^{\text {v }}$ | less than $1 \%$ | $\pm 1 \mathrm{db}$ throughout range | 175.00 |
| -hp-650A | 10 cps 1010 mc | $15 \mathrm{mw} / 3 \mathrm{v}$ | Less than $1 \%$ 100 cps to 100 kc | $\pm 1 \mathrm{db}$ throughoul range | 475.00 |

For complete details on any -hpinstrument, write direct to factory or contact the -hp- technical representative nearest you.

HEWLETT-PACKARD CO.
1855 A Page Mill Road, Palo Alfo, California
Export Agents: Frazar \& Hansen, Ltd.
301 Clay Street • San Francisco, Calif., U. S. A.

# fir Conternational 


... a new Transmitter
that will key at 400 W. P. M. a full 15000 watts, - designed for 4-22 meqaeyele operation and built for around the clock ocven day a week operation.
The Gutes HIF $^{1.3}$ transmitter is only 8 feet wide, 7 feet high and 5 leet deep-is all self-contained and frequency change can be made in seconds. Operation is from 3 phase 220 volts or other primary voltages where required.

Soor off the press - a new catalogue on Gates commumications transmitters and over a score of models in all power ranges to ehoose from. Nay we place your name on our mailing list?

## GATES RADIO COMPANY Quincy, Illinois . . . . U.S.A.



Simple, dependable on-off switching is a must with many products . . . and generally, the shortest distance between the problem and the solution is a Honcywell Mercury Switch.
Honey well Mercury Switches are tiny and compact . . . are adapt. able to unusual mountings. They operate at low angles . . . have no moving parts. . . are sealed against dust, gas and corrosion. Fouled contact points cannot occur.


The complete line is at your command . . . offering greater latitude in product design, with improved performance and trouble-free operation. Write for a copy of new Catalog 1313 for down-to-earth information . . . or call in your local Honevwell engineer for a detailed discussion of a particular application.

> MINNEAPOLIS-HONEYWELL REGULATOR CO.
> BROWN INSTRUMENTS DIVISION
> 4428 Wayne Ave., Philadelphia 44, Pa.

Offices in 73 principal cities of the Unifed States, Canada and throughout the world
FOR $\left\lvert\, \begin{aligned} & \text { - POSITIVEACTION } \\ & \text { - LOW ANGULARITY } \\ & \text { - WIDESERELIFE } \\ & \text { - }\end{aligned}\right.$

SPECIFY HONEYWELL Moicung Saritchos



# Erie "CP" Cercmicons" 

 meef every demand for
## ECONOMY and

 PERFORMANCE

UANTITY production of "GP" Ceramic Condensers is achieved by limiting them to definite capacity values -with a consequent saving in cost without affecting quality. For by-passing and coupling applications which are not frequency determining, "GP" Ceramicons are unexcelled in performance.

General Purpose Ceramicons are sturdy, compact. They are easy to install in small spaces and their use
"GP" and Ceramicon are registered trade names of Erie Resistor Corporation. increases production on the assembly line. This feature is proving especially valuable in assembling TV sets.

Erie "GP" Ceramicons are made in insulated and non-insulated styles in popular capacity values up to


Electronice Dixision
ERIE RESISTOR CORP., ERIE, PA. LONDON, ENGLAND TORONTO, CANADA


## WILLIAM BRAND \& COMPANY

276 FOURTH AVE., NEW YORK 10, N.Y. - 1313 W. RANDOLPH ST., CHICAGO, ILL.


## a NEW doman for TELEVSSON




## "TEFLON"/* TAPE INSULATION SERVES FROM -80 ${ }^{\circ}$ TO 500 ${ }^{\circ}$.



No other available material has the combination of low electrical losses and heatresistance of Du Pont "Teflon" tetrafluroethylene resin.
"Teflon" tape is seeing wider and wider use in such applications as insulation for wire and cable, ground insulation for motors and generators, conductor and layer insulation in transformers and coils. Its power factor is less than 0.0005 and its dielectric constant only 2.0 over the entire spectrum measured to date, 60 cycles to 30,000 megacycles. Its dielectric strength is excellent and is unaffected by temperature changes up to at least $400^{\circ} \mathrm{F}$. The tape gives service up to $500^{\circ} \mathrm{F}$. "Teflon"
tape has excellent mechanical strength and pliability . . . at temperatures as low as $-80^{\circ} \mathrm{F}$. In wrapped construction it fits even more tightly as the temperature is raised. It has zero waterabsorption, and is unaffected by outdoor weathering.
"Teflon" is supplied by Du Pont in the standard shapes of rods, tubes, sheets, beading, and tape, and in molding powder, both shredded and granular. WRITE NOW for more data on the properties and electrical uses of "Teflon"!
E. I. du Pont de Nemours \& Co. (Inc.), Plastics Department, Main Sales Offices: 350 Fifth Avenue, New York 1, New York; 7 Sowth Dearborn Street, Chicago 3, Illinois; 840 East 60th Street, Los Angeles 1, California.
(Wire and eables shown above made with "Teflon" Tape by Boston Insulated Wire \& Cable Co., Boston, Mass.)
Tune in to Du Pont "CAVALCADE OF AMERICA," Tuesday nights-NBC coast to coast.



Stackpole fixed resistors of molded carbon composition are now available in a complete range of $1 / 2^{-}, 1$ - and 2 -watt sizes to match modern design and production requirements. Deliveries are good-quality and prices are right-and Stackpole engineers welcome the opportunity to cooperate in matching your specifications to the letter. Samples to quantity users on request.

ELECTRONIC COMPONENTS DIVISION
STACKPOLE CARBON COMPANY - ST. MARYS, PA.

(Model 901) PORTABLE TEST INSTRUMENTS available in DC, Model 901and AC, Model 904, single and multiple ranges of wide coverage. Excellent scale readability and shielding. Accuracy within $1 / 2$ of $1 \%$.


SENSITIVE RELAYS a line of sensitive relays including the Model 705 which provides positive control at levels as low as $1 / 2$ microampere. Non-chattering magnetic contacts handle up to 10 watts at 120 volts.


Illustrated are but a few of the many specialized instruments available from WESTON . . . all designed to simplify and speed-up electrical and electronic installations, production testing, and maintenance. For details, see your local representative, or write Weston Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark 5, New Jersey.

## WISTON <br> 

 ELECTRONIC PRODUCTION AND MAINTENANCE
(Model 785) INDUSTRIAL CIRCUIT TESTER a versatile, portable tester for laboratory or maintenance needs, where an ultra-sensitive instrument is required. Provides 27 AC and DC voltage, AC and DC current, and resistance ranges. (DC sensitivity 20,000 ohms per volt.)

(Model 779, Type 1) SUPER-SENSITIVE ANALYZER small, light, compact, 26 range Volt-Ohm-Milliammeter with 5 DC voltage ranges, sensitivity of 1000 or $\mathbf{2 0 , 0 0 0}$ ohms per volt. AC temperature compensated. Self-contained power supply. Ideal for many production and test requirements.

(Model 622) ULTRA-SENSITIVE INSTRUMENTS portable DC and AC Thermo instruments for precision measurement of potentials and minute currents involving electronics, thermo-couples or laboratory research.

(Model 798) MULTI-PURPOSE TUBECHECKER offering provision for testing Receiving Tubes - Voltage Regulator Tubes-Light Duty Thyratron Tubes such as 2A4-6D4-884-885-2051. Scale is calibrated "Good-Bad" as well as in mutual conductance range.


PANEL and SWITCHBOARD INSTRU. MENTS a complete line of instruments in all types, sizes and ranges required for switchboard and panel needs . . . including DC, AC power frequencies and radio frequency, rectifier types and D.B. meters.

ALBANY - ATLANTA - BOSTON - BUFFALO - CHARLOTTE - CHICAGO ALBANY•• CLEVELAND - DALLAS • DENVER - DES ANGELES CINCINNAVILE - KNOXVILLE - LITTLE ROCK OLEANS ORLEANS NEW YORK JACKSONVIILE KNEAPOLIS - NEW ARK - NEW ORLEAN • NOCHESTER MERIDEN - MINNEAPGIPHIA - PHOENIX - PITTSBURGH - TULSA ORLANDO - PHILADELPHIA - ST. LOUIS - SYRACUSE - TULSA in Canada, northern electric co., ITD., Powerite

Distic film and sheet are "taking over" where protection from moisture or chemicals is vital. Shop-windows feature plastic rainwear. Acid-proof work garments shield from noxious liquids. Packages are plastic-sealed against dampness. Moreover, plastic wallets, handbags, novelties of all types are pouring off production lines.

Millions of yards of plastic material are being sealed and stitched, with electronic heating doing the whole job. Certainly, here's a steady, growing market for h-f-heating equipment ... and just as surely, you want your share of this important business.

Build your circuit around General Electric's great GL-592 power tube! Its special suitability for the work, its reliability and "toughness", are industry-demonstrated. The tube carries substantial plate ratings. For still more power, a pair or two pairs may be used without undue increase in cost of the equipment. Frequency range is high. The tube is exceptionally efficient, with conversion efficiencies above 70 percent the rule in well-designed circuits. Cooling offers no problem, merely calling for an 8 -inch household-type fan or a small and inexpensive pressure blower.
Ample tube stocks are available, along with sockets, grid connectors, and finned anode connectors. Specify and install-there'll be no inter. vening delay! You owe it to yourself as designer or builder of h-f-heating equipment to study the economical GL-592's application in your circuit. G-E tube engineers will be glad to assist. Phone your nearby G-E electronics office, or wire or write Electronics Department, General Electric Company, Schenectady 5, New York.

## GL-592 POWER TRIODE

Study these SUPERIOR G-E design features!

- A one-piece graphite anode, with no welds, accents the tube's mechanical strength. Zirconium coating provides excellent heat-radiating properties and helps maintain high vacuum.
- Large-diameter anode lead is sturdy, also makes for low inductance.
- The GL-592 has a combined seal-and-anode-terminal of unit construction. No cemented cop or screw connections are used. Good for the life of the tube!
- Filament leads are solidiy braced for greater internal strength.
- Large-diameter G-E cup seals of matching metal and glass feature all terminals.
- External leads and seals are silver-plated for better conductivity.


## RATINGS

Class C Power Amplifier and Oscillator

| Filament voltage |  | 10 v <br> Filament current |
| :--- | :---: | ---: |
| Max ratings: | CCS | 5 amp |
| d-c plate voltage | $3,500 \mathrm{~V}$ | $3,500 \mathrm{v}$ |
| d-c grid voltage | -500 v | -500 v |
| d-c plate current | 250 ma | 350 ma |
| d-c grid current | 50 ma | 100 ma |
| plate input | 670 w | $1,000 \mathrm{w}$ |
| plate dissipation | 200 w | 300 w |
| Type of cooling |  | fored-air |
| Frequency at max ratings |  | 150 me |



## Only the BEST <br> pass these <br> tests



The spectrograph provides one of the most efficient means for precise metallurgical control. Samples taken from a heat in the Driver-Harris melting furnaces are analyzed so rapidy by mears of this apparatus, that a complete analysis can be obtained before the next heat is ready for pouring. Thus any necessary adjustments can be made immediately-an outstanding advantage in cantrolling the constituent elements of alloys being produced to extremely close specifications. The operator is here seen adjusting the size of the analytical gap in the arc-spark stand of the Driver-Harris grating spectrograph at the start of an exposure.

The quality of any manufactured item depends upon a number of factors, but on none so much as "inspection". And here, at Driver-Harris, we give top priority to inspection.

Through every stage of manufacture, precise metallurgical checks and controls are systematically applied to D-H Alloys to insure quality and uniformity that are unsurpassed-recognized the world over.

We have had 50 years' experience in continuous alloy research and manufacture. Every piece of D-H wire, ribbon or strip, and every casting embodies advantages such as only half a century of accumulated know-how can provide.

Whatever your requirements for electrical resistance and heat-resisting alloys, send us your specifications. We shall be glad to make recommendations, and supply you with the alloy best suited to your needs.


The research metallograph, the ultimate in metallurgical microscopes, is applied to both research and quality control at Driver-Harris.


A view in the Driver-Harris chemical laboratory -fully equipped for all standeard types of volumetric, gravimetric and colorimetric analyses.

Makers of over 80 alloys for the electronic, electrical and heat-treating fields-including world-famous Nichrome*

## Driver-Harris Company

HARRISON, NEW JERSEY
BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco

## Divides a second into $1,600,000$ parts-

 1.6 MECACTCLE COUNTER= CHRONOGRAPH
## FEATURES:

- High Resolution and Accuracy-1/1,600,000 second.
- Direct Indication of intervals up to one second - recycling of counter can be observed or recorded for longer intervals.
- Retains Indication of measurement until reset.
- Easy to actuate - pulses from common or separate sources can be used.
- Dependable and stable - no adjustments required.
- Accepted standard in practically all government proving grounds.


## PRINCIPLE OF OPERATION:

A quartz crystal, continuously oscillating at 1.6 mc is used as a time base. During the time interval to be measured the cycles are gated into four binary counting stages having a capacity of 16 counts. The neon indicator lights of these stages are numbered $1 / 16,2 / 16,4 / 16$, and $8 / 16$ (sixteenths of 10 microseconds or 0.625 microsecond). Following the binary stages are five decade counting units having a capacity of 100,000 counts. Each count entering the decades from the binary stages represents 10 microseconds. Therefore, the time interval between 10 microseconds and 1 second is registered in the decades and the remainder is registered in the binary stages. For instance a time interval of .5374825 second would be indicated as follows: .53748 on the decade indicators plus $4 / 16$ (of 10 microseconds) on the binary indicators.

HIGH SPEED ELECTRONIC COUNTERS, COMPUTERS AND PRECISION INTERVAL TIMERS FOR ALL APPLICATIONS—ADDRESS INQUIRIES TO DEPT. 6-L

136-56 ROOSEVELT AVENUE • FLUSHING • NEW YORK

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | look alike -but that's about all! |  |  |

## \% <br> CORNELL•DUBILIER GAPACITORS

may look like others, too...

DUt. - , there's quite a difference in performance, as most engineers know. That's why the overwhelming majority of engineers specify Cornell-Dubilier. There's one way you, too, can be sure of capacitors that won't let you down. That's to specify C-D s. Into the making of each unit goes engineering experience resulting from 40 vears of concentration on cajacitors. So why take chances? Our engineering-service department will gladly answer your inqui-y. Catalogs on request.

Cornall Dubilier Electric Corporetion, South Plainfield, New Jersey, Deft. llos. Diher plants in New Bedford, Brooklire and Worcester, Mass. Provide cce, R. I., Indianapolis, nd., and subsiaiary, The Radiart Corp. Clevelasd, Ohio.

## CORNELI-DUBIIIER

CONSIS:ENIIY DEPENDABIE

## - CAPACITORS

```
- VIBRATORS * ANTENNAS * CONVERTERS
* CAPACITORS
        * ANTENNAS
                                -
```

typical of the $\approx$-d line of capacitors with buILT.IN QUAlItY Characteristics is the

## TYPE GT

'GREY TIGER" HIGH TEMPERATURE paper tubular capacitor

## GREY TIGER

 TYPE GT-GSIThe "Grey Tiger" Vikane impregnated tubular capacitor has won wide accla:m in the industry as an economical, durable and stable tusular. A few of the many desirable features of this unit are:

- Vikane imprepnation assures long life at high temperatures - exclusive C-D moisture seal and tube impreanation tiesizned to stand temperature ufs to $+100^{\circ} \mathrm{C} \cdot$ nsulation resistance above 10.000 megs per unit at $25^{\circ} \mathrm{C}$ or 2000 mer mids. P. averages $0.35 \%$ si 1.000 eycles - excellent capacity utilitarian tubular built to do a deperndatle job.

C-D Best by Field Test!

# 30\% REDUCTION IN MATERIAL COSTS $\longrightarrow$ Effecteb by desicin Change 

ORIGINAL INSULATION


ROGERS PART

One part instead of two . . . reduced assembly time . . . a savings of approximately $30 \%$ in raw materials cost . . . improved insulation . . . are the benefits derived by University Loudspeakers, Inc., White Plains, N. Y. as a result of using a Rogers material and Rogers fabricating services.

The two-piece insulation previously devised for the carbon button assembly in the revolutionary University Powrmike microphone required an excessive amount of assembly time. In addition, because it was fairly tricky to handle, there was a possibility of poor insulation due to improper assembly, a condition that would lead to high rejections in production and a possibility of breakdown in the field. Rogers fabricated the new one-piece component of DUROID. This new Rogers material offers many new advantages to users of fibrous materials either for insulating
or structural purposes. It is similar to vulcanized fibre, but is non-brittle and is capable of being formed, drawn and shaped.

Never take your fibrous insulating components for granted - their costs, either. Rogers specialized fabricating services on fibrous and laminated parts are saving money for many manufacturers. It will pay you to see Rogers first on any such components.

Write for catalog on Rogers Fabricating


# FABRICATING DIVISION, DEPT. E ROGERS CORPORATION 



ELECTRICAL INSULATING BOARDS AND PAPERS DUROIDS • SHOE PRODUCTS

MOLDING AND LAMINATING PLASTICS
Boards - Blanks - Pre-shaped Preforms
High Strength Molding Compounds Laminated Phenolics

COMPLETE FABRICATING SERVICES ON FIBROUS MATERIALS AND LAMINATED PHENOLICS

## Here's Why it Pays You to Read the Advertising

The advertising is a rich source of valuable information. In this magazine it offers you ideas and products that may well apply advantageously to your business.

Every issue is a catalog of goods, materials, and services - quickly available to you - just for the reading.

Leaders in business and industry turn to the advertising. because they've discovered it helps them run their businesses more profitably.

When you read all the ads in this magazine, the chances are good that you'll get a lead that will materially help you do a better job. For example, you may find a specific piece of equipment that will be a profitable time-saver. Or a tool that will increase worker efficiency. That's why it pays to read the advertising. It's good business.

## Mc GRAW-HILL

publications

## TWO VITAL Hotpoint PARTS of

IMPELLER FOR AUTOMATIC
DISHWASHER - Richardson ability and experience were important factors in producing this intricate molded part for Hotpoint Automatic Dishwashers. Precision molding was important to produce a perfectly balanced impeller for high-speed rotation during the washing, rinsing and drying cycles. This Richardson-molded impeller has a smooth finish, requires a minimum of finishing and fabricating operations and is impervious to water and soaps or detergents.


Richardson knowledge, facilities and skill produced this intricate Bakelite thermostat base for oven controls on the Hotpoint Range. The metal insert is accurately positioned. The electrical and mechanical properties of this Richardson-molded part undergo precision tests following assembly.

Send specifications or blueprints . . . learn, without obligation, how Richardson facilities and services might go to work for you.

## INSUROK 6y RICHARDSON <br> Dopondable nomes in plasics

# The RICHARDSON COMPANY 

general offices lockland. ohio founded in 1858
Sales Headquarters: MELROSE PARK, ILLINOIS

CLEVELAND - DETROIT - INDIANAPOLIS - MILWAUKEE - NEW BRUNSWICK. (N. S.) . NEW VORK - PHILADELPHIA - ROCHESTER - ST LOUIS


The Eimac 4-125A beam power etrode is the standolt porer amplifier tube in modern electronic equipment. Sin:e its commercial introduction in the early pest-war period, the scope of the Eimac 4-125A's application in the electron art seems to be limited only by imagimation. In thousands of installations, many million accumulated hours of life have proved this tube's complete dependability and efficiency of performance.

Incorporated in the design of the 4-125A are many features contributing to its outstanding capabilities. Mcst notable among these are:

Its pyrovac plate which enables the tube to withstand high momentary overloads.

Its processed non-emitting grids which impart the operationeal stability universally associated with this tube.

Its internal input-to output-circuit shielding which allows considerable simplification of associated circuitry.

Its well engineered mechanical structures that make the tube physically rugged and maintain precise element alignmest.

Defailed data and application notes on the Eimac 4-125A tetrode are, upon request, immediately arailable. Assistance in unusual application problems involying the use of the 4-125A is offered as a service of the Eimac Field Engineering Department.

## EITEL-McCULLOUGH, INC. San Bruno, California

Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco, California


## A BRADLEY GASE HISTORY



Collins Radio Company, in its 51 R-2 aircraft receiver, uses a Bradley hermetically sealed vacuum-processed selenium rectifier for demodulating an FM signal which provides navigation information in the newly developed omni-range system.
"We were," says Collins, "at one time having considerable trouble in this circuit. Your rectifiers remedied this situation completely. They have contributed a great deal in enabling us to obtain the required performance in our 51R-2 receiver. tained even under the extreme variation of temperatures stipulated by the Civil Aeronautics Administration in testing suitability for use in scheduled airlines service."

Through its exclusive vacuum process, Bradley has solved the problem of producing selenium and copper oxide rectifiers that are uniform and consistently true to rating. For improved power conversion in your product, consult Bradley engineers. They can help you obtain the right rectifier for your application.
the BRADLEY line

SELENIUM RECTIFIERS COPPER OXIDE RECTIFIERS SELF-GENERATING PHOTOCELLS


SELENIUM SE8L

## SPECIFICATION DATA

1. Reverse current of 150 volts DC 15 microamperes maximum at plus $72^{\circ}$ C. to minus $50^{\circ} \mathrm{C}$
2. Forward current at 42 volts $D C$ from 700 microamperes minimum to 2 mil liamperes maximum at plus $72^{\circ} \mathrm{C}$. to minus $50^{\circ} \mathrm{C}$.
3. The unit shall be capable of operating continuously within limits at $95 \%$ relative humidity.

# final inspection 

 gives you assurance that


## AN EASY Way TO PRODUCE SQUARE WAVES



Specially designed G-E Type-E networks will produce impulses which have definite, known energy contents and durations, and thus are ideal for converting a-c or d-c charging voltages into approximately rectangular square waves. These networks consist of capacitor and coil sections adjusted to close tolerances and hermetically sealed in single metal containers.
G.E. helped meet wartime radar demands with thousands of these units and now offers them for commercial use. They are available in a wide range of designs,
impedances, ratings, and sizes for pulse lengths of 0.1 to 40 microseconds. See Bulletin GEA-4996.




## HEAYY-DUTY RELAYS <br> THAI MOUNT 3 WAYS

This versatile, general-purpose, heavyduty, a-c relay unit is available in three mounting arrangements: front connected, back connected, or plug-in connected. All three mounting types are available in open or enclosed models and are furnished in spst, dpst, or dpdt circuits. Heavy, longlasting silver contacts carry 10 amps continuous. Normally-open forms make or break 45 amps ; normally-closed forms make or break 20 amps. Relay coils come in 12-, 24 -, 115 -, or 230 -volt, 60 -cycle a-c sizes. D-c units are available in similar models. For full details see GEC-257.

## accurate but rugged

The new, modernlooking, easy-to-read $21 / 2$ inch G-E instrument line is improved inside as well as outside. A single, selfcontained mechanism supported on an extremely strong
 Alnico magnet assures permanent alignment eren under the most adverse operating conditions. This high-gauss Alnico magnet permits the use of a large air gap with a consequent smoother, non-sticking action. The greater torque-to-weight ratio means better damping and allows the use of heavier vibration-resisting pivots. Accuracy is $5 \%$ of full scale on rectifier types, $2 \%$ on all others. For complete details, send for Bulletin GEC-368.

## SNAP-SWITCH INSTALLATION TIME CUT TO SECONDS

You'll have a firm electrical connection without the use of solder a few seconds after you begin to install this small but rugged Switchette. Only $11 / 2$ inches long and weighing only 9 grams, this $230 \cdot v a c$, $10-\mathrm{amp}$ unit has solderless knife-contact terminals made of pure, tinned copper.

G-E Switchettes are available in a variety of forms and circuits, all of which have double-break contact structures. They're particularly well suited for electronic applications because of their low RF noise output (short contact-bounce).


For your convenience there are screwterminal and soldering-lug types as well as this special quick-connect unit. Send for Bulletin GEA-4888.


## A SMALL PAGKAGE OF WELl-REGULATED MIGH voltage

You get both high voltage and good regulation with small lightweight G-E precision rectifiers. This may interest you if you need compact, well-regulated, high d-c voltage sources for cathode-ray tubes, television camera tubes, radar indicator scopes, electron microscopes, GeigerMueller counters, or similar jobs.

These supplies are hermetically sealed and oil-filled. Typical units have outputs of 7 kv at 0.1 ma.-have only $3.5 \%$ deviation for every 0.1 ma load and output ripple of less than $1 \%$. Size-only $6^{\prime \prime} \times 6^{\prime \prime} \times$ $7^{\prime \prime}$. Weight -8 lbs. For further data, write: General Electric Company, Section 667-3, Schenectady 5, N. Y., giving complete information on the proposed application with specifications required.


## Federal

Sizes and types of the Selenium Rectifier have multiplied to meet more and more requirements in almost unlimited fields of application. Federal introduced the Selenium Rectifier in the U. S. and continues to lead in developing and manufacturing this versatile circuit element.

Federal has cooperated with a host of engineers and designers in the development of a complete line of Selenium Rectifiers, ranging from tiny Miniatures to huge Stacks. There is a Federal Selenium Rectifier which will meet practically any power conversion need.

Wherever used, Federal Selenium Rectifiers bring important advantages of dependable power handling . . . instant starting . . . silent, efficient operation . . . long service life.

These typical applications may suggest a new use in your own product. A Federal Selenium Rectifier could be the solution to your own power conversion problem. Bring any question to Federal-America's oldest and largest manufacturer of Selenium Rectifiers. Direct your inquiries to Department E-313.


## JUST OFF THE PRESS!

Federal's new Miniature Selenium Rectifier Handbook... 48 pages of valuable design data. Available for 25 cents (coin only) from-

## GENERAL INDUSTRIES leads the Parade



MODELTS-45-78-331/3R.P.M. General Industries newest rim-drive phonomotor, designed to accommodate all types of records now on the market.

## ... with this low cost THREE-SPEED PHONOMOTOR!

It's GI's Model TS...the one motor designed and engineered to meet all requirements for true record reproduction at $33^{1 / 3}, 45$ and 78 R.P.M. Already time-proved in actual service, this latest addition to the famous GI phonomotor line today is being used in a wide range of portables, table models and console radio-phonographs. Outstanding features: standard narrow-flange
turntable for easy, compact installation . . . simple, yet positive speed shift mechanism with external control lever . . . dependable, quiet Smooth Power motor for long, troublefree service.

For full details-blueprints, performance specifications and quotations-write, wire or phone today.


## Correctly Designed • Precision Built • Carefully Tested . . .

Quality counts in capacitors used in transmitting applications. Sangamo Mica Capacitors are built to rigid specifications, of the best materials obtainable and with the most precise production methods. They are correctly engineered to assure high current-carrying ability, to hold losses to a minimum, and to provide maximum safety.
Type G Capacitors are designed for use in medium and high power, high voltage and high current circuits. They are ceramic
encased and are frequently connected in gangs to handle heavy loads.
Type F Capacitors are used in similar applications to type G's and are potted in bakelite cases.
Type A and Type H Mica Capacitors are molded in a thermo-setting plastic and are designed for use in low voltage, low power and low current circuits.
These, and many other types of Sangamo Mica Capacitors, are fully described in Catalog No. 831. Write for your copy.


SPRINGFIELD, ILLINOIS
IN CANADA: SANGAMO COMPANY LIMITED, LEASIDE, ONTARIO


## Promptly and at Moderate Cost!

Bendix dynamotors are built to supply the exact power requirements of your equipment - to work from any input voltage and to deliver the necessary power at any outpui voltage. Dual or triple output voltages are available for high and low-level portions of the circuit, or for biasing. For critical circuits, regulated outputs will simplify your design problems, especially since a regulated filament supply can be obtained as a bonus when regulating the high voltage
output. Bendix will build your dynamotors to the usual military specifications or to meet even more rigid requirements, such as operation at higher temperature, or altitudes in experimental equipment.

Samples or production units of special dynamotors are priced competitively. A definite proposal will be made upon receipt of the details of your problem. For immediate information call our Engineering Staff-Red Bank 6-3600, Red Bank, New' Jersey.

## THE RIGHI DYNAMOTOR FOR EVERY PURPOSE

- Sizes-2 $3 / 4^{\prime \prime}$ to $51 / 4^{\prime \prime}$ diameter
- Power Range- 10 to 500 watts
- Input Voltage-6 to 115 volts
- Oufput Voltage-6 to 1500 volts
- Single and multiple output and input
- Plain and regulated types



## Only 7 Milliamperes in Coil—Controls 5-Ampere Contact

Here's the sensational adlake 5000 -type relay, now available after $31 / 2$ years of intensive research and development!
Because of its amazingly high load-input ratio, the No. 5000 relay operates at 115 volts 60 cycles on only 0.007 ampere-a fraction of the current consumed by any other type of mercury
relay! With this low amperage operating the coil, the contacts will handle 5 amperes at the same voltage! And tests indicate the No. 5000 relay's life to be over 30 million operations!

For full information on this truly remarkable relay, write us at 1107 N. Michigan, Elkhart, Indiana. No obligation, of course.

## Every Adlake Mercury Relay

brings you these advantages:

- Hermetically sealed-dusi, dirt, moisture, oxidation and temperature changes can't interfere with operation.

Silent and chatterless.<br>- Requires no maintenance.<br>- Absolutely safe.



Established 1857 - ELKHART, INDIANA - New York - Chicago

 this year. But Karp can help to keep them off your doorstep.

If your product requires metal cabinets, housings, chassis or enclosures, we can buikl them in a manner that will effect time and money savings on your assembly line. Karp craftsmanship is so accurate and thorough in detail that all units will be completely uniform. All your components will fit quickly and easily into place without forcing-without extra efforts on your part.

The resultant savings of your time and effort can help cut your costs and permit more competitive pricing, without cheapening your product in quality and value.
Let us prove that Karp's superior craftsmanship also means true economy. Pin the coupon below to your letterhead for more information.

## WHAT KARP CUSTOM CRAFTSMANSHIP OFFERS

- Practical help with design prob. lems, to improve product and cut cost.
- Our large accumulation of tools and dies often can save you special die costs and time.
- The specialized skill of several hundred of the finest metal craftsmen; expert forming, drowing, bending... welding with all latest techniques.
- Finest quality painting ond
finishing of all types in dustproof chambers equipped with water washed spray booth. Baking ovens with timing controls.
- Everything in sheet metal, from a simple chassis or panel to the most elaborate electronic apparatus housings. Any metal, any gauge, any size, any quantity-from a single lot to large run quantities.
- Efficient production and on-time deliveries


## Name

Title
Company
KARP METAL PRODUCTS CO. INC.
1
Address
215 63rd Street, Brooklyn 20, N. Y.
Custom Cuaftsmon in Sheel Metal



Here is a cylindrical d-c paper-dielectric capacitor that remains positively sealed, regardless of the position in which the unit is mounted. The G-E Case Style 40 utilizes a deepdrawn aluminum case with doublerolled base seams, avoiding solderseams. The silicone bushing eliminates gaskets, maintains the hermetic seal by compression alone. And beneath the case, these units embody the excellent materials and construction, give the outstanding performance characteristic of General Electric capacitors.
The Case Style 40 capacitor for
direct panel mounting with solder-Iug terminals, is built in these ratings: 600 volts- 1,2 and 4 muf 1000 volts- 1 and 2 muf 1500 volts-. $25, .5$ and 1 mu f This is but one case style of a complete line of d-c capacitors made by General Electric to JAN-C-25 Specifications and suitable for both com. mercial and armed services applications. G-E paper-dielectric capacitors are available in characteristics E (Mineral Oil) or F (Pyranol® ${ }^{(\Omega)}$ and in case styles $40,53,54,55,61,63,65$, 67, 69 and 70. Apparatus Department, General Electric, Schenectady 5, N. Y.


This is how the silicone bushing permanently compression-seals the new G-E Case Style 40 capocitor. Note that the conventional gasket is completely eliminated. This CP-40 can be freely handled with no worries about rupturing its seal.

Please address inquiries to Transformer \& Allied Product Div., General Electric Co., Pittsfield, Mass.




Pyramid Type 85TM Capacitars are now in volume production for leading TV-receiver manufacturers throughout the U.S.A. and Canada.

## PYRAMID ELECTRIC COMPANY

155 0xford Street
Paterson; N. J., U.S.A.
TELEGRAMS: WUX Paterson, N. J.
CABLE ADDRESS: Pyramidusa

## BUSINESS BRIEFS

By W. W. MacDONALD

Working Quietly tirough industry committees, the aircraft people deaermined some time ago that tube failures accounted for more than 50 percent of the electronic equipment failures in their field, and brought this disturbing fact to the attention of tube makers. Suggesting designs having special long-life characteristic; rather than mere selection of high-test tubes from regular mass-production runs (see p 60, Dec.), they have already stirred up something of a furor in tube manufacturing. circles.

Realizing that the production of tubes designed expressly for their highly demanding service is economically difficult, aireraft people realistically suggested that the job initially be confined to just 10 types. Two types have already been produced and shipped in quantity and statistics concerning their performance are currently being compiled.

American railroads are officially interested in the project and it seems likely that it will eventually influence the design of other mobile equipment, if not all industrial tube applications.

Milestone in the history of television was the sales slump experienced last summer and the sharp pickup in the fall. Manufacturers, distributors and dealers who had long since learned to accept this seasonal variation in radio business were caught napping.

It is unlikely that the experience will be repeated by industry leaders in 1950. In distribution at least, it is now apparent that television will follow the radio pattern.

First Avdio Fair (p 128) staged by the Audio Engineering Society in New York was highly successful on all counts, and we wouldn't be surprised to see the idea spreatd to other cities. Andio is like photorranhy in that it is an art. science, business and often a hobby. Show attendance is, therefore, not
very difficult to attract.
One of the major attractions was the fact that practically all equipment exhibited was working, and could be listened to without interference from other equipment. Selling was, literally, aimed at the customer's ear. We noted, nevertheless, and think this is the first printed mention of a trend, that where response curves were shown they usually went up to 20,000 cycles. Until recently, draftsmen seemed to run out of ink somewhere between 10 and 15,000 .

This reminds us of a misprint in a field report that came across our desk the other day, in which "amplifier" was spelled "ampliliar." Our thought was then, as it is now, that many a truth is spoken in jest.

Another New York Meeting to which we wended our way was the Second Annual Conference on Electronic Instrumentation in Nucleonics and Medicine, and in each category we picked up an impression worth relaying.

Dectors with Ph.D.'s were careful when discussing electronic medical equipment not to express clinical opinions, preferring to paraphrase or repeat the findings of doctors who were M.D.'s. And the danger of working around projects of the Atomic Energy Commission was further debunked by statements such as one to the effect that radiation exposure is limited to about that experienced when wearing a so-called radiumdial wristwatch.

Out In East Pittsburgh, the Westinghouse engineering department conducted a two-day MidCentury Review and Forecast Forum for the press. Due to the imminence of a deadine we can give you onlv a few highlights of thic extremely informative session and some local color picked up around the research laboratories. If vou have access to Chuck Sraplott's Westinghouse Engineer for Tanuary the full story will be


- The trend toward hermetic sealing in all phases of electrical manufacturing is gaining impetus. Fusite has pioneered in the field
 of glass-to-steel hermetic terminals for use in fusion sealing-the only truly hermetic process.
- We have prepared a brochure crammed full of illustrations, specifications, diagrams, and facts about the Fusite wide line of single and multiple electrode terminals.
- We assure you that regardless of your present level of knowledge concerning glass-to-steel terminals, you do not have a complete or accurate picture of the production possibilities of fusion sealing until you know the Fusite story.

Write today for your copy of this literature, to Dept.-E.

## THE FUSITE CORPORATION

CARTHAGE AT HANNAFORD, NORWOOD, CINCINNATI 12, OHIO

## SHOCK w VIBRATION <br> NWITS

## COLLINS

 new vhf radio equipment USES AIR.DAMPED
## BARRYMOUNTS



## FOR ASSURED CONTROL OF SHOCK AND VIBRATION

A full line of navigation and communications equipment - developed by Collins for aircraft use in the vhf and uhf bands - makes available to the aviation industry complete integrated radio facilities that meet all requirements for navigation and communications over Federal airways.

This new Collins equipment obtains vital protection against shock and vibration with air-damped BARRYMOUNTS.

In the Collins application, the unit BARRYMOUNTS support mounting bases, of Colins design, in single- and dual-unit styles, with provision for plug-in connection of navigation and glideslope receivers, accessories, and transmitter.

Unit air-damped BARRYMOUNTS can also be furnished for direct installation to airborne instruments and in combination with Barry-built standard and special mounting bases.

Whatever your shock or vibration problem, Barry experience and consulting engineering facilities offer a sure solution. Write for free catalog listing stock BARRYMOUNTS; for special information, call our nearest office or write to

| THE |  |  |  | CORP. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main Office 177 Sidney St. |  |  |  | Cambridge 39 Massachusetts |  |  |  |  |
| New York | Rochester | Phild | phio |  | ingtor |  | Cleveland | Dayton |
| Chieag | - Minnecpelis |  | St. Loifs |  | Los Angoles |  | Toronto |  |

found there, in an issue that should resemble a telephone book.

## The highlights:

If you think engineers in general and Circle-W engineers in particular have made progress in the first half of the 20 th Century watch them really move in the next half.

Pure research, as distinguished from product research, must be supported by industry. (About 40 percent of the substantial Westinghouse expenditure for research in 1950 will be in that category.)

The keynote of future electrical and electronic equipment design will be more power in less bulk.

The local color:
"Materials research pays dividends because if nothing ever fails you are probably overdesigned."

Air-conditioning in certain rooms is essential to protect delicate laboratory instruments. It is also favored by ditto laboratory personnel.

Gwilym is Welsh for William.
Up In Syracuse at the fall meeting of the IRE and RMA Engineering Departments, the impression appeared general that hotel facilities were quite superior to those heretofore provided at Rochester. Some 500 engineers registered for the meeting, about 200 less than last year, but some of the attendance loss may be attributed to the fact that there were no exhibits. On the other hand, the absence of exhibits noticeably swelled attendance at the technical sessions.

Syracuse gets the meeting again in 1950. Toronto is being considered for 1951.

Labor And Materials Costs have both increased for manufacturers of component parts. From where we sit it seems that current pressure from distributors who want increased catalog subsidies, greater freight allowances and/or larger cash discounts must prove futile.

Strangely Familiar is a phrase passed along by Warren Shew of our Philadelphia office to the effect that high-quality loudspeakers are hard to sell because many listeners "don't know their bass from their alto."

Citizens Radio has captured the imagination of many people, but this interest has yet to be translated into business. Writes one of our readers: "It appears to we that the Citizens' Band as now authorized, promulgated and restricted by FCC rules is not likely to be widely used by 'citizens' in general, or by citizens of moderate means in particular:"

We are inclined to agree. Some changes in the rules appear to be needed.

Speaking Of FCC, we knew that things were getting pretty hot in their Washington office (what with the color-television hearings and all) but had no idea there was danger of spontaneous combustion until the newspapers reported that a fire had broken out and destroyed some of the recorcs.

Navy Contracts in excess of $\$ 50,000$ recently awarded to firms in our field include:

Philco Corp. (field services) . . $\$ 1150,000$ Western Electric (field services) 600,000 $\begin{array}{ll}\text { Colms Radio (spare parts).... } & 187,860 \\ \text { Altec service (field services) } \\ 100,000\end{array}$ RCA Service Co. (field service) $\quad 50,000$

Navy is not spending as much money as some have hoped, but this still ain't hay.

IBM's New Machine developed to speed up tabulation of data to be gathered in the U. S. 1950 census contains:

```
13,500 plug connectors
    283 relays
    144 tubes
    75 circuit breakers
```

    50 miles of wire
    Electronic business machines individually use a large number of component parts and much material. The overall market is rot yet large but it does appear to kave a substantial long-range potential.

One Of Our Favorite Authors, who works in a laboratory where potentials up to 200,000 volts are not uncommon, recently stopped off at our offices enroute to deliver a technical paper. He showed us an interesting piece of equipment and, in the process, collected a severe jolt from a capacitor charged some six hours earlier to about 2,500 volts.

Please be careful, boys. We'd hate to have to write all these high-powered technical articles ourselves.



When you specify Mallory Capacitors for television receivers or other equipment where heat is a problem, you can he sure they will stand the test. Mallory FP Capacitors are designed to give long, trouble-free performance at $85^{\circ}$ C. -naturally they give even longer service at normal temperatures. In addition, Mallory FP Capacitors are famous for their long shelf life. Write for your copy of the FP Capacitor Engineering Data Folder.
*Name on request

## Mallory Engineering Sares Customer 

Manufacturers buying Mallory Capacitors are receiving a value far beyond their specifications.
They benefit by an engineering service that is always availatle to them-a service that recently simplified a circuit for one television manufacturer, eliminating four capacitors, saving $\$ 6,500$ weekly in materials and assembly time. That's service beyond the sale!
In addition, they benefit by the dependability and superior performance of a product that has been consistently ahead of the industry.
When you have capacitors to specify, remember Mallory. Remember the benefits of Mallory dependability, performance, and engineering service . . they're all yours at no premium in price!

IP is the type designation of the Mallory leveloped electrolytic capacitor hating the characteristic design pictured and famous throughout the industry for dependable performance.

## MALLORY

SERVING INDUSTRY WITH

| Capacitors | Contacts |
| :--- | :--- |
| Controls | Resistors |
| Rectifiers | Vibrators |
| Special | Power |
| Switches | Supplies |

[^4]
## CROSS <br> TALK

- SALARIES . . . Around this time of year (and any other time), everyone is interested in how his salary is trending. One of the interesting issues is how one's salary compares with the average. Browsing among the available data from the Bureau of Labor Statistics we found that, in 1946, the starting salary for new engineering graduates was about $\$ 240$ monthly, and it was pretty much the same, plus or minus $\$ 10$ or so, in five major categories of engineering. In the same year, engineers with ten years experience were earning about $\$ 370$ on the average, the civil engineers being low at $\$ 340$ and the mechanicals high at $\$ 400$. After a decade of trying, the electricals (including electronics and communications) had hit about $\$ 360$.

Age and experience count, particularly if you are a chemical engineer or in mining or metallurgy. Engineers who had been or the job for 35 years were earning in 1946 about $\$ 640$ a month in the chemical field, about $\$ 600$ in mining and metallurgy. The mechanicals and electricals, after pitching the ball for a third of a century plus, were rewarded at about $\$ 525$, and the 35 -year civil engineers, after as much travail and many more days working in the rain, were struggling along at $\$ 425$. The same data ("Employment Outlook for Engineers", issued June, 1949) show that electrical engineers who keep working 37 years are due for a rude shock. At that level of experience, the average earnings reach a peak of $\$ 550$ and three years later coast down to $\$ 500$.
That was in 1946. The Department of Commerce indicates that the average earnings of all industrial employees in that year were $\$ 197$ monthly, had risen to $\$ 232$ in 1948 . To add further to the confusion, in 1948 telephone and telegraph workers averaged $\$ 232$, radio and television broadcasting employees $\$ 330$, and electric-gas utilities ditto $\$ 266$.
Those are the average figures; peg your own where they fit. And when talking to your supervisor about this, do not mention the name of this magazine.
-T-W . . . Editors, like readers, have difficulty in keeping up with the periodical literature on partic-
ular subjects. The case in point this month is travel-ing-wave tubes. When we asked Lester Field of Stanford University, some months ago, to prepare a review of progress in the t-w art, we knew we'd get a good paper. But when it arrived, we were shocked at the state of our ignorance. We should have known about these things, but didn't. So we recommend, highly, Dr. Field's story (p 100, this issue). Did you know that t-w tubes have produced 1,200 watts of c-w power, have operated at frequencies from 200 to $25,000 \mathrm{mc}$, have noise figures as low as 11.5 db ? Turn the page, brother; things have happened while we were away.
-LOUIE, DROP THAT AMPLIFIER . . . A large and prominent sporting goods store in New York has recently advertised a "personal amplifier", a cylindrical gizmo with a mike at one end and ear piece at the other, "electronically operated on tiny batteries, easily replaceable". The ad goes on to say that this is the acoustic equivalent of binoculars, "amplifies the distant music of hounds, conversation out of ear-shot, theater dialogue from the back row." A right sensitive amplifier, we gather, through which one can clearly hear the gentle dropping of the eaves.

- LUNAR . . . We continue to be amazed at the exploits of the radio-astronomers. Winfield Salisbury reported last month to the URSI that he and two colleagues had measured the temperature of the surface of the moon, during a total lunar eclipse. The measuring device was not a thermopile but, of all things, a superheterodyne. It seems the thermal radiation was measured on a wavelength of 1.8 cm , the radiating layer being some 5 to 10 cm below the visible surface of the moon. Result: the temperature was found to be constant before, during and after the eclipse, at about - 33 degrees centrigrade. Explanation : the layer of dust on the moon's surface has very high thermal insulation, particularly so because it is situated in a high vacuum. The first lunar explorers will do well to remember this, and be very careful about scuffing their feet.


# Came the TV REVOLUTION 

By DORMAN D. ISRAEL<br>Executive Vice-President<br>Emerson Radio and Phonograph Corporation Vew York, N. Y.

ACCORDING to the dictionary, "revolution" can mean "any radical change." So defined, it is clear that the impact of television on the radio industry is indeed revolutionary. If there is any doubt about it, consider the production figures* for the past three years. Since 1947, a-m receiver average production has declined from about 315,000 sets per week to about 118,000 per week, while average tv production has increased from 3,400 per week to 40,000 per week. Striking as these figures are, they mask even greater changes in the use of component parts, and in dollar values. The revolution is not confined to the set manufacturers and their suppliers. A host of other industries are affected, from gin mills to glass blowers, from vaudeville to the stock market.

## Production Trends

The accompanying chart, compiled from production figures of the RMA, shows the month-by-month trend in the manufacture of $t v, a-m$ and $f-m$ sets. These RMA figures are based on weekly production and are "complete, except for the usual omissions"; that is, they should be increased, by about 20 percent to account for production of non-RMA companies. But they are proportionately accurate and indicate unmistakable trends: Radio is settling to a lower, but substantial, level, while television continues to climb in spite of the deterrent effects of the tv "freeze."

Start with the year 1947. The average production for the year was 3,400 weekly for $t v, 315,000$ for a-m,

[^5]and 22,600 for $\mathrm{f}-\mathrm{m}$. Allowing for the cost of an average tv set as 10 times that of an average a-m set and that of an $f-m$ set as 3 times the a-m figure (these are typical figures), the dollar volume for a-m in 1947 was 76 percent of the total, f-m 16 percent and tv 8 percent.

In 1948 tv really got going; production rose from 6,000 to $30,000 \mathrm{tv}$ sets weekly. The average dollar value in that year, figured on the same basis, put tv far ahead of f-m and almost on a par with a-m. The ty dollar volume climbed from 8 to 36 percent, while a-m dropped from 76 to 46 percent, and f-m rose slightly from 16 percent to 19 percent.

Through October, in 1949, the dollar volume of tv receivers has far outstripped its predecessors. Tv thus far this year has accounted for 71 percent of dollar volume, a-m has settled to 21 percent and f-m to 8 percent. Came the revolution, indeed!

## Shift in Demand for Components

The foregoing figures on production and dollar volume of finished goods represent transactions between the equipment manufacturers and the public. Of equal interest to engineers are the more obscure but nonetheless drastic shifts in the use of component parts. The writer has conducted a "blood count" of representative $a-m$ and tv receivers to evaluate the parts usage in each. The results are shown in Table I. These are startling figures. Small resistors are nearly 8 times as numerous in tv sets as in a-m sets; large resistors 12 times; small fixed capacitors 6.5 times; large ones, 7 times.

Electrolytic capacitors, taken as
individual sections, are present in the ratio of 5 to 1 . But this is only a part of the story. Typical radio sections are 16-30 :f, 150-350 volts. A $100-\mu \mathrm{f} 450$-volt electrolytic, common in tv sets, uses much more aluminum foil. Based on foil consumption, the ty demand is about 20 times that for a-m. The corollary of this foil growth is the substantial number of kilowatts required to electroform the foil.

And so it goes. A whole new art has grown up around the design and manufacture of horizontal scanning output transformers and deflection yokes in ty sets. Variable resistor controls usage is up about 6 times for tv. And the tube suppliers are in a class by themselves. The average a-m set today has slightly over 5 tubes. Tv sets use somewhat above 20 tubes, one of which is a 20 -watt transmitting type tube.

The aggregate needs based on these ratios are equally startling. In 1947, a-m production required 4.5 million small resistors every week, while tv needed only 0.36 million. In 1948, the figures were 3.6 million for a-m, 1.7 million for tv. In 1949 the a-m demand has slid to 1.5 mil-

Table I-Count of Components in A-M and TV Receivers


Few recognize the full force of television's impact on the radio industry and allied arts. This survey, based on a paper presented before the Syracuse Fall Meeting of the IRE and RMA, was compiled by one of the keenest observers in the field
lion weekly, while tv takes no fewer than 4 million small fixed resistors each week.

Harassed friends in the resistor business will claim these figures are conservative, as indeed they are by at least the 20 or more percent nonRMA consumption we have "included out." The important fact is that, in three years, tv has taken over the resistor business.

Not all the traditional suppliers
of radio-set components have fared so well. Those on the wrong side of the ratio sign include the makers of fancy dials, who have "converted" to picture-tube masks; the variable capacitor people, who are wrestling with head-end tuners, many of which do not even use variable capacitors. And lo! the poor loudspeaker manufacturer. Loudspeaker plants find it necessary to convert to ion traps, focus assemblies and

Table II-Weekly Production of Receivers
(RMA figures, in thousands)

|  | 1947 |  |  |  | Start | 1918 |  | Aver. | 1949 |  |  | Aver. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TV | 1.1 | 5.9 | 8.2 | 3.4 | 7.5 | 32.2 | 32.2 | 16.7 | 30.3 | 76.1 | 76.1 | 40 |
| A-M | 302 | 297 | 385 | 315 | 293 | 175 | 301 | 225 | 140 | 147 | 14. | 116 |
| F-M | 10.3 | 38.4 | 38.4 | 22.6 | 34 | 40.1 | 42.5 | 30.6 | 36.9 | 20.8 | 36.9 | 15.6 |



Receiver production figures reported by RMA
other "debased" items employing permanent magnets.

Many newcomers, formerly on the fringe of the radio business, have cashed in on the tv trail. Take the glass business. A million 10BP4 and 10 FP 4 picture tubes, each containing several pounds of face plate and other glass, plus 7, 12 and 15inch sizes, add up to a lot of fabricated glass.

Or take the makers of ty antenna kits. No one has found a way to count or locate all the members of this group. This is probably all to the good, for the tv antenna designer has frequently been identified as the "chimney architect" most likely to meet with mayhem from a thousand residential neighborhoods.

There is no doubt that tv has had a far reaching effect on many different classes of personnel, not the least of which are the technicians. The earliest convert among the technicians was, of course, the bartender. Not far behind him is many a senior engineer who started designing superhets a quarter century ago. Such men say with feeling that tv is a young man's game. True enough the young to engineer is familiar with rise-times and noisefigures, foot-lamberts and cathodecoupled multivibrators. But he may be short on knowledge of, and respect for, the teachings of radio history. In consequence he may waste time reinventing devices long since tried and abandoned.

The way of all concerned in television engineering will be smoothed if the trends affecting tv design and production today are analyzed as repetitions of similar incidents in the radio business 15 to 25 years ago. The cost-cutting project presently rampant on the tv designer's bench is closely patterned on a similar effort that struck radio in the early thirties. The lessons learned then should be applied with profit and benefit to tv today.


New look of tv transcription industry as well as motion pictures, is the lip-synchronevs tape recorder for making the master sound track. A Rangerione unit is here being used during production of an educational film by Éddie Albert Productions in New York City. Resulting master sound tape can easily be edited and spliced

## NEW AUDIO TRENDS

Electronic speed control systems for magnetic tape recorders provide lip-synchronous playback accuracy for movie films and tv transcriptions. Other Audio Fair highlights include fluid for making magnetized tracks visible, portable shadowgraph for detecting wear in phono needles, and 78 -rpm $V$-groove recordings going up to $20,000 \mathrm{cps}$

RECENT refinements in magnetic tape recording and playback equipment now make available a source of recoided sound that by actual listening test is indistinguishable from the original. As a result, tape recordings made off the ail from topnotch f-m programs are replacing records and transcriptions in demonstrations of highfidelity audio equipment.

Even the motion picture industry is turning to tape for the master recording of the sound accompaniment to a film. The significant
trend in audio engineering today is thus to greater utilization of magnetic tape. This was clearly evident at sessions and exhibits at the Audio Enyineering Society's first convention and Audio Fair, held recently in New York City. Further details of the Fair itself are given in the News of the Industry department in this issue.

Though the battle of disc speeds appeared to be either overlooked or forgotten, an occasional turntable could be seen in the exhibit rooms, and several outstanding new pick.
ups were shown. For those who were unable to attend, this report will provide a few of the highlights and answer the question, "What's new in audio?"

## Lip-Synchronous Recording

Three different methods of insuring playback of magnetic tape in precise synchronism with movie film were exhibited. Each requires the placing of something on the tape, in addition to the sound tracks, that will control the speed of playback to compensate for deviations in power


New look in tv studios is absence of mike boom and its shadow-producing headaches, through use of new RCA fixed-position directional microphones. Pipes providing directional characteristics are over 8 feet long, but folded back and forth between the two ribbon microphones too keep over-all length down. Operator switches smoothly between mikes to follow action
line frequency and changes in tape length with temperature and humidity.

Sprocket holes provide synchronization mechanically in the Magnagram $16-\mathrm{mm}$ magnetic film recorder. Here the magnetic oxide coating is placed on standard $16-\mathrm{mm}$ film stock.

In the Fairchild Pix-Sync tape recorder, a 14.5 -kc carrier modulated with the 60 -cycle line frequency is recorded simultaneously with the audio program, at a level sufficiently low to insure negligible effect on the normal dynamic range of the recorder.

In playback the $14,5-\mathrm{ke}$ sync signal is amplified along with the program material in the first two stages of the standard playback amplifier. Just ahead of the play-back-amplifier volume control is a 14.5 -kc bridged-T rejection filter which removes the control carrier from the program channel. The control signal is taken off just ahead of this network. It goes to the demodulator chassis where it is amplified in a band-pass amplifier and demodulated. The band-pass is cen-
tered on 14.5 kc and is little over 1 kc wide at the $3-\mathrm{db}$ point. It is down about 45 db at 10 kc .

After demodulation, the recovered 60 -cycle signal is amplified through a push-pull power amplifier which feeds a small induction follow-up motor. The motor is coupled to the tape capstan flywheel through a special puck drive and its torque, either aiding or opposing that of the synchronous main capstan drive motor, changes the speed of the Synchroll drive to the capstan. The capstan rotational speed thus increases or decreases from the line synchronous speed to automatically compensate for any tape stretch or shrinkage which would cause a difference between the recorded 60-cycle signal and the line frequency at the moment of playback.

In the Rangertone lip-synchronous tape recording system the 60 cycle power frequency is recorded directly on the tape perpendicular to the normal sound track, using a separate recording head. Being at right angles to the standard recording, the sync signal does not cause
interference during playback of the sound yet is readily removed with a separate 90 -degree playback head.

The sync playback signal is fed to an amplifier and then to an electromechanical frequency discriminator which also receives the 60 cycle line frequency as a reference signal for playback. Any frequency difference between the two results in an error-correcting signal that is used to change the frequency of an oscillator that normally operates at 60 cps . This oscillator acts through a thyratron power amplifier to furnish power to the synchronous motor that drives the tape during playback.

## Seeing Magnetic Tracks

A solution of very small particles of iron, marketed as Visi-Mag, shows clearly the tracks recorded on tape by single or dual-track recorders. The recorded paper or plastic tape is merely dipped into the solution for a few seconds, and allowed to dry in air for about a minute. Chief uses are for determining misalignment of record-playback and erase heads, for determining if a
machine is making proper head-totape contact and for arousing interest and curiosity by showing the patterns caused by various speech and music sounds. A special solution of extra-fine power is available for microscopic inspection of short wavelengths.

## Folded Line Microphone

In television, the necessity of keeping the microphone out of the picture means that it has to be located farther from the subject than in regular broadcasting. The need to keep microphone shadows out of the picture aggravates the difficulty of obtaining a satisfactory sound pickup. One promising solution of this problem is a new RCA microphone with a more highly directive pattern and greater sensitivity than exist at the present time.

The new pickup, described by H. F. Olson at one of the technical sessions, makes it possible to use pickup distances up to 12 feet with speech in conventional studios. Frequency range is 50 to $15,000 \mathrm{cps}$. Directional efficiency (energy response to random sounds) is onetenth.

The new directional microphone employs two similar ribbon-type units spaced 12 inches apart, in conjunction with a damped pipe 100 inches long that forms a part of the compound aconstical termination at the back of the ribbon and also serves as the frame. The pipe is folded back and forth to keep the over-all length of the mike down to

Fairchild tape recorder, showing how 14.5-kc carrier modulated with power line frequency is recorded simultaneously with sound for controlling playback speed
approximately a foot, as compared to the 10 -foot length of a predecessor line microphone. Response of the new unit is attenuated 20 to 40 db at 90 degrees and in the rear hemisphere. Sensitivity in the direction of maximum response is about 6 db higher than for conventional high-quality microphones. Total angle of reception for one-half energy response is about 60 degrees.

To eliminate the microphone boom problem in television studios, several of the new microphones are mounted overhead in fixed positions, each aimed to cover one portion of the field of action. As the action changes on the set, an operator at a monitoring console switches to the appropriate microphone. Slider-type volume controls are used instead of rotating knobs, to increase the speed of operation in making smooth transition from one microphone to the next.

## TV Film Trends

Film features, shorts and commercial spots make up a good portion of today's scheduled television programs. Much of this is old stock, of widely varying quality because of old recording techniques, nonstandardization of equalization and because much of the film is 35 mm to 16 mm reduction. The tendency is toward $16-\mathrm{mm}$ film because of its greater economy and ease of storage and handling. To get the most out of this film, according to S. R. Patremio of DuMont, a continuously variable equalizer is definitely


New multiple variable-area sound track for $16-\mathrm{mm}$ film, announced by J. A. Maurer, Inc., minimizes distortion due to improper adjustment of scanning light beam in projector. Sum of distortions for six narrow tracks is less than for one standard-width bilateral track
needed for improving quality and reducing noise.

New and improved methods of $16-\mathrm{mm}$ recording are giving greatly improved sound tracks. These include improved noise reduction and compression methods and the better frequency response obtained with new low-impedance phototubes that are not responsive to infrared. Low-frequency noise is reduced by using an r-f oscillator to supply voltage to the exciter lamp and by improving the mechanical vibra-tion-suppressing mounting for the lamp.


Rangertone lip-synchronous tape recorder, showing 90 -degree orientation of special sync record and sync playback heads used to place 60 -cycle power line frequency directly on tape at right angles to program magnetization. On playback, this sync signal controls a variable-frequency thyratron oscillator-amplifier system that feeds the tape drive motor


New magnetic fluid makes residual maqnetic field visible when recorded tape is dunked as shown. Resulting pattern appears after about one minute of drying in air, as on two-track recorded tape sample on table. Powder can be wiped off without damaging tape

Teletranscriptions as made off the screen by DuMont for reuse later employ $16-\mathrm{mm}$ film with a variable-area sound track. Incoming sound is separately recorded optically on film, using fixed equalization to achieve the proper recording characteristics and compensate for loss of high frequencies in developing and processing of the film. The developed sound negative is used to make the sound positive that is combined with the picture for the final sound-film print. To synchronize picture and sound, three light pulses are exposed to the picture simultaneously with feed of three sound buzzes to the sound recorder. The resulting cue marks permit proper synchronization when making the final print.

Separate recording of sound is necessary because of differing and continually changing requirements for optimum developing of exposed film and exposed optical sound tracks. Because of the time element, however, newsreels for television are generally made with both sound and picture exposed on the same film. As a result, it is not uncommon to have picture and sound alternately go bad on television newsreels because of the compromises required in developing the negative.

Some makers of tv transcriptions are using lip-synchronous magnetic


New Trac shadowgraph uses 4-foot optical path to magnify stylus point 500 times, using light source ( A ), condenser lens (B), holder for cartridge with stylus (C), enlarging lens (D), mirror (E) and additional lenses and mirrors underneath the ground glass screen
tape recording to obtain a master sound track for protection in case the variable-area optical track on film goes bad. The equipment pays for itself in a few months through savings in the cost of film formerly used for a protective master. Tape masters are erased for re-use as soon as a satisfactory final sound-on-film print is obtained.

## Stylus Shadowgraph

A light-weight console shadowgraph designed specifically for viewing a stylus point magnified 500 times was exhibited by Trac as a quick means of showing station engineers, studio engineers and record enthusiasts what is happening to a stylus point. With the Trac Shadowgraph it is possible to determine precisely when a stylus needs replacement or resurfacing to prevent damage to a record library. Likewise, when trouble hits the system it is possible immediately to confirm or rule out the stylus as a source of difficulty. The shaded viewing screen has on it a perfect reproducing stylus curve as a standard of comparison.

The shadowgraph is supplied with a holder for one type of cartridge, but other holders can be obtained if needed. The entire cartridge with its needle is placed in the holder for inspection. Thıree knob adjustments move the stylus in
three planes for focusing and for positioning of the shadow under the perfect.curve. Two cross-sectional profiles are then quickly obtained, the holder being rotatable through 90 degrees. The whole trick is done with front-surface mirrors and enlarging lenses, plus a condenser lens between the projection lamp and the stylus.

## New V-Groove Records

A demonstration of $78-\mathrm{rpm}$ records playing back frequencies up to 20,000 cycles, with the tinkle of triangles ringing loud and clear, attracted continual crowds to the exhibit room occupied jointly by Frank L. Capps \& Co. and Cook Laboratories. The new records can be played back with either a $1.0-\mathrm{mil}$ or 2.5 -mil radius stylus.

The V-groove recording stylus has two or more polished facets along the cutting edge, each microscopically small ( 0.1 mil ). Because these facets are so small and do not interfere with each other, they allow the cutting stylus to trace high-frequency patterns while still polishing the groove valls. Resuiting grooves are polished well enough to permit going up to $20,-$ 000 cps without excessive noise modulation and without objectionable distortion of the high-pitched tones.

All steps in the production and playing of 20,000 -cycle records require special equipment. The first requirement is the new miniature condenser microphone, which responds well up to $20,000 \mathrm{cps}$ and requires only a small amount of correction. Feedback recording is an indispensable link in achieving full dynamic range without excessive distortion. A special cutter and stylus together minimize the size and weight of the cutting portion so there is almost no resistance to distortion-free movement of the stylus as it engraves the musical pattern in the record groove.

For playback, high-quality amplifiers going up to $20,000 \mathrm{cps}$ have long been available, but comparable loudspeakers are harder to find. A new loudspeaker capable of handling 30 to $20,000 \mathrm{cps}$ faithfully is needed in order to reproduce these experimental records satisfactorily over their full wide range.-J.M.


Builtin 20 -irch dipole with fixed tuning stub and equalizer. Folding flaps as ends increase antenna capacitance and improve low-band pickup about 20 percent. Stapling of metal-fail vanes to fiber-board gives low production cost clong with required rigidity


Built-in horizontal loop antenna for all twelve television channels, with equalizer network (lower right). Pickup is essentially omnidirectional making orientation of cabinet unnecessary

## BUILT-IN ANTENNAS for



Triple square-loop installation in television console. One loop is a few inches above floas, another is under chassis jast above loudspeaker, and the third is fastened under top of cabinet. All three loops are connected in parallel

[^6]
## By KURT SCHLESINGER

Motorola Inc.
Chicalo, $1 l l$.

THE GREAT NUMBER of video antennas on our roof tops brings back to mind the state of the radio about twenty years ago. Since then, ocitdoor antennas for radio broadcast have largely disappeared. The development of radio reception went through the stage of indoor antennas mounted on top of the receivers, to its final form of the builtin radio loop.

Will television repeat this development? Conditions are not as favorable, since television is a form of broad-band communication, requiring about 20 times more signal voltage to overcome the increased receiver noise.

The overall transmission efficiency of a television system is thus about 30 db down as compared to a similar audio broadcasting system. To compensate for this loss, tele-
vision transmitters should have about 400 times more power than their audio counterparts. Instead, they have less power! As a result, incidental signal attenuation has more serious effects in television than in audio broadcasting. Moreover, multipath and ghosts, which sometimes accompany indoor reception, do harm to a picture presentation, but have not been an obstacle in audio reception.

In spite of these difficulties, the development of indoor and built-in antennas is well under way, since it is possible to cover about 1 of the total radius of a station with such antennas.

## Separate Indoor Antennos

Indoor antennas have been available for some time in the form of a simple dipole with adjustable


|  | $\begin{aligned} & \underset{\circ}{\circ} \\ & \vdots \\ & \hline 1 \end{aligned}$ | CHANNEL 2 MICROVOLTS |  |  | CHANNEL II MICROVOLTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { HIGH } \\ & \text { ATTEN } \end{aligned}$ | $\begin{aligned} & \text { MED } \\ & \text { ATTEN } \end{aligned}$ | $\begin{aligned} & \text { LOW } \\ & \text { ATTEN } \end{aligned}$ | $\begin{aligned} & \text { HIGH } \\ & \text { ATTEN } \end{aligned}$ | $\begin{aligned} & \text { MED } \\ & \text { ATTEN } \end{aligned}$ | $\begin{aligned} & \text { LOW } \\ & \text { ATTEN } \end{aligned}$ |
| $\begin{gathered} \underset{\sim}{w} \\ \underset{\sim}{\Sigma} \\ i \end{gathered}$ | R | 13,200 | 13,200 | 13,200 | 7,600 | 7,600 | 7,600 |
|  | 3 | 1,900 | 4,400 | 9,000 | 1,080 | 2,500 | 5,000 |
|  | 2 | 265 | 1,320 | 4,400 | 150 | 750 | 2,500 |
|  | 1 | 40 | 440 | 3,300 | 23 | 250 | 1,900 |
| $\begin{aligned} & n \\ & \underset{\sim}{\Sigma} \\ & \underline{\Sigma} \\ & 0 \end{aligned}$ | R | 3,300 | 3,300 | 3,300 | 1,900 | 1,900 | 1,900 |
|  | 3 | 470 | 1,100 | 2,200 | 270 | 630 | 1,260 |
|  | 2 | 68 | 330 | 1,100 | 38 | 190 | 630 |
|  | 1 | 10 | 110 | 825 | 6 | 63 | 470 |
|  | R | 800 | 800 | 800 | 480 | 480 | 480 |
|  | 3 | 114 | 260 | 530 | 68 | 160 | 320 |
|  | 2 | 16 | 80 | 270 | 10 | 48 | 160 |
|  | 1 | 2 | 26 | 200 | 1 | 16 | 120 |

FIG. 1-Measured values of signal attenuation at various locations in three-story brick-steel building are plotted here for three different frequencies. Curves drawn throuch extreme limits and through average of values on each floor show attenuation to be exponential function of height. Tabulated values of signal strength in microvolts, at right, are computed from curves; shaded values represent signal strengths considered too low for effective reception with indoor half-wave dipole

## Television Receivers


#### Abstract

Analysis of indoor antenna problem and details of dipoles and loops now being used. Square single-turn loop with simple broad-band equalizer mounts easily inside cabinets and requires neither tuning nor orientation. Design equations are given


length, which may be placed on top of the receiver and oriented for maximum reception. While these antennas may give satisfactory performance, their need for adjustment and orientation, their physical size and their null positions are objectionable.

## Built-in Loops

It was soon found desirable to have a built-in antenna, installed inside the cabinet and invisible to the user. A horizontal loop antenna small enough to be built into table model as well as console sets has been developed and will be described in this paper. This antenna requires no tuning and no orientation in space. Instead, it is bi-resonant, and is designed to respond with a bandwidth of about 30 mc to television signals within the low and high-
frequency bands. Furthermore, this antenna is omnidirectional in the horizontal plane, and is inoperative for signals arriving from vertical directions. The latter property helps to reduce pickup by the antenna of noise generated in the receiver, thus facilitating its operation in weak fields.

In table models, one unit of this loop is installed in the ceiling of the cabinet. In consoles a doubledeck arrangement is used, with one loop under the top of the cabinet and one at the base at least 6 inches above the floor. Another arrangement employing three decks has also been used successfully, with the third loop in a plane at least 6 inches below the receiver chassis.

Before going into details of the design and operation of built-in antennas, it is well to point out the
serious limitations under which these antennas must operate. It will be shown that attenuation of radio waves inside a building is the dominant factor. It may cause more loss than can be reclaimed by improvements in antenna design. ${ }^{1}$

## Attenuation in Buildings

To get numerical data, signal strength was measured on various floors of a three-story factory building of brick-steel construction. The results, plotted in Fig. 1, show that attenuation is an exponential function of height, and that it increases rapidly from the window side inward into the building. The loss in db seems to be directly proportional to the distance from the roof. No marked difference in attenuation was found between high or low channels. Attenuation up to 50 db


FIG. 2-Comparison of short tuned dipole and hall-wave dipole


FIG. 3-Equalizer circuit used with short tuned dipole to broaden band

Confined within cabinets of about two-foot size, the built-in antenna has the proper size of a halfwave dipole for reception on the high television band, but is about three-to-one undersized on the low television band. The resulting loss of efficiency can be largely reclaimed by the use of a tuning network with high selectivity. A dipole at the low frequency, connected to a tuning stub of variable length, with the 300 -ohm load resistance tapped to some point along the stub, is shown in Fig. 2A. The equivalent lumped circuit appears in Fig. 2B, and Fig. 2 C has the load resistance connected across the dipole after step-up transformation. The power output equation can be used once a given bandwidth $b$ is selected by means of the tap.
The output voltage equations indicate that the effective length of a dipole is increased, by tuning, beyond its physical length. The stretching factor $\sqrt{R / 2 \pi b L}$ amounts to $2.4: 1$ for a broadband dipole ( $b=30 \mathrm{mc}$ ) and increases to almost $4: 1$ if the bandwidth is reduced to one channel width ( $b=6 \mathrm{mc}$ ). In the latter case, a 2 -foot dipole acts like one with an 8 -foot span.

The short dipole can now be com-
pared to a half-wave dipole as in Fig. 2D to arrive at an efficiency ratio. The example shows that in order to match the half-wave dipole, the tuning network has to have a selectivity of about 6 mc at channel 2. Somewhat higher bandwidth can be tolerated at the higher channels of the low band.

In general, a short dipole is strictly a one-channel proposition and has to be adjusted from one station to the next. If it is intended to use a broad-band circuit, the efficiency of the short dipole drops to about $2 / 3$ of the half-wave. However, this holds only for the center frequency of the band. At the extremes, the output drops below 50 percent of the standard of comparison. Channel 2 will be down more than channel 6 , since the amplitude response of this circuit is not symmetrical around center frequency.

## Equalizer

The broad-band network of Fig. 3 , henceforth called the equalizer, helps to transform triangular response into rectangular response. A short dipole is connected to a stub


FIG. 4-Broad-band bi-resonant loop used as built-in television antenna
of constant length which is cut to resonate the antenna capacitance at mid-band or 70 mc . The load is not connected to this tuning stub directly, but rather through the equalizer circuit denoted as $C_{2} L_{2}$. The lumped circuit equivalent of the equalizer is the familiar doubletuned circuit with one-sided damping by the load. The mutual inductance $L_{k}$ can be adjusted by the
tap along the matching stub $L_{1}$.
The equations given in Fig. 3 are for the case of optimum flatness They yield the shunt impedance of the equalizer which is the ratio of $L_{2} / C_{2}$. Since the product $L_{2} C_{2}$ is fixed by the tuning condition, the constants of the equalizer are uniquely determined.

The numerical example in Fig. 3 compares the response to that of a single-tuned antenna. The result indicates that the equalizer causes only a small loss of signal output, as demonstrated in the appendix. Pick-up outside the band is very much reduced, while the response within the pass band is much more uniform than for a single-tuned antenna. An equalizer of this type has been used successfully in builtin dipoles and loops and makes the tuning automatic.

## Loop Antennas

In practical field tests with broadband dipoles, the need for orientation was found objectionable. While perfectly feasible with separate antenna units mounted on top of a receiver, it was felt that a built-in antenna should not have directional characteristics.

Among omnidirectional antennas for horizontal polarization, the horizontal loop is a form of antenna that yields a circular pattern in the horizontal plane if the perimeter of the loop is smaller than the wavelength. When approaching this limit, the loop comes into resonance by standing waves along its sides. By use of a particular feed system, it has been possible to add another resonant mode in the lowfrequency band.

## Square Loop

A complete broad-band omnidirectional loop system is shown in Fig. 4. It is a square whose perimeter equals the wavelength on channel 13. Opposite corners $B$ and $E$ of the square are connected by a copper strip to exclude undesired modes of operation, and the two remaining corners are fed through a transmission line transposed at the center. The electrical length of each center connector is very closely 90 degrees at channel 13. At the center of the loop is a $6-\mu \mu$ f tuning capacitor in series with an induct-
ance which makes the capacitance look about six times larger than it actually is, as we approach the uppermost channels. The signal output is taken from a corner of the loop through an equalizer network like that previously described.
This loop is capable of two different types of operation. At the high band, legs $A B C$ and $D E F$ oscillate as two end-fed half-wave dipoles connected by quarter-wave lines and series aiding across the load, with zero voltage at the center capacitor in the loop. At the low band, the center capacitor carries maximum voltage, the voltage at corners $A$ and $D$ is stepped down from this maximum, and corners $B$ and $C$ are again at zero voltage. The current distribution is uniform all the way from point $G$ through the outside rim back to $H$. Thus, we have actually two halfloops in parallel across the output terminals and the load is tapped down across the total inductance of these subsections. This loop antenna is bi-resonant, and the peaks of response can be made to occur within each of the two television bands.

## Low-Band Operation

The pickup efficiency of a television loop as compared to a dipole is analyzed in Fig. 5 for low-band operation. The schematic shows the essential circuit elements at the low frequencies. Here $V$ is the total voltage induced in a continuous square of the same size. By evolution we arrive at a simple equivalent circuit with transformed load $r$ across the circuit capacitance, from which the equations for signal power and voltage output can be immediately written.


Spectral response of short dipole over television channels 2 through 6 without equalizer (single peak) and with equalizer (double peak). Curves are superimposed by electronic switch, and represent voltages across centers of dipoles

The phase angle of delay by the passing wave is, fortunately, much larger at television frequencies than in loops for audio broadcasting. It is on the average 30 degrees for the low band and over 90 degrees for the high band. As a result, the one-turn video-loop is not nearly as inefficient as its counterpart in a radio receiver would be.

The final equation for the output from the loop shows that relative pickup efficiency is 40 percent compared to a half-wave dipole, and 66 percent as compared to a short dipole of length $a$. Measurements have largely confirmed these estimates.

## High-Band Operation

On the high band, the video loop antenna becomes remarkably effective. ${ }^{\text { }}$ Here a loop with quarterwave legs approaches the performance of a half-wave dipole and has a radiation resistance of the order of 30 ohms or more.

Figure 6 shows the high-band response of a loop antenna and illus-


FIG. 5-Low-band operation of built-in television loop antenna


FIG. 6-High-band performance of television loop as compared to dipole


FIG. 7-High-band directivity patterns of horizontal loop for three different channels
trates the effect of the small series inductance $L_{u}$. This inductance serves to reduce the impedance across the center point and may be used to shift the peak of the response to any desired frequency within the high band. We have placed the peak efficiency between channels 9 and 10 . The bandwidth of the system is four channels wide and can readily be increased with equalizers. However, this was not found necessary in practice in view of the high efficiency of the loop at those frequencies. For comparison, the average low-band performance is also indicated and is about $\frac{1}{3}$ of the peak of the high-band performance.

The directional pattern of the loop is shown in Fig. 7 for channels 7, 10 and 13. It deviates somewhat from circularity, but not so much as to lose the signal at any time. The direction of maximum pickup changes from one diagonal to the other diagonal as we pass through the band. On the low channels, the pattern is more nearly circular because the dimensions of the antenna are much smaller than the wavelength. These data, taken in free space, do not exclude the possibility that zero signal may occur inside buildings due to standing waves or other effects of wave propagation. Nulls may also be caused by antenna effect of the lead-in wires if these are too long or unbalanced electrically. However, in actual field experience the loop antenna
was found to be remarkably free from dead angles and null positions.

## Loop Antennó Arrays

In order to boost the efficiency of these small antennas, it has been found practical to connect two or more of them together to feed a common load. The simplest way to combine loop elements is as shown in Fig. 8.

Two loop elements are arranged in the ceiling and bottom of a receiver cabinet at a distance $d$ apart which is smaller than a half-wavelength on all channels. The connection is made at the shortest possible length by $300-\mathrm{ohm}$ twin-lead which is tapped at the center. At this point, output is taken through an equalizer network having one additional inductance $L_{3}$ directly across the loop connector. This inductance reduces the effective coupling coefficient of the double loop to the value found for a single loop, so that the desired bandwidth is not exceeded and a resultant loss of sensitivity is avoided.

A well-designed double-deck loop of this kind should give a power gain of 2:1 or a signal boost of 41 percent. Voltage gain averages 1.4 for the low and high channels, with occasional peaks up to 1.6 and more. These excess gains are due to standing waves along the connection to the receiver. With built-in antennas, such gains may often be used to advantage, since the short length of the line excludes troubles from
reflections of long delay.
Figure 8 also snows how the gain from a double-deck loop depends on the separation of the elements. Full power gain is realized for a spacing of one-half diameter or at least 10 inches apart. This makes it possible to apply such double-deck loops in small, low table models. It was also found that the loops can be installed quite close to a metal chassis and do not lose much of their efficiency if the spacing is at least 7 inches from the nearest continuous metal plate. This feature, as well as the relative freedom from detuning and body effects, makes the app!ication of a double-deck loop quite practical.
The performance of the built-in antennas described in this paper has been tested and compared to a standard half-wave dipole in Fig. 9. On the low band the short dipole leads the loop by a factor of $3 / 2$, as was anticipated. The efficiency of both built-in antennas falls somewhat short of the value of 60 and 40 percent expected by theory. The dipole loses more by installation close to a metal chassis than the loop.

On the high band, all of these antennas perform quite well. The single loop matches the short dipole, and the double-deck loop meets the half-wave dipole and even seems to outperform it at some of the higher channels.

Short dipoles and loop antennas as used commercially in recent television receivers seem to be success-


FIG. 8-Performance of double-deck loop array designed for installation above and below chassis


FIG. 9-Comparative performance of all antennas discussed, showing built-in antennas nearly equal to half-wave dipole in high band
ful in providing satisfactory reception within the limits defined by wave propagation and outlined in this paper. The safe average range is about 10 to 12 miles in connection with radiated transmitter powers of about 10 kw . Much higher distances have been covered occasionally. It is hoped that this work on built-in antennas may cortribute to the further growth of the television audience by relieving the difficulties facing an ever increasing number of outdoor installations. Since these built-in antennas are inexpensive and automatic in operation, they may be included, for optional use, in receivers of almost any price class. This enables the set owner to do without outdoor antennas in a large percentage of instances.

## Acknowledgment:

This work was done under the direction of D. E. Noble, vice-president and director of research at Motorola Inc. It was greatly furthered by the continued interest of P. V. Galvin, president of this corporation, and of E. Wavering, vice-president. Extremely helpful during this work was the assistance of V. Graziano and other members of the television research laboratory.

## References

(1) W. Is. Carlson, Telerision Reception with Built-In Antennes for Horizontally and Vertically Polarized Waves RCA Review, April 1942.
(2) Andrew Alford and A. G. Kandoian, Ultra-High-Frequency Loop Antennas, Transactions of the AIEE, 53, p 843, 1940

## Appendix

## Analysis of Equalizer

Optimum design of the tuned coupling network between antenna and load requires data about voltage transmission through a doubletuned system, not readily found in literature. Referring to Fig. 3, assume both primary (antenna) and secondary (equalizer) circuit tuned to the same frequency:

$$
\begin{equation*}
C_{1} L_{1}=C_{2} L_{2}=1 / \omega_{0}^{2} \tag{1}
\end{equation*}
$$

The admittance across $L_{k}$ looking into the secondary circuit is

$$
\begin{equation*}
1 / Z_{k}=\left(R / Z_{2}^{2}\right)(1+j) \tag{2}
\end{equation*}
$$

This looks like a resistance $Z_{2}{ }^{2} / R$ shunted by a capacitor of equal reactance. The voltage across $L_{k}$ then is at resonance

$$
\begin{equation*}
e_{k}=e_{0} \frac{Z_{2}^{2}}{R} \frac{1}{\omega_{0}} \frac{1}{(1-j)} \tag{3}
\end{equation*}
$$

and the output voltage $E_{0}$ across $R$ at mid-band frequency is

$$
E_{0}=c_{0} \frac{Z_{2}}{\sqrt{2} \omega_{0} L_{k}}
$$

We now compute the output voltage $E_{2}$ at the higher side-band frequency $\omega_{2}$. The peak at $\omega_{2}$ occurs because of series resonance in the $\operatorname{arm} C_{1}\left(L_{1}-L_{k}\right)$ :

$$
\begin{equation*}
\omega_{2}^{2} C_{1}\left(L_{1}-L_{k}\right)=1 \tag{5}
\end{equation*}
$$

The generator voltage $e_{0}$ now appears directly across $L_{k}$. The equalizer transforms this voltage into the peak value $E_{2}$

$$
\begin{equation*}
E_{2}=e_{0} \frac{R}{Z_{2}} \frac{1}{\sqrt{2}} \tag{6}
\end{equation*}
$$

We now express the coupling inductance by bandwidth between peaks, using

$$
\begin{equation*}
b=\frac{1}{\pi}\left(\omega_{2}-\omega_{0}\right) \tag{7}
\end{equation*}
$$

and combining Eq. 7, 5 and 1

$$
\begin{equation*}
L_{k}=L_{1} \frac{b}{f_{0}+b} \tag{8}
\end{equation*}
$$

This yields for the mid-band transmission

$$
\begin{equation*}
\frac{E_{0}}{e_{0}}=\frac{Z_{2}\left(1+b / \rho_{0}\right)}{2 \pi b L_{1}} \tag{4a}
\end{equation*}
$$

Equating 4 a and 6 for flatness then furnishes the desired design information for the equalizer impedance

$$
\begin{equation*}
Z_{2}=\sqrt{\frac{2 \pi b L_{1} R}{1+b / f_{0}}} \tag{9}
\end{equation*}
$$

This equation, which is shown in Fig. 3, agrees with experience within 10 percent.

A single tuned antenna, without equalizer, but with the same bandwidth, would give the output

$$
\begin{equation*}
E_{s}=e_{0} \sqrt{\frac{R}{2 \pi b L_{1}}} \tag{10}
\end{equation*}
$$

This may be compared to the voltage from the equalizer, as shown in Eq. 4a, by dividing Eq. 4a by Eq. 10 and using Eq. 9:
$\frac{\text { double-tuned output }}{\text { single-tuned output }}=\frac{E_{0}}{E_{s}}=\sqrt{\frac{1+b / f_{0}}{2}}$
With a bandwidth of 30 mc around a center frequency of 70 mc , this factor is 0.84 , hence there is only a 16 -percent loss of signal through use of an equalizer.

# INDUSTRIAL BRAZING 



Complete pulse-brazing equipment. Work coil primary is visible in upper-left-hand corner of the photograph

By J. L. reinartz

Eitel-McCullough, Inc.

San Bruno, California

IN The manufacture of ultra-high-frequency vacuum tubes, there arise numerous problems, some of which present intriguing challenges to the design and production engineer. The specific job of brazing joints vacuum-tight, when the parts to be joined assume the size and delicacy of a watch and the brazing must be done after the watch is assembled, presents such a problem.

This sort of job was confronted in the assembly of the Eimac 4X150A uhf tube. Ordinary methods of heating the joint between the anode assembly and the gridcathode assembly to brazing temperature caused damage to other metal-to-glass seals within the tube or the grid and cathode structures by heat conduction, and, if the braze were performed in air,
resulted in extensive damage from oxidation.

It was found that pulsing techniques used in radar transmitters during the war could be applied successfully to the brazing process to provide a system of short-time induction heating by which the parts could be joined. Enormous peak power values are obtainable when the pulses are short. Another advantage is a considerable condensation of the size of the equipment, which allows a 15 -kilowatt radar-pulse type electronic brazer to be housed in a cabinet 24 by 30 and 50 inches high.

The problem described may be met elsewhere in industry, and perhaps may be solved in a similar manner through the application of pulse brazing by induction heating. Electronic pulse brazing differs from normal high-frequency induction heating only in the application of a greater peak power to the work for a short time duration, thereby


Copper-gold brazing alloy being placed around base of tube prior to brazing operation


Looking down into special flux-concentration coil during brazing cycle
reducing thermal conduction of heat to other parts of the work.

## General Considerations

Induction heating is caused by induced currents of great magnitude that flow around closed paths in the work. When a material is placed in a varying electro-magnetic field within a coil through which alternating current is flowing, eddy currents are generated and the heating of the work is the result of the $I^{2} R$ losses in the work. The induced current travels a path of lowest impedance; therefore the current density is greater near the surface than at any other point and decreases exponentially toward the center of the work.

If other factors are held constant, the heat generated by induction will depend upon the resistivity of the work. Materials of low resistivity are more difficult to heat than those of high resistivity. Many applications of induction heating are possi-

# by PULSE TECHNIQUES 


#### Abstract

Extremely high values of peak r-f power are applied in short-duration pulses to reduce heating by thermal conduction of parts adjacent to or near joint being brazed. System developed for tube manufacture has interesting possibilities for other applications


ble and practicable, such as soldering, melting ferrous and non-ferrous metals, annealing or hardening a controllable area, heating for forging, and many other applications where it is not practicable to apply heat by a flame as in such cases when the length of time of such a flame application results in the conduction of heat to parts from which heat must be excluded or where oxidation must be prevented or the work must be treated in a special atmosphere.

The equipment developed for the tube-brazing job supplies approximately 15 kilowatts of power at 400 kilocycles for 0.3 second. In this fraction of a second sufficient heat is developed by induced current flowing through the metal parts in the desired region to heat them to temperatures high enough to melt the brazing alloy by conducted and radiated heat. The alloy melts and flows smoothly over the metal surfaces being joined; also, it is drawn by capillary attraction into the space between the close-fitting sleeves which are brazed together.

This pulse brazing is performed in a hydrogen atmosphere, which not only helps to cool the work after brazing, but keeps the metal surfaces clean, reduces any oxide as the work heats and therefore permits the alloy to wet the metal surfaces and flow cleanly so that no vestige of unbrazed surface is left, thus rendering the brazed joint vacuum-tight. The temperatures attained easily melt the gold-copper alloy which requires more than 990 C ( $1,800 \mathrm{~F}$ ) for optimum brazing results. All this takes place in the region of the braze, and the important feature is that the nearby glass seal is not injured, though the glass is approximately $\frac{3}{18}$ inch from the

## mcgraw.hill publications


high-temperature area. The short periods of time required lend themselves readily to factory assemblyline conditions.

## The Flux Concentrator

The electrical priciples involved in the flux-concentrator coil are derived from the fact that at the frequencies used in induction heating, practically only surface currents exist. We could place a solid copper bar within a multi-turn primary coil and find that the current concentration is in the outer section, while the magnetic flux concentration is in the space between the multi-turn primary coil and the copper bar. If we now drill a hole lengthwise through the copper bar we would find no appreciable change from the first condition of current and magnetic flux concentration and little if any magnetic flux would be found in the space of the hole in the copper bar. The copper bar now is, in effect, a thick copper cylinder effectively acting to prevent any flux transfer.

If, however, we cut a slit lengthwise through this thick copper cylinder, the situation is radically changed; and we will find a great concentration of magnetic flux within the inner space. There will also be a concentrated current flow in the inner cylinder wall as the result of the slit which changes the
copper cylinder from a closed singleturn to an open single-turn, also allowing the currents which previously circulated only near the outer circumference of the copper cylinder to circulate in the inner circle by virtue of the lengthwise slit. It is this current and magnetic flux concentration that we make use of in the pulse brazing of the sleeves in the 4X150A. Any excess metal may be milled away, leaving the inner doughnut and the outer cylinder wall.

This whole assembly, called the flux-concentrator, is inserted within the multi-turn primary coil allowing a bell jar (which also serves as an insulator) to be placed closed end up between the multi-turn primary coil and the single-turn flux-concentrator coil, and a hydrogen atmosphere to be maintained in the bell jar.

The energy available from the multi-turn primary coil is transferred to the flux-concentrator coil and from there to the work placed within the flux-concentrator coil, by induction. The whole may be considered as a step-down transformer; and if the primary coil con-

Table I - Specific Heat of Materials for Calculating Pulse Power Required

| Aluminum | 0.214 |
| :---: | :---: |
| Brass | 0.092 |
| Copper | 0.0921 |
| Gold | 0.0312 |
| Iron. | 0.107 |
| Lead. | 0.0306 |
| Nickel | 0.105 |
| Silver | 0.056 |
| Tin | 0.0541 |
| Zinc. | 0.093 |



FIG. 1-Setting of time-delay relays $R E_{1}$ and $R E_{2}$ determines length of pulse. When $R E_{3}$ closes, bias is removed from KY21A thyratrons, and power is applied to the 450TL's
sists of ten turns and has 100 amperes of current flowing through it, then 1,000 amperes will flow through the one-turn flux-concentrator coil and the work within it, providing the magnetic coupling in this radio-frequency transformer is perfect.
The necessity for maintaining space between the coils and the work to prevent short-circuiting reduces the magnetic coupling and consequently the power transfer efficiency, so that it would be well to use a 50 -percent power transfer figure for each of the several current transformation points. The flux-concentrator coil allows all the required induced energy to be concentrated in small or large functional areas, as determined by the positioning of the work and the extent to which it is inserted into the inner circle of the doughnut.

## Calculation of Power

The amount of power necessary to raise a given material to some higher temperature in a definite time is:

$$
H=S W(\Delta T)
$$

where $H=$ total heat delivered in Btu, $S=$ specific heat of the material (see Table I), $W=$ weight of the material in pounds, and $\Delta T=$ temperature change in degrees Fahrenheit.

The rate of heating in Btu per minute is given by $H / t=S W \Delta T / t$ where $t$ is the heating time in minutes. The power required for a
given amount of material to be heated in a specific time is

$$
P=\frac{17.6 S W \Delta T}{t} \text { watts }
$$

Therefore, if we take a ring section of the braze on the 4 X 150 A of rib-inch depth and compute weight in pounds, and apply the formula given above to ascertain the power requirement if the material involved must be raised $2,500 \mathrm{~F}$, then $P=(17.6 \times 0.12 \times 0.0026$ $\times 2,500) /(0.005)$ which is 2.52 kw required at the Kovar ring. Assuming 50 -percent efficiency transfer through air, 5.04 kw is required at the flux-concentrator, 10.08 kw at the primary of the r-f circuit, and, assuming 70 -percent tube efficiency, the input to the tubes must be 14.4 kw.

The duration of the pulse is controlled by the setting of the timedelay relays $R E_{1}$ and $R E_{2}$ shown in the circuit diagram; these can be adjusted from 3 minutes down to $2 / 10$ second or less, and can energize $R E_{3}$ for that period of time. In turn, $R E_{3}$ fires the KY21A thyratrons which allow plate power to flow to the two 450 TL 's only for the pre-set time mentioned above.

## Calculation of Components

The electrical values of the capacitance and the inductance required in such a radio-frequency circuit can be computed quite readily. We know that the frequency should be about 0.4 mc . In a self-oscillating circuit the volt-ampere to watt ratio
(or $Q$ ) in the oscillatory circuit should be 10 to 1 , therefore the capacitance would be

$$
C=\frac{300 \times Q \times I_{b}}{f \times E_{b}}
$$

where $C$ is in $\mu \mu \mathrm{f}, I_{b}$ is the plate current in ma, $f$ the frequency in mc, $E_{b}$ the plate voltage applied to tubes, and $Q$ the volt-ampere to watt ratio.

Then $L$ in whenrys may be found by

$$
L=\frac{25,330}{f^{2} C}
$$

For a 15 -kw input flash brazer using a plate voltage of 5,000 volts we require a 3,000 -milliampere plate current. Therefore, in this case, $C$ is 4,500 $\mu \mu \mathrm{f}$ ( 10,000 -volt rating) and $L$ is 35 henrys. This value of inductance can be obtained with 25 turns in a coil 7 inches in diameter and 14 inches long spaced about 2 turns per inch using ${ }^{3}$-inch o.d. copper tubing.

The schematic circuit is shown in Fig. 1.

## Choice of Tubes

The choice of tubes is dictated by the pulse rating of the tube when the on-to-off ratio is small. In the pulse brazing of small parts as in this case where 15 kilowatts input is sufficient, and where the time on is 0.3 second and time off is 30 seconds or more, two 450 TL tubes are a good choice. These two tubes are good for the 5,000 volts plate voltage and the 3 -ampere plate current required in the $1 / 100$ duty cycle service mentioned above, nor does this place any strain on these tubes beyond that which they are normally capable of handling. The amount of power supplied to the work for any given period of time is controllable by the tapped transformer $T_{1}$ and can be varied over a wide range, not exceeding, however, a maximum plate input to the tubes of 11 kw for a pulse of 2 second duration or 45 kw for a pulse of $\frac{1}{2}$-second duration, repeated once every 5 seconds. Where more power input than the maximum given above is needed, four such tubes may be connected in parallel or larger tubes may be used as required, due consideration being given to the associated transformers and other equipment.

# VHF Communications Receiver 

Double superheterodyne has $100-\mathrm{db}$ image rejection and $80-\mathrm{db}$ attenuation of spurious responses. It employs series and shunt noise limiters, a noise-balancing circuit that improves series limiter about 8 db under conditions of CAA specified noise test and carrier-operated squelch relay that can be set slightly above ambient noise

USE of frequencies from 108 to 136 megacycles for air-toground communications and aeronautical navigation has expanded rapidly since the end of the war.
The advantages which have won vhf wide acceptance in the aviation field include the increased number of channels available, freedom from atmospheric noise which in turn permits the use of simple yet effective receiver carrier-operated squelch circuits, relatively low transmitter power output requirements, and the use of small airborne antennas of low aerodynamic drag and relatively constant impedance over the frequency range.

To implement the changeover from medium high frequencies to vhf for such functions as Federal Airways enroute communications and airport traffic control in accordance with the recommendations of the Radio Technical Commission for Aeronautics (RTCA), the Civil Aeronautics Administration has recently procured a large number of single-channel vhf tixed-tuned ground station receivers (CAA Type RUQ) specially designed and manufactured to its specifications.

The equipment specifications reflect the wide experience of CAA engineers in this field; in addition to the usual requirements regarding sensitivity, selectivity, frequency stability and rejection of spurious responses, high standards of performance with respect to cross-modulation, desensitization due to strong off-frequency signals and rejection of the effects of pulse-


FIG. 1-Arrangement of stages and frequencies in the vhf fixed-tuned receiver


Two vhf fixed-frequency receivers (gray-panel units) in operation at lowa City, Iowa, CAA station


FIG. 2-Detector and noise limiter circuits
type interference were specified. Besides the actual performance specifications, a number of requirements covering the physical configuration of the equipment, simplicity of tuning and alignment procedures and quality of components and construction were specified.

## Circuits

A block diagram of the receiver is shown in Fig. 1. The doubleconversion superheterodyne circuit was selected in preference to the single-conversion type. The high first intermediate frequency permits a high degree of image rejection (approximately 100 db ) to be obtained with a single-stage r-f amplifier.

Use of a relatively low second intermediate frequency permits obtaining the required selectivity through use of a two-stage amplifier employing only three doubletuned transformers and also contributes appreciably to the overall frequency stability of the receiver. It has been found that even with very careful compensation of the last i-f circuits, the temperature drift of this section can contribute as much to the overall frequency drift of a high-stability vhf receiver as do variations in crystal oscillator frequency. The use of a low final intermediate frequency is therefore advantageous.

Although double-conversion systems are usually regarded as being more susceptible to spurious response troubles than single-conversion circuits, careful selection of
crystal and intermediate frequencies and provision of adequate selectivity in the r-f, i-f and frequencymultiplier circuits has resulted in obtaining better than 80 decibels attenuation of all spurious responses including image and i-f responses.

The r-f amplifier stage consists of a single pentode operating in conjunction with three capacitortuned circuits employing miniature air-dielectric variable capacitors. Removable grooved pins are inserted in holes in each capacitor shaft to provide dial pointers and rotation stops.

To achieve a high degree of selectivity in the input circuit for reduction of cross-modulation and desensitization effects, this circuit is operated with relatively loose coupling both to the single-turn antenna coupling link and to the grid of the r-f amplifier tube. The high operating $Q$ of the input tuned circuit makes it possible to operate several receivers from a common antenna, the input coupling links of the receivers being operated in series using connecting cables approximately one-half wavelength long. Tests made with several multiplereceiver systems typical of control tower installations indicated verv little loss of sensitivity with up to five receivers being operated with frequency separation as low as 200 kilocycles.

The first frequency conversion takes place in a pentode mixer operating with grid injection. To obtain optimum conversion gain and


FIG. 3-AVC detector and amplifier
noise figure, this tube is operated at relatively low plate and screen voltages, approximately 50 and 30 volts respectively. The injection signal is obtained from a crystal oscillator-frequency multiplier systen consisting of an oscillator-quadrupler and a second quadrupler.

The crystal unit is a hermetically sealed fundamental mode unit of the CR-18/U style operating without temperature control. Crystal oscillator frequency is held to 0.005 percent over the range -10 C to +60 C. Two capacitor-tuned circuits are employed at output frequency to provide a high degree of rejection to signals of undesired crystal harmonic frequencies.

The output of the first mixer circuit is coupled to a single-stage first i-f amplifier employing a pentode and two double-tuned transformers operating at 18.3 megacycles. The second frequency conversion takes place in an oscillator-second mixer circuit which uses a double triode. The crystal oscillator circuit operates at 7.55 megacycles; the second harmonic of this frequency is mixed with the 18.3 -megacycle signal to produce the $3.2-\mathrm{mc}$ second intermediate signal which is amplified in a two-stage amplifier. Three doubletuned transformers operating at slightly less than critical coupling provide the desired selectivity characteristics. A conventional diode detector circuit is used.

To achieve a high degree of rejection of impulse-type noise with regard to its effects on receiver desensitization and squelch operation


Layout of stages of the double-superheterodyne receiver
as well as audio output, the special noise limiter circuit shown in Fig. 2 was developed.

## Noise Limiter

In addition to the conventional series diode automatic noise limiter, a shunt diode limiter is employed to reduce the effects of noise impulses on the avc and squelch circuits. This diode is biased to about -15 volts and presents a low-impedance path to ground to any noise impulses exceeding 100 percent upward modulation. This prevents the application to the avc detector of strong impulses which normally desensitize the receiver by generating undesired avc voltage. Since the ave circuit also controls the squelch circuit, undesired opening of the squelch in the presence of noise is also materially reduced.

The audio noise remaining in the output of the series diode limiter is reduced further by coupling a noise signal of opposite polarity in series with the output circuit of the limiter. This noise signal is developed in an infinite-impedance type detector which is biased so that signals of normal modulation are not detected.

The noise output of the receiver is approximately 20 decibels below normal output at 30 -percent modulation when tested according to the CAA specified method. The method calls for the application of 10 -microsecond r-f pulses at 1,000 pulses per second with amplitude up to 1.0 volt superimposed on a 100 -micro-
volt unmodulated carrier. The use of the noise-balancing circuit results in an improvement of about 8 decibels over the performance of the series diode limiter alone under conditions of this test.

## Automatic Gain Control

The avc detector-amplifier circuit shown in Fig. 3 develops a delayed and amplified gain control voltage. In this circuit one diode section operates as a detector circuit, the d-c output of which is applied to the grid of the triode section which operates as a cathode-loaded voltage amplifier. The output voltage is coupled to the ave time constant circuit through the second diode section.

With no carrier applied to the receiver, about 50 volts positive appears on the cathode; this voltage is not applied to the avc line because of the unidirectional characteristic of the output diode. When a signal developing approximately 8 volts audio detector bias is applied, the conduction of the triode circuit is cut off sufficiently to produce a negative cathode voltage which appears on the ave line and increases with increasing signal level. The $1,000-$ ohm cathode resistor provides d-c degeneration which improves the stability of the circuit and renders it less sensitive to variations in tube characteristics.

An amplified d-c control voltage for operation of the carrier-operated squelch relay tube is also supplied by this circuit. Since this voltage is not affected by the avc
time constant circuit, virtually instantaneous operation of the squelch relay is obtained.

Because of the amplification of the control signal, the squelch circuit completely opens or closes with less than 20-percent change in input signal. This permits the squelchopening threshold of the receiver, as determined by the setting of the r-f gain control, to be set only slightly higher than the ambient electrical noise level of the receiver location. In addition to the contacts required for audio silencing, the relay is provided with contacts for operation of a panel lamp and external apparatus.

## A-F Stages

The audio amplifier circuits are conventional resistance-capacitance and transformer-coupled circuits. A low pass pi-section filter attenuates all frequencies above the normal communications range.

Two audio output amplifiers are provided; one has low-level output for operation with 600 -ohm telephone lines, and the other provides up to one watt for operation of loudspeaker circuits.

The main output amplifier is provided with 12 -decibel inverse voltage feedback to improve output regulation. Operation of up to five speakers is possible with negligible change in level when one or more speakers are switched in or out of service. All power input, audio output and control leads are filtered to eliminate possible interference due to any externally applied r-f signals.

Approximately 2,000 type RUQ receivers are now being placed in service in control towers and airways communications stations operated by the Civil Aeronautics Administration. A typical control tower installation includes receivers operating at 121.5 mc for emergency, 121.9 mc for airport utility, 122.5 mc for private aircraft control, and at one frequency in the range 118.1 to 121.3 mc for air carrier traffic control. Airways communications stations will normally be equipped for reception on 121.5 $\mathrm{mc}, 122.1 \mathrm{mc}$ and 126.7 , for emergency, private aircraft enroute and air carrier enroute communications, respectively.


Complete three-decade counter comprising circuit of Fig. 4

DEVELOPMENT of the circuit to be described was prompted by the need for a simple and inexpensive counting device to replace the usual type of revolution counter which is subject to severe wear, particularly when it is frequently and rapidly reset to zero.

The high counting speed available in the relatively expensive flipflop or ring counter using highvacuum tubes is not required, and this feature makes possible the use of 0.04 -watt or 0.25 -watt neon glowdischarge tubes as the basic elements of the counter since de-ionization times of the order of several hundred microseconds can be tolerated. The counter uses glow-discharge diodes in conjunction with germanium crystal diodes, and employs capacitance coupling between stages. It thus offers a considerable advantage over an earlier circuit using glow-discharge tubes and employing transformer coupling between stages ${ }^{1}$.
The circuit is capable of counting up to 30,000 impulses per minute. This rate is considerably in excess of that of any existing mechanical revolution counter or electromagnetic impulse register. Among the advantages of this circuit are essential simplicity, low cost, and small power consumption. The glow-discharge tubes serve not only as the basic elements of the counter, but inherently provide a visible indication of the count.

By JOHN C. MANLEY<br>Consulting Engineer<br>Barrington<br>Rhode lsland

and
$\underset{\text { Massachuset Ins Instrituctur of }}{\text { ELERY }}$
Massachusetts Institute of Technology Cambridge, Massachusetts

The circuit is basically a ring circuit, and while decades or ringsof -10 are discussed here, any even number of stages may be included in a ring. Any number of decades may be connected in tandem to make a counter which is capable of recording a total of $9,99,999$, and so on, counts. Any such composite counter can be instantaneously reset to zero, presetting circuits can be added to set the counter to any required number before actual counting begins, and simple predetermining circuits can be added to detect the accumulation of any given number of counts within the range of the counter.

## Principles of Operation

The basic circuit of an addition counter appears in Fig. 1. Each stage consists of a glow-discharge diode $T$, a crystal diode $X$, and a resistor $R$ in series.

Suppose that each of the glow tubes ignites at a voltage $v_{1}$ and operates at a lower voltage $v_{a}$. Suppose further that tube $T_{0}$ in Fig. 1 is conducting at time $t_{0}$ in Fig. 2. Current flows from the source of supply voltage through $R_{o}$, through $X_{0}$ in the forward direction, through $T_{0}$ and $R_{0}$ to the ground bus. The values of $R_{b}, R_{0}$ and supply voltage are so chosen that the potential of point $b_{1}$ is maintained less than the
striking voltage of the glow tubes so that there is no tendency for any other tube to strike. Capacitor $C_{1}$ is charged as shown in Fig. 1 to the voltage appearing across $R_{0}$. Since $S_{t}$ is normally open, $C_{t}$ is charged as shown to the difference between the potential of the positive bus $b_{1}$ and the potential of the point $p$ in the voltage divider $R_{x}$ and $R_{y}$.

If switch $S_{t}$ is closed the potential of $p$ becomes zero instantaneously and the potential of the bus $b_{1}$ is depressed by an amount equal to the original potential of point $p$. This drop in the bus voltage is shown at time $t_{1}$ in Fig. 2, curve $b_{1}$. The bus voltage is made to drop below the operating voltage of $T_{0}$ with the


FIG. 2-Waveform of voltages at lettered points in Fig. 1


FIG. 1-Basic circuit of addition counter

Relatively slow speeds up to 30,000 impulses per minute can be counted in ring circuits using neon tubes and germanium diodes. The counter can be reset instantaneously, presetting and predetermining circuits can be added and the counting action can be reversed to permit subtraction
result that $T_{0}$ is extinguished Then while $S_{\text {t }}$ remains closed, capacitor $C_{t}$ charges through $R_{b}$ and the potential of $b_{1}$ increases exponentially toward the value of the supply voltage.

The time constant $R_{b} C_{t}$ is made sufficiently long that the potential across $T_{0}$ remains below the operating voltage of the tube for an interval which allows its complete deionization. Meanwhile no one of the glow tubes is conducting and the discharge current of capacitor $C_{\text {, }}$ flows through $R_{0}$ and through $X_{1}$ in the inverse direction.

## Voltage Distribution

Since the value of $R_{0}$ can be made much smaller than the inverse resistance of $X_{1}$, a large proportion of the voltage across $C_{1}$ appears across $X_{1}$. The resulting voltage wave forms at points $a$ and $b$ are given in the corresponding lines of Fig. 2. Thus while $C_{t}$ is charging and the potential of the upper electrode of each glow tube is becoming more positive with respect to ground, the potential of the lower electrode of $T_{1}$ assumes a negative potential with respect to ground, and hence a greater voltage appears across $T_{1}$ than across any other tube.


FIG. 4-Circuit of three-decade counter arranged for addition and subtraction

As soon as $T_{1}$ strikes, current flows through $R_{b}, R_{1}, T_{1}$ and through $X_{1}$ in the forward direction. This prevents further increase in the voltage of the bus $b_{1}$ and actually


FIG. 3-Basic subtraction circuit
causes a transient drop in this voltage. Capacitor $C_{2}$ charges positive + polarity at $d$ in Fig. 1 and $C_{1}$ discharges relatively rapidly through a resistance essentially equal to $R_{0}$. Thus the counter has recorded one pulse, since $T_{1}$ is now conducting rather than $T_{o}$. Figure 2 shows the voltage wave forms at significant points in the circuit. After switch $S_{t}$ is opened, the potential of point $p$ returns to its normal value.

## Succeeding Cycles

If switch $S_{t}$ is closed again after the normal potential has been restored at point $p$, the bus voltage is again depressed, as at time $t_{3}$ in

Fig. 2, and causes $T_{1}$ to be extinguished. Capacitor $C_{2}$ then discharges through $X_{2}$ in the inverse direction and through $R_{1}$. Hence as $C_{\text {t }}$ charges again the positive potential of point $d$ with respect to ground exceeds that of bus $b_{1}$, and the potential across $T_{2}$ exceeds that across any other tube. Hence $T_{2}$ strikes as shown at time $t_{4}$, and the counter has recorded two counts.

Each subsequent operation of the switch $S_{t}$ advances the count one stage until tube $T_{2 n-1}$ becomes conducting. The next operation of the switch causes the ignition of $T_{0}$ again through the capacitor $C_{0}$ which closes the ring-of- $2 n$. Value $n$ may be any integer greater than unity, and if $n=5$ the counter forms a decade or ring-of-ten.

The operation of the circuit depends essentially on two inherent characteristics of the circuit elements. The first of these is the difference between the striking and operating voltages of the glow tubes which insures that whenever any one of the tubes is conducting the potential across all of the others is maintained lower than the striking potential. Thus no more than one tube is conducting at one time and the count is unambiguous.
The second inherent feature of importance is the significant difference between the forward and backward resistance of the crystal diodes which allows each coupling capacitor to charge quickly whenever its corresponding tube is conducting, but which allows that capacitor to discharge only very slowly after its tube is extinguished.

## Subtraction

An attractive feature is the essentially simple rearrangement of the coupling capacitors which will
cause the circuit to subtract rather than add. Figure 3 shows the coupling capacitors rearranged and connected between the upper electrodes of $T_{0}$ and $T_{1}$, between the lower electrodes of $T_{1}$ and $T_{2}$, and so forth. Suppose that $T_{2}$ is originally conducting. Then when switch $S_{t}$ is operated $T_{2}$ is extinguished, the lower electrode of $T_{1}$ becomes negative with respect to ground and $T_{1}$ strikes. Hence the count proceeds from right to left in the diagram and the circuit subtracts.

Figure 4 shows a complete circuit diagram of a three-decade counter in which a switch is used in each stage of each decade to alter the connection of the coupling capacitors. This switch may be either a gang of wafer switches with leads connecting it to the electrodes of the tubes, or preferably a long sliding switch which parallels each row of tubes to reduce the length of the connecting leads. In order that the circuit hold its count during transitions between addition and subtraction it is imperative that the fixed connection of each coupling capacitor be made at the resistor of one of the stages. This precaution insures that neither of the tubes adjacent to the one which is conducting before the switch is operated will be ignited by the operation of the switch.

## Trigger Circuits

In addition to the trigger circuit shown in Fig. 1 and 3, the circuits of Fig. 5 may be used. That of Fig. 5A requires fewer components but must have a double-pole switch. This switch is normally closed on the upper contact and the charge on the capacitor $C_{t}$ is then zero. If the switch is suddenly closed on the lower contact, the


FIG. 5-Alternative trigger circuits
potential of the bus $b_{1}$ is depressed to zero and thereafter increases exponentially as $C_{t}$ charges through $R_{b}$. The voltage waveform at $b_{1}$ is therefore essentially the same as shown in Fig. 2 except for the magnitude of the original depression. The triggering switch $S_{\text {t }}$ in either this circuit or the one described previously may be actuated by a rotating shaft or by the motion of any mechanical member whose movements are to be counted.

For operation of the counter at speeds higher than those obtainable with moving contacts, such as in recording impulses from a photoelectric cell, the triggering circuit of Fig. 1 can be adapted to the use of a glow tube as shown in Fig. 5B. Switch $S_{t}$ is replaced by a glow tube $T_{t}$. The potential across this tube is maintained normally a few volts less than its striking potential through the resistor $R_{z}$ connected to an appropriate tap on the voltage divider $R_{x}$ and $R_{y}$. Either positive voltage pulses injected at $a$ or negative voltage pulses injected at $b$ will cause tube $T_{t}$ to strike. The potential of $b_{1}$ is thus depressed an amount equal to the difference between the original voltage at point $p$ and the operating voltage of $T_{t}$, and thereafter increases exponentially as shown in Fig. 2 during a triggering interval.

The succeeding depression of the potential of $b$, which results upon the striking of the primed tube in the associated ring, such as is shown at $t_{2}$ or $t_{1}$ in Fig. $2\left(b_{1}\right)$, is sufficient to extinguish $T_{t}$ so that it is ready to respond to the next triggering impulse as soon as the normal potential at point $p$ is restored. The crystal diodes $X_{t a}$ and $X_{t b}$ are employed respectively to increase and to provide the impedance across which the triggering voltage is developed. Two glow tubes may be used in series if desired to increase the initial depression of the bus voltage.

For counting speeds greater than about 150 cps glow tube $T_{t}$ should be replaced by a thyratron such as a 2D21, which may be ignited by any convenient positive signal on its control grid, and which will be extinguished in the same manner as the glow tube. The time constant $R_{b} C_{t}$ may have to be adjusted in
each of the possible trigger circuits to accommodate the particular value of the initial depression of the bus voltage. This initial depression is much less in the circuit of Fig. $5 B$ than in that of Fig. 5A, and a longer time constant may be necessary to allow deionization of the conducting tube in the associated ring.

## Complete Counter

The three-decade counter of Fig. 4 can be preset to any required number before input signals are applied, and can produce an output signal after the counter has reached any given number up to 999 .

All the add-subtract switches within the three decades and the t:vo interdecade switches $S_{r_{1}}$ and $S_{r 2}$ are ganged. These switches are shown in the add position. Note that glow-tube triggering circuits of the type shown in Fig. 5B are used to interconnect the decades. For example, when the counter is adding, positive signals are taken from the cathode of the 0 tube of the units decade to trigger tube $T_{t 2}$, which in turn advances the count in the tens decade by one digit.

When the counter is subtracting, positive signals are taken from the cathode of the 9 tube of the units decade to trigger the tens decade. Similar considerations apply to the circuit interconnecting the tens and hundreds decades.

Since positive voltage pulses are used for interdecade triggering, the time constant of the interdecade coupling circuit connected to each 0 tube must be made sufficiently short that the falling edge of the waveform of Fig . 2B is effectively differentiated. In this way the rising edge, which follows later in time, can be used to supply the positive pulse required to ignite the triggering tube.

When interdecade triggering pulses are taken from the cathode of a 9 lamp, the rising edge of the waveform which results when the lamp ignites must be used as the triggering signal. However, after the 9 tube is extinguished at the following count, the wavefcrm of Fig. 2A is generated, and in this case the falling edge, such as that shown at time $t_{1}$, must not be differentiated, else the rising edge such as at
time $t_{2}$, will again ignite the triggering tube. Hence the interdecade coupling capacitor associated with each 9 tube is connected in series with a crystal diode so poled as to increase the time constant of the coupling circuit on negative-going input pulses.

Switch-triggering circuits involving the switches $S_{t 1}, S_{t 2}$, and $S_{t 3}$ are provided so that each decade may be preset manually to any desired number before input pulses are applied. The resistance-capacitance networks associated with these switches apply negative voltages to the cathodes of the triggering tubes when the switches are closed. Each 0.001- $\mu \mathrm{f}$ capacitor is charged to 45 volts while the associated switch is open, and when the switch is closed, the cathode of the corresponding triggering tube becomes negative with respect to ground and the tube ignites from the capacitor discharge.

The time constant of the discharge of each of these capacitors is made sufficiently small that the discharge is essentially complete before the associated triggering tube is extinguished. This prevents the tube from firing a second time.

## Predetermining

A very simple predetermining circuit is shown in Fig. 4. As noted previously the purpose of this circuit is to activate some external circuit or produce a signal when the counter reaches any desired number within its range. Such a signal might be required in a packaging process, for example, to halt the process after the accumulation of a given number of units. Three $0.25-$ watt neon glow tubes $T_{p 1}, T_{p_{2}}$ and $T_{p ;}$ are arranged as shown, each in series with the operating coil of a sensitive relay.

Suppose that the circuit is to detect the number 123. The switches $S_{p,}, S_{p 2}$ and $S_{p, 3}$ would be set to connect the anodes of the three predetermining tubes through their coupling capacitors to the cathodes of the tubes 1, 2 and 3 of the hundreds, tens and units decades respectively. The coupling capacitors are sufficiently small that waveforms of the type shown in Fig. 2B are differentiated and hence positive pulses are always available to


Relative size of a single decade
trigger the predetermining tubes.
The anodes of the predetermining tubes are connected to a source of voltage which is a few volts below their striking voltage, but only the relay in series with tube $T_{p 3}$ is permanently connected to ground. Tube $T_{p 2}$ cannot be ignited until the relay in series with $T_{p 3}$ operates, and $T_{p 1}$ cannot be ignited until the relay in series with $T_{p \underline{ }}$ operates. Hence at the instant the counter records the number $100, T_{p 3}$ is triggered by the positive pulse from the cathode of the 1 tube in the hundreds decade. Relay $P_{3}$ then closes and primes tube $T_{p 2}$.

After 20 more pulses $T_{p_{2}}$ is ignited by the positive pulse from the cathode of tube 2 in the tens decade and relay $P_{2}$ operates. Similarly after three more pulses, relay $P_{1}$ operates and generates the required predetermining signal.

Special provision must be made in order to obtain a predetermining pulse after a number such as 100 , or more specifically, after any number containing the digit 0 .

The authors wish to acknowledge their indebtedness to the James L. Entwistle Co., Pawtucket, R. I., for cooperation and facilities.

## Bibliography

[^7]
## Acoustic

## Anemometer-Anemoscope

# Instantaneous visual presentation of wind direction and velocity on a cathode-ray tube screen. Sixty-cycle pulses from an acoustic transmitter are received at four transducers equally spaced from the transmitter at cardinal points. Doppler effect of wind velocity actuates a discriminator and indicator 

## By ROBERT E. CORBY

Department of Physics
University of Arizona
Tucson, Arizona

ELECTRONIC instrumentation involving acoustic effects has in vaded many fields in the measurement of physical phenomena. Currently, investigation is being conducted to extend this invasion into the measurement of wind velocity and determination of wind direction.
The acoustic anemometer-anemoscope to be described is based on a Doppler phenomenon effectively relating wind velocity with the difference between upwind and downwind acoustic velocity. The components of the instrument, shown in Fig. 1, include a pulse generator which drives a sound head creating acoustic pulses, four electromechan-ical-transducer listening stations that are oriented at the cardinal
points of the compass around the sound head, an amplifier, a discriminator to sort the information coming from the listening stations and an indicator for presenting the information in convenient form.

## Operating Principle

The sound head is placed in a convenient location exposed to the free flow of the wind, and the listening stations are arranged as shown at a known distance $s$ from the head. The orientation of the listening stations with compass directions is necessary for determining the direction of the wind.

The sound head, driven by a 60 cycle pulse generator, emits acoustic pulses with nearly vertical wave fronts. The pulses propagate at
the speed of sound in all directions and arrive at all the listening stations at the same instant under quiescent conditions, that is, when there is no wind.

Consider a wind as shown in Fig. 2 A with the velocity vectors involved in a pulse reaching the listening stations for the east-west component, $V_{e}$. Because of the greater acoustic velocity downwind, there will be a time differential between the arrivals of the acoustic pulses at the listening stations.

$$
\begin{equation*}
\Delta t=\frac{2 s V_{s}}{v^{2}-V^{2}}=\frac{2 s V_{s}}{v^{2}} \tag{1}
\end{equation*}
$$

when $v$ is speed of sound, $V$ is wind speed and $t$ is time. The approximate expression is in only slight error amounting to less than


FIG. 1-Block diagram of the acoustic wind direction and velocity indicator


FIG. 2-Vector relationships for a wind from a southwesterly direction (A) and crt presentation (B)


The sound generator is connected to the center-pillar tronsducer or sound head. Simultaneous fransmission to four directions is picked up by the faur surrounding receiver transducers. Wind retards or accelerates the normal velocity of sound
0.5 percent at a wind velocity of 50 miles per hour.

It is evident that a given pulse will arrive at the east station before reaching the west station and that the time differential is proportional to the speed of the wind as indicated in Eq. 1. By approximation, assuming that $s$ equals 5 feet, it can be found that $\Delta t$ is in the order of 15 microseconds per mile per hour.

Winds coming in from other than cardinal-point directions are divided into east-west and northsouth components automatically by virtue of the placement of the listening stations. These components, as determined by the discriminator are recombined in quadrature $b_{s}$ the indicating unit to yield the wind velocity, as shown in Fig. 2B.

## The Apparatus

The electronic apparatus, in general, is conventional. The discriminator, however, performs an inter-


Laboratory setup of the electronic elements of the wind instrameai comprises power supply, chassis with twice the equipment shown in Fig. 3 and cro


FIG. 3-Circuit of discriminator and indicator for one component of a cross wind
esting function and will be discussed considering the north-south component only.
The purpose of the discriminator is twofold: To determine whether the pulse from the north or the south listening station is received first (which must be known in determining wind direction), and to produce a square-wave pulse with its width proportional to the time differential noted above in determining wind velocity.

The discriminator shown in Fig. 3 is identical for each of the components and consists of an EcclesJordan trigger circuit, using a 6SN7, and a 6L6 output tube for each listening station. The 6SC7's shown are used as keying tubes to improve the stability of the trig-ger-circuit operation. The trigger circuits are set by a negative pulse at $E$, so that tubes $B$ and $C$ are conducting and $A$ and $D$ are cut off. In this situation points 1 and 6 are at a higher potential than 2 and 5. Because of the voltage-dividing network, points 3 and 4 are at an intermediate potential. Points 3 and 4 are of particular interest since they
control the type 6L6 output tubes which are biased only slightly below cutoff.

Under quiescent conditions the pulses from the north and south listening stations arrive simultaneously at $N$ and $S$; both trigger circuits flip at the same time and the voltages at 3 and 4 remain at the same value. However, if a wind is blowing from the south, a pulse will arrive at $N$ a few microseconds before a corresponding pulse reaches $S$. This causes a negative pulse to appear at 3 and a positive pulse to appear at 4. Consequently, tube $G$ puts out a pulse with its width proportional to wind velocity. If the wind blows from the north the situation reverses and tube $F$ puts out the pulse. In this manner the circuits discriminate between a north and south wind and produce pulses with widths proportional to the wind velocity.

## Circuit Details

The heart of the indicating unit is an electrostatic cathode-ray tube with deflection plates oriented vertically and horizontally. The wind
velocity scale in miles per hour consists of concentric circles with zero at the center. The east-west component is applied to the horizontal plates and the north-south component is applied to the vertical plates so that the cardinal points of the compass are in their conventional locations.

The output of the 6 L 6 tubes consists of a 60 -cycle series of squarewave pulses with widths depending on wind velocity. By filtering this output with an r-c filter, a d-c voltage appears across the load resistor that is proportional to the width of the pulses and therefore also proportional to wind velocity. It is this d-c voltage that is applied to the crt.

When there is no wind, a spot appears at the center of the concentric circles. When there is a wind, say from the northeast, the spot moves out the proper distance from the center in the first quadrant (as shown in Fig. 2) and indicates the direction and the speed of the wind. In order to have the indicator draw a vector the 884 thyratron tubes are fired by a 60 -cycle pulse so that the plates of the crt are essentially shorted 60 times each second and the spot is returned to the center. This action causes the spot to trace the desired vector. Since the wind velocity is sampled 60 times per second (determined by the repetition rate of the pulse generator), the indicator is capable of following rapid changes of the wind. The deflection sensitivity of the indicator can be varied as desired because oscilloscope deflections of one-eighth to one-half inch per mile per hour are easily obtained.
The acoustic anemometer described is capable of reliable continuous operation and presents the information in a form easily assimilated. It can be sent over transmission lines to the indicating unit in any desired location.

## Acknowledgement

This project was financed by Research Corp., New York, and the author was assisted by two University of Arizona students: Edward Wood and John W. Busby, now with General Electric and RCA respectively.

# Phototube Controls 

## By HUBERT H. WITTENBERG

Tube Department
Radio Conporation of America
Lancaster, Pennsylvania

IN MANUFACTURE of picture tubes, a vacuum-tight weld is required in the exhaust tubulation assembly to join the copper tubing to the sealing sleeve. This exhaust tubulation is part of the kinescope gun assembly.

The sealing sleeve is nickel-chro-mium-iron alloy and it fits over the end of the copper tubing. A nickel retainer ring fits inside the end of the tubing. The three parts and an assembled unit are shown in the small photograph.

The parts to be welded are pressed together to form the tubulation assembly and placed in a radio-frequency welding unit in such a manner that the top is just below the single-turn output coil of the generator. After the radio-frequency generator is energized, the upper edge of the sealing sleeve begins to show color in less than one second. The temperature of the sealing sleeve rises faster than that of the copper tubing because it is closer to the welding coil, shields the tubing from the welding coil and has greater resistance along the path of the radio-frequency currents.

Because of radiation the copper tubing heats in step with temperature of the glass-sealing alloy, but lags behind it. The copper, having a lower melting point ( $1,083 \mathrm{~S}$ ) than the alloy (approximately $1,470 \mathrm{C}$ ), fuses first and flows to fill all the space between the retainer ring and the sealing sleeve.

The flow of copper produces a seal between the copper tubing and the sealing sleeve. If the radio-frequency energy is cut off at this point the copper freezes and a weld is formed. Because of uncontrollable variance in the size of parts and in the position of the work with respect to the r-f work coil, the time required to bring the work up to the welding point will vary. Hence a fixed time cannot be used.

Fortunately, a change in temper-


Three pieces at left are welded together to form the exhaust tubulation assembly of a kinescope tube


Automatic welding is done in an atmosphere of hydrogen under the hood to prevent oxidation. Phototube in housing at left is illuminated by radiation from the heated tubulation assembly

## Precise automatic control of welding of small parts is pro-

 vided by a phototube that monitors the weld temperature and shuts off the generator a half second after copper flows. Used in making kinescopes, the technique is applicable to other manufacturing processesature of the alloy which occurs simultaneously with the copper fusion can be used as an index for control of the radio-frequency generator. The flowing copper makes good thermal contact with the glass-sealing alloy sleeve and cools the latter suddenly. This temperature drop is easily observable by the eye. When a phototube is set up to observe the weld from the top, a curve of photocurrent versus time is obtained as shown in Fig. 1. The current rises to a peak at 5 seconds and then drops 50 or 60 percent.

To determine the relationship between phototube current and temperature, one must consider the spectral sensitivity of the phototube and the spectral character of the radiation. The dotted line in Fig. 2 gives the spectral sensitivity of the S-1 phototube surface used. This surface has a maximum sensitivity at 8,000 Angstroms, which is beyond the luminous range in the infrared region. Because incandescent bodies in the temperature range under consideration (below $1,500 \mathrm{C}$ ) radiate predominantly in
the infrared region, this photosurface is most effective. The peak of radiation from the weld lies far in the infrared but a good portion of the radiation extends into the sensitive region of the phototube.
Figure 2 also gives the radiation from an incandescent body at several temperatures. To compute the phototube current, the radiation curves must be multiplied by the phototube spectral sensitivity. The resultant current curves are also shown in Fig. 2 as the solid lines. The phototube current measured is proportional to the area under the calculated photocurrent curves.

As determined by an optical pyrometer, the temperature of the sealing sleeve at the first peak of Fig. 1 is about 1,200 C. Visual comparison of the areas under the 1,227 C and $1,127 \mathrm{C}$ curves of Fig. 2 shows that the phototube current should drop about 50 percent for the drop of about 100 C when the


FIG. l-Curve shows drop in phototube current due to cooling effect of molten copper after six seconds of welding time
melted copper flows to the sealing sleeve. If the r-f energy is not shut off, the temperature continues to rise to the melting point of the sealing sleeve ( $1,470 \mathrm{C}$ ). At this temperature the sealing-sleeve alloy flows out of range of the welding coil and the phototube current drops off.

## Control Circuit

Figure 3 is a block diagram of the arrangement devised to utilize the drop in temperature to control the r-f welding generator. The operator loads several of the exhaust tubulation assemblies in a jig. By means of a press, the three parts

## Mctraw.hill publications


are assembled together. The jig is then transferred to the welding unit. A hood is lowered over the work and hydrogen passed through to prevent oxidation. After the initiating switch is thrown the operation is automatic.

The generator induces about five kilowatts of power into the assembly. Radiation from the assembly is reflected by the prism and focussed by the lens into the phototube. The drop in photocurrent, passing through the amplifier as a voltage, is reversed and appears as a rising wavefront at the differentiator. Upon differentiation the wave becomes a positive pulse. This trips a thyratron which in turn starts an electronic delay stage.

The delay stage produces a delay of about one-half a second. This arbitrarily-set delay period ensures that the copper has melted around the entire circumference of the weld. At the end of the delay period a relay shuts off the radio-frequency generator. The initiating switch, in
addition to starting the generator, also triggers a safety relay. This safety relay is set for a delay of about 12 seconds, which is greater than the time required for the longest weld. The relay shuts off power in case of a faulty weld or a failure of the electronic circuit.

A complete schematic diagram of the control circuit is given in Fig. 4. The initiating switch $S_{1}$ is a foot switch by means of which relay coil $R L_{1}$ is energized. Capacitor $C_{1}$ serves to quench the resultant transient so that it does not affect the thyratrons in another part of the circuit. Holding relay coil $R L_{2}$ is energized by the momentary current through the contacts of $R L_{i}$; $R L_{\mathrm{a}}$ is held by its own contacts. Contacts of $R L_{\text {: }}$ also start the timing of safety relay $T D_{2}$ which, in turn, energizes $R L_{5}$ thus starting the radio-frequency generator. Holding relay $R L_{2}$ permits the operator to remove her foot from the initiating switch during the weld.

## Optical System

A double-element lens one inch in diameter, with a 4.8 -inch focal length, is placed three inches from the phototube. The use of a prism permits a top view of the work so that the area of initial fusion is observed regardless of its location on the periphery. A housing and cylindrical tube are used to reduce the stray light. Normal room light-


FIG. 2-Graphical determination of phototube current due to incandescent body at several temperatures. The dotted curve shows the spectral sensitivity of phototube having $\mathbf{S . 1}$ response
ing produces a current of only 0.02 microampere.

The 918 phototube is used because of its infrared sensitive S-1 surface. The fixed bias on the 6J7, operated at cut off, is about -6.0 volts. At the first peak of 1.7 volts, the anode voltage of the 657 drops to about 150 volts. The drop in signal of 1.0 volt at the time of the copper fusion causes the anode voltage to rise to about 220 volts. A change of 70 volts is realized. The waveform of the signal obtained at the anode of the 6 J 7 is an amplified negative of the phototube current wave shown in Fig. 1.

The temperature drop of the weld is rapid ( 0.1 second) and the output of the differentiator circuit $C_{3} R_{\mathrm{F}}$ is a positive pulse of 44 volts magnitude, more than enough to fire $T_{3}$. When $T_{s}$ fires, the anode current energizes relay $R L_{3}$ and one set of contacts interrupts the anode current. If the grid is still sufficiently positive the 2050 will reignite and then again be interrupted in the fashion of a relaxation oscillator.

Potentiometer $R_{0}$ contrals the sensitivity of the tube. When $T_{s}$ fires, the grid current during conduction lowers the terminal grid voltage to a value less than the bias. Capacitor $C_{3}$ holds this less negative value over into the period when the contacts of $R L_{3}$ reapply anode voltage. Thus, after the bias is decreased to the value at which the circuit starts to oscillate, a large increase in bias at the potentiometer is necessary to stop the oscillation.

Specifically, with $R_{\mathrm{o}}$ shorted out, the 2050 starts to oscillate at a bias of -3 volts and stops oscillating at -22 vo'ts. The addition of $R_{6}$, however, reduces this lower limit to -10 volts, which is satisfactory. Resistor $R_{\mathrm{t}}$ isolates the differentiator from the grid current of the thyratron.

Capacitor $C_{4}$ stabilizes the operation of $T_{3}$ by bypassing any transient pickup. The neon tube $T_{\text {، }}$ indicates when this 2050 fires.

Relay $R L_{3}$ has a second set of nor-mally-closed contacts in series with the coil of $R L_{2}$. Because the latter is a holding relay, one operation of $R L_{3}$ causes $R L_{2}$ to deenergize and remain deenergized. Relay $R L_{z}$, therefore, may be energized by the


FIG. 3-Arrangement of optical system and welding control units


FIG. 4-Complete circuit of welding control system
initiating switch $S_{1}$ and deenergized by a drop in intensity of radiation on the phototube.
It has been found desirable to allow the generator to remain on for a short period after the temperature drop occurs. This additional time allows the copper to flow around the entire periphery, making a tight seal. A delay of 0.6 second has been determined to be optimum for the purpose. This delay is produced by a commercial thyratron time-delay relay (G.E. CR7504B102G2) consisting of thyratron $T_{4}$ and associated circuit. At the end of the delay period, the current through $T_{4}$ energizes relay $R L_{4}$, which in turn shuts off the generator through $R L_{6}$.

If a defective tubulation assembly fails to exhibit a temperature drop, or if a fault develops in any of the circuits, the r-f generator would remain on. As a result, either the work coil would overheat, or molten globules from the work would drop down and ignite the hydrogen. To prevent such an occurrence, a safety time-delay relay $T D_{2}$ is included. This relay is electromechanical and has a range of 60 seconds. It is normally set at 12 seconds, which covers the longest weld. It is started at the beginning of each weld by the initiating switch $S_{1}$ and relay $R L_{1}$. If it should time out, its contacts deenergize $R L_{\mathrm{s}}$, thus turning off the r-f generator.

THE NEED for a sine wave oscillator with frequency range below one cycle per second is often felt in electronic research laboratories. Such an oscillator would be useful, for example, in the measurement of recurrent natural phenomena such as the study of ocean wave motion, or in medical research for the measurement of heartbeat and breathing frequencies.
A low-frequency electrical oscillation, closely approximating a sine wave, can be obtained by utilizing the thermal lag of a thermistor in resonance with an electrical capacitance. The coupling link that allows a thermal variation to resonate with an electrical one is the relation between the temperature and resistance of a thermistor:

$$
R=R_{0 e^{\prime} K\left(1 / T-1 / T_{0}\right)}
$$

where $R$ is the resistance of the thermistor at absolute temperature $T, R_{0}$ is the resistance of the thermistor at absolute temperature $T_{0}$, and $K$ is a constant.

Examination of this relationship shows that the resistance of a thermistor decreases as its temperature rises. When the increase in temperature is caused by an increase in current through the thermistor, instability may result. This occurs because the increasing current lowers the resistance which, in turn, causes the current to increase still further. To insure a stable condition, the current must be the controlled variable.

The static curve for a thermistor, as shown by the heavy line in Fig. 1 , is a plot of voltage drop versus direct current. The current is held constant at each point plotted until the thermistor reaches thermal equilibrium. If the thermistor is not allowed to settle to thermal equilibrium as each point is plotted, but has its current continuously varied, the static curve varies in position depending upon whether the current is being increased or decreased. An increasing current would produce voltage values above those of the static points, while if current were decreasing, the voltage points would fall below the static curve.

This effect is similar to hysteresis lag in magnetism, and appears because the temperature of the thermistor, and therefore the voltage drop, lags behind changes in the $I^{2} R$ loss. The effect is only apparent when the currents are large enough to heat the thermistor appreciably.

The amount of hysteresis is proportional to the rate of current variation. The faster the current changes, the more the variation in temperature of the thermistor lags behind changes in $I^{2} R$ losses. The voltage points then plot further above and below the static curve.

## Sinusoidal Input

If a sinusoidal current is impressed on the thermistor, the volt-
age variation is sinusoidal only if the amplitude is small enough so that the static curve is straight over the region. For example, in Fig. 1, the straightest part of the static curve is in the region of negative slope. A direct current of 2 ma will place operation in about the center of this region. An alternating current may be impressed with peaks as large as a milliampere on either side of the bias point, and the voltage wave will be sinusoidal.

If the frequency of the sinusoidal current is low, the hysteresis effect is negligible. The operating curve then closely follows the static curve for both increasing and decreasing currents.

By increasing the frequency slightly, the operating curve can be made slightly oval. Hysteresis is no longer negligible, because the temperature of the thermistor never gets a chance to catch up with the heat dissipated. If the static curve were perfectly straight, the oval would resemble an ellipse with major axis along the static curve, as shown by $F_{2}$ in Fig. 1.

In the case of a still higher frequency, the thermistor temperature is not able to vary with individual cyclic changes. It then assumes an average value; the resistance becomes constant and equal to the slope of a line on the static curve which passes through the origin and through the static curve at 2 ma. This is represented by the


FIG. 1-Static voltage-current curve for thermistor and operating lines for sinusoidal currents of various frequencies with peak values extending between 1 and 3 ma


FIG. 2-Operating frequency can' be altered by changing the amount of positive feedback or the value of capacitance in parallel with the thermistor

# FREQUENCY OSCILLATOR 

# The thermal lay of a current-carrying thermistor enables it to be used as an inductance in the resonant circuit of a subsonic oscillator. Approximately sinusoidal waveform is obtainable, over a frequency range of from 0.1 to 0.02 cycle per second 

dashed line of Fig. 1 labelec $F_{3}$. The operating line approximates this line between 1 and 3 ma .

If the value of frequency $F_{3}$ is lowered sufficiently, the operating line becomes slightly oval in shape, because the thermistor is now able to vary its temperature with each individual oscillation. The oval is shown as $F_{4}$ in Fig. 1; it approximates an ellipse with the dashed line as major axis.

As the frequency is lowered below $F_{4}$, the oval becomes wider, and the slope of its major axis becomes less. This major axis approaches the slope of the static curve as the frequency approaches $F_{2}$.

At a frequency somewhere between $F_{4}$ and $F_{2}$, the slope of the major axis becomes horizontal. At this frequency, $F_{c}$, the operating line approximates a circle.

## Inductance Analogy

The similarity between a thermistor and an inductance may now be noted. If the operating eurve at frequency $F_{c}$ were a perfect circle, it would look exactly like the instantaneous voltage-current variation of a pure inductance with a pulsating direct-current impressed. At frequency $F_{c}$ only, then, the thermistor may be shown as a pure inductance. At frequencies between $F_{1}$ and $F_{c}$, the thermistor can be regarded as a negative resistance and an inductance in parallel. As the frequency approaches $F_{c}$, the negative resistance increases to infinity and then reappears as a positive resistance above frequency $F_{c}$. The value of the positive resistance approaches the slope of the dashed line in Fig. 1 as the frequency approaches $F_{3}$.

At a frequency slightly below $F_{c}$, the equivalent circuit of the thermistor is an inductance and a negative resistance in parallei. If a capacitance is added in parallel, in a

## By JAY EDLIN STONE

 Ames Aeronantical J.aboratoryNational Advisory Committee on Aeronautics Moffett Field, California


FIG. 3-The oscillator's close adherence to sinusoidal output may be seen by comparing its output to a pure sine wave
value that will resonate with the equivalent inductance, the circuit will be free to oscillate by itself at the frequency where the equivalent negative resistance exactly equals any positive external resistance. This external resistance is usually the internal resistance of the directcurrent biasing source, and any succeeding stages of amplification. When the negative resistance cancels the external circuit losses, any disturbance will cause the resonant circuit to oscillate.

## Oscillator Circuit

The oscillator shown in Fig. 2 is a refinement of the circuit just explained. It operates in the frequency band of 0.02 to 0.1 cps . A Western Electric 1-B thermistor, in parallel with about 400 microfarads capacitance appears in the grid circuit of a conventional direct-current amplifier. The thermistor is biased with a direct-current of 2 ma which places operation on the static volt-age-current curve over a portion where the slope is negative. Alternating current variations do not exceed 1 ma on either side of the quiescent point.

The equivalent inductance of the $1-B$ thermistor used is 4,100 henries
at a frequency of 0.102 cps . This inductance resonates with a capacitance of 594 microfarads. With an external resistance of $9,000 \mathrm{ohms}$, the resonant frequency is about 0.01 cps.
The a-c peak-to-peak voltage that can be generated across the resonating circuit is slightly less than 10 volts. Best operation occurs when the bias current is just slightly in the region of negative slope. With this condition, amplitude of oscillation is smallest, and the least number of nonlinearities distort the sine wave output. Care must be taken not to load the circuit by succeeding stages, as both frequency and waveshape will be affected.

For comparative purposes, Fig. 3 shows the output voltage of the oscillator plotted on the same axis as a pure sine wave of the same amplitude and frequency. Also shown is the locus of the difference of the two curves.

It is possible to vary the oscillator frequency over a range of about 30 percent of the center frequency by changing the value of the tuning capacitance. This method is cumbersome, and partly unsatisfactory, since changes in capacitance affect the output amplitude.

Increasing the amount of positive feedback to the oscillating combination from the output of the amplifier has the effect of increasing the frequency, but again affects the output amplitude. The increase in frequency occurs because less of the energy must be supplied by the negative resistance of the thermistor. The thermistor then seeks out an operating point at which its equivalent parallel negative resistance is higher, which occurs at a higher frequency.

## Bibliography

I. A. Becker, C. B. Green and G. L. Pearson, The Properties and Uses ${ }^{\text {Of }}$
Thermistors, $B S T, 26$, p 170 .Jan. 1947 .

# Dot Systems of COLOR 


#### Abstract

Sampling and multiplexing techniques permit transmission of color television pictures in the presently assigned channeì bandwidth. Several systems of dot sequential color that may be compaiible with black and white are described


Experiments with the previously described interlace monochrome television system show that the resolution of patterns corresponding to modulating frequencies as high as 7.5 me may be obtained (as compared to noninterlaced and conventional resolution of 4 mc ) without deterioration of the resulting picture.

The same techniques of field sequential interlacing described for monochrome television can be utilized in field sequential color transmissions so that a maximum utilization of assigned channel bandwidth can be made. With a threecolor system, a new set of field and line frequencies are probably desirable to maintain a good flicker threshold.

Values such as the following might be appropriate: sixty fields per color per second or 180 fields total per second; $202 \frac{1}{2}$ lines per field with alternate fields vertically interlaced for a 405 -line picture; 36,450 horizontal lines per second and a gate frequency of 8.05 mc .

These numbers will reveal a picture having 441 dots per horizontal line when both line and field interlace. The horizontal resolution would be about 80 percent of the vertical resolution with a 4 to 3 picture aspect ratio. This is about twice the horizontal resolution which could be achieved using the same field and line rates, but without horizontal interlacing.
This system would be entirely free of color crosstalk resulting from any possible defects of the transmission system. However, the revised synchronizing standards would require a conversion of existing monochrome receivers if these receivers were to be used to receive transmission from a color
signal transmitter of the system.
A second type of color system is also important. In the system just described, field sequential dot interlacing was used to increase the resolution but a color shift was made only at the field rate. By omitting this field color shift and using multiplex techniques, it is possible to have a system having dot interlacing for resolution and dot sequential color. Examples of such systems follow.

## Basic System

Figure 6 is a possible color television transmitter block diagram. The color camera could be of the simultaneous three-color type having three video outputs, each corresponding to the color pattern of the viewed scene, and preferably including mixed synchronizing and blanking signals such that all three video signals are conventional composite video waveforms. This camera may operate on a conventional 60 -field, 30 -frame basis.

Each of the video channels is sampled in sequence (Fig. 6A) by a narrow sampler driven by a carrier generator at a rate of approximately 2.68 mc per second into a a pulse train of $8.04 \times 10^{\circ}$ pulses per second ( 2.68 mc is the 170th harmonic of the horizontal line frequency of $15,750 \mathrm{lps}$ ). The composite pulse train is amplitude modulated but the amplitudes of adjacent pulses are unrelated since they were derived from three independent input signals. However, the amplitude of every third interleaved pulse has been derived from the same input signal. Thus a horizontal line of the picture will be sampled into 170 dots of each color per scan. This pulse train is next filtered to a bandwidth of 4 mc by a low-pass
filter of good transient response and is now prepared for transmission by a conventional television transmitter and for reception by a conventional receiver arrangement.
To reconstruct the original input pulse train so that the original modulations may be derived, the receiver includes means to resample the transmission system output as it appears at the receiver video detector. For this purpose the receiver must generate a gating carrier which can be frequency and phase controlled by additional synchronizing information supplied from the transmitter.
Figure 7 is a block diagram of a possible receiver arrangement. A conventional monochrome television receiver system may be used for the detection of the transmitted signal and the detected video signal may be applied directly to a gate. The gate is similar to the transmitter sampler (Fig. 6A) and is driven by a carrier such that the detected signal is gated in sequence to three amplifier chains each with their picture tubes, or to a single three-color line tube. From the picture tubes, each of which may correspond in color to requirements established by the color camera, the color images may be optically superimposed.
The receiver gate thus essentially reproduces the original composite pulse train and simultaneously may separate the pulses to their respective color channels. Into each channel, therefore, a 2.68 -mc pulse train is supplied, with the amplitude of the pulses being translated by very wide-band circuits into dots of various colors and luminosities on the picture tube or tubes.
The modulating signals from the camera for the pulses of any of the color channels have not thus far

## By WILSON BOOTHROYD

Section Engineer
Research Division
Philco Corporation
Philadelphia, Pa.
been limited to any specifie bandwidth. In a noninterlaced system, the modulation would be limited to 1.3 mc but interlaced sampling may be used to permit input moculating frequencies up to 2.5 mc . That is, the samples taken from the three color camera signals are sampled in sequence in multiplex fashion continuously throughout the two vertically interlaced fields of the picture scanning, then during the next two fields the samples of each signal are interlaced with the last set of samples.

A typical dot scanning structure resulting from this might be as shown in Fig. 8, wherein the green, red and blue channel sampling locations on a raster are indicated by the letters $G, R$, and $B$. Thus each color channel is sampled in interlaced fashion and input modulation frequencies up to the frequency of the sampling carrier (or more practically, up to 2.5 mc ) can be faithfully reconstructed on the respective picture tubes.

The dot structure of Fig. 8 is interesting from a further viewpoint. It is an outstanding feature of a dot sequential color system that a colored line phosphor tube makes possible single-tube direct-view color reception. That is, since the dot signals for each color fall in vertical alignment when the fields are superposed, a three-color display could be obtained by using either a tube with colored phosphor stripes or with colored filter stripes so that the respective channel signal pulses register with the appropriate color strip locations.

## Circuit Arrangement

One circuit means to obtain the aforementioned interlace may be as follows: the carrier generator at


FIG. 6-Stages of color transmitter


FIG. 7-Additional stages required at receiver
2.68 me may be modulated at a 15 cycle rate in such fashion that it undergoes a phase reversal during every second vertical blanking interval. This phase reversal is used to interleave the picture sampling points frame by frame. Thus 170 dots per color per line may be passed in one scan and interlaced to form 340 dots per color per line in the completely scanned picture. This resolution will therefore be that of the admitted modulation or 2.5 mc per color.

It appears to be more desirable to modify the sampling frequency so that it is not an integral multiple of the horizontal line rate but so that a one-half sampling interval shift is obtained on alternate lines. For instance, a sampling frequency of 2.685 mc , which is 170.5 times the hoizontal line rate, might be used for sampling each input signal. If this is done with a picture having an odd number of horizontal lines in two fields (such as a conventional

525-line picture) it will be found that dot interlacing will be entirely automatic and will require four fields for an interlace cycle. Hence no carrier phase-reversing apparatus will be required. This is the pattern shown in Fig. 8.

To maintain good system characteristics it is necessary to supply the receiver with a gating carrier synchronizing signal from the transmitter. One means for accomplishing this synchronizing is as follows: During the time of the horizontal b!anking interval, the signal at the transmitter filter input resulting from sampling the three modulations will be without appreciable $2.67-\mathrm{mc}$ carrier frequency information due to the identity of the three camera signal waveforms. Hence during this interval a burst of 2.68 mc gating carrier of a phase corresponding to the transmitter sampler phase may be added to the transmitted signal. At the receiver an oscillator nominally
operating at the gate carrier frequency may be synchronized line by line by gating to it this carrier burst. During vertical retrace, this gating carrier may also be applied. In this way the receiver gate may readily be controlled from the transmitter.

## Systems with High Sampling Frequencies*

The basic system is an illustrative example of a straightforward method of color interlacing using multiplex techniques. Through its use a three-color, 340 -dot per color per line signal is transmitted without any inter-color cross-modulation through a $4-\mathrm{mc}$ modulation bandwidth at half the conventional frame speed. This is, in fact, the limit predicted by Hartley's law and cannot be exceeded without some compromise. However, to obtain a finer dot structure, the sampling rate might be increased although it is recognized that some form of intersample (inter-color) crosstalk would result.

It is seldom that the practice of engineering permits a clear definition of an optimum system and relative weights must usually be attached to conflicting requirements. In this case the conflict is between resolution, and color crosstalk in a color receiver; both the color receiver and a monochrome receiver operating on a signal from a color transmitter benefit from increased resolution, while only the color receiver suffers picture deterioration from color crosstalk.

This compromise probably should be resolved on the basis of further theoretical investigation and field tests of large subjective scope in which the carrier rate and modulation bandwidths are raised to increase the system apparent definition until color crosstalk becomes objectionable. For example, the carrier rate might be raised as high as 3.5 mc per color with per-channel modulation frequencies being raised to 3.3 mc . Operating in this fashion (or at any other sampling rate between 2.68 mc and 4.0 mc ) with a

[^8]

FIG. 8-Interlaced scanning pattern
4-mc passband, the filtered pulse train derived from the low pass filter would be characterized by having interdot crosstalk for per-channel modulating frequencies greater than twice the difference between the filter cutoff frequency and the channel sampling frequency. For modulating frequencies below this difference frequency, interdot crosstalk would be negligible. Hence, a transient change in the amplitude of any one color signal would affect the other signals.

For example, assume that three unmodulated video channels are sequentially sampled at a rate of $F$ cycles and that the resulting pulse train is then filtered by a filter $F$ cycles in bandwidth. Then the terms of a Fourier series of the pulses resulting from sampling each channel are given by

$$
\begin{align*}
& \frac{A}{3}\left(1+2 \cos \frac{2 \pi t}{T}\right)  \tag{12}\\
& \frac{B}{3}\left[1+2 \cos \left(\frac{2 \pi t}{T}+\frac{2 \pi}{3}\right)\right]  \tag{13}\\
& \frac{C}{3}\left[1+2 \cos \left(\frac{2 \pi t}{T}+\frac{4 \pi}{3}\right)\right] \tag{14}
\end{align*}
$$

If these series are summed it will be observed that no two add any value where the third is a maximum. This is a unique steady-state condition wherein interchannel signal errors do not exist. Now suppose the second channel is modulated. Then its signal becomes

$$
\begin{gather*}
\frac{B}{3}\left[1+2 \cos \left(\frac{2 \pi t}{T}+\frac{2 \pi}{3}\right)\right] \\
{\left[1+m \cos \left(\omega_{n} t+\phi\right)\right]} \tag{15}
\end{gather*}
$$

where $\omega_{a}$ is the modulating frequency. Then expanding and filtering to a bandwidth $F=1 / T$ we get

$$
\begin{gather*}
\frac{B}{3}\left[1+2 \cos \left(\frac{2 \pi t}{T}+\frac{2 \pi}{3}\right)+m \cos \right. \\
\left(\omega_{a}+\phi\right)+m \cos \left(\frac{2 \pi t}{T}+\frac{2 \pi}{3}-\right. \\
\left.\left.\omega_{a} t-\phi\right)\right] \tag{16}
\end{gather*}
$$

Now at time $T=0$, corresponding to the maximum of channel $A$, we get

$$
\begin{gather*}
\frac{B}{3}[1-1+m \cos \phi+m \cos \\
\left.\left(\frac{2 \pi}{3}+\phi\right)\right] \tag{17}
\end{gather*}
$$

or

$$
\begin{equation*}
\frac{B m \cos \left(\phi-\frac{\pi}{3}\right)}{3} \tag{18}
\end{equation*}
$$

This maximizes at $\phi=\pi / 3$ to a value of $B m / 3$. Where $m=1, B / A$ $=1 / 3$.

This indicates a maximum interchannel crosstalk of 33 percent, and a further calculation assuming a random phase (or a random frequency) variation indicates that the crosstalk would be within 80 percent of maximum over 40 percent of the time. However the choice of a channel sampling frequency could be tempered to a satisfactory degree by the use of an intermediate value.

For sampling frequencies less than $F$ cycles, Eq. 15 is valid but new terms will appear in Eq. 16 as a function of modulating frequency. Thus the degree of crosstalk exhibited is a function of the sampling and modulating frequencies and can be calculated for any example. The subjective nature of color may be such that color crosstalk, if not too pronounced, may be immaterial or even beneficial to resolution. However, other systems such as those which follow must also be considered.

## System with Increased Resolution of One Color

All of the foregoing has been based on equal resolution (sampling intervals) for all three colors. This is not a necessity and perhaps is actually not desirable. For example, while maintaining the $8.04-\mathrm{mc}$ combined sampling rate let the color sampling sequence be green, red, green, blue, with a sampling rate of 4.02 mc for the green and 2.01 mc for red and blue. In this case the modulating frequencies should probably be limited to 3.8 mc for green and 1.9 mc for red and blue. The system functioning would be the same as before except for the color sampling sequence as noted. Sampling might be done with a dual commutator (Fig. 6B), the carrier rate being 4.02 mc , and alternate
red and blue switching being obtained by a secondary mechanism operated at one-half carrier frequency.

However, the principal result of this scanning sequence is an arrangement entirely within the Hartley limit (thus avoiding intercolor crosstalk) wherein high resolution can be obtained on a single color channel (as for example, green) and on monochrome reception. A typical dot scanning structure resulting from this scanning might be as follows:

Line 1 GRGBGRGB first and second
Line 2 GBGRGBGR fields
Line 1 BGRGBGRG third and fourth
Line 2 RGBGBGRBG fields
The color alignment between the first and second fields and the third and fourth fields may be accomplished automatically by the proper selection of carrier frequency relative to line frequency, while the color shift from second and third fields and fourth and first fields may be accomplished by gate carrier phase reversal during every other vertical blanking interval.

Other sampling mechanisms are possible but the one indicated includes the advantages of simplicity while retaining the 180 -degree phase shift of the carrier between scanning frames for interlacing.

## Compatibility

Since there is an existing monochrome television broadcasting service it is probably required that any standards for color transmission be such as to secure a maximnm utilization of existing monochrome transmitters and receivers. Therefore the above-described coior system characteristics must be considered from this viewpoint.

Since the bandwidth of the modulation signal may be limited to 4 mc before transmission there is no question as to the detection of the transmitter signal at a conventional receiver. Questions appear to center around the utilization of the various possible signals by a conventional monochrome receiver. For the basic color system as described, the monochrome receiver detector output signal would be a waveform resulting from the filtering of the sample pulse train.

This signal is the resultant of the linear addition (superpesition)
of the signals due to the sampling and filtering of the three camera signals. It may be found by taking the three channel signals and multiplying each by the sampling terms (Eq. 1) and then filtering by means of a filter of bandwidth equal to half the composite rate. However, since the bandwidth of the modulation in each channel and the perchannel sampling rate is approximately $2 / 3$ of the bandwidth of the transmission system it is not convenient to collect the terms of this expression for the signal after filtering.

A satisfactory physical insight into monochrome reception probably can best be obtained here by examining a typical video waveform within a color transmitter. This signal is shown in a representative case by Fig. 9. At $A$ there is shown a sketch of the three modulation waveforms which might be derived from the color camera. At $B$ and $C$ there are shown the pulse amplitudes as the three waveforms are sampled in succession, the sample times of $C$ being interposed with those of $B$ as required for sample interlacing. The letters indicate the color channel being sampled.

The indicated envelope of the pulses is the resultant video waveform which would be obtained from the receiver detector and would be used to modulate the cathode-ray tube of a monochrome receiver. The envelopes of $B$ and $C$ would be superimposed on successive scans. Inspection shows that while the waveforms do include the original modulation there is also in one portion a strong carrier-frequency signal (at 2.68 mc for the previous basic color system example).


FIG. 9-Color transmitter-monochrome receiver waveforms

Sketch $D$ shows the sum of the two envelopes $B$ and $C$ and is the envelope of the resultant waveform which would be viewed on the picture tube if suitable integration be provided. This signal is observed to include original modulations with the $2.68-\mathrm{mc}$ carrier being doubled to a $5.36-\mathrm{mc}$ carrier which would not ordinarily be resolved by the viewer.

A further comparison of waveforms $A$ and $D$ illustrates another property of a color transmittermonochrome receiver combination. On black and white portions of a picture or in any region where modulation of the three color channels is approximately the same, the monochrome resolution and contrast range is adequate but in regions of essentially single-color modulation the monochrome contrast is impaired. Further, it is apparent that the loss of contrast in the monochrome channel can be made small if the relative gains of the three color channels are adjusted at the transmitter (and in the color receiver) so as to emphasize a particular modulating signal such as the green channel signal.

The ability of a monochrome receiver to obtain a satisfactory picture depends upon the color content of the subject and certain conditions within the color transmitter apparatus. Exhaustive field tests would be required to reach an optimum. At this time it is clear that monochrome receivers will function satisfactorily but that some optimization of system parameters for compatibility is desirable.

## References

(1) F. V. T. Hartley Relations of Carrier and Sidelan nds in Radio Transmission, Proc. IRE, 1923.
(2) II. Nvalist, Certain Factors Affecting Telerraph Speed, Bell System Tech Jour, 1927.
(3) H. Nyquist, Topics in Telegraph Transmission Theory, AIEE Transactions, Feb. 1928.
(4) R. V. I. Hartley. Transmission of Information, Bell System Tech Jour, 1927. (5) P. Mertz and F. Gray A Theory of Scanning, Bell System Tech Jour, July, 1934.
(6) M. Levy, Impulse Response of Electrical Networks, Jour Inst Elec Eng, $\mathbf{9 0}$, Dec. 1943.
(7) P . M, G. Toulon, Knight's Move Scanning, L'Onde Electrique, Oct., 1948. Also U. S. Patent 2,479,880.
(8) W. P. Boothroyd and E. M. Creamer, Jr, A Time Division Multiplexing System, AİEE Trans, 68, 1949.
(9) W. P. Boothroyd and E. M. Creamer, Jr., Transmission of Information, Technicail Paper, IRE Winter Convention, March,
1949. (Available as Philco Research Division Report $\# 140$.)


FIG. 1-Low noise traveling-wave tube for operation in the 3,000 -me range

# Recent Developments 


#### Abstract

Since their appearance several years ago, traveling-wave tubes have been the subject of much discussion and research. As a result, their characteristics have been improved and their operating ranges extended considerably. Several of the more important advancements are presented here in survey form


APPRECIABLE PROGRESS in the development of various types of traveling-wave tubes has been made in the interval since the first tubes of this type were announced. ${ }^{1,2,3}$ Extension of the amplification pass band, use of the traveling-wave principle from as low as 200 to above 25,000 megacycles, decrease in the noise power output of the tubes from 1,000 to 14 times the theoretical minimum, and increase in the available power output from 1 to 60 watts at 3,000 megacycles and up to 1,200 watts at lower frequencies are among the developments. In addition, new forms of traveling-wave tubes have been invented including the remarkable electron wave tube which uses no metallic wave carrying circuit, the transverse current traveling-wave tube, traveling-wave klystrons and reflex tubes, and traveling-wave magnetron amplifiers.

It will be remembered that the traveling-wave tube makes use of a new principle of amplification in which the signal to be amplified is

Research described in this article as having been carried out at Stanford University was made possible hy the support of the Office of Naval Research and the Army Signal Corps.
sent along a circuit at low velocity for an appreciable number of wavelengths (foreshortened wavelengths because of the low velocity). At the same time an electron stream is sent near the circuit in the same direction and at nearly the same velocity as the signal. The signal field and the electron stream interact in such a manner that energy is fed from the electron stream to the signal in consequence of which the signal rises exponentially in amplitude or linearly in decibels above input level as it travels. A description of this interaction has been given in several of the references at the end of this article. ${ }^{1,0,9,4,5}$
The continuous interaction of signal wave and electron stream over a long distance, an extended interaction which may take place over tens to hundreds of cycles as compared with the fraction of a cycle used in tubes with grids or in cavity resonator beam tubes, results in sufficient amplification that lowimpedance circuits can still give high gain. Consequently, such a circuit as the wrapped up transmission line or helix can be used to give amplification over bandwidths of thousands of megacycles where only tens of megacycles were
achievable in non-traveling-wave devices because of their need for high-impedance resonant elements.

The following is a representative selection of the more important advancements being made in the trav-eling-wave tube art in recent years. An all inclusive survey is, of course, out of the question, since much of the work being done is classified and cannot be discussed.

## Low Noise Figure Tubes

The possibilities of travelingwave tubes as low-noise devices have been of interest since Kompfner first discussed low noise performance on his tubes. ${ }^{1}$ Indeed, his article discusses the device principally as a low noise amplifier Although the noise figures quoted for those first tubes were very low, the tubes were described as having self-oscillation, low power output and a relatively narrow amplification pass band. The Bell Laboratories tubes announced at about the same time gave relatively wide bandwidth amplification ( 800 mc ), were free of oscillation, and operated up to about one watt output power, but may be calculated as having had the order of $30-\mathrm{db}$ noise figure, which represents a noise out-


FIG. 2-The disc-on-rod type traveling-wave tube furnishes two watts output at $10,000 \mathrm{mc}$

## in Traveling-Wave Tubes

By L, M, FIELD

Associate Professor
Stanford University
Stanford, Califormia
put 1,000 times the lowest possible theoretical noise power output.

Stanford University, Sylvania Research Laboratories, Bell Telephone Laboratories and many other organizations have been concerned with understanding the causes of noise in $t-w$ tubes and producing lower noise tubes. Very wide band, stable, low noise tubes with as low as $11.5-\mathrm{db}$ noise figure at $3,000 \mathrm{mc}$ have resulted from this effort to date, and a few db further improvement may be forthcoming. This value of $11.5-\mathrm{db}$ noise figure for a radio-frequency amplifier at 3,000 mic may be compared with such typical values as 14 to $16-\mathrm{db}$ noise figure obtained by using very close spaced triodes and 20 to $30-\mathrm{db}$ noise figure for most electron beam devices such as early traveling-wave tubes and klystron amplifiers. It is extremely likely that the klystron can be improved to the same order of noise figure as the t-w tube for possible use as a narrow band amplifier.

At present, narrow band systems at $3,000 \mathrm{mc}$ or higher generally make use of a crystal mixer and do their amplifying at i-f frequencies with a resulting noise figure of 8 to 15 db . The low noise traveling-

FIG. 3-Cross-section of an early form of the disc-on-rod type traveling-wave tube built at Stanford University
wave amplifier now appears to be almost competitive with the crystal mixer on a noise figure basis and has some advantages, notably very great bandwidth, no permanent damage from r-f overloads and minor mechanical shocks, and possible reduction in complexity in some systems by removing the need for i-f amplification entirely.

Possible applications for this low noise $t$-w tube arise in such devices as radar receivers, search receivers and microwave relay link receivers.

## Gun Noise

Unfortunately, no extensive theoretical treatment of the reduction by space charge of the shot noise content of an electron beam from a gun at microwave frequencies was available at the beginning of this work on noise reduction in the t -w tube.

The diode and multigrid tube had been the subjects of extensive analysis ${ }^{6,7,8}$ but an electron gun whose electron beam output might have velocity and current noise content, both of importance in noise calculation, has only recently been
analyzed in sufficient detail to account for observed variations at low noise figures in operating tubes. J. R. Pierce of the Bell Telephone Laboratories recently proposed a theory of noise in such guns, including the effects of transit angle, and velocity and current noise content in streams, which has accounted for many observed effects. C. F. Quate in a doctoral dissertation at Stanford University has modified this analysis somewhat to obtain one possible explanation of the observed minimum in noise figure as beam current is varied.

It appears likely from this work that our present guns produce beams which contain a small but significant temperature limited content.

## Typical Tube

A typical low-noise tube for the $3,000-\mathrm{mc}$ region is shown in Fig. 1. This tube has been measured at 11.5 db minimum noise figure and uses a type of construction now quite common at the Stanford University laboratory. The helix is wound of tungsten wire, copper coated for


FIG. 4-A $3,000-\mathrm{mct}$-w tube capable of producing 60 watis output
low r-f loss, and is directly supported by the quartz tube envelope. The envelope is shrunk to precise size on a centerless-ground tungsten seal rod of the proper diameter. At each end of the quartz structure grading glasses are used to uranium glass presses through which tungsten leads are sealed for applying operating potentials.

The electron gun for producing a low-noise beam uses a Pierce gun ${ }^{10}$ with the special feature that the beam edge is defined by a negative electrode surrounding the cathode. This causes the space charge potential minimum in front of the cathode to deepen rather than disappear at the edges and hence cuts off the emission at the edges in an attempt to minimize the temperature limited beam content.

Tube operating parameters are as follows:
Beam voltage .............. 675 volts
Beam current
$.200 \mu \mathrm{a}$
Interception current ....... 1 a a
Gain ....................... 20 db
Bandwidth ................ 600 mc
Noise figure ............... 11.5 db
As shown in Fig. 1, coaxial-cable-to-helix matching devices have been developed which take the place of the waveguide-to-helix matches of earlier tubes. ${ }^{2}$ Because these matches permit magnetic field structures of small diameter to cover the tube ends, they are now used extensively.

Other low-noise problems now being worked on at several research laboratories include direct study of the noise content of beams produced by electron guns, noise reducing schemes involving initial resonant cavities or helices, and transverse field or beam deflection devices.

The maximum power output available from the tubes described in 1947 was the order of one watt


FIG. 5 - Skewed helix permits adjustment of electron speed
at $3,000 \mathrm{mc}$. Although this is sufficient power to be useful in the output stage of a microwave relay link transmitter, higher output power would be welcome in such an application, and would be essential if the tube were to receive wide use as a radar jammer, high-level signalgenerator output tube, or at lower frequencies, a very wide band television output amplifier or phase modulator.

The earliest work on high power t-w tube development concerned itself with attempting to find wave carrying circuits of higher power dissipation and possibly with appreciably higher gain or higher efficiency than the simple helix. One of the types of circuits used for this purpose is that used in the disc-onrod tube shown in Fig. 2 and 3. These figures show an early form of the tube built at Stanford University which produced about two watts at $10,000 \mathrm{mc} u \operatorname{sing}$ a hollow cylindrical electron beam. A more advanced form of disc tube has been reported by the Federal Telecommunication Laboratories to give 100 watts at $4,700 \mathrm{mc}$.

Other forms of circuits have also been described ${ }^{11,12}$ and compared with a helix in a very general way by J. R. Pierce. ${ }^{12}$ The helix is shown to give relatively high gain as compared with lumped element circuits unless the lumped element circuits are adjusted for narrow bandwidths. Circuits other than the helix have also been considered for higher frequency applications as will be described later.

Several high power t-w tube developments have made use of the helix form of circuit. One of these, a tube reported from the General Electric Research Laboratories, has produced 1,200 watts output power


FIG. 6- $A$ complete tube using the skewed helix shown in Fig. 5
at about 500 mc with $100-\mathrm{mc}$ bandwidth.

Another development, for the $3,000 \mathrm{mc}$ region and covering 2,000 to $4,000 \mathrm{mc}$, uses a helix and produces over 60 watts output power. This tube, recently produced at Stanford and shown in Fig. 4, makes use of a remarkable gun designed at the Sperry Gyroscope Co. which in this application sends an electron beam of 200 milliamperes at 3,000 volts down a tube or helix 0.110 inch in inner diameter and thirteen inches long with a loss of only one milliampere. This is ten to twenty times the beam density used in the 1947 tubes. Space charge repulsion is overcome by a magnetic field applied according to the principles described by A. L. Samuel and by C. C. Wang in papers delivered before the March 1949 IRE Convention at New York City, and previously derived mathematically by L. Brillouin.

Other devices for the production of high power at microwave frequencies are being developed which are related to the traveling-wave tube to a greater or lesser extent,

## T-W Magnetrons

A very close relative is the travel-ing-wave magnetron amplifier. One version of this is reported by Warnecke and his associates at C.S.F. in France as having relatively high output power and efficiency. ${ }^{13}$ Several hundred watts output at 40 -percent efficiency at 25 cm are to be expected according to the publication. This device is similar in general configuration to the multicavity magnetron. However, it is an amplifier, uses a flattened helix in place of the resonant cavities, and separates the input from the output by a metallic partition so
that electrons never travel more than once around the circumference. Multiple cathodes placed at various points on the circumference of the single small cathode region are reported as being used.

Another form of traveling-wave magnetron is being worked on in this country at the Raytheon research laboratory and outputs of 20 watts at 125 mc were realized in a first low-frequency model.

## T-W Klystrons

The klystron and reflex tube are being modified somewhat to include a traveling-wave feature by replacing their resonant cavities with nonresonant waveguides. Such tubes are reported as being worked on at Oxford and at the Microwave Laboratory at Stanford. Although these tubes do not have the continuous interaction between electrons and waves traveling in the same direction common to all the other tubes discussed in this article, they do have traveling waves in the waveguides rather than the standing waves associated with resonant waveguides or cavities.

They differ from other forms of traveling-wave tubes most radically in that electron stream and signal interact only in a short gap and then the electrons coast through an r-f field free region where they undergo klystron type or reflex bunching rather than the waveform of bunching of other $t$-w tubes. It is at least evident that the term traveling-wave tube is not sufficiently descriptive to distinguish between these two widely different types of interactions.

The klystron type traveling-wave devices are of necessity very high power tubes (order of megawatts) since the low waveguide impedance coupled with klystron type bunching requires very high beam currents to achieve sufficient amplification to be useful but when operated at high beam voltage gives reasonable efficiency. The reflex type
device being worked on at Stanford is useful at appreciably lower power levels. It has a severe feedback or oscillation problem since it has equal gain in each direction unless electron paths are warped appreciably.
The traveling-wave klystron is somewhat similar in principle to the distributed amplifier ${ }^{12,12}$ which has used ordinary pentodes coupled to loaded transmission lines to give gain below the video range and up to 100 mc as a pass band. The comparison is sufficiently close that the terms distributed klystron, and distributed reflex tube might possibly be applied to these devices.

## Transverse Current T-W Tube

At least one form of tube is now known in which the electron beam is sent across a tube transverse to the principal direction of wave or signal travel as in the traveling-wave klystron or reflex tubes just described, but which produces a component of wave velocity in the electron travel direction. This permits electron speed to be adjusted to equal wave speed and hence give continuous interaction over the entire electron path. The device makes use of a skewed, race-track shaped helix as shown in Fig. 5, and the interaction gives fields which rise essentially exponentially across both the width and length of the helix. A finished tube, produced at Stanford and shown in Fig. 6, has been tested and found to give relatively high gain for a small device. The helix shown, approximately one and one-half inches wide and three and one-half inches long, is only 3 foreshortened wavelengths wide and 9 foreshortened wavelengths long at 190 megacycles for the beam velocity corresponding to 50 volts. Yet under these conditions the tube has demonstrated over 20 db of amplification and operates well from about 150 to 400 mc with 60 ma in the beam corresponding to only 3 watts beam power.

The very high current for such a low voltage is one of the advantages of this form of construction. Most t -w tubes and other tubes using electron beams suffer from too high beam impedance; in other words, they can get only relatively low currents at high voltages. Another advantage of the transverse current construction is the very low beam density and consequent easing of cathode and space charge repulsion problems. In addition, the tube can be extended indefinitely normal to the direction of electron flow without adding to electron beam production or focusing problems since all new electron paths which are added are of the same form and length as previous paths.

The theory of operation of this device indicates that the gain in db will not rise as the one-third power of the current as it does for the usual one dimensionally extended t-w tube. ${ }^{3}$ Rather for low currents it will first increase as the square of the current, and increase then with progressively diminishing exponent, until for high currents, the gain asymptotically approaches a value independent of current. Measurements on the tube just described appear to vèrify the theory both in the form and the absolute magnitude of the gaincurrent curve.

It may be hoped that further development of the transverse current amplifier may make it an important contender for medium or high power levels at relatively high efficiencies because of the high beam current at low voltage available in this tube.

## Bandwidth and Frequency of Operation

Appreciable strides in increasing the bandwidth or amplification passband have been made since the earliest t-w tubes, and even greater strides have been made in changing the frequency of operation of these tubes. Much improvement in bandwidth has resulted from the use of


FIG. 8-Photograph showing feedback circuit of a traveling-wave tube oscillator which gives continuous tuning from 15,000 to $24,000 \mathrm{mc}$
tapered matching sections from helix to a coaxial line as shown in Fig. 7. Such matching sections were developed at RCA Laboratories and Stanford. The tube shown is a Stanford type for relatively low frequency amplification and has operated well over slightly greater than a 3 to 1 range in frequency. The tube has given the order of 40 to 50 db gain from 300 to 1,000 megacycles and at near saturation power levels has operated at 500 megacycles with 26 -percent efficiency (r-f output power to d-c beam power). With reduced collector potential, 50 -percent efficiency has been measured.

The same type of match was used in the tube described previously as giving 60 watts output in the 2,000 to 4,000 megacycle range. The lowest frequency $t$-w tube known to the author is the transverse current tube which has amplified at 150 megacycles. The tube of Fig. 7 is a more common variety and goes down to 300 megacycles as previously mentioned. Of course, distributed amplifiers using pentodes cover from a few megacycles to 150 or 300 mc .

In the direction of higher frequencies, early model $4,000-\mathrm{me}$ helix tubes have been scaled to $10,000 \mathrm{mc}$ and $25,000 \mathrm{mc}$. Fair gain levels at $10,000 \mathrm{mc}$ and just greater than unity gain at $25,000 \mathrm{mc}$ appear to be the best results to date. Tubes with foreshortened dimensions have been built for $12,000 \mathrm{mc}$. With 10
milliamperes at 2,000 volts, tubes of this type have produced at least one milliwatt of power at 24,000 megacycles, second-harmonic output. Such tubes have been used in feedback circuits giving continuous tuning of the oscillation frequency from $15,000 \mathrm{mc}$ to $24,000 \mathrm{mc}$. Such an oscillator is shown in Fig. 8. Up to fifth-harmonic output has been observed in other tubes. Tubes using a repetitive or loaded transmission line consisting of a slotted metal block are reported by Bell Telephone Laboratories to have given gain at about $25,000 \mathrm{mc}$. Also, a helix type tube has given gain at 6.25 mm at the Bell Laboratories.

There is some hope that the type of gun and beam used in the 2,000 to $4,000 \mathrm{mc}$ tube may be scaled down in size and open up a whole new field of possibilities for $t$-w tubes at above 30,000 megacycles.

## The Electron-Wave Tube

This article is not intended to include a complete description of elec-tron-wave tube developments, but no summary of progress on $t$-w tubes could avoid some discussion of this important new development. ${ }^{\text {a }}$ The electron-wave tube, which uses an additional electron beam to replace the metallic wave carrying circuit of the $t-w$ tube, will probably surpass the $t$-w tube in some applications. At the moment it appears to be a much lower r-f power device and may be capable of only comparable noise perrormance.

It appears to be capable of very high gain per unit length as compared with most t-w tubes, aithough recently, high-gain-per-unit-length t-w tubes have been made, for example the tube of Fig. 7 .

The most promising field for the electron-wave tube seems to be its possible use for millimeter wave oscillators and amplifiers, for the range 30,000 to perhaps $100,000 \mathrm{mc}$.

## Theoretical Studies and Conclusion

Finally, there should be mentioned the large amount of theoretical study on various t-w tube problems now engaging the attention of many workers here and abroad. Such problems as the noise in beams, the noise figure of various forms of $t-w$ tubes, and methods of holding beams together against space charge repulsion have been mentioned. Other problems being studied, anong many, are the effects on tube gain of space charge, helix attenuation, and helix or structure gaps; nonlinearity and saturation at high power levels; effects of finite beam size on noise; gain and noise in transverse field and transverse current tubes; higher order modes on helices; and electron-wave-tube gain for various beam velocity distributions and spatial separations.

## References

(1) Komprner, Tlue Traveling Wave Tube as Amplifier at Microwaves, Proc. RRE, 1) 124. Feh. 1917
(2) J. R. Fierce and L. M. Field, Traveling Ware Tuites. Proc. $I R E$, p 108, Feb. 1947.
(3) J. R. Pierce Theory of the BeamType Traveling Wave Tube lroc $I R E$,万11. Feb. 1947.
(4) J. R. Schulman and M. S. Heagy, Small Sienal Analysis of Traveling Wave Tube. $R C A$ Rev., p 585, Dec. 1947 .
(5) J. D. Jackson and L. J. Chu. Field Theory of Traveling Wave Tubes, Proc. LRE. p 853, JuI. 1948
(6) Thompson, North and Harris, Fluctuations in Snace-Charge-Limited Currents at Moderately High Frequencies, RCA Rev., Apr., 1940.
(7) A. J. Rack, Effect of Space Charge and Transit Time on Shot Noise in Diodes, B.S.T.J., p 1, Oct. 1038.
(8) L. C. Peterson, Space Charge and Transit Time Effects on Signal and Noise in Tetrodes, Proc. IRE.p 1,264. Nov. 1947.
(9) I. R. Pierce, Electron Devices Conference, Princeton, N. J., June 1949. (10) J. R. Pierce, Rectilinear Electron Flow in Beams, Jow, App. Physics, p 548 , Aug. 1940.
(11) L. M. Field, Some Slow-Wave Structures for Traveling Wave Tubes, Proc. IRE, p $\because 4$, Jan. 1949.
(12) J. R. Pierce, Circuits for Traveling Wave Tubes, Proc. IRE, p 510, May, 1949.
(13) R. R. Warnecke and P. Guenard, Anน. Radiolectr., p 259 . Oct. 1948 . (14) A. V Haeff, The Electron Wave Tube, Proc. IRF, p 4, Jan. 1949.

# Design of <br> ABSORPTION TRAPS 


#### Abstract

Universal response curves show the ratio of the response of a tuned circuit to which a trap is coupled to the response without the trap for typical values of attenuation and trapcircuit frequency separation. Nomograph permits rapid determination of coupling factor


By JACK AVINS

RCA Laboratories Division
Radio Corporation of America
New York, N. Y.

THE PROBLEM of obtaining attenuation at critical frequencies arises frequently in the design of amplifiers employing taned circuits. One widely used method of obtaining this attenuation is by means of absorption traps.

The type of absorption trap analyzed in this paper consists of a circuit tuned to the rejection frequency and coupled to a tuned circuit which is fed by a constantcurrent source such as a pentode tube. An analytical expression is derived to show the attentation introduced by the trap and its effect on the variation in amplification with frequency. This information is presented by universal curves which show the ratio between the response obtained with a trap to the response obtained without the trap, as a function of the following parameters: (1) the rejection at the trap frequency, (2) the generalized frequency separation between the trap and the circuit to which it is coupled, and (3) the ratio between the $Q$ of the trap and the $Q$ of the circuit to which it is coupled.

## Application

A typical application is found in the design of video intermediatefrequency amplifiers of television receivers which employ staggered tuned circuits as coupling elements. In these receivers rejection at the accompanying sound carrier frequency and at the picture and sound
carrier frequencies of the adjacent channels is frequently obtained by means of absorption traps which are inductively coupled to the staggered tuned circuits. The universal response curves presented show the effect of the absorption traps on the response over the pass band as well as the magnitude of the after response which impairs the skirt selectivity.

## Response Curves

Although universal response curves have long been used for the simple resonant circuit and for synchronous double-tuned circuits, analogous curves heretofore have not been available for absorption traps. The universal response curves presented here enable the same simplification in the design of absorption trap circuits as results from the use of universal response curves for single and double-tuned circuits. Since as many as three absorption traps are frequently used in the video intermediate-frequency amplifier of a television re-


FIG. 1-Circuit diagram and equivalent circuit of a typical amplifier employing an absorption trap
ceiver, the saving in design time is significant.

It is of interest that the universal response curves indicate that optimum performance is obtained when an absorption trap is coupled to a circuit which is relatively close in frequency. A misconception that the circuits should be widely separated has led to the design of some amplifiers having relatively high distortion of the pass band and high after responses for a given rejection.

## Determination of Response Ratio

A typical circuit employing an absorption trap is shown in Fig. 1. The amplifier plate load consists of the tuned circuit $L_{p} C_{p}$ which is inductively coupled to the trap circuit $L_{s} C$. In addition to the simple inductive coupling shown in Fig. 1, it is possible to use other forms of coupling such as high-side capacitive coupling. As with synchronous double-tuned circuits, results are equivalent in the narrow-band case.

The effect of the trap on the overall response is conveniently expressed by determining the ratio of the response with the trap to the response without the trap. This ratio is particularly convenient in applying the results to the design of stagger-tuned amplifiers. It permits the conventional procedure to be followed in the design of the staggered circuits and the effect of the traps can then be added to de-


termine the overall response.

## Definition of Terms

The following terms are defined: $f_{p}=$ resonant frequency of the primary
$f_{s}=$ resonant frequency of the trap
$\delta=\left(f-f_{s}\right) / f_{1}=$ fractional detuning with respect to trap
$\delta_{1}=\left(f_{p}-f_{s}\right) / f_{s}=$ fractional detuning of primary with respect to the trap
$p=2 Q_{p} \delta=$ generalized fractional detuning
$p_{1}=2 Q_{p} \delta_{1}=$ generalized fractional detuning of primary with respect to trap
$\alpha=4 \pi^{2} f_{s}^{2} M^{2} / R_{p} R_{s}=$ (coupling/ critical coupling $)^{2}$
$n=Q_{0} / Q_{p}=\operatorname{trap} \mathrm{Q} /$ primary Q
$R=$ desired attenuation at the trap frequency

If $2 \delta$ < 1 , it can be shown that the impedance reflected by the trap is $a /\left(1+n^{2} p^{2}\right)-j a n p /\left(1+n^{2} p^{2}\right)$

It can further be shown that the effect of the trap can be represented as a function of three parameters by the following expression:

$$
\begin{gather*}
\frac{\text { Response with trap }}{\text { Response without trap }}= \\
{\left[\frac{1+\left(p-p_{1}\right)^{2}}{\left\{1+\alpha /\left(1+n^{2} p^{2}\right)\right\}^{2}+\left\{p-p_{1}-\right.}\right.} \\
\left.\frac{}{\left.\alpha n p /\left(1+n^{2} p^{2}\right)\right\}^{2}}\right]^{\frac{1}{2}}
\end{gather*}
$$

The three parameters are $p_{1}, n$, and $R$ as previously defined.

The coupling factor $a$ is related to the attenuation introduced by the trap at its resonant frequency by the equation $(1+\alpha)^{2}=R^{2}$ $\left(1+p_{1}{ }^{2}\right)-p_{1}^{2}$. As is to be expected the value of the coupling factor depends not only on the desired attenuation but on the generalized tuning separation $p_{1}$.

The analytical solution (Eq. 1) may be expressed in a more useful form by plotting the response ratio for suitable values of the three parameters.

## Representative Charts

The families of curves shown in Charts 1 to 16 are the result of plotting Eq. 1 as a function of $p$ for representative values of the parameters: frequency separation $p_{1}$, at-


FIG. 2-Nomograph for determination of coupling factor between absorption trap and tuned circuit
tenuation at the trap frequency $R$, and $Q$ ratio $n$.

Four values of $p_{1}$ are chosen; these are $0,0.5,1.0$, and 2.0 . The curves for $p_{1}=0$ show the response for the limiting case as the frequency separation approaches zero. The curves for $p_{1}=0.5$ correspond to the trap being tuned to the frequency at which the response of the primary by itself is 90 percent of its maximum response. Similarly, $p_{1}=1.0$ corresponds to the 70.7 percent point and $p_{1}=2.0$ corresponds to the 44.7 - percent point. These values cover the range normally encountered in the application of absorption traps.

Curves are drawn for four values of the attenuation $R$. These are $R=8,14,20$, and 26 db , corresponding to an attenuation of from 2.5 to 20 times in voltage ratio.

For each value of $p_{1}$ and $R$, curves are drawn for three values of $n$ : $n=10$; $n=20$; and $n=40$. These values of the ratio between the secondary and primary $Q$ correspond to the values encountered in the design of stagger-tuned amplifiers at television intermediate frequencies.

A decibel scale is used in plotting the response ratio to permit the effect of several traps to be determined by addition of the individual response ratios. The overall response is then determined by the addition of the total response ratio curve to the response obtained in the absence of the absorption traps. Care must be taken to combine the
curves with respect to an absolute frequency scale.

The response curves are all plotted on the basis that the trap or secondary frequency is lower than the frequency of the circuit to which it is coupled. If the opposite is true, the curves still apply provided the positive direction of the $p$ frequency scale is reversed. The desired response is then the mirror image of the response shown in the charts.

## Nomograph for Coupling Determination

The coupling factor

$$
\alpha=\frac{\omega_{s}^{2} M^{2}}{R_{p} R_{t}}
$$

is related to the attenuation introduced by the trap at its resonant frequency by the equation

$$
\begin{equation*}
(1+\alpha)^{3}=R^{2}\left(1+p_{1}^{2}\right)-p_{1}^{2} \tag{2}
\end{equation*}
$$

As is to be expected, the value of the coupling factor depends not only on the desired attenuation but also on the generalized tuning separation $p_{1}$.

A nomograph constructed from this equation to enable the rapid determination of $a$, when $p_{1}$ and $R$ are known, is shown in Fig. 2.

To determine experimentally the coupling corresponding to a given value of $a$, the trap is initially tuned to the same frequency as the primary. The coupling is then adjusted until the response $R^{\prime}$ drops to $1 /(1+\alpha)$ of the original response.

## Conclusions

The universal response curves presented in Charts 1 to 16 significantly reduce the labor required to solve problems involving absorption traps. An examination of these curves reveals that so far as the circuit design permits, it is desirable to have the frequency separation as small as possible; and a high $\operatorname{trap} \mathbf{Q}$ is desirable.

It is clear that neither the $\mathrm{L} / \mathrm{C}$ ratio of the primary nor the $L / C$ ratio of the trap have any effect on the response of the circuit, provided the proper coupling is used. In general the value of trap inductance is determined so as to obtain the maximum $Q$ consistent with a convenient physical coil size.


FIG. 1-Basic cathode-coupled clipper circuit with regeneration provided by $C_{c}$ and $\boldsymbol{R}_{L^{1}}$


FIG. 2-Applied-voltage wave showing mechanism of pulse generation

# Variable 

# Pulse-Length Generator 

# Regeneration added to a cathode-coupled clipper provides linearly variable pulses ranging from 0.5 to 24 microseconds in width and peak-to-peak voltage values between 4.5 and 6.5 volts 

T1 he several available types of variable-pulse-length generators use two basic circuits for obtaining a variable output. The first differentiates a square wave and clips the resulting pulse. By varying the time constant of the differentiating circuit, the length of the clipped pulse is controlled. The other circuit is a one-shat multivibrator in one of its forms. Here the time required for the circuit to return to equilibrium, after receiving an input pulse, determines the pulse length.

In some applications, such as pulse-width modulation, it would be convenient to vary the pulse width linearly over a wide range as a function of some voltage or current. The phantastron ${ }^{1}$ gives a linear variation controllable by a voltage but provides an extremely limited width variation. The cathode-coupled multivibrator ${ }^{2}$ can be designed to give large variations in pulse width. But it is difficult to make this varia-

## By J. C. MAY

Dunham Laboratory of
Electrical Engineering
Yale University
New Haven, Conn.
tion linearly proportional to the control voltage, especially as the frequency of operation is increased. The generator circuit to be presented here was developed to improve the linearity between pulse width and control voltage while permitting the widths to be continuously varied throughout the repetition period. The circuit operates by adjusting the level at which a sawtooth voltage is clipped.

## Basic Circuit

The basic circuit of the generator, shown in Fig. 1, is the cathodecoupled clipper developed by Goldmuntz and Krauss ${ }^{3}$ with regeneration provided by $C_{C}$ and $R_{L I}$ to im-
prove the rise time of the output pulse. Regeneration also decreases the required input level necessary for satisfactory clipping.

With the input voltage at zero, and a low value of bias, $E_{c c i}$, on the grid of $V_{1}, V_{2}$ conducts and $V_{1}$ is cut off. As the bias is made less negative $V_{2}$ starts to conduct. Its current causes a rise of cathode potential, which subsequently causes $V_{2}$ to be cut off. Regeneration aids this switching process. Tube $V_{2}$ will remain cut off until the grid bias on $V_{1}$ is decreased to a point below cut-off. While it is not physically possible to provide sufficient regeneration to cause $V_{2}$ to cut off exactly as $V_{1}$ starts to conduct, the change required in grid 1-toground voltage, $e$, necessary to change $V_{2}$ from "on" to "off" can be made in the order of a volt. For this reason, the switching level is indicated as a single line in Fig. 2.

Now suppose that the applied voltage, $e$, is a sawtooth voltage
plus the d-c bias $E_{c c 1}$. If the peak value of $e$ is never sufficient to cause $V_{1}$ to conduct, no change occurs in the plate circuit of $V_{2}$. In Fig. 2, $e$ causes $V_{2}$ to start conducting at point $x$, to continue conducting for a time, $T$, and then to cut off at point $y$. A positive pulse of duration $T$ will appear at the plate of $V_{\mathrm{b}}$. By further increasing $e, T$ can be made to increase linearly with $E_{C C_{2}}$ if the sawtooth voltage is linear. When the time, $T$, is equal to the period of the sawtooth, the output pulse will drop to zero because $V_{2}$ will be cut off for the full period.

## Applied Voltage Requirements

The minimum sawtooth voltage required is about 10 volts peak-topeak and may be obtained from any convenient source such as the timebase voltage from an oscilloscope. However, for experimental purposes, a simple blocking-oscillator saw-tooth generator* was built and is shown, together with the varia-ble-length pulse generator in Fig. 3. The waveform of the sawtooth generator, as taken from the display on a Tektronix Model 511 oscilloscope, is not ideal but its linearity is sufficient for its intended purpose. A triangular waveform would also be suitable but it is usually more difficult to obtain.

The minimum pulse width attainable with the circuit constants of Fig. 3 is 0.5 microsecond. This is limited primarily by the sharpness and jitter of the sawtooth voltage. The maximum pulse width with a 40 -kilocycle repetition rate is 24 microseconds. Voltage $E_{c c 2}$ is initially adjusted to a value that will


FIG. 4--Pulse width as a function of grid bias for various circuit constants
permit $E_{c c_{1}}$ to control the pulse over the full width range. The pulse height varies from 4.5 volts peak-to-peak at maximum pulse width to 6.5 volts at minimum pulse width. The variation in height could be further decreased by a decrease in regeneration at the expense of increased rise time of the output pulse. ${ }^{3}$

Pulse width as a function of $E_{c c_{1}}$ is shown in Fig. 4. Curve $A$ rise time is good but the width varies in a nonlinear manner since grid current flows in $V_{1}$ for a portion of the cycle. To prevent grid current from flowing, a larger cathode resistor is used and, to offset the decrease in output, a larger load resistor is used in the plate circuit of $V_{2}$. Linear output of large ampli-


FIG. 3-Blocking-oscillator sawtooth generator feeding the variable-length pulse generator
tude and poor rise time of curve $B$ is thus achieved. The compromise solution gives the results of curve $C$ which has sufficiently good linearity, reasonable output, and rise time satisfactory for most purposes. The sensitivity of the pulse generator (sensitivity being defined as the ratio of change in pulse width to the change in control voltage $E_{c c}$ ) will vary inversely with the magnitude of the sawtooth voltage. By reference to Fig. 2 it will be seen that $E_{c c z}$ has to change by a small amount, roughly equal to the peak-to-peak value of the sawtooth voltage, to get 100 -percent change in width when the amplitude of the sawtooth is small. As the sawtooth amplitude is increased the change in $E_{c C_{1}}$ must also be increased to provide 100-percent change in pulse width.

As shown in Fig. 2 the trailing edge of the pulse remains fixed and the leading edge is moved out as $E_{c c_{1}}$ increases in magnitude. If it should be desirable to reverse this operation the polarity of the sawtooth voltage should be reversed. The leading edge will then remain fixed and the trailing edge of the pulse will move.

## Measurement of Pulse Width

The point-by-point accuracy of the pulse-width measurement is


FIG. 5-Pulse amplifier with gain of 5, giving maximum output of 25 volts peak-to-peak
limited by the procedure used in this investigation. A Browning Sweep Calibrator Model GL-22 with 0.5 -microsecond markers was used as the width indication. Markers of 0.1 -microsecond width are available with this instrument but they had insufficient amplitude for this particular work. With reasonable care, the 0.5 -microsecond markers give reliable, repeatable data.

A d-c amplifier may conveniently be provided to supply $E_{c c 1}$ so that a relatively small change in voltage is necessary to change the pulse width. Grid supply voltages $E_{c c_{1}}$ and $E_{c c 2}$ were supplied from suitably bypassed voltage dividers connected to the regulated plate supply in this experimental model.

The unit described here was designed to operate only in the vicinity of 40 kilocycles. Lower-frequency operation is easily achieved by merely decreasing the frequency of the sawtooth voltage and increasing the size of the coupling capacitors. Linearity could be further improved by giving the design of the sawtooth generator more attention. Conventional series and shunt peaking methods may be employed if improvement of the rise time or an increased repetition rate of the pulses is desirable. Without any changes the unit has been operated at 100 kilocycles.

A simple pulse amplifier is shown in Fig. 5. This has been used where larger pulse output has been desirable. It introduces no perceptible pulse distortion when the external shunt load capacitance is 20 micro microfarads.

Synchronization of this pulse generator with some voltage is easily accomplished by synchronizing the sawtooth generator with the desired voltage. In this particular unit a three-winding blocking-oscillator transformer was used, the third winding being used for the insertion of the synchronizing voltage. ${ }^{5}$ The input impedance is fairly high but it will be necessary to use an isolating amplifier if it is desirable to prevent the blocking-oscillator firing pulse from being superimposed on the synchronizing voltage.

## Applications

The variable-pulse-length generator shown here was developed primarily for use in a multiplier circuit which will produce an output voltage whose instantaneous amplitude is a product of two instantaneous input voltages. The circuit may be used for pulse-width modulation where the modulating voltage is superimposed on $E_{c c_{1}} ;$ it also can produce variable pulse delay where the pulse to be delayed is used to synchronize the pulse generator
and the delayed output pulse is obtained from the differentiated generator output. This operation is analogous to conventional flip-flop delay multivibrator action but has wider, more linear control of the delay time. Variable pulse delay can be used as a basis for modulation (pulse-position modulation)." Two of these pulse generators could be connected in cascade to provide an extremely flexible variable-delay, variable-width gating circuit. The first unit would supply variable delay, the second variable gate width. The movable edge of the variablewidth pulse may be differentiated to provide a pulse variable in time to be used to control the ignition time of a thyratron or ignitron circuit.' Control by a d-c voltage of the thyratron or ignitron current is readily assured over a full half-cycle of anode voltage.

In any of the above systems the pulse output can be made to be a triggered output. That is, if a sawtooth generator were employed that was not free-running but delivered a sawtooth only upon the reception of a synchronizing pulse, pulse output would depend directly on the repetition rate of the synchronizing voltage. This is not readily accomplished with the blockingoscillator sawtooth generator shown here but several other forms are available. ${ }^{8, n}$

The author wishes to thank H. L. Krauss of Yale University for suggesting this type of circuit and for his help and criticism during the investigation.

## References

(1) MIT Radar School Staff, "Principles of Radar," Second Edition, Chapter II, Article 16 , NeGraw-Hill Book Co., New York, N. ${ }^{2}$
(2) MIT, Radar School Staff, "Principles of Radar," Second Edition, Chapter II, Article 15, McGraw-Hill Book Co., New York, N. Y.
(3) L. A. Goldmuntz and H. L. Krauss, Cathode-Coupled Clipper Circuits, Proc. IRE, 36, No. 9, p 1172, Sept. 1948 Also O. H. Schmitt, A Thermionic Trigser, Jour. Sci. Instr,, 1938 , XV, p 29. (4) D. G. Fink," "Principles of TeleVision Engineering,' First Edition, p 473,
McGraw-Hill Book Co. New York, N. Y. McGraw-Hill Book Co., New York, N. Y. (5) Radiation Laboratory Series, 19 , Hill Book Co., New York, N. Y.
(6) F. E. Terman, "Radio Engineering,", Third Edition, p 776 , McGraw-Hill Eook Co., New York, N. Y.
(7) J. G. Skainik, A Pulse-Controlled Thyratron, Elecrrowics, p 120, Dec. 1949. (8) Riadiation Laboratory Series, 19, "Waveforms,"p 273 , McGraw-Hill Book Co., New York, N. Y.
(9) Radiation Laboratory Series, 21, "Electronic Instruments," Section 18-7, p 641, McGraw-Hill Book Co., New Yorli,

## Q-Meter Impedance Charts

Three nomographs speed utilization of data obtained with standard $Q$ meter when numerous measurements have to be made. Effective series $R$, effective parallel $R$ and effective parallel and series reactances of an impedance are given directly

FIG. 1-To obtain required data, impedance being studied is connected in parallel with $C$ of $Q$ meter as shown


By ROBERT MIEDKE<br>Collins Radio Co. Cedar Rapids, Iowa

THE accompanying nomographs are designed to give the effective parallel resistance $R_{p}$, the effective series resistance $R$, and the effective parallel and series reactances $X_{p}$ and $X_{\text {o }}$ of an impedance $Z$ when parallel connection to a standard $Q$ meter is used, as shown in Fig. 1.
Limitations of the nomographs are the same as for standard Q meter equations: $R_{p}$ is accurate for any impedance; $R$, is accurate for impedances with Q greater than 10 ; the difference between the effective series and parallel values of reactance may be neglected and the values obtained from Fig. 4 may be considered to be the effective reactance when the $Q$ of the impedance being measured is greater than 10. For more accurate values of $R$, the unknown impedance should be connected in series with the $L$ of the Q meter.

Instructions for Use
To get $R$, use Fig. 2 after computing values of $Q_{3}-Q_{2}$, $Q Q_{2}$ and $\left(C_{2}-C_{1}\right)^{2}$. Join pairs of values as indicated by dashed lines 1 and 2 to get turning points on scales $A$ and $B$, join these points as per dashed line 3 to get a turning point on scale $C$, then join the point on $C$ with the value of $f$ as per dashed line 4 to get $R_{s}$.
To get $R_{p}$, use Fig. 3 in essen(continued on page 114)



perfection is demanded

Often anticipating the need, Cinch metal plastics engineering goes to the heart of the whole communications system with its dependable small as. semblies. So that today, judged by service, by numbers in use Cinch sockets are Standard.

## Q-Meter Impedance Charts (Continued from page 112)

tially the same way, as indicated by the numbered dashed lines.

To get $X_{\text {s }}$ or $X_{p}$, use Fig. 4 in the conventional manner.

## Example of Use

Suppose an r-f choke is to be used in the shunt-fed plate circuit of a tube. It is desirable to know the effective parallel resistance $R_{p}$ and reactance $X_{p}$ that this choke will shunt across the plate circuit.

Set up the Q meter on the frequency at which measurements are to be made. Record the $Q$ and capacitance as $Q_{1}$ and $C_{1}$ re-
spectively. Connect the choke between the capacitor terminals on the $Q$ meter, readjust $C$ for resonance, and record $Q_{2}$ and $C_{5}$. Typical data obtained might be: $f=10 \mathrm{mc} ; Q_{1}=145 ; C_{1}=92.6$ $\mu \mu \mathrm{f} ; Q_{2}=136 ; C_{2}=91.5 \mu \mu \mathrm{f}$. Then $Q_{1}-Q_{2}=9, Q_{1} Q_{2}=19,720$, $C_{2}-C_{1}=1.1$ and $\left(C_{2}-C_{1}\right)^{2}=$ 1.21 .

To find the effective series resistance with Fig. 2, draw a line from 9 on the $Q_{1}-Q_{2}$ scale to 92.6 on the $C_{1}$ scale. Mark the intersection of this line with line $A$. Draw a line from 19,720 on the $Q_{1} Q_{2}$ scale to 1.21 on the ( $C_{2}-$


FIG. 4-Determination of effective par. allel or series reactance
$\left.C_{1}\right)^{2}$ scale. Mark the intersection of this line with line $B$. Connect the points marked on lines $A$ and $B$ and mark the intersection with line $C$. Connect the point on line $C$ with 10 mc on the frequency scale and read $R$. ( 560 ohms ) at the intersection of this line and the $R$, scale.

Using the above data and Fig. 3, draw a line from 9 on the $Q_{1}-Q_{2}$ scale to 92.6 on the $C_{1}$ scale. Mark where this line crosses vertical line $A$. Next, draw a line from 145 on the $Q$, scale to 136 on the $Q_{2}$ scale. Mark the intersection of this line with vertical line $B$. Connect the points marked on lines $A$ and $B$ and mark the intersection of this line with vertical line $C$. Draw a line from the point marked on $C$ to 10 mc on the frequency scale and read the effective parallel resistance ( 370,000 ohms) where this line intersects the $R_{p}$ scale. Since this value is much larger than the average tank circuit impedance, it will have little effect.

To find $X$, on Fig. 4, connect 1.1 on the $C_{2}-C_{5}$ seale with 10 mc on the frequency scale and read the effective parallel reactance ( $14,200 \mathrm{ohms}$ ) on the $X$, scale. Since $C_{1}$ is greater than $C_{2}$ the reactance is capacitive. This then represents a capacitance of approximately $1 \mu \mu \mathrm{f}$ at 10 mc , which will detune the circuit very little.


# Mallory Recommendations Put The Squeeze On Contact Production Costs! 

## MALLORY <br> SILVER AND TUNGSTEN CONTACTS

Tungsten is used in contacts for electrical equipment where resistance to electrical arcing and weat are important. Silver and silver alloys are used where low resistance is important. Mallory has developed contact metals from many alloys to meet every contact requirement. Among the many Mallory contact alloys are the Elkonites* and Elkonium* alloys. Mallory will gladly work with you to find the right contacts to meet your specifications. Write today.

Everyone is striving for ways and means to beat the breakeven point . . . and Mallory's contribution, in contact costs alone, is helping to ease many tight situations.
Typical is the case of an automotive electrical equipment manufacturer who was emphasizing cost reduction. Mallory dug into the customer's contact production program and came up with specific recommendations. Design, material and final assembly improvements were made possible by new Mallory alloys and production techniques. Every last penny was squeezed out of contact costs with a resultant $\$ 75,000$ yearly saving to the customer.

That's service beyond the sale!
Mallory contact know-how is at your disposal. What Mallory has done for others can be done for you!

In Canadn. made aml sold by Johnson Mathev de Mrillorv, Led., 110 Industrv-St., Toronto 15.Omario

Electrical Contacts and Contact Assemblies


SERVING INDUSTRY WITH

| Capacitors | Contacts |
| :--- | :---: |
| Controls | Resistors |
| Rectifiers | Vibrators |
| Special | Power |
| Switches | Supplies |
| Resistance Welding | Materials |

*Reg. U.S. Pat. Off

## TUBES AT WORK

## Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Television Remote Tuner ..... 116
The Front Cover ..... 118
Tester for Mercury and Gas-Filled Thyratrons. ..... 118
Multiple TV Antenna Coupler ..... 132
Automatic Moisture Content Control. ..... 138
A High Speed Collator ..... 150
Photoelectric Timing Equipment ..... 152
Radar Tester ..... 156

## Television Remote Tuner

A considerable portion of the author's spare time has been spent in experimental work on television receiver circuits. Several times a need has arisen for a quick com-parison-check of the on-the-air performance of a newly built front end. Removal of one front end and temporary wiring and mechanical mounting of a second unit whose performance is known has consumed valuable time.

A front end that can be quickly connected or coupled to the i-f stages of a receiver under test obviates this difficulty. A unit constructed for the purpose contains its own power supply for heater and plate voltage and provides output at
the picture signal i-f frequency. This self-powered front end serves equally well as a signal source for testing experimental i-f strips.

## Other Use

Use of large-screen picture tubes in home television receivers imposes difficulty in critical tuning of the receiver while standing at the tube screen. Because of the large picture near to the eye, adjustments made at the set of ten result in dissatisfaction when the owner goes to his seat at the proper viewing distance. He must then return to the set location to readjust or change the station.
A more convenient arrangement


FIG. 1-Circuit of self-powered tuner. If used with transformerless receivers an isolation transformer is needed


A deep chassis is required to house the front end
results if a remote tuning unit is installed at the viewing position. Selection of station and fine tuning can then be done while comfortably seated at this location.

Ideally, such a tuner would require a minimum of connections to the receiver and would be removable to allow the receiver to operate normally with its own front end when desired.

Because this is also required of the comparison front end contemplated, it was decided to construct a tuner that would serve both purposes. As representative of the most popular design, the receiver selected to be controlled was an RCA 630 type.

A 630 front end was fitted into a small aluminum box and a selen-ium-rectifier power supply added.

## Coupliny Problem

The major barrier to operation of a separate self-powered tuner is the difficulty of coupling the highimpedance plate circuit of the converter stage to the grid circuit of the first i-f stage with leads of possibly several feet in length. Link coupling from the remote converter tube to the first i-f stage appeared most convenient because it required no direct connection to the receiver except for a possible common ground lead.

The bar to link coupling is the mechanical arrangement of the plate coil in the coupling system between the converter plate circuit and the grid circuit of the first i-f stage. This coil is mounted inside of a large diameter form on which the sound trap and sound i-f takeoff coil is mounted. Any link coil would need to be wound on this outer form, at a considerable distance from the inside coil. In addition, it would need to be fixed

## KESTER <br> SOLDER

# Build more quality into your TV sets with Kester "Resin-Five" Core Solder 

TV-the nation's fastest growing business demands the nation's number 1 solder. Kester "Resin-Five" Core Solder, formulated especially for TV, will out perform any solder of the rosin-core type. It easily solders such metals as brass, zinc, nickel-plate, copper, and ferrous alloys.

MADE ONLY FROM NEWLY MINED
GRADE A TIN AND VIRGIN LEAD

nan-carrasive . . . nan-conductive

Kester...Standard for the TV and Radio Fields
"Resin-Five" flux is more active and stable than any other rosintype flux. Yet it is absolutely noncorrosive and non-conductive.
free technical manual-Send for Your Copy of - SOLDER and Soldering Technicue.

Kester Solder Company
4204 Wrightwood Avenue - Chicago 39, Illinois
Newark, New lersey - Brantford, Canada


## THE FRONT COVER



FROM alignment and test booths on conveyor lines at the left, completed television receivers roll onto the cross-conveyor and thence are pushed onto the rail car (center) two at a time for shifting to the head of the desired aging line at the right. Here each set is plugged into a power outlet and operated for a minimum of two hours with normal unsynchronized raster on its screen. Experience has shown that this aging period eliminates one service call during the guarantee period. Commonest troubles encountered are due to defective tubes and components.

After aging, each chassis goes to a phasing position. Here it is checked for tuning dial calibration, correct positioning of all controls and adequate ranges of all sync circuit controls. Using an Indianhead test pattern, fed to all test positions from a central signal cage, the horizontal phasing controls are then set to get correct blanking on each side of the picture frame. If necessary, i-f transformer adjustments are also touched up to correct for overshoot.

Over $1_{1}^{3}$ miles of moving and roller conveyor lines are used in this new Du Mont television assembly plant located in East Paterson, New Jersey. When all three of the 465 -foot moving chassis assembly lines are running at full capacity the plant turns out a new television receiver every 22 seconds. These can be different models, though at the time of taking the above photo and the cover color shot all lines were turning out the $12 \frac{1}{2}$-inch picture-tube models shown.
in position and would not be readily removable if the remote tuner were to be operated on another receiver. Experimental link coils wound on both the converter plate coil of the tuner and the receiver proved that the degree of coupling was insufficient; not enough signal voltage was developed at the grid of the first i-f stage.

A simple method of obtaining low-impedance output and sufficient voltage from the remote unit is the
addition of a cathode follower to its converter output. The circuit of the complete remote tuner unit is shown in Fig. 1. No components in the RCA front-end need to be changed; it is only necessary to complete the grid return of the $r$-f amplifier and supply operating potentials to the tubes. The normal capacitor coupling from the converter plate circuit feeds the grid of the cathode-follower stage. Although the latter presents lower
capacitance than the grid of the usual i-f stage there was no noticeable effect on the tuning of the plate coil.

Link coupling is used at the receiver. The signal produced in the cathode follower output circuit is fed through 75 -ohm RG-59/U coaxial cable to a four-turn coil wound on a fiber form. Its diameter is 18 inch and length is 3 inches. This form fits readily over the large sound trap coil of the 630-type chassis.

The considerably greater field produced by the cathode driver stage provides signal voltage at the grid of the first i-f stage nearly equal to that of the directly connected front-end in the receiver. The selector switch of the latter is usually set to an unused high-band channel to prevent beat interference.

Cable length has been as great as forty feet when used for demonstration purposes. Open test leads up to five feet long have been used on a bench and fed between other chassis and equipment cabinets without affecting the picture received.

Smaller coupling coils have been used in feeding other types of i-f systems and occasionally the open coaxial lead has been connected to the grid of the first i-f stage when picture quality was not a factor but it was necessary to determine whether the i-f stages were operating. When used with a receiver having an intercarrier sound system, the $21.25-\mathrm{mc}$ trap on the tuner coil can be open circuited. This may also be advisable with receivers having conventional sound i-f systems unless they are tuned to 21.6 or 21.8 mc - -v. z .

## Tester for Mercury and Gas-Filled Thyratrons

Testing of mercury vapor and gasfilled thyratons has, until recently, been a time-consuming bottle-neck on the production line. The General Electric Company announces the development of a machine which tests these types of tubes at the rate of one every 30 seconds-approximately eight times faster than (continued on page 132)


## SUBMINIATURE PAPER CAPACITORS Hermetically Sealed in Metal Cases

Sprague Subminiature Paper Capacitors represent the latest development in the trend toward smaller components with characteristics that are at least equal and often superior to their larger counterparts.

The unusually small size of these paper capacitors is a direct result of new techniques, materials and processes developed through painstaking research.

Sprague Subminiature Paper Capacitors give trouble-free performance under the most exacting electrical, temperature and humidity conditions.
Glass-to-metal solder-sealed terminals assure positive hermetic closure with maximum arc-over clearance to metal cases. Subminiature capacitors are available with either grounded or insulated sections using various capacitor impregnants, so as to best meet your individual circuit requirements for physical size, insulation resistance, operating temperature and other factors.

Complete details of Sprague Subminiature Paper Capacitors are given in Bulletin No. 213. Please write for your copy on company letterhead.

## SPRAGUE

## THE ELECTRON ART

Edited by JOHN MARKUS

Radar-Homed Missile ..... 120
Lemon Breath Analyzer ..... 120
Mystery Whirlpool Exhibit ..... 120
Exposure Meter for Photomicrography ..... 122
Graph for Smith Chart ..... 122
Paper-Thin Ceramic Sheets ..... 158
Radar Tracks Hurricanes ..... 159
Two-Anode Phototube ..... 162
Three-Component Magnetometer ..... 165
Heater-Compensated Supply ..... 171
Balloon Altitude Controls ..... 172
Survey of New Techniques ..... 174

## Radar-Homed Missile

The Rocket-propelled Firebird guided missile developed by Ryan Aeronautical Company engineers for the Air Force carries a complete radar system for homing automatically on maneuvering targets and a fragmentation explosive charge large enough to insure destruction of the target. Designated the XAAM-A-I (experimental, air-to-air missile, Air Force, first model), the Ryan Firebird is capable of heading off and destroying its objective in a matter of seconds when launched from a jet fighter plane. It has all the speed first generated by the parent fighter, plus the added power of its own booster rocket and finally its flight rockets. Little more than half a foot in diameter, it is about 10 feet in length and $7 \frac{1}{2}$ feet long after dropping its booster rocket. With its high speed and small size, the pilotless missile


Firebird air-to-air guided missile in bomb rack on wing of launch plane. Radar homing equipment was left out during flight tests in interests of


Model of Firebird in flight, being propelled by booster section of rocket
is extremely effective against piloted aircraft and is difficult to track even on radar scopes. Development cost to date was approximately $\$ 2,000,000$.

The missile's mother plane is the first to detect the target, and directs the launching of the missile. Thereafter, the Firebird is designed to home on the enemy target. At night or in inclement weather the launch plane must have a search/tracking radar capable of spotting the enemy aircraft. The host fighter plane can carry one or more missiles on external launching racks which fit standard bomb installations.

Except for the plastic radome and wings of about 3 -foot span, the basic missile structure is conventional aluminum-alloy sheet. Both wings and tail surfaces serve to control the flight of the missile.

After the missile is launched from the parent plane, a booster rocket takes over. When maximum speed is reached, the spent booster is jettisoned by an explosive charge.

Thereafter, during the latter phase of interception, power is supplied by flight rockets. The warhead is designed to explode when it is close enough to an enemy aircraft to insure destruction. Should the missile miss its target, the warhead is automatically detonated in the air.

## Lemon Breath Analyzer

The amount of oxygen taken in by lemons during storage is automatically recorded with an accuracy within 0.01 percent by a special oxygen analyzer developed at the University of California in Los Angeles. Fruits breathe like humans, inhaling oxygen and exhaling carbon dioxide, and the rate of breathing is related to the length of time the fruit can safely be stored. The ideal breathing rate appears to be maintained at temperatures around 55 F . Flow meters are attached to jars each containing 50 lemons, for measuring the gas flow.


Lemon life in storage can be prolonged by checking fruit regularly with this special oxygen analyzer and recorder, which determines whether breathing is at a healthy rate

## Mystery Whirlpool Exhibit

An attention-getting exhibit of blue solution rotating several revolutions per minute in a glass container without a mechanical propellor can be set up with a surplus magnetron magnet and a few simple parts arranged as shown. A d-c voltage of 10 volts or thereabouts produces current flow radially outward through the copper sulfate

# For the MEASUREMENT of Q, INDUCTANCE and CAPACITANCE 



The 160-A Q-METER 50 KC . to 75 MC .

Radio frequency circuit design often requires the accurate measurement of $Q$, inductance, and capacitance values. For this application, the 160-A Q-Meter has become the universal choice of radio and electronic engineers throughout the country.

Each component part and assembly used in the manufacture of this instrument is designed with the utmost care and exactness. Circuit tolerances are held to values attainable only in custom built instruments.

Consider, for example, the $Q$ tuning capacitor assembly of the 160-A Q-Meter, specially manufactured for maximum range, low loss, and minimum residual inductance. The ultimate design of this unit was reached only after months of intensive engineering research to produce the finest in performance, quality, and workmanship.

This is but one of the many desirable features of the 160-A Q-Meter which contribute to its outstanding accuracy and dependability.

Be sure to include the 160-A Q-Meter in your new equipment plans.

A number of these instruments available for immediate delivery.

Shown above is the $Q$ tuning capacitator assembly of the 160-A $Q$-Meter. Note the following design features of this unil-features which insure reliable, trouble-free operation.
A. Parallel connection of dual rotor and sfaltor assemblies minimizes internal inductance and resistance.
B. Spring silver fingers contact both sides of silver dise to provide low series iesistance.
C. Three point pyrex ball stator suspension reduces losses and permits accurate stator alignment.
D. Four point panel mounting designed to praduce maximum structural rigidity and capacitance stability.
E. Precision-cut brass spur gears and stainless steel shafts, mounted in oversize bearings, alssure long, trouble-free service.
F. Commor stator mounting for main and vernier stator plates reduces loss and internal series resistance of vernier capacitor section.
G. Positive shaft stop protects main rotor assembly and geart against mechanical overload.

## SPECIFICATIONS

Oscillator Frequency Range: 50 kc . to 75 mc in 8 ranges.
Oscillator Frequency Accuracy: $\pm \%, 50 \mathrm{kc}-50 \mathrm{mc}$.

$$
=\mathbf{3 \%}, 50 \mathrm{mc} .-75 \mathrm{mc} .
$$

Q Measurement Range: Directly calibrated in $Q, 20-250$. "Multiply $-Q-8 y^{\prime \prime}$ Meter calibeated at intervals from $\times 1$ to $\times 2$ and also at $\times 2.5$, extending $Q$ range to 625.
Q Measurement Accuracy: Approximately $5 \%$ for direct reading measurement, for frequencies up to 30 mc . Accuracy less af higher frequencies.
Capacitance Calibration Range: Main capacitor section 30-450 mmf, accuracy $1 \%$ or 1 mmf whichever is greater. Vernier eapacitor section +3 mmf , zero, -3 mmf , calibrated in 0.1 mmf steps. Accuracy $\pm 0.1 \mathrm{mmf}$.

DES GNERS AND MANUFACTURERS OF THE Q METER - OX CHECKER FREQUENCY MODULATED SIGNAL GENERATCR - BEAT FREQUENCY GENERÄTOR AND OTHER DIRECT READING INSTRUMEMTS


## would freeze an eskimo

 ... WON't freeze VARGLASSEND FOR SILICONE



Efficient at $500^{\circ} \mathrm{F}$. or more in some applications-yet completely flexible at $-85^{\circ} \mathrm{F}$. Resistant to moisture and lubricating oil-flame resistant and self-extinguishing-this pioneer silicone tubing and sleeving developed by Varflex is the strongest of all accepted insulating materials.

Contains samples for you to test of the revolutionary development of Varflex laboratories

## Electrical Insulating Tubing and Sleeving lead wire and tying cord



Varglas Silicone is a combination of Varglas-continuous filament Fiberglas; moisture and fungus proof; will not burn; strong and flexible at high and low temperatures; chemically inert . . . and Silicone High Temperature Resin-which has a natural affinity for Fiberglas; renders it abrasionresistant, flexible and non-fraying. Normalizing process removes binder and organic inclusions from the Fiberglas; improves electrical qualities and allows uniform impregnation-YET COSTS NO MORE THAN COTTON.

Investigate the NEW, low cost VARFLO Sleeving and Tubing if you do not have to allow for an unusually high operating temperature. Samples and prices on request. It's flexible. It takes rough handling without loss of dielectric. It won't fray out. Made with a Fiberglas braid, it won't support combustion.

## Clip and mail this coupon TODAY! <br> 

Please send me folder containing free samples of Varglas SILICONE products.
Name



Solution rotates without moving parts
solution from the wire in the center to the copper band around the inner periphery of the container. The fluid is propelled by the action of the vertical magnetic field on the moving ions. Reversing the battery polarity from time to time reverses the direction of rotation of the fluid, adding further to the mystifying effect. The exhibit was produced by J. L. Ryerson of Evansville College for a campus openhouse day.

## Exposure Meter for Photomicrography

The accompanying balanced bridge phototube circuit was developed by V. T. Clemens and S. S. Brar of Argonne National Laboratory for measuring the intensity of illumina-


Exposure meter circuit operating from a-c line without rectifier
tion at the eyepiece of a microscope to determine the correct exposure for photomicrography.

When there is no illumination on the phototube, plate currents of the two tubes are equal but opposite through the microammeter: Illumination unbalances the bridge circuit, giving a meter deflection proportional to light intensity. Coarse and fine potentiometers facilitate the initial zero adjustment, and a range switch shunts a resistor
across the meter to increase its range by 5 .

The phototube is mounted in a cylindrical holder that fits over the barrel of a microscope. A type 1P42 phototube may be used instead if space conservation is of importance. A twin-triode 6SN7 can be used in
place of the two pentodes if desired. Phototube leads to the separate amplifier unit should be twisted and as short as possible. Circuit parts associated with the phototube should be adequately insulated and phototube surfaces should be kept clean to minimize leakage.

## Graph for Smith Chart

By R. L. Linton Jr.
Antenna Laboratory, Division of Electrical Engineering University of Califormia, Berkeley, Californit

Workers concerned with r-f impedance measurements have need for frequent conversion of stand-ing-wave ratio into reflection coefficient and vice versa. Generally, information finds its way onto a Smith chart ${ }^{1}$, which may be considered a polar plot of reflection coefficient $k_{r}$ in magnitude and phase. Although standing wave ratio $r_{v}$ can be estimated from the normalized resistance circles on the chart, a
more accurate determination may be desired. Particularly at high reflection coefficients, estimates of standing-wave ratio are extremely difficult.

The graph in Fig. 1 provides a simple graphical means of obtaining standing-wave ratios up to 99 in terms of reflection coefficient, or vice versa. Of even greater convenience is the feature whereby the
(continued on page 158)


FIG. 1-Graph giving voltage standing-wave ratio vs reflection coefficient based on normalized radius on Smith chart. Graph also gives transmission coefficient based on normalized co-radius, often more useful

## NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN



## Recording <br> Spectroradiometer

General Electric Co., Schenectady $\overline{5}$, N. Y. The recording spectroradiometer is a new color-sensitive instrument for aid in the study of fluorescent materials, the search for new phosphors, and the design and manufacture of light sources. The device consists of a grating monochromator, photometer, recorder and power supply. Measuring $25 \times 27 \times 23 \mathrm{in}$. and weighing 150 lb , the equipment can scan the complete spectrum from 230 to 650 millimicrons at speeds varying from 1 to 10 minutes, depending on the nature of the spectrum. A curve is produced on a chart $97 \times 24 \mathrm{in}$. Phototube voltage from a d-c sup-
ply, regulated to better than 0.2 percent, can be varied between 200 and 1,000 volts. Power required is 100 watts, 115 volts ( $\pm 5$ percent), 60 cycles.


## Standard-Signal Generator

Geneefl Radio Co., 275 Massachusefts Ave., Cambridge 39, Mass. Model 1001-A standard-signal generator is a general-purpose, ampli-tude-modulated instrument used for performing standard IRE and RMA tests on radio receivers. It also has many other laboratory and field uses. Frequency range is 5 kc to 50 mc ; output voltage range is 0.1
microvolt to 200 millivolts at the panel. Incidental frequency modulation is below 38 parts per million at 30 -percent modulation. Stray fields are less than one microvolt per meter at a distance of 2 feet from the signal generator.


## Electron Microscope Accessories

Radio Corp. of America, Camden, N. J. Three attachments designed to improve performance of the electron microscope are the EMN-1 charge neutralizer for eliminating the effects of charges produced on diffraction specimens by the primary beam of the microscope; the EMX-1 focusing magnifier that provides for precision focusing and greater magnification; and the selfbias gun (lower right) that pro-


CUTTING COSTS through reduced testing time is made possible with this winding-insulation tester. Any defects in rewound or reconditioned motors are quickly brought to light with the cath-ode-ray oscilloscope. The equipment is available from General Electric Co., Schenectady 5, N. Y.


HAM OPERATORS whō like to QSO on the road con use the all-band mobile antenna that comes tuned for 3.600 kc . Other plug-in coils make it possible to obtain good efficiency at 20 and 40. Shortirg the coil puts the rig on 10 meters. Availtable from Master Mobile Monnts, Inc., Los Angeles, Calif.


TELEVISION RECEIVERS can be protected from lightning strokes and static discharges by this twin-lead lightning arrester. The leadin is quickly fastened in place, without cutting, by a pair of cap nuts. A product of JFD Mig. Co.. Inc., 6101 Sixteenth Ave., Brooklyn 4. $N . Y$.

# WHEN IT'S GAS FILLED TUBES YOU WANT 




Cold Cathode Rectifier Tubes

## Ionically Heated Cathode Rectifier Tubes

## Voltage Regulator and Reference Tubes

| COLDCATHODERECTIFIERS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Construction | Max. Dimensions Height Width (inches) |  | Absolute Maximum Ratings |  |  |
|  |  |  |  | AC Plate Voltage (rms) | Inverse Peak Voltage | DC Output Current (ma.) |
| 024 | METAL | 2.63 | 1.32 | 300 | 880 | 90 |
| OZ4G | GLASS | 2.63 | 1.07 | 300 | 880 | 90 |
| 024A/1003 | METAL | 2.63 | 1.32 | 265 | 880 | 85 |
| BH | GLASS | 4.38 | 1.81 | 350 | 1000 | 125 |
| CK 1006 | GLASS | 4.69 | 1.81 | 570 | 1600 | 200 |
| CK 1007 | METAL | 2.63 | 1.32 | 350 | 980 | 110 |
| CK 1012 | GLASS | 4.69 | 1.81 | 425 | 1200 | 300 |
| CK1024 | METAL | 2.63 | 1.32 | 350 | 1000 | 160* |
| CK5517/CK1013 | MINIATURE | 1.97 | 0.75 | 1200 | 2800 | 12 |

* Intermittent push-to-talk service in mobile equipment

Note: All of the above are full wave rectifiers exsept CK5517/CK1013 which is half wave.

- Raytheon has supplied more of them than all other tube makers combined. That statement holds true for each and every year over the past twenty-five years or more!

ASK US if you don't find the gas filled tube you need in the above charts. Raytheon engineers are prepared to develop whatever tube types fit your needs, if you have an application requiring several thousand tubes per year.
vides intense illumination with lower beam current.


## C-R Oscillographs

Allen B. Du Mont Laboratories, Inc., 1000 Main Ave., Clifton, N. J. has announced the types 304 and 304-H cathode-ray oscillographs as replacements for the type $208-\mathrm{B}$. Recurrent and driven sweeps are variable from 2 to $30,000 \mathrm{cps}$. Slow sweeps of 10 seconds or more are available by the connection of external capacitors between the X input terminals on the front panel. Stabilized synchronization of the pattern is maintained by a synclimiting circuit. Type 304 c-r tube operates at an overall accelerating potential of 1,780 volts; in type $304-\mathrm{H}$ an additional intensifier power supply increases the potential to 3,000 volts.

## Analog Computer

Special Products Division of Phillips Petroleum Co., Bartlesville, Oklahoma. An electronic analog computer for solving the flash vaporization equilibrium equation has been announced. It facilitates solution of such petroleum problems as analysis of optimum gas-liquid separator operating conditions, evaluation of gas-condensate reservoirs and gas saturated crude oil fields under conditions of pressure decline, analysis of many fractionation column operations, and estimations of K values. Overall vapor or liquid fraction calculations may be determined to a probable error of 0.00 2.


## Ion Trap and Focus Unit

Quam-Nichols Co., 1 North La Salle St., Chicago, Ill. Two new television components now in production are an ion trap and so-called focalizer. Both units employ a special mechanical arrangement of permanent magnets that supplant wire-wound current-carrying coils in order to adjust deflection of ions and focus respectively.

## Ceramic Capacitors

Sprague Electric Co., North Adams, Mass. The Bulplate waferthin ceramic capacitors are furnished with either multiple capacitor sections alone or in combination with printed wiring, shielding and other printed details. Typical Bulplates are $1 \frac{1}{8} \mathrm{in}$. long by $\frac{5}{3} \mathrm{in}$. wide (exclusive of leads) and may combine five capacitors of $0.002,0.0001$, 0.00015 and two of $0.005 \mu \mu \mathrm{f}$, or
other values as desired within the available limits. Bulletin 601A gives full details.


## New Receiving Tubes

Sylvania Electric Products Inc., 500 Fifth Ave., New York, N. Y. Three new receiving type tubes now available include type 12AY7 miniature audio amplifier duotriode particularly designed for first audio stages. An r-f amplifier, type 6BC5 is a miniature sharp-cutoff pentode with high mutual conductance designed for r-f and i-f applications in television receivers. The tube is roughly equivalent to a higher-gain type 6AG5. The horizontal deflection amplifier, type 6BQ6GT is de(continued on page 175)


HOMOGENIZED SOUND without beaming or dead spots is assured with this fountain speaker placed in the top of a five-foot plastic column. The sound radiating surface has been effectively increased to three limes that of a conventional eight-inch speaker according to Bell Sound Systems, Inc., 555 Marion Road, Columbus 7, Ohio.


TINY SOLDERING IRON designed by the manufacturers of new air navigation equipment is now available for general purchase. Despite its heavy heat capacity for adequately soldering multiple connections it has a fin radiator that efficiently dissipates heat. Vasco Manu facturing Div.. Mitchell Industries, Inc. Mineral Wells, Texas.

## 12 Reasons Why cudiotape can help you get the most out of your tape recorder!

1. Audiotape is wound on precision, all-aluminum reels.
2. Audiotape is cut by a superior straight-line slitting process which makes it track and wind absolutely flat.
3. Audiotape has no curl - lies flat on the magnetic head without increased tension, giving better frequency response and more uniform motion.
4. Audiotape has exceptionally low surface friction-reduces wear on heads.
5. Audiotape has definitely superior dispersion of oxide particles - no lumps, no burnps. This can be checked with eny good microscope.
6. Audiotape is completely free from any tendency to stich, layer to layer.
7. Audiotape coating is specially formulated to give strong adher. ence of the oxide to the base.
8. Aldiotape is designed to give maximum signal to noise ratio.
9. Audiotape has a wider bias range for optimum results - less sensitive to bias changes.
10. Audiotape has excellent high frequency response.
11. Audiotape has low distortion.
12. Audiotape has unequalled uniformity - within the reel, and from reel to reel. No magnetic weak spots that can cause fluctuations in output.

We know that every reel of Audiotape offers you all of these plus values - because all Audiotape is made in our own plant, under our own supervision and control, on machines designed by our own engineers. Audiotape is backed by over ten years of experience in producing professional quality recording discs. What's more, every foot of Audiotape is menitored for output, distortion and uniformity - your assurance of
the same consistent, uniform quality that has characterized Auniodiscs for the past decade.

But why not try out a reel and let Audiotape speak for itself? Your Audiodisc and Audiotape distributor will be glad to fill your requirements. And you're sure to be pleased with the professional discounts available. Or - we will be pleased to send you a 200 ft . sample reel of plastic or paper base Audiotape.
*Reg. U.S. Pat. Off.

# NEWS OF THE INDUSTRY 

Edited by WILLIAM P. O'BRIEN

Over 3,000 Register at First Audio Fair

Final registration figures for the Audio Fair and First Annual Conrention of the Audio Engineering Society showed that a total of 3,022 persons signed up for admission badges to the exhibits at the Hotel New Yorker, New York City, Oct. 27-29. At the technical sessions each day, attendance ranged from 200 to 400. Total membership of the Society in the U.S. and elsewhere is approximately 700 .

One highlight of the Fair was the demonstration of twelve different makes of loudspeakers one after another, using program material recorded on magnetic tape especially for the purpose, at the Thursday evening banquet. A performance score card on the back of the banquet menu enabled listeners to check their preferences for future personal guidance, no poll of results being taken.

As toastmaster at the banquet, Norman C. Pickering made the presentation of the Audio Engineering Society Annual Award to C. J. LeBel, retiring first president of the society. The John H. Potts Memorial Award was presented to Harry F. Olson of RCA Laborato-
ries, and Honorary Memberships were presented to $F$. V. Hunt of Harvard, Harvey Fletcher of Bell Labs and V. O. Knudsen of U.C.L.A.

Election of new officers was announced, as follows: PresidentTheodore Lindenberg of Fairchild Recording Eqpt. Corp.; executive vice-president-J. D. Colvin of A.B.C.; western vice-presidentJohn G. Frayne; secretary-Norman C. Pickering; treasurer-R. A. Schlegel. Newly-elected governors were C. A. Rackey, C. J. LeBel and Sumner Hall.

Exhibits were staged in individwal hotel rooms, to permit demonstration of audio equipment at normal or full volume whenever so desired by visitors, without interference between exhibitors. All products exhibited were related in some way to the recording and reproduction of sound on magnetic tape. discs and film. The list of exhibitors follows, with representative examples of the equipment they showed.

Altec-Lathsing Corp. Peerless Electrical Products Division. New York, N. Tr.ironcore transformers and chokes; demonsuration of hi-fi musician's amplifier feeding Altec 800 hucter speaker

Audio \& Video lroducts Corp., New York. N. X.-Ampex tape recorders, Minnesota Mining \& Mfg. Co. magnetic tape; Altec-Lansing eflimment.
Ampex Electric Corp. San Carlos, Calif.-Ampex tape recorders.

Audak Co., Inc., New York, N. Y,phono pickups, etc.
Audio Development Co., Minneapolis Minn,-amplifiers: a-f and power transforners; jacks and plugs.

Audio Facilities Corp., New York, N. Y - specialized andio apmatus; theater sound systems; artificial reverberation equipment

Audio Instrument Co., New York, N. Y -royarithmic ampitier; intermodulation analnois meticial eat's; preamplifiers disc-noise meters: custom-built audio test equipment.
V. elect Lasoratories, Inc., Boonton, N. Burlimectronic voltmeters.

Brimgame Associates, Ltd, New York Nip-manufacturere representativesKapsh metic tape splicers.
Frank L. Capps \& Co.. Inc., New Iork, Y.-Recording and reproducing styi. Feedback recotaing heads: recording equipment; $\quad 0.000-\mathrm{cps}$ frequency recorl The Daven Co., N'いwarl. X.I. attenua tors; potentiometers: switcles ; ,vu indicators : test equipment.
Electric Indicator Co.- electric motors and generators.

The Electronic Workship. Inc., New York, N. Y.-it-f amplitiers; hi-fi audio components, audio instruments.

Electro-Voice, luc., Buchanan. Mich, microphones: pickups ; tanstormers
Fairchild Recording Eapt. Corp., Whitestone, L. I., N. Y-1ape recorders: synchronous transeription turntahies and tape recorders: ranscription cutting and playback equipment; equalizers: amplitiers; mixer panels; complete amplifier systems. Gawler-Fioop Co.. Newarts N. J. mannfacture's' represembetives - Cloush Brengle sweep-frequencs generators;
 and time calibrators; Mimesota Elec thonics amplifiers, hiters. Noiserasers.
speakers; tone anms; pickups; preanpliypea

James B. Lansing Sound, Ince, Los Angeles, Calif. - meakers
H. J. Leak \& Co. Lta... Iomdn, Foneland H.J. Leak eo. Lu. Fmarn, Finmand andio
speakers.
Livingston Electronic Corp., Livingston, N. I.-phono pickup arnis, loudness controls; styous pressule fages
Magnecessories, Washington, D. C.Carson tape splicer : Visi-Mig.
Magnecord, Inc. Chicaso, Ill-tape recording equipment.
(continued on page 130)


Corner of Peerless Electrical Products Division's exhibit room, with H. M. Morris adjusting tone control unit of musician's sound sys tem. Sound source is magnetic tape recorded off the air: ampli fier (on table) uses Williamson circuit developed in England, with

Peerless transformers; speaker is Altec 800 , theater unit


Corner of Electronic Workshop's exhibit room, showing setup for demonstrating different combinations of tuners, amplifiers and speakers. For speaker demonstrations, which attracted most interest, Magnecorder tape recorder on table was used as sound source. Patchboard was used for quick switching


Covers the Range of 400-1000 MC.

*     *         * The LAVOIE LA-418 Signal Generator, newest addition to the LAVOIE LABORATORIES' line of precision electronic equipment...

Provides:
is DIRECT READING Frequency Dial.
\% DIRECT READING Attenuator calibrated in D B (о то-120 двм) U Volts.
«3 INTERNAL and EXTERNAL Pulse Modulation sine wave modulation external.

A complete descriptive folder is available promptly on request. WRITE FOR TECHNICAL EULLETIN LA-418
 MORGANVILLE. N. J.

[^9]Mark Simpson Mfg. Co., Inc., Long Island City, Y. Y. Masco magnetic tape recorders and speakers.
.J. A. Maurer, Inc., Long Island City, N. i.-16-mm cameras; $16-\mathrm{mm}$ sound-onfilm recording system; $16-\mathrm{mm}$ film phonoqrapls
Melntosh Engineering Lab., Washington, D. C andio amplitiers.
NThe Misel Distributing Corp., New York, N. Y.-Bolsey portible microfilner and reader.
N. Yewark Electric Co., Inc., New York, accessories

Panoramic Radio Products Inc., Mount Vernon. N. Y.-Panadaptor; Panalyor sonic analyzer; ultrasonic analyzer.

Permoflux Corp., Chicago, Ill.-speakers; baflles; headphones; microphones; amplifiers: tape recorders.
Pickering and Co., Oceanside, N. Y.phono pickups; preamplifiers; equalizers; audio amplifiers; intermodulation distortion measuring equipment.

Presto Recording Corp., Hackensack, N. J.-recording and transcription turntables; tape recorders; recording amplifiers.
Proctor Soundex Corp., Mt. Vernon, N. Y.-turntables; pickup arms; audio equipment.
N. Yacon Electric Co., Inc., New York, N. Y.-Speakers; reentrant trumpets; Rek-O-In; Coeters; marine speakers. N. Yek-O-Kut Co., Inc., Long Island City, N. Y.-cutters; transcription turntables; recording and playback amplifiers and equipment.
and Radio Corporation of America, Camden ucts ; broadeast N. J.-tubes; sound prodcorders phones. turntables; speakers; microRan
gertone, Inc., Newark, N. J.-magRecogre recorders.
wood Cogram Recorders Co., North Hollywood, Calif.-Magnagram magnetic film recorder; Centogrip splicers.
Somerset Laboratories, Inc., Union City, N. I.-amplifiers; dynamic noise supuressor; preamplifier.
Sonar Radio Corp., Brooklyn, N. Y.tape recorders; amateur equipment.
Salif Sil-Hoffman Corp., Hollywood, Calif'-magnetic recorders and reproducers; automatic tape splicer.
Stephens Mfg. Corp., Culver City, Calif. - Speakers and microphones.

Sun Radio \& Electronics Co., New York, N. Y.-distributor of audio equipment and acessories.
Tech Laboratories, Inc., Palisades Park, switches; Jitenuators; potentiometers; tap switches; fixed pads; gain sets; resistance measuring equipment
Mniversity Loudspeakers, Inc., White
 U. S. Inecording co sound equipment.
-Consolette.

## IRE Elections Announced

The board of directors of the IRE recently announced the election of Raymond F. Guy, manager of radio and allocations engineering for NBC, and Sir Robert Watson-Watt, governing director of Sir Robert Watson-Watt and Partners, Ltd., of London, England, as president and

R. F. Guy

R. Watson-Watt

## MEETINGS

JAN. 10-12: Conference on Industrial and Safety Problems of Nuclear Technology, New York University, New' York, N. Y.

JaN. 30-Feb. 3: AIEE Winter General Meeting, Hotel Statler, New York, N. Y.

Feb. 27-March 3: ASTM Committee Week and Spring Meeting, Hotel William Penn, Pittsburgh, Pa .

March 6-9: IRE Convention and Radio Engineering Show, Hotel Commodore and Grand Central Palace, New York City.
April 4-8: National Production Exposition, sponsored by the Chicago Technical Societies Council Stevens Hotel, Chicago, Ill.
Aplill 26-28: Fourth annual meeting of the Armed Forces Communications Association, Astoria, New York City, and Fort Monmouth, N. J.
June 26-30: Annual Meeting and 9 th Exhibit of Testing Apparatus and Related Equipment, Hotel Chalfonte-Haddon Hall, Atlantic City, N. J.
vice-president, respectively, of the IRE for 1950.

Candidates elected as directors-at-large for the 1950-1951 term are : William R. Hewlett, vice-president of Hewlett Packard Co., Palo Alto, Calif., and James W. McRae, di-

W. R. Hewlett
J. W. McRae
rector of electronic and television research at Bell Telephone Laboratories, Inc., Murray Hill, N. J.

Regional directors for 1950-1951 are as follows: North Atlantic Region-Herbert J. Reich of the electrical engineering department, Durham Laboratory, Yale University; Central Atlantic Region-Ferdinand Hamburger, Jr., of the
school of engineering, Johns Hopkins University; Central RegionJohn D. Reid, manager of research of Crosley Div. of Avco Mfg. Corp., Cincinnati, Ohio; Pacific RegionAustin Eastman, head of the department of electrical engineering of the U. of Washington, Seattle, Wash.

## Engineering Research Projects

OVER 4,000 college and university research projects in engineering subjects were recently announced in the 1949 Review of Current Research, published by the Engineering College Research Council of the American Society for Engineering Education. Studies of particular interest to electronic engineers and the institutions where they are currently active are as follows:
Polytechnic Institute of Brooklyn, Brooklyn, V . Y .
Measurements of power and attenuation
at microwave frequencies
Study of radio interference problems
Evaluation of r-f cable connectors
Experimental investigations of in pedance measurement
Electromagnetic properties of obstacles and slots in waveguides

Theors of communication
Theory of variable-frequency circuits
Theoretical and experimental investiga-
don of electron tube performance
Study of ferromagnetic circuits and nagnetic amplitiers

Microwave leus antennas
Application of contormal mapping to high-voltage properties
synthesis of broad-band networks
Studies of transistor circuits
Design of an electrostatic transformer Study of multivibrator synchronization Innuence ot harmonics on design of rotating electrical machinery
neknell University, Lewisburg. Pa,
University of California, Berkeley, Calif. Electric shock
Supersonic llaw detector
Recording instruments and servomechanisms

Electrical computer
Study of collimated beams and of dif-
fraction by apertures and dises
Study of scattering and absorption by
receiving antennas
Thermistor research
$F-$ Mi studies
Permanent magnet alternators
Radiation detectors
Audio-frequency project
Very-low-frequency oscillators
Magnetic amplitiers
Dynamoelectric amplifiers
F-M detection systems
Improvements in phototubes by insertion of a grid

Microwave tube development (ANC)
Microwave laboratory (USAF)
Antenna research (BuS)
Clectronic computer project (ONR)
Transistor study
Distortion in f-m systems
Magnetic fluid clutcl
Catholic University of America, Washington, D. C.
Electronic smoke detector
Potentiometer-type sine-cosine calculator
Use of magnetic amplifiers for instrument reading amplification
University of Colorado, Boulder, Colorado Radio recention (USAF)
Mass spectrometer


THERE＇S just one source of supply for the Strobotrons you need for＂freezing＂the motion of reciprocating or rotating machinery －Sylvania Electric！

Sylvania Strobotrons SA－309 and R4350 pro－ duce high－intensity，bluish－white light pulses ．．．are ideal for applications where true－color viewing is essential．The R4350 flashes at rates
up to 15 per second；the SA－309，up to 100 per second．
Type 1D21／SN4 provides a source of neon－red light，at frequencies up to 240 flashes per second．

Typical applications of Sylvania Strobotrons include：automotive timing；wheel balancing； adjustment of packaging machinery；regulation of high－speed multi－color printing presses．

MAIL THE COUPON FOR BULLETINS
TRIGGERTUBE TYPE OA5 provides a convenient means of triggering the SA－309， R4350 or 1D21／SN4 from current sources of very low value．The OA5 may also be used for electronic relay and switching applica－ tions as well as for other regular Strobotron purposes．



Gentlemen ：
Please send me descriptive bulletins on Sylvania Strobotrons and Triggertubes．
I am also interested in receiving literature covering applica－ tions of your other products in the fields of：
$\square$ Communications and Industrial Electronics $\square$ Radioactivity
$\square$ Radar and Microwaves
Name．
Position $\qquad$
Company
Street Address
City

[^10]

## because exclusive "componentmatching/s prevents failures

The sure way to avoid trouble due to resistor failure is to use the resistor with the matched components.

Ward Leonard alone makes-not just assembles-all the components of a resistor. (Wire is drawn to Ward Leonard specifications.) This means that all components are balanced in respect to thermal coefficient of expansion and other factors affecting service life. No loosening, no failure-because all parts react the same to their "environment."

Write for bulletin on Vitrohm Resistors, Ward leonard electric co., 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.

TUBES AT WORK (continued from p 118)


Mercury and gas-filled tubes are tested in 30 seconds by the recently developed machine shown
methods used previously.
A photograph of the machine in operation is shown above. A series of lights in front of the operator indicates whether or not a tube has passed certain requirements. The meters shown in the background indicate the voltages applied to the tube during the test, and they also permit rapid changing of voltages when a different type of tube is put through the test.

The machine tests each tube for grid emission, peak are drop (cathode emission), filament resistance, anode breakdown voltage, and grid bias to control breakdown. The latter test is made under two voltage conditions.

## Multiple TV Antenna Coupler

By Leonard Mautner
President
Television Equipment Corp
New York, N. Y.
The problem of operating a number of television receivers from one antenna has been with us for a long time, and indications are that it will become more of a problem in the future. The use of a master receiver with slave monitors, which was first proposed, is not an economical solution because the high production and consequently low cost of standard receivers makes a system employing regular sets preferable from cost considerations.

Radio-frequency distribution sys-

## Cheek the 1949-1950 ELECTRONICS BUYERS' GUIDE FOR TECHNICAL DATA AND LISTINGS ON THE COMPLETE PRODUCT LINES OF THESE MANUFACTURERS Page number of their advertisements are shown after each name

| Acme Electric Corp | 231 |
| :---: | :---: |
| Adams and Westlake Co., The | 7 |
| Advance Electric \& Relay Co | 4 |
| Airtron Inc. | 146 |
| Allen Manuacturing Company. | 209 |
| Allied Control Co., Inc | 35 |
| Allmetal Screw Products Co., Inc | 32 |
| American Chronoscope Corp. | 228 |
| American Gas Accumulator Co | 196 |
| American Lava Corporation | 97 |
| American Phenolic Corporation | 167 |
| American Platinum Works. | 192 |
| American Television \& Radio Co | 192 |
| American Time Products, Inc | 216 |
| American Transformer Company. | 116 |
| Amperite Co., Inc..... | 90 |
| Anchor Plastics Co., Inc | 200 |
| Arma Corporation. | 220 |
| Arnold Engineering Company | 140 |
| Art-Lloyd Metal Products Corp | 174 |
| Art Wire and Stamping Co. | 232 |
| Atomic Instrument Company | 200 |
| Audio Development Co.... | 4 |
| Audio Devices, Inc. | 70 |
| Aviometer Div., Roanwell Corp | 206 |
| Ballantine Laboratories, Inc | 134 |
| Barker and Williamson, luc | 39 |
| Bary Corp.. The | 47 |
| Beach-Russ Company | 196 |
| Bendix Aviation Corporation, Red Bank | 23 |
| Bentley. Harris Mfy. Co. . . . . . . | 127 |
| Beta Electric Corp | 126 |
| Bird Electronic Corporation. | 217 |
| Biwax Corporation | 206 |
| Bliley Electric Company | 91 |
| Bond Electronics Corp. | 212 |
| Boonton Radio Corporation. | 61 |
| Bowser. Inc. | 166 |
| Bratley Laboratories, Inc | 171 |
| Bramin Co., C. S. | 188 |
| Brand and Company, William | 93 |
| British Industries Corp. | 81 |
| Browning Lahoratories, Inc | 179 |
| Brush Development Co. | 169 |
| Buck Enmineering Co., Inc | 224 |
| Bud Radio, Inc. | 9 |
| Burgess Battery Company | 88 |
| Burnell and Company. | 45 |
| Bussmans Mfg. Co. | 0 |
| Cambridge Thermionic Cor | 178 |
| Carter Motor Co...... | 218 |
| Centralab, Division of Globe-Union | 27 |
| Century Geophysical Corporation. | 164 |
| Chatham Electronics. Inc.... . | 28 |
| Chicago Condenser Corporation | 218 |
| Cinaudatraph Speakers. Div. of Aireon | 62 |
| Cinch Manufacturing Corp . . . . . . . . . | 190 |
| Clare and Co., C. P. | 123 |
| Clark Crystal Company | 175 |
| Cleveland Container Co. | 183 |
| Condenser Products Company. | 214 |
| Continental-Diamond Fibre Co...119, | 122 |
| Continental Electric Co. | 176 |
| Continental Electric Co.. Inc | 224 |
| Cornell-Dubilier Electric Corp. | 87 |
| Cornish Wire Co., Inc. | 24 |
| Coto-Coil Co., Inc | 144 |
| Cramer Company, Inc. R. W | 99 |
| Cross Co., H............. | 234 |
| Dano Electric Co | 192 |
| De Coursey Engineerima Lab | 176 |
| Dial Light Company of America | 220 |
| Drake Manufacturing Co.. | 58 |
| Driver-Harris Company | 43 |
| Eisler Engineering Co.. Inc. | 128 |
| Electric Indicator Company. | 136 |
| Electric Soldering Iron Co., Inc | 30 |
| Electrical Industries, Inc | 132 |
| Electrical Reactance Corp. | 83 |
| Electrodyne Company | 188 |
| Electronic Designs, Inc | 230 |
| Electronic Instrument Co.. Inc | 234 |
| Electronic Measurements Company | 172 |
| Electronic Transformer Co., Inc.. | 200 |
| Electrons. Incorporated ...... | 141 |
| Electro-Seal Corporation | 90 |
| Electro Switch Corporation. | 157 |
| Electro-Tech Equipment Co.. Inc | 181 |
| Electro-Voice. Inc. . . . . | 195 |
| El-Tronics Inc. | 189 |
| Engineering Co.. The. | 228 |
| Erie Resistor Corn......... | 109 |

Esry Electronic Corp. Dawkins.

Fansteel Metallurgical Corporation Federal Telephone and Radio Corporation.Ferranti Electric, Inc.

Field Electrical Instrument Co
Ford Instrument Co.
Fuile.Miler Laboratories
Gear Specialties
General Aniline \& Film Cora.
General Control Company
General Electric Company
General Plate Div. of Metals and Controls Cor ration
General Radio Company
Gibbs Jiv., George W. Borg Corp Gramer Company, The
Graphite Metallizing Corporation Gray Research and Deveiopment Co., Inc Guardian Electric Mfg. Co

Handy and Harman.
Harnett Electric Corporation
Haydon Manufacturing Co., Inc Haydu Brothers
Heinenann Electric Company
Helipot Corporation. The.
Hermetic Seal Products Co
Hewlett-Packard Co.
Heyman Manufacturing Co.
Hillburn Electronic Products Co
Hudsont Wire Co., Winsted Div. Hunt Corporation

Illinois Condenser Co
Indiana Steel Products Co
Industrial Electronics, Inc
Insl-X Company, Inc.
Instrument Resistors Company. Instrument Specialties Co.. Inc Insulation Manufacturers Corp. Insuline Corporation of Amrer I-T-E Circuit Breaker Co.
J.B-T linstruments, Inc

Jelliff Manufacturiny Corp,, C. 0 .
Jeminings Radio Manufacturing
JFD Manufacturing Co., Inc
Jones Division, Howard B., Cinch Manufacturing
Jones Electronics Comuany, M. C. .
Kahle Envineering Co.
Karp Metal Products Co., Inc
Kenyon Transformer ${ }^{\text {Ko }}$
Kenter Solder Compo., Inc
Kolzzy Tool Co
Kollsman Instr. Div., Square D Co
Lambda Electronics Corp
Lampkin Laboratories, Inc
Lavoie Laboratories
Lewis Spring and Manufacturing Co Lord Manufacturing Company

Macdenald Co., Inc., W. S
Macheft Laboratories, Inc
Makepeace Company. D. E.
Makepeace Company. D. E.
Mallory and Co. Inc., P. R
Marion Electrical Instrument $C_{0}$
MB Nanufacturing Company. Inc Measurements Cornoration
Mico Instrument Co
Minia:ure Precision Bearings. Inc
Mitchell-Rand Insulation Co., Inc.
Model Rectifier Corp
Mycalizx Corporation of America
National Carbon Co.. Inc
National Company, Inc
National Electronics Inc.
National Moldite Company
National Varnished Products Corp.
National Vulcanized Fibre Company
Newark Electric Co.. Inc.
Ney Gompany. J. M
Northerı Radio Co .
153. 154. 155
29
131
129,131
133,135
86
80
80
90
90
53
226
59
185
114, 119
95
1 188

Ohmite Manufacturing C0 ..................... 201
Olympic Tool \& Mfg. Co., Inc. ..................... 174
Palnut Company, The
Panoramic Radio Products, Inc
Paper Machinery and Research, Inc
Patton-MacGuyer Company
Permoflux Corporation
Phillips Control Corporation
Pickering and Company.
Polytechnic Research and Development Co., Inc
Potter and Brumifield Sales Co.
Precision Paper Tube Co.
Premax Products
Presto Recording Corporation
Proctor Soundex Corp.
40,
Production Engineering Corp
Radio Corporation of America.
Inside Back and Back Cover
Radio
Raytheon Manufacturing Company
Reeves-Hoffman Corporation
Reeves Soundcraft Corp
Research Electronics Labs
Rex Rheostat Co..
Robinette Co.. W. C
Rome Cable Cornoration
Royal Diamond Tool Co.
Russell and Stoll Co., Inc
Sanborn Company.
Schenectady Varnish Co., Inc
Scientific Electric, Division of " S " Corrusated
Quenched Gap Co.
Shure Brothers, lic
Shurite Meters
Situma linstruments, Inc
Sifnal Engineering \& Mfg. Co
Smith Paper, Inc
Soldering Specialties
Somerset Laboratories
Sorensen and Company, lne
Spellman Television Co., Inc
Spencer-Kemedy Laboratories, Inc
Sperry Gyroscope Co.
Standard Coil Products Co.. Inic.
Standard Transformer Corporation
Star Expansion Products Co., Inc
Star Expansion Produc
Staver Commany, Inc
Sterling Mfg . Co
Sterimg Mfij . Co., G
Stevens Mfy. Co.. Geo.
Stewart Mfy. Corp., F.
Stupakoff Ceramic and Mifo Co
Stupaxoff Ceramic and
Superior Electric Co.
Superior Tube Company
Switcheraft. Inc.
Sylvania Electric Products, Iır
Electronics Division
Radio Division
Tektronix, Inc
Telechron, in
Thomas Electronics, Inc
Thomas Elex, Inc. ........
Transicoil C
Trans-Sonics, Inc
Transvision, Inc.
Tung-Sol Lamp Works, Inc
Turner Company, The.
Union Carbide \& Carbon Corporation
United Condenser Corp
United Transformer Co. ................................... 22
Universal Winding Co....................
Vickers Electric Div., Vickers, Inc.. A Uinit of the Sperry Corp.
Victoreen Instrument Co
Vulcan Electric Company
Walker Company, George
Walter Co., Inc., S
Ward Leonard Electric Co
Waterman Products Co..
Webster Spring Corporation.
Weiss, Jerry
Westinghouse Electric Corp.
White Dental Mf Coctro Corg
Williams and Co., C. K
Zophar Mills, Isc.
-

## A N Connector AVAILABILITY from CIPHENOD



FIRST PUBLISHED AVAILABILITY LIST CONFORMING TO NEW SPECIFICATIONS MIL-C-5OI5

AMERICAN PHENOLIC CORPORATION
1830 South 54th Ave., Chicago 50, IllinoisPut me on the mailing list for "Amphenol Engineering News"Send me the November issue on AN Connector availability $\square$ Send me the December issue on RF Connector availability
NOTE: If you wish extra copies of any issue, please advise quantity, If other personnel of your company wish to receive "Amphenol Engineering News" advise on separate letterhead.

COMPANY

INDIVIDUAL

ADDRESS
RF Connector AVAILABILITY from CJTHITIO


## published in DECEMBER issue of AMPHENOL ENGINEERING NEWS

TUBES AT WORK


Circuit diagram of four of the eight stages in the eight-position television isolation amplifier for multi-receiver reception with a single antenna
tems fall into three general classifications:

First, there is the resistor-attenuator scheme which may be useful for a very limited number of sets in a high-signal area. This system has little merit because in an effort to obtain high isolation between sets, one must attenuate the signal so severely that the application is quickly limited in scope.

The second classification involves the use of a single antenna with a central isolation amplifier or a group of individual isolation ampli-fiers-all employing vacuum tubes to provide the necessary isolation over the ty bands with minimum of introduced loss. The offhand suggestion of a cathode-follower in this application is, however, an incorrect one. It is not possible to maintain uniform gain characteristics at 216 mc by the use of this technique. The use of a distributed line type wide-band isolation amplifier, however, provides a satisfactory economical solution. A typical equipment of this type is described below. Such a scheme finds wide application in all but the lowest signal areas, and this solution, when coupled with a wide-band amplifier having a gain of the order of 20 db , then provides an economical solution for nearly all locations.

The third method, which by its nature is the most costly and elegant, involves the use of a separate antenna and channel amplifier for each station. The mixed signals may then be piped at relatively high level around the building proper with bridging take-offs for each of

## record-making problems...

## and how photography helps solve them

 ...with savings
## Reducing Office Copying Costs

SOLUTION: Make photocopies with Kodagraph Contact Paper. Anyone, with simple equipment. can easily make accurate, lasting photocopies of documents and letters. Kodagraph Contact Paper is durable, uniform in quality. Developed specifically for use with existing contact photocopy machines, it has wide latitude . . assures crisp copies of unsurpassed legibility.

Photocopies save the costs of copying by hand. . . insure absolute accuracy.

More legible photocopies at low cost with Kodagraph Contact Paper.

## Preserving Engineering Drawings

SOLUTION: Make photographic duplicates in one printing on Kodagraph Autopositive Paper, and get file prints or intermediates that will stand the wear and tear of handling and machine feed-throughs . . . that won't yellow, smudge, or fade. Kodagraph Autopositive Paper can be handled in ordinary room light, and can be exposed on familiar directprocess or blueprint equipment.

Photographic intermediates make better prints . . . and save your originals.


Longer lasting, higher quality intermediates on Kodagraph Autopositive Paper.

## Making Room for More Records

SOLUTION: Put inactive records on microfilm, destroy the obsolete originals, and use the file space so obtained for newer records. Microfilming can reduce the bulk of files by as much as $98 \%-$ a sensational saving in space. Record your smaller papers, your larger documents and drawings with Kodagraph MicroFile Machines and Recordak microfilming equipment and service.

Microfilming protects your records, keeps them in order. . . saves space.


Space savings-up to $98 \%$ -through Kodagraph and Recordak microfilming.

Photography reproduces detail exactly, com-pletely-even improves quality; photography pre-serves-and, if you wish, condenses or enlarges. It can help you lower costs, increase efficiency, speed operations . . . in factory, laboratory, office.

## FUNCTIONAL PHOTOGRAPHY

## serves business and

 industrial progress
## MAIL THIS COUPON...

EASTMAN KODAK COMPANY industrial photographic division ROCHESTER 4, N. Y.
Please send me more information abouf
$\square$ better photocopiesbetter engineering printsmicrofilming to save file space



Disphay Board of "AN" Plugs shown above does not inolune sizes 40,44 or 48, AN3100 Receptacles or AN3 10 O Quick Discmanect Plugs, Other AN accessaries are Bonding IRings, Dummy Reveptactes, Straight and $90^{\circ}$ Junction dhells and
Dust Caps. Dust Caps.


## A SAMPLE BOARD OF CONNECTOR QUALITY

HAVING pioneered the multi-contact electric connector for aircraft and other industries, Cannon Electric contributed much to the original design of the AN connector specifications when it was set up between 1936-1939, and during numerous stages of development from the AN9534 to the present AN-C-591. Not only have the armed services benefited from these but also countless strictly commercial users. For the AN Bulletin, address Dept. A-120.


World Export: Frazar a Hansen, San Francisco Canadian plant: Cannon Electric Ca., Ltd, Yoronte


Commercial version of apartment house television distribution amplifier
the receivers. In this case it is less difficult to orient the separate antennas to minimize ghost patterns which arise in certain difficult locations due to the large neighboring buildings. However, such a solution with its expensive and complicated terminal equipment is only practical and economical for the largest and most elaborate installations.

## Wide-Bund Amplifier

A typical example of a wide-band isolation amplifier is the Telecoupler shown in the accompanying diagram. Only four of the eight plateloaded output stages are shown. The grid circuits in each stage provide the shunt capacitance for a low-pass filter network. Its operation is readily apparent. Using a pair of 150 -ohm unbalanced lumpedconstant transmission lines for the low-pass filter, one can arrange to drive them back-to-back to provide a 300 -ohm input. Alternatively, operating them in parallel provides a $75-\mathrm{ohm}$ input. In the case of $300-$ ohm operation, each pair of tubes on opposite sides of the line provides a 300 -ohm source looking back into their plate circuits. Thus, one can provide outputs from one antenna to four 300 -ohm tv sets with an accurate match available. Since the conventional receiver may be considerably unbalanced in its input, it is often possible to use the eight 150 -ohm outputs to drive eight 300 -ohm or 75 -ohm receivers.

By removing the termination at the far end of the line, one can add a number of units in cascade, providing more outputs. As many as 24 output lines have been successfully used in practice. Precautions must be taken to make sure that local oscillator radiation from one set with an unbalanced or radiating front end will not radiate back through the system and interfere

# ALWAYS SET UP AND READY TO MEASURE Inductance - Resistance - Capacitance 

Here's the handiest piece of equipment for any laboratory where electrical components are used.

- It is completely self-contained except for headset for a-c measurements
- It measures the basic quantities of Inductance - Resistance - Capacitance - over very wide ranges
- Its accuracy is high enough for most routine measurements of these quantities
- It has built-in standards
- It contains both d-c and a-c power sources
- It has a panel-mounted d-c zero-center galvanometer for d-c null indication
- It is very simple to operate

With the G-R Type 650-A Impedance Bridge you have for once and forever abolished the time-consuming project of assembling a makeshift bridge from an oscillator, detector, arms and power source for routine measurements of an unknown coil or condenser. That's why thousands of these versatile instruments are daily in use in laboratories throughout the world.

Write for Complete Data

## GENERAL RADIO COMPANY

Cambridge 39, Massachusetts
90 West St., New York 6920 S. Michigan Ave., Chicago 51000 N. Seward St., Los Angeles 38

TYPE 650-A
IMPEDANCE
BRIDGE:
\$240.00


If you have a fabricating or processing problem involving paper . . . if you require definite technical characteristics and, above all, dependable uniformity, it may be worthwhile for you and Mosinee technicians to get together. Mosinee is not interested so much in terms of volume production as in our ability to render helpful service to manufacturers in the field of electronics and in the electrical goods industry. Our "paperologists" are at your service for consultation. Please write Dept. E.


## MOSINEE PAPER MILLS COMPANY• MOSINEE, WIS. Eisential Paper Manufacturers

with other sets. Little interference may be expected through common impedance in the circuit, but poor installation technique may provide cross radiation between sets, and this must be watched carefully. This trouble, however, will be reduced considerably when more sets use the new $40-\mathrm{mc}$ RMA standard intermediate frequency.

Although the foregoing techniques appear involved, it would appear that master antenna distribution systems will continue to be necessary in the future because, in spite of the manufacturers' efforts to provide new sets with built-in antennas, their performance is only satisfactory in a small minority of installations, where exceedingly large signal strengths are encountered. The effective shielding of buildings with steel frame construction seem to make the hope of a really antenna-less set a slim one at this time. A commercial model of the Telecoupler is shown in the photograph.

## Automatic Moisture Content Control

By David A. Utley

Barber-Colman Company
Rockford, Illinois
One of the most critical conditions in the manufacture of textiles is the moisture content in the warp threads, or longitudinal threads supplied to the loom after the application of the size to the threads. Correct moisture content in the sized threads enables them to withstand the flexing and abrasion imposed by the weaving process in the loom.

If the moisture content of the warp is excessive, the entire warp spool or beam will mildew and spoil during storage prior to weaving. Excessively low moisture content results in low weaving efficiency due to time consumed in fixing breaks in brittle warp threads, and low quality finished fabric because of excessive ties in the warp. Furthermore, since the moisture content is determined by a drying operation, low moisture content is indicative of a needlessly slow dryer.
The moisture content of the threads is determined by the speed


Provides many times greater resistance control in same panel space as conventional potentiometers!

TF YOU are designing or manufacturing any fipe of precision Eelectronic equipment be sure to investigate the greater convenience. utility, range and compactness that can be incorporated into your equipment by using the revolutionary HELIPOT for theostatpotentiometer control applications...and by using the new DUODIAL turns-indicating knob described at right.

Briefly, here is the HELIPOT principle... whereas a conven. tional porentiometer consists of a single coil of resistance winding. the HELIPOT has a resistance element many fimes longer coiled belically into a case which requires no more panel space than the conventional unit. A simple, foolproof euide controls the slider contact so that it follows the helical path of the resistance winding from end to end as a single knob is rotared. Result... wish no increase in panel space requirements, the HELIPOT gives you as much as 12 times" the control surface. You get far greater accuracy, finer settings, increased rangewith maximum compactness and operating simplicity!

## COMPLETE RANGE OF TYPES AND SIZES

The helipot is avaitable in a complete range of types and sizes to meet a wide variety of control applications

MODEL A: 5 walts, 10 turns, $46^{\prime \prime}$ slide wire length, $11 / 4^{\prime \prime}$ cose dia., resistonces 10 to 50,000 ohms, $3600^{\circ}$ ratation.
MODEL B: 10 watts, 15 turns, $140^{\prime \prime}$ slide wire length, $3 / 4$ " case dia., resistances 50 to 200,000 ohms, $5400^{\circ}$ ratation.
MODEL C: 3 wath, 3 turns, $131 / 2^{\prime \prime}$ slide wire length, $13 / 4^{\prime \prime}$ cose dia., resistances 5 to 15,000 ohms, $1080^{\circ}$ rotation.
MODEL D: 15 watts, 25 turns, $234^{\prime \prime}$ slide wire length, $31 / 4$ case dic., resistances 100 to 300,000 ohms, $9000^{\circ}$ rotation MODEL E: 20 walts, 40 turns, $373^{\prime \prime \prime}$ slide wire length, $31 / "^{" *}$ case dia., resistances 150 to 500,000 ohms, $14,400^{\circ}$ rotation

Also, the HELIPOT is available in various special designs ... With double shaft extensions, in multiple assemblies, integral dual units, etc.

Let us study your potentiometer problems and suggest how the helipot can be used - possibly is already being used by others in your industry - to increase the accuracy, convenience and sim. plicisy of modern elecronic equipment. No obligation, of course. Write today outlining your problem.
*Data for Model A, $13 / 4$ " aica. Helipot. Obber models gice even greater control range in $3^{\prime \prime}$ case diameters.


The inner. or Primary dial of the duodial shows exact angular posiwon of shati during each retolution. The outer, or Secondary dial thon of shata during eash retolution. The outer, or Secondary dial
shous nuber of complete tetolutions made by the Primary dial.

A multi-furn rotational-indicating knob dial for use with the HELIPOT and other multiple turn devices.

The duodial is a unique advancement in knob dial design. It consists essentially of a primary knob dial geared to a concentric rurns-indicating secondary dial-and the entire unit is so compact it requires only a $2^{\prime \prime}$ diameter pancl space!

The duodial is so designed that - as the primary dial rotates through each complete revolution-the secondary dial moves one division on its scale. Thus. the secondary dial counts the number of complete revolutions made by the primary dial. When used with the HELIPOT, the DUODIAL registers both the angular position of the slider contact on any given helix as well as the particular helix on which the slider is positioned.

Besides its use on the helfpot, the duodial is readily adapt. able to other helically wound devices as well as to many conventional gcar-driven controls where extra dial length is desired withour wasting panct space. It is compact, simple and rugged. It contains only tro moving parts, both made entirely of metal. It cannor be damaged moving parts, both made enivecty of metal. It cannor be damaged chanical stop. It is not subject to error from backlash of internal gears.

## TWO SIZES - MANY RATIOS

The duodial is now available in two rypes - the Mode! " $R$ ' (illustrated above) which is 2 " in diameter, and the new Model " 1 ". which is $43 / \mathbf{y}^{\prime \prime}$ in diameter and is ideal for main control applications. Standard surns-ratios include $10: 1,15: 1,25: 1$ and $40: 1$ (ratio between primary and secondary dials). Other ratios can be provided on special order. The 10:1 ratio Duodial can be readily employed with devices operating fewer than 10 revolutions and is recommended for the 3 -turn heripot. In all rypes. the primary dial and shaft operate with a 1;1 ratio, and all rypes mount directly on a $1 / 4$ " round shaft.

Send for this
helipot and duodial catalog!
Contains complete data, construction details, etc., on the many sizes and types of HELIPOTS... and on the many unique features of the DUODIAL. Send for your free copy today!

## small OPEN GEAR TRAINS made to your specifications



Many units, such as timers, transmitters, vending mechanisms, and similar devices require the adoption of small open gear trains for intermittent duty.
Beaver Gear Works is equipped to make these trains to any degree of accuracy required. Beaver Gear engineers, knowing what is expected, and cualified to assist in details - of fine-pitch gear applications, can advise you as to what will work best under various


1021 PARMELESTREET, ROCKFORD, ILLINOIS




TUBES AT WORK
at which they pass over the steam heated rolls of the sizing and drying machine, the slasher. To obtain maximum slasher efficiency, an electronic moisture content control has been developed. This instrument continuously measures and records the moisture content of the warp and automatically adjusts the speed of the slasher by an amount proportional to the magnitude of the moisture content deviation.

## Detector Unit

The control makes use of the principle that the resistance in the warp thread is a function of the warp moisture content. The resistance of the warp is measured as it passes between the insulated detector and a grounded roller shown as $A$ in Fig. 1. This resistance is high (sometimes several thousand


FIG. 1-Schematic of automatic moisture content control unit for use in the textile industry
megohms) and can be measured accurately only by a vacuum tube. Variations in moisture content of the warp change the resistance in the circuit through the detector rolls. As the warp resistance varies, the tube grid bias changes to alter the resistance of the tube. This change in tube resistance unbalances the measuring unit bridge and produces a d-c potential across points $C$ and $D$. The magnitude of this potential is proportional to the change in warp moisture content and the polarity is determined by the direction of the change.

The relative $d-c$ potential between


## pIONEERS ARE PARTICULAR PEOPLE

If you want a better Permanent alnico magnet with higher gap flux per unit weight, call on Crucible.

CRUCIBLE STEEL COMPANY OF AMERICA, Chrysler Building, New York 17, New York.
first name in special purpose steels

## PERMANENT ALNICO MAGNETS

## Ballantine's PEAK to PEAK

 Electronic VOLTMETER

MOOEL 305

Tle outetanding characteristic of the Model 305 Electronic Veltmeter is its ability to provide absolute indication of transient or pulse voltages of short duration. Reliable indication of pulses a few microseconds wide repeated only 10 times per second is readily obtained with this instrument. The Voltmeter is pre-calihrated, compact, easy to operate and observe. Positive and negrative peaks are registered over the range of .00 l volt to 1000 volts, peak to peak. Decade ranges and a logarithonic scale output meter are characteristic features, along with a separately available high gain, wide-band amplifier.

# BALLAVTILE LABORATORIES, INC. 

points $C$ and $D$ is first converted to a-c with a phase relationship to the a-c supply determined by the unbalance of the bridge. This a-c voltage is then amplified and impressed across the wound shading coils of the reversible shaded pole induction motor, $M_{1}$. When energized, this motor actuates the moisture indicator pen arm to indicate the new moisture content; it adjusts a bridge resistor to rebalance the measuring circuit bridge which was unbalanced by the change in warp moisture content; and it actuates $R_{1}$ to bring about a change in slasher speed.

Unfortunately, the warp resistance does not vary linearly with the moisture content. This nonlinearity necessitates a tapered bridge resistance and a pen drive through a specially shaped cam which makes possible the use of a linear indicator chart calibrated in terms of percent moisture.

## Speed Control

Direct control of the slasher speed from the shaft of $M_{1}$ with simple floating control is impossible, because, due to the amount of yarn in the slasher, the full effect of a speed change is not immediately apparent at the detector. Therefore, the rate of speed change must be decreased to prevent control hunting and the resulting wide swings around the control point which may cause wet spots in the warp. To eliminate this hunting full proportioning speed control is


Recorder in upper right-hand corner keeps record of moisture content of warp


## THA <br> 201 RANDOLPH AVENUE $\quad \star \quad$ WOODBRIDGE, NEW JERSEY



You get better service from Leach Relays because thousands of types of relays for thousands of applications have been proved-in-use for over 30 years.

Leach Relays are designed with an exceptionally high factor of safety for extra dependability. Simplicity of designs makes installation quick, easy and inexpensive. Get all the facts and make your own comparisons. Leach Relays' outstanding performance, reliability, sturdiness and economy have been proved-in-use.

Highest standards of engineering, materials and workmanship assure long, safe, efficient, trouble-free service.

## for better controls through better relays - contact leach

## LEACP

 REGAYCO[^11] Representatives in Principal Cities of U. S. and Canada

TUBES AT WORK (continued) necessary. With full proportioning control, a speed adjustment proportional to the moisture content deviation is made.

The circuit which provides for this proportioning control is the lower half of the circuit shown in Fig. 1. It controls motor $M_{4}$ which drives the slasher speed adjusting mechanism. Motor $M_{4}$ is similar to $M_{\mathrm{I}}$ in construction, and like $M_{\mathrm{T}}$, is controlled by an amplified voltage supplied from $R_{1}$ and $R_{3}$, which are connected through $R_{2}$ and $R_{1}$, Any voltage which exists between the sliders of $R_{1}$ and $R_{\underline{g}}$ must be opposed by an equal and opposite voltage between the sliders of $R_{s}$ and $R_{3}$. If the slider of $R_{1}$ is moved, a voltage is applied to the amplifier.

When the warp moisture content changes, the slider of $R_{1}$ is moved by $M_{1}$, producing a voltage across the input of the amplifier the output of which operates $M_{i}$, to change the slasher speed. This motor also operates $R_{3}$, moving the slider in a direction to reduce the input voltage to the amplifier. Thus, the system will again be brought into balance at a new slasher speed.

## Resetting Device

The entire control circuit operates to attain a new balance that will maintain the slasher speed at a point which will produce a new moisture content of the warp. The purpose of the control, however, is to alter the slasher operation to restore the original moisture control point. This function is effected by the resetting device.

The desired moisture control point is preset by means of a manual adjustment which positions $R_{2}$ and a cam-operated double-throw switch with a central "off" point. When the warp moisture content is


The moisture content detecting element measures the resistance of the warp



When you've spent a lot of money for a Flat system but still find your dises giving you this:


## Switch to

## Presto Disca

On Presto discs high frequencies stay up where they belong.

at the desired point the switch does not make contact, but when the moisture content varies from the desired control point, this switch operates to set the reset $M_{z}$ in operation to slowly move the slider of $R_{4}$. This adjustment produces a further unbalance of the control circuit bridge in such a direction as to correct the original shift from the control point. The operation of $M$ is then not only dependent upon the position of $R_{1}$, but upon the combined positions of $R_{4}, R_{5}, R_{3}$ and $R_{4}$. When the moisture content varies, $\boldsymbol{R}_{1}$, driven by $M_{1}$, assumes a new position which produces a change in slasher speed. As the slasher speed is changed, $R_{3}$ is repositioned to balance the control circuit at a new moisture content. However, the variations from the control point of the warp moisture also operate $R_{\text {, }}$ in a direction to cause further unbalance of the balancing unit. This further unbalance causes the $M$. to continue to operate until a slasher speed has been reached which will produce warp of moisture content which is again equal to the desired control point.

## Converter Circuit

The d-c to a-c converter is shown in Fig. 2. The potential across points $C$ and $D$, which was mentioned above, is used to obtain a $60-$ cycle voltage. The amplitude of the a-c output voltage varies with the magnitude of the $d$-c voltage, and its phase depends upon the polarity of the d-c voltage. The 60-cycle voltage is then fed through a conventional two-tube amplifier to the wound shading coils of $M_{1}$ which is connected as a single-phase shadedpole induction motor. With the fisld winding of this motor comected directly to the supply line, the di-


FIG. 2-The magnitude and phase of the a-c output of the converter is determined by the magnitude and polarity of the d-e input voltage


## ceramics, too!

Five thousand years ago, potters were making household vessels of clay. As skill grew, grace of shape and ornament were added. The beauty of fine china has been recognized by every civilization, while the availability, ease of manufacture and durability of other ceramics have given them wide use.

Your telephone, too, uses ceramics. Behind its dial is a metal plate, glazed as carefully and in much the same manner as this fine piece of pottery. It carries the letters and numbers you dial, so it must resist both fading and abrasion. You will find other ceramics as insulators, supporting wires on pole lines; in eighty thousand miles of underground conduit, where fired clays defy decay and corrosion.

Today at Bell Telephone Laborato. ries scientists utilize ceramics in ways undreamed of in ancient times. Thermistors, made of a ceramic, provide automatic controls for electric current, to offset fluctuations in temperature and voltage. One kind of ceramic makes low-loss insulation at high frequencies, while another supplies controlled attenuation for microwaves traveling in waveguides.

Each use demands a special composition, scientifically controlled and processed. Basic studies in the chemistry and physics of ceramics have shown how to utilize their versatile properties in electrical communication. And research continues on ceramic materials as well as on every other material which promises better and cheaper telephone service.

EXPLORING AND INVENTING, DEVISING AND PERFECTING, FOR CONTINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE.

llustrated is a complete 12 -channel portable laboratory for precision strain determination from static strain to a frequency of 5000 cycles per second, using resistance gages that are attached by cement to the points of strain.

In the field or in the laboratory... on a high-speed locomotive or in the air... HATHAWAY strain recording equipment is ideal for the recording of STATIC AND DYNAMIC STRAIN in structural members and machines in operation.

Complete with all necessary balancing controls and monitoring instruments, precision calibrating device, power supply equipment and oscillator, and type S8-B Oscillograph.

TYPE MRC-15 12-element Strain Gage Control Unit. Fully described in Technical Bulletin SP 195 G
Types8-8 12- to 48 -element Oscillograph Fully described in Technical Bulletin SP 165 G


## BIGGER

## ...for G. A. ${ }^{\mathbb{E}}$. Carbonyl Iron Powders

In December 1948, we said in an advertisement, "49 . . looks like a Carbonyl Iron Powder year. Estimates show that practically all Television sets, and most of the Radio sets made in 1949 will contain cores made of Carbonyl Iron Powders."
. . . . The accuracy of our prediction is attested by the fact that our sales volume
increased greatly during 1949.
We enter 1950 with our production capacity greatly expanded - an attainment that seemed all but impossible one year ago.

We invite you to ask your core maker, your coil winder or any competent industrial designer, why we believe that 1950 looms up as a still bigger year for Carbonyl Iron Powders.

## ANTARA® PRODUCTS



ring method of ganging. ranging from $100 \Omega$ to $200,000 \Omega$ and power ratings of 8 and 12 watts. $360^{\circ}$ mechanical rotation or limited by stops as desired. Models with $5 \%$ total resistance accuracy - $\$ 6.00$ . . $1 \%$ accuracy - $\$ 8.00$. Special models available for high humidity applications.

Type RVT Transilatory Potentiometer Actuated by longitudinal instead of rotating motion providing linear electrical output proportional to shaft displacement. Used as a position indicator, high amplitude displacement type pickup and for studying low frequency motion or vibration. Features exceptionally high linearity and resolution. Available in various lengths depending on amplitude being studied.



Valuable catalog - yours for the asking. Contains detailed information on all TIC Instruments, Potentiometers and other equipment. Get your copy without obligation - write today.

Engineering Representatives
Cleveland, Ohio - PRospect 6171
Chicago Ill.-STate 2.7444 Dallas, Tex.-LOgan 6.5097 Rochester, N.Y.-Charlotte 3193-J Cambridge, Mass.-ELiot 4-1751 Canaan, Conn.-Canaan 649 Hollywood, Cal.-HOllywood 9.6305
stufis. In fact, this instrument is adaptable to any application where control through resistance changes is possible and continuous full proportioning control is desired. The control is covered by patents or patents pending.

## A High-Speed Collator

Sorting Large numbers of pages of paper into sets or booklets can be very tedious and time-consuming to office personnel. The Thomas Mechanical Collator Corporation has come up with a machine that does the job automatically and accurately and at speeds of up to 18,000 sets per hour for a ten-page unit. A similar volume of collating would take the average hand collator about six hours to complete.

The machine operates with a vacum pickup arrangement which gathers pages from their individual piles and arranges them in sets in their correct sequence. The finished sets are deposited on a conveyor belt and moved to another pile.

Electronics is responsible for the complete accuracy of the device. Should the vacuum device fail to pick up one of the sheets of paper, the machine is automatically reversed, so that the pages already picked up for the set that would have been incomplete are returned to their original piles for the next pickup.
According to the manufacturers, the machine not only saves money,


High-speed collator's accuracy is as sured by electronic controls whicb supervise its operation


A complete tube complement for longer-service portables

Sylvania-and only Sylvania-brings set manufacturers this group of low-drain battery-type tubes that consume only half as much heater current as previously available types. Requiring only 25 ma filament current, they will triple life of present " $A$ " batteries!

These new tubes also offer opportunities for the design of smaller " $A$ " batteries, which will permit manufacture of more compact portables without sacrifice of performance.

The four types include a pentode amplifier, a converter, a diode pentode and an output pentode-forming a complete tube complement for portables. They offer comparable power output and sensitivity to previous types... and give excellent performance with a plate supply of only 45 volts.

Remember . . . these new tubes come to you from the same company that first made the 1.4 volt battery tube available!

radio tubes; cathode ray tubes; electronic deyices; photolamps; FLUDRESCENT LAMPS, FIXTURES. WIRENG DEVICES, SIGN TUBING; LIGHT BULLS

Typical Operating Conditions

| Characteristic | 14F4 | 1 AF5 | 1166 | $3 E 5$ |
| :--- | :---: | :---: | :---: | :---: |
| Filament Voltage (Volts) | 1.4 | 1.4 | 1.4 | 2.8 |
| Filament Current (ma) | 25 | 25 | 25 | 25 |
| Plate Voltage (volts) | 90 | 90 | 90 | 90 |
| Transconductance ( $\mu$ mhos) | 950 | 600 | $275^{\star}$ | 1100 |
| Plate Resistance (megohms) | 1.8 | 2.0 | 0.6 | 0.12 |
| Power Output (mw) | - | - | - | 175 |

*Conversion Transconductance


## a COMPLEIE LINE of CAA APPROVED* TOWER LIGHTING EQUIPMENT sy fradioew Designed for Dependability . . . Immediate Delivery . . .



ISOFORMERS, Types 2015 and 2030 . Interlocking ring, air-insulated lighting transformers; particularly adapted for use with towers that develop a high voltage across the base insulator.
REPLACEMENT LAMPS, for code beacons and obstruction lights. Carried in stock in variety of filament voltages.
lighting filters, for use with insulated towers developing moderate voltages above i MC. Models available unhoused or in weatherproof steel housing.
BURNOUT INDICATORS, to show lamp failure. PHOTOELECTRIC CONTROL SWITCHES, to turn tower lights ON and OFF.
FLASHERS, for code beacons.
COMPLETE TOWER LIGHTING KITS, including conduit, wire, and all fittings for towers of any height.

300 MM CODE BEACON, Type 660. Sturdily constructed, completely dependable. To provide steady, uninterrupted service for many years of exposure to rigorous weather conditions, metal parts are made of cast aluminum with hardware of corrosion resistant bronze. Insects are kept out by screens placed in ventilating openings.


SINGLE (Type 661A) and DOUBLE (Type 662A) OBSTRUCTION LIGHTS. Easy to service, rugged, reliable. To replace burned out lamps, just loosen one thumb screw and open the two piece cast aluminum housing.
Write for descriptive bulletins or furtber information-loday.


EAST TSIR STREET CHICAGO IG


TRANSMISSION LINES FOR AM.FM.TY - ANTENHAS - DIRECTIONAL ANTENNA EQUIPMENT AMTENNA TUNING UNITS - TOWER LIGHTING EQUIPMENT - CONSULTING ENGINEERING SERYICES WORLD'S LaRGEST ANTENNA EQUIPMENT SPECIALISTS

TUBES AT WORK
(continued)
time, and effort, but it creates "Happier, more inspired, more creative and more productive employees."

## Photoelectric Timing Equipment

Is ELECTRONICS going to the dogs? A recent installation of electronic timing equipment at Hackney Wick Stadium in London indicates that it has. The apparatus is designed to time greyhound races. It operates from the a-c distribution lines and provides accuracies far greater than would be possible with conventional hand timing methods. It incorporates a control desk with a six-inch diameter clock graduated to $1 / 100$ second which, compared with a stop watch is very easy to read.

The clock is clutch operated from the driving motor which runs continuously. This mode of operation avoids entirely the mechanical strains which are so frequently present when stop watches are operated from an electrical solenoid or armature movement.

The apparatus is designed to be automatic in operation and to eliminate errors as far as possible. The frequency of the supply line even though reputedly controlled is far too variable over short periods to provide the accuracy required by the equipment and in consequence a special tube-maintained tuning fork guaranteed to provide a supply frequency correct to less than 1 part in 6,000 is included as a separate unit.

## Tuning Fork Control

This instrument is mounted on a rack panel and housed in a metal case. All controls except the line switch and fuses are mounted at the rear of the instrument. Two preset


Circuit diagram of tuning-fork-maintaining amplifier

*Plastic Film Dielectric Capacitors

## We manufacture capacitors to specifications for

 many unusual applications. A few examples are:- High voltage filter capacitors for compact X-Ray equipment
- Ultra high resistance capacitors for radiation counters
- High Voltage-High Q carrier current coupling capacitors
- RF power capacitors for transmitters, dielectric and induction heaters
- Energy storage capacitors for Sonar, welding and photoflash
- Low capacitance drift capacitors for filters
- Laboratory grade capacitors for computers, integrators and bridge standards
- Pulse forming network for radar
- High voltage AC capacitors for power factor improvement

In addition to our capacitors, we manufacture a standard line and build special high voltage, low current power supplies.

> STANDARD PLASTICON* CAPACITORS

A complete line of standard capacitors for industrial and electronic applications is available. Our engineers will be pleased to discuss your problems.

## Write for copy of our latest catalog.

# Sy hecin/ TRAIISFORMERS <br> <br> TO MEET UNUSUAL <br> <br> TO MEET UNUSUAL SPECIFICATIONS 

 SPECIFICATIONS}


Above: Special DC power supply unit, input 115 volts 60 cycles-out put 2500 volts filtered DC at 5 MA.
-
Rigbt: A bigb quality speaker line auto transformer, used in multiple speaker installations to ad-

The manufacture of "tailor-made", one-of-a-kind transformers, and small runs of custom-made specialty units, are important features of NYT service. A staff of engineering and production experts will translate your most exacting specifications into the components you require.



Left: A three phase bigh voltage plate transformer, ueighing over 300 pounds. Rectifier output is 11 KVA DC (7000 volts at 1.5 amps).

The transformers illustrated show only three of the many which have been developed or manufactured by New York Transformer Company for special applications in radio, television and electronics. No matter how unusual your specifications, NYT will build transformers to
meet them! Special facilities also include the manufacture of hermetically sealed units to meet current JAN T-27 and other government specifications; and specially treated, lightweight, uncased units for airborne equipment.

Let us know about your specifications and development problems. NYT experts and engineers are at your service.

## NEW YORK TRANSFORMER CO.r INC. ALPHA, NEW JERSEY

potentiometers are provided to give a frequency adjustment of $\pm 50$ parts in $10^{\circ}$.

The tuning fork is made of special steel with an extremely low temperature coefficient. The fork is accurately balanced on a resilient mounting to absorb antimodal vibrations thereby eliminating the need for a heavy metal frame.

The maintaining amplifier shown in the circuit diagram is a conventional two-tube cathode-follower drive circuit and no negative feedback is used. The gain of the first tube is controlled by an age circuit with the normal diode arrangement to provide the control bias. This


British race-timing unit provides accuracies far greater than hand timing with stop watch
circuit minimizes the effect of amplitude instability inherent in all low frequency forks. The output amplifier is designed to deliver about three watts at 200 to 250 volts for operating the clock motor.

The frequency instability from all causes is less than $\pm 50$ parts in $10^{\prime \prime}$. The amplitude does not change by more than $\pm 1 \mathrm{db}$ for a change of $\pm 10$ percent in supply voltage.

## Clock Control Circuit

An elaborate system of switches and relays makes the device almost foolproof. The clock clutch is operated by a starting switch which also initiates a 10 -second delay. This delay prevents the photoelectric control from coming into operation until all the competitors have passed the finishing line on the first lap. When the finishing-line light beam is interrupted by the winner, another relay operates, and an unlocking circuit prevents subsequent interruptions of the light beam from actuating the clock. A reset button prepares the circuit

# Solve youls <br> - WITH THE NEW <br> ENGINEER-DESIGNER <br> SEALED LEAD problemsina B-I saled lead and SECOTDS 

## E-I DESIGN SAMPLES

## SAVE YOU TIME AND MONEY!

Kit contains 81 standard terminals and 11 different header types. E-I standard leads and headers can solve practically all problems on hermetic seals at prices that benefit from standardized mass production. For unusual requirements E-I custom manufacture can meet your needs-economically. Use an E-I Sample Kit to find the right type for your production-you'll find it practical, fast and above all, economical!

JUST FILL OUT COUPON AND MAIL
WITH CHECK OR MONEY ORDER!

for the next race.
A testing button is provided, but to prevent the possibility of its being left on during an actual race and causing false readings, it is spring loaded so that it must be held during the testing process.

## Radar Tester

ACCORDING to engineers of the North American Aviation Company of Los Angeles, California, 360 manhours were originally required for completing a check of the radar equipment contained in the Air Force's new B-45 four-jet bombers. Realizing that this amount of labor was entirely too much, the engineers set about developing an electronic instrument for doing the job in less time. As a result, the time has been cut from 360 manhours to eight by a device which is essentially a continuity and megger checker designed specifically for this particular job.

The equipment can be run firom the plane's battery supply or from any power generator. According to information released by the company, the radar system, which normally operates as a 24 -volt system, is checked by applying 500 volts. Leaks that would normally be difficult, or impossible to find are thus readily isolated and can be repaired. The checker developed for the B-45 can be adapted for use on any Air Force bomber and 29 have been ordered for other aircraft.


North American engineers check a B-45's radar equipment with their re. cently-developed continuity and megger checker

## globar temperatune SENSITIVE RESISTORS

## To Conirol

 Circuit PerformanceVariations in temperature need not affect the performance of delicate instruments and machines having coils or windings. To compensate for these variations, GLOBAR Brand Ceramic Resist-ors-having a negative remperature coefficient of resistance-provide an excellent solution. Connected in series with the coils or windings, they reduce the overall change in performance that occurs with change in temperature. Accurate and dependable circuit performance is assured. GLOBAR ceramic NTC resistors are obtainable in a varicty of types for applications requiring temperature ranges from $120^{\circ} \mathrm{F}$ to $-60^{\circ} \mathrm{F}$. The characteristics of these types were plotted on the accompanying graph from data secured from tests made in our laboratory.



temperature in degrees centigrade

## TYPICAL SUGGESTED USES ARE:

1
Temperature correction for voltmeters, ammeters and other meters.
2
Compensation for increase in resistance of motor and generator field coils.
3 Compensation for increase in resistance of relay coils.
4 Direct measurement of temperature up to $400^{\circ} \mathrm{F}$.
5 Protection of the cathode heaters of vacuum tubes.
6 Protection of pilot lights in A.C.-D.C. radio receivers
7 Pilot flame protection
Dept. V-10, The Carborundum Company, GLOBAR Division, Niagara Falls, New York

# GLOBAR Ceramic Resistors в 9 ARBPRUNDUM <br> TRADE MARK 

"Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborundum Company

## CHIEF ENGINEER FLEXY SAYS:


''Take this automobile radio receiver for example. Use of two short lengths of flexible shafting to connect the tuning and volume elements to their outside controls eliminates alignment problems and simplifies assembly. In fact, the shafts allow plenty of leeway in the placement of the elements and controls to get more effective circuit arrangements, easier servicing, simplified wiring or more convenient control.
'S.S.White flexible shafts have an answer to vibration, too. They damp vibration and keep it from passing on to sensitive circuit elements.
'"Take this tip from me-think of S.S.White flexible shafts when you have a problem involving the control of variable elements. They'll save a lot of design and production headaches."


WRITE FOR BULLETIN 4501
It has essential facts and data on flexible shaft selection and application. Copy sent free on request.

FLEXIBIE SHAFTS AND ACCESSORIES MOLDED PLASTICS PRODUCIS-MOLDED RESISTORS
One of Americai AAAA Indusirial Envesprices

THE ELECTRON ART
(continued from p 122)
standing-wave ratio may be obtained in terms of transmission coefficient $k_{t}$. This parameter is equivalent to the normalized distance in from the outside circumference of the chart, a very easy value to use in dealing with high standing-wave ratios.

The graphical construction may be prepared from memory whenever needed. All that is required is a sheet of two-cycle log paper and a straight edge. The construction is derived as follows.

The well-known formula for voltage standing-wave ratio is written:

$$
\begin{equation*}
r_{v}=\left(1+\left|k_{r}\right|\right) /\left(1-\left|k_{r}\right|\right) \tag{1}
\end{equation*}
$$

Add one to each side of the equation:
$1+r_{v}=\left(1+\left|k_{r}\right|\right) /\left(1-\left|k_{r}\right|\right)+1$
Multiply by $\left(1-\left|k_{r}\right|\right)$ :

$$
\begin{equation*}
\left(1-\left|k_{r}\right|\right)\left(1+r_{v}\right)=2 \tag{2}
\end{equation*}
$$

Replace (1 - |k|) by $k_{f} \mid$, the transmission coefficient:

$$
\begin{equation*}
\left|k_{i}\right|\left(1+r_{v}\right)=2 \tag{4}
\end{equation*}
$$

Let:

$$
\begin{equation*}
\left|k_{i}\right|=1-\left|k_{r}\right|=x \tag{5}
\end{equation*}
$$

$$
1+r_{v}=y
$$

obtaining for Eq. 4

$$
\begin{equation*}
x y=\underline{2} \tag{6}
\end{equation*}
$$

This is the equation for an equilateral hyperbola in Cartesian coordinates. A hyperbola plotted on logarithmic coordinates is a straight line at 45 degrees to the axes. We are interested only in the first quadrant and in abscissas (transmission coefficients) of unity and less. Figure 1 is a plot of such portion of a hyperbola back to $x=0.02$. The abscissas have been labeled also in units of $1-x=\left|k_{r}\right|$ and the ordinates have been labeled in units of $y-1=r_{v}$ more useful than $y$ itself. The simple, easily constructed conversion chart results.

## Reference

(1) P. H. Smith, An Improved Transmission Line Calculator, Electronics, ${ }_{1}^{1330}$, Jan. 1944 J. Marlius and $V$. Zeluif. "Electronics for Engineers," McGraw-Hili Book Co., New York, p 325,1945 .

## Paper-Thin Ceramic Sheets

Fabrication of ceramic dielectric plates comparable in thickness to that of paper and mica has been achieved in the National Bureau of Standards by a special technique for dry-pressing and firing. Special
treatment is given the mixtures of calcines and bonding agent. A pressure of $20,000 \mathrm{psi}$ on a layer of powder in a hardened steel mold converts the powder into a plate. Despite their thinness, these plates are sufficiently strong to be ejected from the mold without cracking and can be transferred without breakage to a sheet of glass for drying.

To preserve flatness during firing for 1 hour at $1,445 \mathrm{C}$, the 0.003 to 0.006 inch thick plates are stacked and are weighted with a refractory disc. To prevent adherence at high temperatures the stacked plates are separated from each other by thin layers of air-floated zirconium dioxide. The new plates make possible the construction of capacitors that can stand temperatures above 500 C yet are smaller than those made of paper or mica.

## Radar Tracks Hurricanes

A modified SCR-784 radar set installed at Freeport, Texas by the Dow Chemical Co. in cooperation with the U. S. Weather Bureau has been found to be accurate and reliable in providing early warning data for Gulf Coast Dow plants as well as for the Weather Bureau's hurricane tracking program. The equipment detects the rainstorm associated with the hurricane, at reliable ranges up to 200 miles.

Vulnerability of Gulf Coast sites and nature of Dow plant operations necessitate that shutdown be started about 12 hours before occurrence of hurricane winds. Although Weather Bureau service usually provides one to several days warning of a storm's approach, it is not practical to keep the plant shut down at all times that a hurri-


Radar ppi scope picture of line squall at Freeport, with geographical features dubbed in

## THE ELECTRONIC ENGINEERING MASTER INDEX <br>  research from 1925 to the present, covering electronics, optics, physics and allied fields <br> Now available . . . the Combined 1947-1948 edition GREATLY ENLARGED, INCLUDING CROSS REFERENCED CUMULATIVE SUBJECT INDEX OF PREVIOUSLY PUBLISHED 1925 TO 1945 AND 1946 ELECTRONIC MASTER INDEX EDITIONS

> Over 13,000 listings of articles published in 234 international scientific magazines, journals and proceedings. 399 different subject headings. All the finest engineering text books published are listed in a special reference section.

SPECIAL FEATURE-Listings of declassified documents available from U. S., Canadian and British Governments.

EXTRA FEATURE-Listings of 5,500 patent references giving number, title and claims of electronic patents granted in the U. S. during the years of 1947-1948.

## Another vital contribution to electronics

## THE ELECTRONIC ENGINEERING PATENT INDEX


#### Abstract

All electronic and related patents granted by the U. S. Patent Office since 1946 in three volumes. 1946 volume includes over 2,000 patents with circuit designs, components, manufacturing methods, etc. 1947-1948 combined issue covers 5,500 electronic patents. The 1949 issue covers approximately 3,000 electronic patents.


## Books are heavy cloth bound $71 / 2 \times 101 / 2$ inches.

The time saved in finding even one valuable reference often more than pays for the complete series of the Electronic Engineering Master Index. These books belong in the library of every electronic engineer, educational institution, research laboratory, patent attorney, government agency and industrial engineering department. Editions are limited, so please order your copies today.


KEEP YOUR COSTS DOWN
Progressive specializes in manufacturing special heads, threads and finishes on any metal or alloy adapted to cold upset. Please write for catalog showing many Progressive specials. Catalog includes purchasing and engineering helps.
The proogessive MANUFACTURING CO.

50 NORWOOD ST.
TORRINGTON, CONNECTICUT

HEAT RESISTANT WIRES FOR EVERY APPLICATION


## TOUGH

and
RUGGED

Do your new circuit designs call for heat resistance wire that's tough and rugged wire that can take it day after day through countless hours of operation? Then check Lewis Asbestos Covered Wire before you specify. Regardless of what your wire problem is-dropping excessive voltagesfilament dropping resistor in the line - high current conductors, it doesn't matter, just

HEATING UNITS
HEATING ELEMENTS
RESISTANCE LINE CORD

THERMOCOUPLE WIRE
ASBESTOS LEAD
\& FIXTURE WIRE
INSULATED RESISTANCE WIRE

FIBERGLAS INSULATED WIRE

WIRE TO ANY SPECIFICATIONS

## Let Lewis Build The Wire For You

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers. FOR A TRIAL ORDER OR A CARLOAD consult


In Only 1 SECOND!
COMPLETE
AUDIO WAVEFORM ANALYSIS
with the

## AP-1 PANORAMIC SONIC ANALYZER



Oscillograph of wave. form to the analyzed


Panoramic Sonic Anatysis of the same wave

Provides the very utmost in speed, simplicity and directness of complex waveform analysis. In only one second the AP-1 automatically separates and measures the frequency and amplitude of wave components between 40 and $20,000 \mathrm{cps}$. Optimum frequency resolution is maintained throughout the entire frequency range. Measures amplitude of components down to $0.1 \%$.

- Direct Reading
- Logarithmic Frequency Scale
- Linear and Two Decade Log Voltage Scales
- Input voltage range $10,000,000: 1$

AP-1 is THE answer for practical investigations of waveiorms which vary in a random manner or while operating or dezign consiants a:e changed. If your problem is measurement of harmonics, high frequency vibration, noise, intermodulation, acoustics or other sonic phenomena, investigale the overall advantages offered by AP.1.

Write NOW for complete specifications, price and delivery.


THE ELECTRON ART
(continued)
cane exists in the Gulf. Accurate tracking by radar permits normal operation until the storm comes within a critical radius of the plant.

Energy returned by radio reflection from a drop of water varies as the sixth power of the ratio of drop diameter to wavelength. This means that $10,000-\mathrm{mc}$ or $3-\mathrm{cm}$ radar will indicate the presence of light rain or fog droplets with minimum diameter of about 1.2 mm . Such dispersions of water drops may produce a radio echo and still transmit a large percentage of the signal; at times, as many as three rainstorms in a row radially from a radar have been seen on the scope screen.

Modification of the SCR-784 automatic-tracking gun-laying radar involved slowing the pulse repetition frequency to 188 pulses per second to permit reception of echoes from objects up to 300 miles distant, reducing the ppi sweep speed, changing the range marker circuits to show 20 -mile increments, using a larger parabolic antenna reflector to get a sharper beam, and doubling the original 0.8 -microsecond pulse width. Automatic camera equipment was arranged to take a picture every minute for projection as a movie film. A 24 -hour clock and date tab alongside the ppi tube identified each picture as to day and hour.

Hurricane data obtained thus far on the Texas coast has been of a negative nature because no hurricanes presented themselves for observation within the detecting range. This has permitted uninterrupted plant operation during two seasons of threatening hurricanes, according to W. F. Gerdes


[^12]

The 5841 sub-miniature corona regulator now in production is another Victoreen component developed to make fine instrumentation finer. This regulator supplements other specially designed electron tubes required in radiation measurement and in the broader field of laboratory instruments.
... subminiature
ELECTRON TUBES

| Tube <br> Type | Typlcal Service | Volts Ec, | Volts $\mathrm{Ec}_{2}$ | $\begin{aligned} & \text { Volts } \\ & \text { Eb } \end{aligned}$ | $\begin{aligned} & \mu \mathrm{a} \\ & \mathrm{ib} \end{aligned}$ | $\mu$ | unhos Gm | Grid current Signal grid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *5800 | *. Elec- <br> trometer <br> Tetrode | +3.4 | ***-3 | +4.5 | 12 | 1 | 15 | $3 \times 10^{-15}$ |
| *5803 | Electrometer \& D.C. Amp. | -1.7 | ---- | +7.5 | 100 | 2.0 | 160 | $10^{-14}$ |
| *5828 | D.C. Amp. | -1.0 | ---- | 45 | 250 | 17.5 | 450 | $10^{-9}$ |

-     - and a complete line of counter tubes including the universally used 1B85, the 1B67 end window mica window tube, gamma ray counters, and sub-miniature counter tubes - - not forgetting Victoreen hi-meg resistors vacuum sealed in glass, values $100-10,000,000$ megohms.

Write for data sheets

THE VICTOREEN INSTRUMENT CO. 5806 HOUGH AVENUE CLEVELAND, OHIO

## Only $\mathbf{5} \mathbf{2 . 9 8}$ helps put new "sell" in television advertising



Sponsor of television show had to refilm his commercials to meet a new selling problem. New films picked up at studio 4 P., m., delivered to TV station 800 miles away 8:4. ${ }^{\text {I }}$. M. same evening. Air Express cost for 11 -lb. carton, $\mathbf{\$ 2 . 9 8}$. (In undramatic fashion Air Express keeps radio, television or any business rolling.)


Remember, $\$ 2.98$ bought a complete service in Air Express. Rates include door-to-door service and receipt for shipment-plus the speed of the world's fastest shipping service.


Every Scheduled Airline carries Air Express. Frequent service-air speeds up to 5 miles a minute! Direct by air to 1300 cities; fastest air-rail to 22,000 off-airline offices. Use it regularly!

## Only Air Express gives you all these advantages

Nationwide pick-up and delivery at no extra cost in principal towns, cities. One-carrier responsibility all the way: valuation coverage up to $\$ 50$ without extra charge. And shipments always keep moving.
Most experience. More than 25 million shipments handled by Air Express. Direct by air to 1300 cities, air-rail to 22,000 off-airline offices.
These advantages make Air Express your best air shipping buy. Specify and use it regularly. For fastest shipping action ploone Air Express Division, Railway Express
Agency. (Many low commodity rates in effect. Investigate.) Agency. (Many low commodity rates in effect. Investigate.)


## the electron art

(continued)
and R. C. Jorgensen of The Dow Chemical Co. in their paper presented at the 1949 National Instrument Conference.

## Florida Hurricane

Positive results in tracking a hurricane with radar were announced by M. H. Latour and D. C. Bunting of the University of Florida in Bulletin Series 29 of the uni-


Solid line is route of Aug. 1949 Florida hurricane as tracked with radar at Gainesville, and dashed line is track of pressure center as determined from
U. S. Weather Bureau data
versity's experiment station. Using an SCR 615 B radar set on loan from the U. S. Air Force, they successfully tracked the Florida hurricane of Aug. 26-27, 1949 and obtained over 2,500 pictures at intervals of approximately 30 seconds to provide a continuous record of the storm as it passed within the 120 mile maximum range of the radar station near Gainesville, Florida. Equipment used operated in the 10 cm microwave band, with a peak transmitted power of approximately 1 megawatt.

## Two-Anode Phototube

A NEW vacuum phototube with a photoemissive cathode and two anodes has been designed for use in circuits where the phototube transfer constant must be rapidly altered, such as in fast-acting elec-tro-optical pyrometers and in other applications that can utilize a large but linear variation in gain with voltage on the control anode. The tube and its applications were de-
scribed by J. H. Crow ard V. C. Rideout of the University of Wisconsin at the 1949 National Electronics Conference in Chicago.

The new tube, designated CE 70 V , is a vacuum version of a gas phototube manufactured by Continental Electric Co. for quite a different purpose. It is an end-on type of tube with two ring anodes and a flat disc-type cathode. The outer ring is used as the main or load anode, and the inner control anode is used to vary the amount of emission current reaching the load anode.

Static response curves for this tube are shown in Fig. 1. The output is quite linear with control volt-


FIG. 1-Static response curves of CE 70 V vacuum phototube with locd anode voltage of 91.4 volts and load resistance of 2.88 megohms
age over an appreciable range for the various values of light intensity used. A combined curve of microamperes per foot-candle versus control voltage would illustrate the uniformity of the multiplier characteristic of this tube.

The control action resembles that in a pentode such as the 6AS6 in which the variation of suppressor voltage causes plate current to be diverted to the screen. Here the control anode combines the functions of the suppressor and screen in the 6AS6. The small amount of current diverted from the load anode will not affect a low-impedance source driving the control


New CE 70V double-anode vacuum phototube with end-on construction

AIRCRAFT RADIO

```
CORPORATION
CORPORATION
```

SICNAL GENERATOR
$900-2100$ MEGACYCLES

[^13] TOR


## -Simplified

-Compact -Portable
-900-2100 megacycles, single band

- Directly calibrated, single dial frequency control

Budt to Navy Specifications for research and production

- Directly calibrated attenuator, 0 to $\mathbf{- 1 2 0} \mathbf{d b m}$
- CW or AM pulse modulation
- Internal pulse generator with controls for width, delay, and rate. Provision for external pulsing
- Controls planned and grouped for ease of operation
Weight: 42 lbs. Easily portable-ideal for airborne installations
- Immediate delivery

Write for specifications-investigate the advantages of this outstanding new instrument.

OEPENDABLE ELECTRONIC EQUIPMENT SINCE 1928

## fircraft Radio Corporation

# POLARAD Laboratory 

- Flat frequency response from 100 cps to $20 \mathrm{mc} \pm 1.5 \mathrm{db}$.
- Uniform time delay of .02 microseconds.
- Gain of 50 db
- Frequency compensated high impedance attenuator calibrated in 10 db steps from 0-50
- Finc attenuator covers a 10 db range.
- Phase Linear with frequency over entire band.

This unit is designed for use as an oscillo scope deflection amplifier for the measure ment and viewing of pulses of extremely the Video Amplifier Unise and contains the Video Amplifier Unit. Power Unit and
a low Capacity Probe.
> - Specifications

> Input Impedance: Probe- $12 \mathrm{mmf}+$ ohms. ohms; Jack- $30 \mathrm{mmf}+470,000$ his: Output 1 mpedance 18 mmf Max. ohms each side push pull: Max. Input Volts 500 neak to Deak
with probe; Max. Output Volts 120 wiolts probe, to pax. Output volts 120 Power: 115 voits $50 / 60$ cos AC Line: Size $191 / 4^{" \times 2} \times 22^{\prime \prime} \times 11^{30 /}$

## 20 MC VIDEO AMPLIFIER Model V



## Unless the Dry Battery You Need Is listed in This Free Manual...

 BURGES ENGINERS WILIDESSG A NEW BAITERY TO
MET YOUR SPECIFCATOONS


It's all part of the Burgess Service! This complete Engineering Manual lists hundreds of battery types developed by Burgess Engineers to meet new requirements. If the specific battery you need is not among them, the complete Burgess facilities, design, production, and engineering will be placed at your dis. posal to build the battery you need in any quantity -large or small!

Write for ENGINEERING MANUAL and CHECK SHEET No obligation. By return mail you will receive the FREE Engineering Manual listing the complete line of Burgess Batteries together with specifications; also the Burgess "Check Sheet" on which you may outline your requirements in the event that the battery you need has not already been developed. Address:

BURGESS BATTERY COMPANY (DEPT. EI) FREEPORT, ILLINOIS

## WIND more colis faster

 WITH YOURPRESENT
COIL-WINDING
MACHINE!


## - P sie <br> PAMARCO

Wire DeReeling Tensions for PERFECT COILS

Installation of these inexpensive PAMARCO tensions lowers winding costs because each machine will accommodate more coils at higher winding speeds. In addition to increased production. PAMARCO tensions raise production quality. Free-running action practically eliminates wire breakage and shorted turns. Simple thumb screw setting quickly adjusts for ony wire gauge. No tools or special skill are needed for operation. For complete data call or write.

PAPER MACHINERY \& RESEARCH, INC.

1014 OAK STREET

[^14]
## THE ELECTRON ART

## anode of the new tube.

This phototube can be used for the modulation of light intensity signals on a much higher-frequency carrier than is possible by mechanical light-chopping methods. Tests have indicated that with capacitance neutralization, carrier frequencies of over 100 kilocycles are possible; this figure can probably be raised to over one megacycle.

Other applications are possible in the field of instrumentation whenever the instantaneous multiplication of the value of a varying light intensity by a voltage is required.

## Three-Component

## Magnetometer

By John W. Seaton<br>Naval Ordnance Laboratory Washington, D. C.

Precise measurement of steady magnetic fields was greatly aided by the development of the high-permeability alloys such as Permalloy and Mumetal. Two desirable properties which these alloys have for this application are low saturation point and high second derivative $d^{z} B / d H^{3}$ at the knee of the $B-H$ curve. The former property permits the use of low-power oscillators and amplifiers, along with coils of relatively few turns for producing the alternating magnetic fields which will drive high-permeability cores to the knee of the $B-H$ curve.

The flux in the core may be carried into and beyond the knee of the magnetization curve by each half cycle of a sinusoidal exciting current.

If a steady magnetic field is now applied to the core, the excursion into saturation will be greater on one half of the cycle than on the other, resulting in an unsymmetrical flux pattern in the core, inducing voltages in the coil winding of even harmonics of the fundamental. The amplitude of these even harmonics will depend on the degree of unsymmetry and hence on the steady magnetic field intensity. The phase of any one of these even harmonic voltages will change 180 deg if the direction of the steady magnetic field is reversed.

If the maximum amplitude of the

## modern electronic design means PLUG-IN UNIT Construction

With basic elements as units-that plug-in, slide-in, lock-in, break away easily-so that electronic equipment is instantly accessible-ready for rapid checks, servicing, and unit replacement.

More and more engineers are finding that plug-in unit construction is the type of design that makes many of the new complex electronic projects feasible to operate and maintain. It's also recognized that plug-in, unit principles make present electronic equipment much more practical for wider general use.


Up to now there has been no one place where components specifically designed for plug-in, unit construction were available. To get this type of constructionit has been necessary for engineers to design and have parts custom made or improvise with standard components in make shift arrangements.
Here at Alden's we are designing and manufacturing components for plug-in unit construction. We are setting up to work with manufacturers on as many of these problems as possible. Very frankly, much of our work is still in the pilot run stagebut, in every instance-proven in use. If you don't see the answer to your problems here-let us work it out with you.


Back connected chassis become instantly accessible. Half twist of handles brings chassis into place or ejects or as separate units-miniature and standard sizes.


Rugged color coded back connectorsmake and break circuits. Provides rapid circult checks. Wide mating tolerances compensate for any chassis misalignment. Miniature and heavy duty sizea.


Dress up housings and bases for plug-in units. Rugged non-interchangeable bases have strong stubby pins in variable pin patterns-insure mating only in correct broken bosses of conventional pins and broken bosses


Top operated clamps for tubes and plug-in units. Take minimum of space. Can be operated in cramped locations. Free floating-orients unit to socket without straining or bending pins.


Alden Cap Captive Convenience Screws Hold miniature chassis, heavy plugin cans or detachable mechanical units securely. Assemble easily in production by power tools-yet any tool or coin services in field.


Cables engineered as units for rapid field checks or easy replacement. Using connectors with forward conUsing connectors with forward conallow each lead to be completely insulated.

Write for new booklet on "Components for Plug-in Unit Construction"


## Now PRECISION BALLS of Synthetic Sapphire

Now ... the wear, corrosion, and heat resistance of synthetic sapphire in balls polished to within 20 micro-inches of sphericity.

THese micrystalline spheres resist corrosion or crosion by many acids and alkalis . . . possess a higher dielectric strength than glass or mica . . . have a low cocflicient of friction and superior hardness. In many applications, they need not be lubricated.

Linde synthetic sapphire balls are available in 1mm, $1 / 6$ inch, $1 / 8$ inch, and $1 / 4$ inch sizes. Three surface finishes are available: super-finished, semi-finished, and rough-ground blanks.

CALL or WRITE any Linde office for information on these balls, or the other forms of Linde synthetic sapphire.

| PROPERTIES |  |
| :---: | :---: |
| Composition.................... . . . . . . . . . . . . . $\mathrm{Al}_{2} \mathrm{O}_{3}$ |  |
| Coefficient of Friction. <br> (Steel pivot on sapphire ring) | $\text { . . . . . . . . . . . . } 0.140$ |
| Hardness (Knoop) . | . 1525-2,000 |
| Modulus of Elasticity in Flexure . . . . | . . $50-56 \times 10^{6} \mathrm{psi}$ |
| Dielectric Constant | . 7.5 -10 |
| Modulus of Rigidity. . . . . . . . | $21.5-27.5 \times 10^{6} \mathrm{psi}$ |
| Thermal Coefficient of Expansion.. up to $50^{\circ} \mathrm{C}\left(\right.$ per ${ }^{\circ} \mathrm{C} \times 10^{-6}$ ) | $\ldots . .5 .5-6.7$ |
| Chemical Resistance . . . . . Unaffected | b acids, dilute alkali. |

# The Linde Air Products Company 

Unit of Union Carbide and Carhom Corporation
 In Canada: TIIE DOMINION OX YGEN COMPANY, LIMITED, Toronto

The term "Linde" is a trade mark of The Liude Air Products Company
exciting current is adjusted so that the core is magnetized to the point on the knee of the $B-H$ curve where $d^{2} B / d H^{2}$ is a maximum, maximum unsymmetrical distortion of the flux will result when a small steady magnetic field $\Delta H$ is applied to the long axis of the core. The second harmonic voltage induced in the coil or the resulting current may be used as an indication of the direction and magnitude of a steady magnetic field.

## General Description

This article describes an electronic device designed to measure three orthogonal components of steady magnetic field with an accuracy of plus or minus 0.1 milligauss. The block diagram is given in Fig. 1. It was designed for the U. S.


FIG. 1-Block diagram of 3.component magnetometer

Navy at the Naval Ordance Laboratory, White Oak, Maryland, to satisfy a need for an extremely small instrument capable of measuring the magnetic field in and around ships' binnacles, particularly at the compass position.

From a simple geometric rule that the resultant of three mutually perpendicular vectors is the square root of the sum of the squares of each of the three vectors, the mag-netic-field intensity at the desired point can be obtained.

The function of the electronic cir-

THE ELECTRON ART
(continued)
cuit in this device is to isolate and measure the second harmonic signal which is a function of the steady magnetic field. The winding around the saturable core is supplied with an $800-\mathrm{cps}$ current from an oscillator. The distortion of the flux due to saturation generates harmonics in the winding. Since the driving point impedance is low, currents at harmonic frequencies flow around the series loop consisting of the driving point impedance, the coil winding and a small series resistor. The voltage across this resistor is of the same waveform as the current flowing through it. This voltage is filtered so that only the second harmonic component passes. This is amplified and applied to a phase discriminator where it is compared with a second harmonic voltage of constant phase and amplitude. A zero-center meter indicates the direction of the magnetic field and the deflection is a measure of its amplitude.

This would be sufficient to indicate the field were it not that the meter indication is not linear with the magnetic field. To prevent error, a null method is used. This involves placing another coil around the core as in Fig. 2 and passing direct current through this coil to produce an opposing field which can be calculated from the measured current. When the net field on the core is zero, the null meter at the output of the phase discriminator will read zero.

## Errors and Their Compensation

Second harmonic distortion in the exciting voltage applied to the sat-


FIG. 2-Detector unit with and without neutralizing coils. Drawing is approximately full scale. Control block is Synthane
here's your answer to problems in


## FAIRCHILD Oscilla-Recard CAMERA

This new engineering tool is finding more and more use in -

1. Recording of electronic circuit performance.
2. Comparison of performance after changes have been made.
3. Study of complex high-frequency signals.
4. Comparison of two or more simultaneous phenomena.
5. Telemetering.
6. Analysis of high-speed transients.
7. Monitoring of random transients.
8. Maintenance of laboratory records.

A remote control connection plus dynamic braking makes it possible to start and stop the camera automatically by the signal itself, thereby making a complete record of irregularly occurring phenomena without wasting film and without any attention on the part of the operator. Other features include:
a) Sharp, clearly defined images on inexpensive 35 mm film or paper; b) writing speeds up to 270 inches per microsecond; 20 seconds to 20 hours of recording on $100-\mathrm{ft}$. rolls of film, or $31 / 3$ minutes to $81 / 3$ days of recording on $1000-\mathrm{ft}$. rolls; d) no obstruction of oscilloscope controls; e) permits viewing of 'scope while photographing phenomena.
The Oscillo-Record Camera, designed by Fairchild in close cooperation with leading users and manufacturers of cathode-ray oscilloscopes, is the product of the world's foremost manufacturer of precision specialty camera equipment. It can be adapted to practically all $3-\mathrm{in}$. and $5-\mathrm{in}$. oscilloscopes.
Complete details may be obtained by writing to Dept. WS. Fairchild Camera and Instrument Corporation, 88-06 Van Wyck Boulevard, Jamaica 1, N. Y.


## Designed for App



69045
69046

The No. 69040 Series

## of

PERMEABILITY TUNED CERAMIC FORMS
in addition to the popular shielded plug-in permeability tuned forms, 74000 series, the 69040 series of ceramic permeability funed unshielded forms are available as standard stock items. Winding diameters and lengths of winding space are $13 / 32 \times 7 / 32 ; 1 / 4 \times 3 / 8$; and $1 / 2 \times 1 / 11$, for the 69041, 69043 and 69045 respectively. Nos. 69043 and 69046 have powdered iron slugs while Nos. 69041 and
69045 have copper slugs.

## JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN
MASSACHUSETTS
urable reactor appears as a false field indication. Only that component of the distortion which is in phase or 180 degrees out of phase with the true field signal appears as field indication. The other component of this distortion, which would be 90 degrees out of phase, will appear equally in both sides of the discriminator and hence balance out. The false field indication is corrected by passing a small direct current through the exciting winding, producing a field of such amplitude and direction as to generate second harmonic voltage in the coil winding which will exactly cancel the signal due to input voltage distortion. By placing a reversing switch at the input terminals to the saturable reactor, the false field signal can be alternately added to and subtracted from the true field signal; the true field reading will be half way between the readings obtained for the two positions of the reversing switch.

A false field reading may also be obtained due to unbalance between the two tubes of the phase discriminator. This can be corrected by eliminating the detector signal from the grids of the discriminator tubes and adjusting the output of
one discriminator tube until the null meter reads zero.

## Description of Equipment

The $800-\mathrm{cps}$ oscillator is of the push-pull tuned-grid type, as indicated in Fig. 3. A series arm in the output is antiresonant to the second harmonic, and a shunt arm (which includes the output transformer) is antiresonant to the fundamental. The 5 -ohm secondary of the output transformer produces four volts of fundamental frequency with 0.1 percent second harmonic. Each saturable reactor consists of a 4-79 molybdenum Permalloy tube of $\frac{1}{18}-$ inch diameter, $\frac{5}{8}$-inch long, formed by rolling up a sheet of Permalloy $\frac{1}{4} \times \frac{5}{8} \times 0.001 \mathrm{in}$. The winding, consisting of two layers of No. 38 Formex magnet wire, is wound directly on the Permalloy.

A three-position switch $\mathrm{SW}_{1}$ selects detector element $L_{1}, L_{2}$ or $L_{3}$. Compensating resistors $R_{1}, R_{2}$ and $R_{3}$ permit adjustment of the direct current in the detector elements. This direct current is blocked from transformer $T_{1}$ and $T_{2}$ by capacitors $C_{1}, C_{2}$ and $C_{3}$. Switch $S W_{4}$ permits reversal of both the output voltage of $T_{1}$ and the compensating direct current through the exciting winding while making the zero adjustment. One set of contacts on


FIG. 3-Circuit diagram of three-component magnetic field measuring instrument

## NOW DU MONT OFFERS THE HIGHLY-VERSATILE



## Type 248-A

at a greatly reduced price

... previously priced at $\$ 1870.00$

FEATURES...
Wide-jand amplifer-response to 5 mc . (down 3 db )-usetul to 10 mc .

High civerall detlection sensitivity.
High-vacuum sweep circuit.
Rec arrent swerps variabls from 15 to 150,300 cps.
Driven-sweep turations of 525,100 , 100 microseccnds.

High Ïght outpui even al 4,000 volts
0.5 m.crosecond delay for complete display cif short duration pulses.
Intensity modulation.
Timin 3 markers on driven sweeps at intervalz of 1.10 , or 100 microseconds
Pulse output for ise as a syrichroscope.

The Du Mont Type 248-A, in a single instru voltage and medium-vo utility of both a high lograph.
For the study of high-speed transiert por nomena no modification is necessary to operate at an overall volts with the Du Mont Ty potential of 4,000 Power Supply. Mont Type 263-B High-V.Itage Oper ternal supply a potential of 4,000 volts by $\overline{\text { a }}$ in in eral-purpose researce 248-A is useful in gendetailed study of lich applications including taining high-frequency frequency signals zon-

## MOLDTE now coars

## KEEP THE OWNER OF THIS SET HAPPY



ONSISTENT HIGh Quality Performance ...IS the answer

Samples promptly submiffed upon request for design, pre-production, and test purposes.

## HERE'S WHY:

- Our own formulas are used exclusively
- We specialize in making iron cores only
- Our engineers are thoroughly familiar with every iron core application
- Continuous manufacturing controls assure uniformity, quality, economy, dependability
- Special powder mixing equipment and procedures
- Increased production, test, and inspection facilities (Note new address below)


## 1410 CHESTNUT AVENUE

2750 W. North Ave., Chicago 22, III.
Perlmuth-Colman \& Associates 1335 South Flower, Los Angeles, Cal.

HILLSIDE 5, NEW JERSEY
Martin P (Northern N. Y.)
Martin P. Andrews, Gorden City, N. Y. Jose Luis Pontet
Cordoba 1472, Buenos Aires


Magnetic field detector unit is shown mounted in a substitute binnacle alongside the control unit and battery case
$S W_{4}$ is used to short-circuit the input of the signal amplifier to ground when balancing the phase discriminator. The variable resistor $R_{\mathrm{f}}$ permits adjusting the exciting current through the reactors to a very small value before any switching. A snap-action switch is operated by rotating $R_{4}$ to its minimum-resistance position, insuring that no resistance remains in the circuit when $R_{4}$ is at the USE position.

The voltage developed across $R_{\text {5 }}$, $R_{\mathrm{s}}$ or $R_{7}$ by the current which passes through the saturable reactors is applied to $F_{1}$, a 1,400 to 1,800 -cps pass-band filter with attenuation outside the pass band at 60 db .

The $1,600-\mathrm{cps}$ output of the frequency doubler and buffer amplifier is applied push-pull to the screen grids of the discriminator tubes. The $1,600-\mathrm{cps}$ voltage from the signal amplifier is applied simultaneously to the control grids of both discriminator tubes. Since this voltage changes phase 180 degrees with reversal of magnetic field, and is approximately proportional to the field strength, the tube current in each discriminator tube will depend on the algebraic sum of the two $1,600-\mathrm{cps}$ grid voltages.

The discriminator tubes are biased near cutoff, hence the d-c component through each tube will be a function of the phase and amplitude of the $1,600-\mathrm{cps}$ signal. A bypass capacitor $C_{4}$ eliminates the $1,600-\mathrm{cps}$ component from the null meter. The meter will then indicate the difference in the d-c voltage drops across $R_{8}$ and $R_{8}$. The direction of deflection will indicate the magnetic field orientation, and the magnitude of deflection, within
limits, will indicate the magnetic field strength.

The neutralizing circuit controls the direct current in a winding around the detector housing. This permits a known magnetic field to be applied to each of the saturable reactors with such a direction and magnitude as to exactly cancel the field component being measured.

The null meter reads zero when this condition is achieved. The accuracy of field measurement then depends on the sensitivity of the null meter near zero, and also on the accuracy of the potentiometer or the current meter $M_{1}$, in indicating the current necessary for neutralizing. The neutralizing current must be calibrated in a known field-in oersteds per ma.

## Heater-Compensated Supply

In a NEW METHOD of compensating for line-voltage changes in stabilized d-c power supplies, developed by R. C. Ellenwood and H. E. Sorrows at the National Bureau of Standards, heater-voltage fluctuations are used to compensate for line-voltage fluctuations. A type 6SJ7 pentode can be used as the amplifier. Small portable dry batteries provide a reference voltage nearly equal to the output voltage, so the full change in outpat voltage is applied to the control grid of the amplifier tube.

The control function is performed by several 6L6's connected in parallel. Six tubes can carry a load current of 250 ma and present an internal impedance of only 2 ohms. When a change occurs in the heater voltage of the amplifier tube, the re-


Heater-compensated stabilized power supply providing 350 volts d-c output at 250 ma

## NEW F-86A JET <br> IS THDGESEUIPPED!



## NORTH AMERICAN AVIATION Chose LEDEX ROTARY SOLENOIDS for DEPENDABILITY!

Humid tropics, sand-laden desert skies, frozen North or extremely high altitudes . . . the new Air Force North American F-86A Sabre Jet Fighter is prepared to defend our nation under any conditions. Ledex Rotary Solenoids play an important part in this dependability. Several vital mechanisms are remotely controlled and powered by Ledex Rotary Solenoids.
The same Ledex standard of dependable remote control and power is available for your product. The vast production applications of Ledex Rotary Solenoids vary from the dependable snap-action operation of aircraft mechanisms to the powerful actuation of rugged hydraulic valves in heavy duty materials handling equipment.
We supply to quantity users and solicit the opportunity to be of assistance in engineering a Ledex Rotary Solenoid to meet the requirements of your product.

Write today for ledex rotary solenoid


# Browning OSCILLOSYNCHROSCOPE MODEL OL-15B 



Combining the functions of OSCILLOSCOPE

## and SYNCHROSCOPE

An outstandingly versatile instrument applicable to-

TELEVISION
FACSIMILE
PULSE MODULATION
RADAR
NUCLEAR PHYSICS COMMUNICATIONS

## GENERAL FEATURES

Five-inch cathode ray tube operatiny at 4,000 volts accelerating potential. Ordinarily suplied with Pl phosphor, others available on special order. Vertical amplifier flat within 3 db . from 5 cycles to 6 megacycles. One inch deflec tion with .05 -volt RMS input. Horizontal amplifier flat within 1 dl . from 5 cycles to 1 megacycle. Built-in calibrating system for determining wave amplitude. No external meter needed. Deflection plates
and intensity grid available directly at front panel terminals. No waiting for trace to reappear after adjusting gain or applying DC component to iuput. Low capacitance, high impedance probe supplied for minimizing test circuit disturb ance. Reasonably symmetrical waves permit full screen vertical deflection. Contained in single cabinet, weighs less than 100 pounds.

## AS AN OSCILLOSCOPE

Linear sawtooth sweeps continuously variable from 5 to 500,000 per second in conjunction with the excellent vertical ampli. fier outlined. Permits olservation of RF waves and envelopes to above 6 mega-
cycles. Because of the extemded ranges of the amplifiers and sweep generator, oscilloscopic capabilities are correspond ingly increased over stindard oscilloscopes.

## AS A SYNCHROSCOPE

An internal trigger generator continuously variable from 200 to 5,000 cycles can be used to excite external equipment as well as the sweeps. The trigger can be made ly panel control to lead or lag the start of the sweep by amounts up to 1,000 microseconds, making it possible to phase any part of a pulse or iransient onto the screen for measurement. Sweep
speeds of $1 / 4,1 / 2,1,5,20$, and 200 microseconds per inch provide convenient image time expansion for detailed observation. As the sweep generator will sweep once for each incoming pulse, single transients or pulses occurring at irregular intervals can be observed or photographed.

For More Detailed Information Write for Descriptive Bulletin MO-150 - - COMPARISON INSTRUMENTS

## SWEEP CALIBRATOR MODEL GL-22A

For accurately calibrating sweeps. Markers are provided at $1 / 10$ $1 / 2,1,10$, and 100 microsecond intervals which may he applied as deflection or as intensity modnatition. May be triygered directly from OL-15B. Write for bulletin MC-50.

## FAIRCHILD OSCILLORECORD CAMERA

For permanent records of waveform on 35 mm . film. frames or variable contimous motion permit recording phenomena. Various lenses, magazines, etc. available. set up with OL-15B. Write for bulletin MF-150.


Miniature batteries at rear provide 340 v d-c for reference, in no-drain grid circuit giving long battery life
sulting change in the amplifier plate current produces a proportional change in the voltage across the grid resistor of the control tube. This effect produces an additional compensation for line-voltage changes. For a 10 -volt change in a-c line voltage, the heater-compensated power supply shows a maximum deviation of only 0.01 volt from the nominal 350 -volt d-c output. This is a variation of less than 0.0005 percent in output voltage for a one-percent change in the line.

The compensating voltage exhibits a time lag dependent on the time necessary for the cathode temperature to come to equilibrium. The effect of this time lag can be reduced by connecting a series RC circuit between the input terminal and the screen grid of the amplifier. When a sudden change of line voltage occurs, this RC circuit applies the proper voltage to the screen grid of the amplifier to compensate for the thermal time lag of the cathode temperature. The time constant of the RC network was chosen to equal that of the cathode temperature change.

## Balloon Altitude Controls

New controls which hold meteorological balloons at remarkably constant altitude levels were described by James R. Smith of the New York University College of Engineering, at a joint session of the A.A.A.S. and the American Meteorological Society in Vancouver, B. C. on June 14.

Controls have been developed to keep plastic instrument-carrying
 RANGE OF COMPONENTS...



# CTC ALL-SET Boards 

 Speed Up Work On Assembly Lines And In LaboratoriesCTC $A L$ save time and cut costs over a wide range of standard assembly operations

Boards with Type 1724 Turret Lugs come in four widths: $1 / 2^{\prime \prime}, 2^{\prime \prime}, 21 / 2^{\prime \prime}, 3^{\prime \prime}$; and in thicknesses of $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$, $3 / 16^{\prime \prime}$. A Board with Type 1558 Turret Lugs, for miniature components, is $11 / 1{ }^{\prime \prime}$ " wide, with tricknesses of $1 / 16^{\prime \prime}$ and $3 / 32^{\prime \prime}$ only (Type X $140 \| \mathrm{E}$ ). This new miniature Board completes the CTC ALL-SET group.

Boards are all of laminated phenolic, in five-section units scribed for easy separation. Each section is drilled for 14 lugs, with 10 mounted, except X14(11A (1/2" wide), which is drilled for 7 lugs per section, with 5 mounted. All lugs are solidly and precisely swaged, and each whole board is ready for assembly.

## Lug Prices Lowered!

At CTC, recent plant reorganization, including expanded lacilities and increased personnel, has brought about new production economies. As a result, we now offer you drastic price reductions in selected designs of terminal lugs and are fully equipped to handle large velume orders of these components.
CTC ALLI-SET Terminal Boards, Cus-tom-Built Boards and many other CTC Guaranieed Components are described and illustrated in our big new catalog \#300. Send for your copy today.



NEY
PRECIOUS METALS

Filh

## ELECTHICAI CONTACTS IIN POTENTIIMMETERS, SLIP RINGS, HELAYS ANI SWITCHES

## PALINEY \#7

SLIDING CONTACTS FOR POTENTIOMETERS PALINEY \#7 is heing used fur a contact material on potentiometers wound with a nickel-chrome alloy resistance wire. This combination is consistently producing units with life of better than one million cycles and maintained accuracy of $0.1 \%$ or better throughout the life of the unit.

## NEY-ORO \#28

SLIP RING BRUSHES
NEY-ORO \#2s is a special alloy developed as a contact brush material for uses against coin silver slip rings. Laboratory tests and reports from users indicate life of better than 10 million revolutions with nu electrical noise

Write or telephone (Haktrokd 2-4271) our Research Department
THE J. M. NEY COMPANY 179 eim stheet - hahtami, conn. specialists in preciolis metal metallurfir singe 1812

## MICTOPDT

PRECISION TEN-TURN POTENTIOMETER

1. You get permanent accuracy because the resistance wire is locked in place. It is precision pasitioned and moulded integrally with the housing.
2. You sel permanently accurate settings, smooth aetion and low uniform torque provided by the tainless steel, precision ground, double thread lead screw guiding the moving contaet
3. You get precise positioning of the moving contact because of the wo bearings supporting the rotor cssembly.
4. You get good rigid terminals be. cause they are maulded integrally with the housing.

* Terminals soldered to ends of reEnlice element before moulding. ance circuit is on integral part of the housing.
(B. You get occurate setting and resetting due to anti-backlash spring in contact guide.
- You get a fine resolution because of the $431 / 2^{\prime \prime}$ length of resistance wire in the spiral element
1). You geta resistance output directly propartional to shoft rotation within $\pm 0.1 \%$ of the sotal resistance. Every poteritiometer is cutomatic. ally mochine lested for linearity of 101 points.



# A Complete Line of PRODCOCTION TEST EOUPIUENT for TV Manufacłurers 

Tel-Instrument has designed and provided the production test equipment for many of the major TV manufacturers. A complete line of instruments designed to be unusually critical in the testing of TV receivers is available. They are, the result of the wide practical experience of Tel-Instrument engineers plus a complete understanding of the production problems of TV manufacturing.

TYPE 2120
R.F.PICTURE SIGNAL GENERATOR

Provides picture and sound carrier. Modulated by standard R.M.A. composite picture signal. Sound carrier stability suitable for testing Inter Carrier type receivers. Internal 400 cycle FM and External audio with 75 microsecond preemphasis. Output max. O.1v p-p across 75 ohm line. Available channels 2.13.


CRYSTAL CONTROLLED
MULTI-FREQUENCY GENERATOR
A 10 frequency, 400 cps . modulated crystal controlled oscillator ideal for production line adjustment of stagger tuned I.F. amplifiers. Available with crystals rang ing from 4.5 to 40 M.C. Output frequency accurate to $0.02 \%$ Immediate push button selection of frequency. Output attenuator range .5 V to 500 microvolts. Self contained regulated power supply.


TYPE 1200

## 12 CHANNEL

## R.F. SWEEP GENERATOR

Intended for precise adjustment of R.F. head oscillator coils and R.F. band pass circuits. Pulse type markers at picture and sound corrier frequencies extend to zero signal reference base line. Accuracy of markers $0.02 \%$ of carrier frequency. 12 to 15 MC . sweep on all channels. Max. I.V peak output across a 75 ohm line. Provisions for balanced input receivers. Instant selection by push button.
 I.F. WOBBULATOR

A two band sweeping generator covering the range of 4.5 to 50 M.C. Capable of a band width of approximately $\pm \mathbf{2 5} \%$ on either band. Five pulse type crystal generated markers to specified frequencies available for each band. Accuracy of markers $.05 \%$. Zero signal reference base line, with markers extending to bose line. I.V. output max. into 75 ohms. A saw sweep available for " $X$ " axis of scope.

## NEW PRODUCTS

(continued from p 126)
signed for transformer operated television sets with high peak interelectrode voltages.


## Five-Gun Tube

Electronic Tube Corp., 1200 E. Mermaid Lane, Philadelphia 18, Pa., has developed the 55JG fivegun type c-r tube that registers five independent phenomena on a single five-inch, flat-face screen. The individual electron guns are of the $\mathbf{A}$ or zero-first-anode type and are adequately shielded from each other. Overall length of the tube is $18 \frac{5}{5}$ inches, and it is available in any of the standard phosphors.


## Midget Capacitors

Astron Corp., 900 Passaic Ave., East Newark, N. J. The Metalite midget metallized paper capacitor is approximately one-third the size and weight of conventional paper and foil designs. It features selfhealing after rupture of the dielectric and is available in voltage ratings up to 600 volts, either hermetically sealed or in a cardboard tube.

## D.C Power Supply Kit

Opad-Green Co., 71 Warren St., New York 7. N. Y., announces a line of d-c power supply kits for obtaining 24 to 28 volts from a 115 -volt, 50 or 60 cycle a-c source. Primarily designed for testing and ground
 humid, then hot . . . . If a wrong kind of microphone is used, it is very sure of not lasting long.

The Turner 99 solved for me the problem of the right microphone. I have mike of this type which was caught several times in sudden showers and believe me, it is still excellent if not perfect. These microphones are the only types I can find suited to my requirements. I recomend Turner microphones for quality and the best performance.

Very truly yours,
tomas m. tagulao
Co-Owner, Steriang "AA" Sound Systems

"Very good service. Have had two of your mikes dropped 6 ft . on concrete. Neither damaged electrically....." ....P.E.N.,Missouri
"Response and sensitivity perfect..." W.G.V.,California
"Excellent results, ruggedness an asset...................." .....P.R.S.,Connecticut
"Like it very much......................." G. ${ }^{\text {. }}$. . New Jersey
"Best all-around PA mike made - excellent................" .....P.E.S., Indiana
"Well pleased with the clarity and the way it picks up one or more voices................" E.F.C., Pennsylvania

Ask your dealer to show you the Turner 99 $W^{\prime}$ rite for Literature


THE TURNER COMPANY<br>905 17th Street N. E., Cedar Rapids, lowa<br>IN CANADA: Canadian Marconi Co., Lid. Montreal, P. Q., and branches<br>EXPORT: Ad. Auriema<br>89 Broad Street, New York 4, N. Y

## Announcing MYCALEX 7 Pin Miniature Tube Sockets

For the first time a miniature tube socket of glass-bonded mica has been produced successfully by injection molding. It permits closer tolerances, low dielectric loss with high dielectric strength, high are resistance and dimensional stability over wide humidity and temperature ranges. The technical skill and research of Mycalex Corp. of America has made it possible to produce insulating materials with extremely low loss factors at competitive prices.


Above: Complete 7 pin miniature Mycalex socket. Actual sire; two views
'Mycalex 410' was developed for applications requiring close dimensional tolerances not possible in ceramics and with much lower loss factor than mica filled phenolics with the advantage in economy.
"Mycalex 410X" was developed to compare favorably with general purpose bakelite in economy but with a loss factor of only about one-fourth of that material.

The following ratings show the difference between Mycalex 410 and Mycalex 410 X miniature tube sockets.

## MYCALEX 410

MYCALEX 410X
(color grey)
600 V.ac
$10,000 \frac{.015}{\mathrm{me}}$.
$80^{\circ} \mathrm{C}$.
$375^{\circ} \mathrm{C}$.

Rated Working Voltage
$\frac{\text { Insulation loss factor (at } 1 \text { M.C.) }}{\text { Insulation resistance (Minimum) }}$ Safe operating temperatures:

| Brass contacts | $80^{\circ} \mathrm{C}$. |
| :--- | ---: |
| Socket body | $375^{\circ} \mathrm{C}$. |

These superior sockets are now available, manufactured to high quality standards and fully meet RMA recommendations. We would be glad to have our engineers consult with you on your particular design problems. Write for prices, complete data sheet and samples to:

## Mycalex Tube Socket Corporation

"Under Exclusive License of Mycalex Corporation of America" 30 Rockefeller Plaza, New York 20, N.Y.

MYCALEX CORP. OF AMERICA
1 Px
TME INSVLAYO:

"Owners of "MYCALEX' Patents"


operation of aircraft and marine equipment, the kits are available in $2,5,10,15$ and 20 -ampere capacities, and are also suited for installation in existing equipment, for operation of broadcast control relays and signal lights. All units feature a primary tapped transformer which permits adjustment of the d-c output voltage, a fullwave bridge-type rectifier and a filter network which maintains ripple within 2 percent under fuIl load conditions.


## Line Switch

Stackpole Carbon Co., St. Marys, Pa. Type A-10 small-size doublepole line switch for volume, tone and other variable resistor controls is rated 1 ampere at 250 volts or 3 amperes at 125 volts a-c and d-c. Other ratings are also available. The switch is 0.888 inch in diameter by 0.312 inch thick. Adaptable to many uses, it is particularly suited for portable and auto radios.


## Transmitter Transfer

Aeronautical Communications Equipment, Inc., 3090 Douglas Road, Miami, Florida. A new automatic transfer unit recently developed can be used for radio transmitters and beacons that use standby equipment. The transfer can be set to function on either low carrier power or low modulation level for


## DO YOU KNOW?

- thata PILOT LIGHT CAN IMPROVE YOUR PRODUCT
. . . . add attraction - safety - service?
ask

- what lamp to use
- how to use it
- what it will do
- what it will cost
this may be the one Designed for low cost NE-51 Neon
- Built-in Resistor
- Patented
- U/L Listed - Rugged

Catalogue Number 521308-997 for 110 or 220 volts. SAMPLES
for design purpose NO CHARGE
NEW/ Write for the
LI."HANDBOOK OF PILOT LIGHTS.

Write us on your design problems.


The DIAL LIGHT COMPANY of AMERICA
Foremost Manufacturer of Pilot Lights.
900 BROADWAY, NEW YORK 3, N. Y. TELEPHONE SPRING 7-1300


fast response . close temperature control


Specifically engineered for electronic, appliance and apparatus applications, compact Type M Stevens Thermostats assure fast response and close temperature controlcharacteristics of larger Stevens Thermostats.


Action of new Type $M$ thermostat is extremely precise because bi-metal element is electrically independent. Bi-metal disc rests on top of rigid Monelbacked contact disc, which carries current on its silver side because of minimum electrical resistance. Since bi-metal carries no current, artificial cycling and lifeshortening "jitters" are eliminated.

Double, heavy-duty silver contacts in series minimize arcing, further increase thermostat life. Heatresistant stainless steel or Inconel return spring assures positive On or Off position. Silver plated brass or steel terminals, mounted on non-conducting Alsimag base, are furnished in standard or special shapes.

Get faster response and closer temperature control on small current differentials. Specify Stevens Type M Thermostats on your appliances and industrial apparatus - for better performance, longer life.

NEW PRODUCTS
(continued)
equipment using either keyed or continuous modulation.


## Tele Multiplier Probe

Insuline Corp. of America, 360235th Ave., Long Island City 1, N. Y. The Kilovolter multiplier probe provides positive protection against the highest television voltages. It is $8 \frac{1}{2}$ inches long and is fitted with a 5 -foot heavy-duty test lead. Three models are available, for 50,100 and $200 \mu$ a meter movements.


## Television Replacements

Standard Transformer Corp., 3580 Elston Ave., Chicago 18, Ill. The deflection and high-voltage transformer shown above is illustrative of a line of exact RCA-type replacement parts available. Complete description and prices are supplied in bulletin DP-354.


## TVI Wave Traps

Decimeter, Inc., Denver, Colorado. A series of three tri wave traps is
designed to be applied to the 300 ohm lead-in to television sets to alleviate interference from any source in the ranges of 20 to 26 $\mathrm{mc}, 25$ to 35 mc , and 88 to 108 mc . The traps kill interference from f-m broadcast, diathermy, 10 -meter amateur, and reject spurious i-f signals. The devices slide around the antenna lead-in requiring no cutting of the lead-in and no ground connection.


## Midget Magnetic Relays

Ward Leonard Electric Co., 31 South St., Mount Vernon, N. Y. Bulletin 110 multipole midget magnetic relays are designed for such applications as traffic signal, machine tool, alarm heater and similar controls. Coils are available for operation on all standard voltages and frequencies up to 115 volts a-c or $\mathrm{d}-\mathrm{c}$. Noninductive ratings for n -o and $\mathrm{n}-\mathrm{c}$ contacts are 10 amperes, 24 volts d-c or 115 volts a-c, 60 cycles.


## R-F Phase Monitor

Clarke Instrument Corp., 910 King St., Silver Spring, Md. Model


Those Who Demand the Best In Television Deflection Yoke Sleeves Use "CLEVELAND"

Cosmalite* spirally laminated paper base phenolic tubes.
These are furnished in sizes and with punching, notching and grooving that meet each customer's individual needs.
"Cleveland" quality, prices and deliveries are responsible for the universal satisfaction and prestige of this product.

Ask about our kindred products that are meeting both new and established needs in the electronic and electrical fields.
*Reg. U. S. Pat. Off



Now electronic induction heaters can be used in the shop.

Electronic tube induction heating long was confined to the laboratory because the electronic equipment just "couldn't stand the gaff" of shop usage.

After four years of intensive research and testing, The Ohio Crankshaft Company found the answer. The Toccotron 20 has proved a dependable shop tool for uniform, low cost production in numerous applications.

Four Lord Plate Form Mountings effectively isolate the Power Contactor Panel Assembly and protect the Toccotron from vibratory disturbances in the shop, regardless of their direction. Tube assemblies also are protected by Lord Mountings.

Whether you make electronic equipment or massive machinery -if your product is exposed to external vibration or if it has moving parts, a Lord Vibration Control System will increase its efficiency, durability and customer appeal. Consult a Lord engineer.

See our Bulletin in Sweet's 1949 File for Product Designers or write for Bulletin 900 today. It describes the complete line of Lord products and services.

LORD MANUFACTURING COMPANY, ERIE, PA.
Canadian Representative: Railway \& Power Engineering Corp. Ltd.

109 high-precision phase monitor was designed for measuring phase relations at radio frequencies. The instrument has an absolute accuracy of $\pm 1$ degree and resolution and repeatability of $\pm 0.1$ degree. Phase is read directly from two dials calibrated in 0.1-degree increments, with no manipulation required on the part of the operator. Provision is also made to indicate antenna current in the various towers of a directional array.


## Studio Control Console

Gates Radio Co., Quincy, Ill. Model 52 -CS Studioette is a medium-size studio control console that may be used for a-m, f-m or tv in main or sub-studio service. The unit is a complete speech input system with provisions for four microphones, two transcription turntables, network and remote lines. It is provided with preamplifiers for microphones plus line and monitoring amplifier for the high-level circuits. A complete descriptive brochure is a vailable.


## Crystal Microphone

Electro-Voice, Inc., Buchanan, Mich. The Model 920 Spherex crystal microphone features a 360 deg omnidirectional polar pattern, substantially flat frequency response from 60 to $7,000 \mathrm{cps}$, output


For complete "PHALO FAMILY STORY" Ask for the NEW 22 page Illustrated PHALO CATALOG

## PHALD

Plastics Corporation
CORNER OF COMMERCIAL ST. WORCESTER, MASS.
Manufacturers of Insulated Wire, Cables, Cord Sets and Thermoplastic Tubing


Readily adjustable - instantaneously recycling - wide variety of applications. Write for literature.

## AMERICAN GAS ACCUMULATOR COMPANY

 1027 Newark Avenue • Elizabeth 3, New Jersey

## How To Meet Varying <br> Recording Channel Needs

## SOLUTION:

## Select from 14 Basic Units of the FAIRCHILD Unitized Audio System



You can assemble numerous combinatio 1 s of complete recording channels with the Fairchild Unitized Amplifier System, which includes $I_{4}$ basic units.

Related units are simply plugged in, or cabled together. It's that easy . . . that quick. Units can be combined to meet the special requirements of a given installation. If requirements change later, the units can be rearranged and the system expanded with no loss of initial investment. With this versatile Fairchild System, you get custom construction at production prices.

## Consult us

 about your specific needs.Write for series of helpful articles, "Design of Recording Systems and Actualinstallations.' Ask for Series R.


## 14 BASIC UNITS

- Power Amplifier
- Preamplifier
- Pickup Preamplifi-er-Equalizer
- Line Amplifier
- Dutput Switch Panel
- Input Switch Panel
- NAB Equalizer
- Variable Equalizer
- Diameter Equalizer
- Mixer Panel
- VU Meter Panel
- Bridging Device
- Auxiliary Power Supply
- Cuing Amplifier


RECORDING EQUIPMENT CORPORATION
154TH ST. AND 7TH AVE.
WHITESTONE, L. I., N. Y,
level of -60 db and high impedance. It is designed for use in conference recording, round table discussions, home recording, amateur radio, public address and similar applications. It is available with either 8 or 20 -ft cable.


## Panel Meter

International Instruments, Inc., 331 East St., New Haven 11, Conn., announces a new $1 \frac{1}{2}$-in. diameter panel meter with interchangeable face plates. One basic meter can be used for several ranges by adding external accessories and by changing the face plate. The d-c self-contained instrument ranges from 50 to $500 \mu$, from 1 to 500 ma and from 1 to 15 amperes. As an a-c meter of the rectifier type the range is 1 to 500 volts completely self-contained. Accuracy is $\pm 2$ percent of full scale for d-c, $\pm 5$ percent when used as an a-c instrument.


Interrupter Machine Switch
Stromberg-Carlson, 108 Carlson Road, Rochester 3, N. Y. The snapaction switch shown has application in timing machines for interrupting electrical currents in cycles from 0.50 second to two minutes. Contacts have a rating of $7 \frac{1}{2}$ amperes at 110 volts a-c. The switches oper-
ate in conjunction with a standard speedreducer motor for 110 -volt a-c or for 24 -volt or 48 -volt d-c.

## New Core Material

Nortil American Philies Co., Inc., 100 East 42nd St., New York 17, N. Y. The new ferro-magnetic ferrite, Ferroxcube, has recently been announced as a new transformer core material available for such components as horizontal output transformers in television receivers. The material has a high permeability, greater than ten times that of powdered iron, and at the same time a high electrical resistivity, ten million times as great as that of iron. Eddy current losses are reduced by virtue of this latter characteristic.


## Solder Preforms

Kester Solder Co., 4201 Wrightwood Ave., Chicago 39, Ill., announces availability of solder preformed in rings, pellets, washers, unusual shapes and sizes to specifications. It is designed to provide uniform results where continuous or repetitious soldering is required. By supplying the same amount of solder and flux on every unit soldered, waste is eliminated and rejects are reduced.


## Wide-Band Chain Amplifier

Spencer-Kennedy Laboratories, Inc., 186 Massachusetts Ave., Cambridge 39, Mass. Model 202 P chain


TWinder is eminently suitable for the high-speed production of large quantities of coils with or without paper interleaving.

It will wind round, square or rectangular coils from 1 -inch (25.4 mm .) to 5 -inches ( 127 mm.) in length and up to 4inches ( 102 mm .) diameter or diagonal. As many as 24 coils can be wound simultancously (depending on the gange of wire

the automatic coil winder \& electrical equipment co., LTD. Winder House • Douglas Street • London • S.W. 1 • England. Cables: "Autowinda, Sowest,"


For the first time-a complete new line of all-metal unit mounts incorporating MET-L-FLEX (all steel resilient material, impervious to extremes of temperature) designed to meet the most critical requirements for absorption of shock and vibration!

Robinson MET-L-FLEX Unit Mounts have these outstanding features:

1. Only unit mount to incorporate MET-L-FLEX.
2. Uniform operation throughout temperature ranges from minus $70^{\circ}$ to plus $250^{\circ} \mathrm{C}$.
3. Mounts can be furnished for positive or negative loading.
4. High damping effect and minimum drift motion.
5. New wide load tolerance for individual mounts.

New engineering features incorporated in Robinson MET-L-FLEX Unit Mounts overcome the limitations of previous mounts. The three basic Robinson models cover application ranges in pounds in the following increments- 2 to $5 \mathrm{lbs} ; 5$ to $12 \mathrm{lbs} ; 12$ to 25 lbs .

Write today for information and prices on these new and versatile MET-L-FLEX mounts: Series 6952.

Look for us at the I. R. E. Show - Booths 268-269
Robinson
vithemith intiol


> BOBIIESOL AUIDTIOM, InC. teterboro, new Jersey

UIBRATION COMTROL EnCIMEERS
amplifier has a bandwidth of 200 mc , an impedance of 200 ohms and a gain of 20 db . The regulated power supply insures constant gain within $\pm 1$ percent for line voltage variations of $\pm 10$ percent. Using a traveling-wave circuit composed of two stages of six 6AK5 tubes, the amplifier has a transmission characteristic of $\pm 1.5 \mathrm{db}$.


## Miniature Tube Sockets

Mycalex Tube Socket Corp., 30 Rockefeller Plaza, New York 20, N. Y. A line of seven-pin miniature tube sockets is obtainable on Mycalex 410, developed for applications requiring close dimensional tolerances not possible in ceramics and at lower loss factor than micafilled phenolics; and in Mycalex 410 X , with a loss factor of only about one-fourth that of general purpose bakelite. Sockets are manufactured to precise specifications.


## Television Booster

The Astatic Corp., Conneaut, Ohio. The Channel Chief, Model AT-1 Booster uses four tubes to produce high gain uniformly over all 12 television channels. The instrument features dual tuning controls permitting separate adjustment for best picture definition and best sound, and also increasing the front-end selectivity of receivers. The unit also has a variable gain


## $\mathcal{S} \cdot \mathcal{S}$ White resision

Of particular interest to all who need resistors with inherent low noise level and good stability in all climates


STANDARD RANGE
1000 OHMS TO 9 MEGOHMS
Used extensively in commercial equipment including radio, telephone, tle graph, sound pictures, television, etc equipment.

## HIGH VALUE RANGE 10 to 10,000,000 MEGOHMS

This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and labsratory equipment-and of high voltage applications.

## SEND FOR

BULLETIN 4906
It gives details of both the Standard and High Value resistors, including construction, characteristics, dimensions, etc. Copy with Price List mailed on request


## S.S.WHITE


 One of Amerteai AAAA Industrial Enterprises



NEW PRODUCTS
control. A self-contained power supply operates from 115 -volt, 60 -cycle a-c power line.


Electronic Viewfinder
General Electric Cd., Syracuse, N. Y. A new viewfinder capable of 500 -line definition is now available for television cameras. Video response is uniform to 7 me within plus or minus half a di. As normally used with mixed blanking, there is no observable tilt in a 60 cycle square wave. Construction and placement of the new unit allows easy servicing.


## Bus Broadcast Receiver

Collins Audio Products Co., Inc., P. O. Box 368, Westfield, N. J. Model T-20-A f-m receiver, designed


DIELECTRIC CONSTANT of liquids can now be quickly and accurately measured from unity to 85 with the equip. ment shown. The magic eye winks at you when the proper adjustment has been obtained and the desired informa. tion is read from the dial, according to Yellow Springs Instrument Co., Inc., of Yellow Springs, Ohio.

## 2 KW

VACUUM TUBE BOMBARDER OR INDUCTION HEATING UNIT


For Only $\$ 650$.

Never before a value like this new 2-KW bench model "Bomborder" or high frequency induction heoter ...for saving time and money in surface hard. ening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . Economical Standardization of Unit Makes This New Low Price Possible

This compact induction heater saves space, yet performs with high efficiency. Operates from 220 -volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$. Immediate delivery from stock.
Scientific Electric Electronic Heoters are made in the following range of Power: 1-2-31/2-5-71/2-10-121/2-15-18-25-40-60-80-100-250KW.


Division of
" S " CORRUGATED QUENCHED GAP CO 107 Monroe St., Garfield, N. J.
especially for use in contract bus reception has a sensitivity of 5 microvolts, an image ratio of better than 1,500 -to-1, and an i-1 bandwidth of 150 kc . Ultrascnically controlled relays that are actuated by tones from the broadcast station can either raise the audio level of the receiver (during announcements) or cut off the audio section entirely (for commercial announcements not paid for over the transit system).


## Twin-Stylus Cartridge

General Electric Co., Syracuse, N. Y., has announced Model RPX050 twin-stylus variable reluctance phonograph cartridge, capable of playing conventional and microgroove records. Changing from one stylus to the other is accomplished by depressing and turning a knob on the top of the cartridge which projects through the tone arm of the player. It is not necessary to disturb the cartridge itself. The cartridge shows a wide-range frequency response curve over the useful range of 40 to 10,000 cycles.


## Circuil Tester

Gits Molding Corp., 4600 West Huron St., Chicago 44, Ill. The Cord Visual Circuit Tester is designed for use on all low-resistance circuits of 50 ohms and under. Using two penlight battery cells, the device resembles a pocket flashlight. A test clamp is fastened to the rub-ber-covered wire which connects


Here are some of the tubular parts made to the exacting requirements of the Electronics Industry.

The Electronics Division of the Superior Tube Company has grown along with this expanding and vital Industry, producing, to precise standards, a great variety of tubular parts. The needs of the Industry have been met by Superior only because long ago it was realized that ordinary methods of manufacture were not sufficient. Chemical and metallurgical engineering controls, together with a new, and penetrating production system, form the "watch-dog" team that makes Superior's electronic parts outstanding.

Used as anodes and grid cylinders for television and cathode ray tube gun structures, these parts can be rolled at either or both ends, straight cut or angle cut, expanded and rolled, or specially shaped to meet all requirements.

Turn to Superior for electronic tubular parts-they give satisfaction. We will be glad to send you full information.


[^15] $N_{\text {EVER }}$ CONSTRUCTION AT Hegle or of pichas higher quality LOW.LEVEL COST able at so powiformance on 78 desigign and construction,

 merlin $_{l_{n}}$ finish $_{\text {will }}$ wid. Its styling acive in curved design


 ${ }^{4.0}$ volts, ample provides high ouvailable only in this

 $W_{\text {rite }}$ for complete of $1.1 / 2$ oz. assures ocord reprocoluction.

with the battery through the screw button at the back end. At the other end, next to the bulb, is a test prod about 1 in . long. In use the bulb lights up if the circuit is good.


## Miniature Dry Rectifiers

International Rectifier Corp. 6809 South Victoria Ave., Los Angeles 43 , Calif. A new line of miniature selenium rectifiers has been developed for half-wave use having a maximum peak inverse voltage of 380 volts. Current ratings available are $75,100,150,200,250,300$ and 350 ma .


## Barrier Terminal Block

Buchanan Electrical Products Corp., 1290 Central Ave., Hillside, N. J. A new solderless molded terminal block handles wires in sizes from 16 to 6 AWG, affording a compression type connection. It is available in 4,8 and 12 -circuit sizes. Other types suitable for radio and electronic terminations are described in a catalog sheet.


## Linear Potentiometers

The Helipot Corp., South Pasadena, Calif. A new line of singleturn precision linear potentiometers

TELEVISION

## Coils

STRIPPED, AND TINNED, READY FOR ASSEMBLY



Take advantage of the time and money-saving features of these television coils made to your specifications and ready for immediate assembly.

Whatever your requirements ...choke coils, band-tuning coils, channel coils, contact coils, etc. ... coated with enamel, lenzak, formvar, nylon, plastic, cotton or others . . . Lewis will supply you quickly, dependably.

Lewis has the facilities and broad experience for efficient, economical mass production of all types of television coils. Have a Lewis Engineer check your requirements and quote delivery and price. No obligation, of course. Call or write us today. LEWIS SPRING \& MANUFACTURING CO. 2656 West North Avenue, Chicago 47, Illinois



## 

## TELEX Monoset*-Under Chin Headset

Stethoscope design of the Telex Monoset eliminates tiresome pressure - instrument swings lightly under the chin. Wear it for hours without fatigue!


#### Abstract

TELEX Earset*—Slips onto the Ear Weighing only $1 / 2$ oz., Earsel's Hat plastic frame slips onto the ear, holds the sensitive receiver securely in place. User's other ear is always free for phone calls or conversation.


TELEX Twinset*—Nothing Need Touch Ears!
Lightest twin-receiver headset made weighs only 1.6 oz . Adjust to any head. Flexible, slips into pocket.

Write for Colorful FREE Specifications Folder Today!


DEPT. B-20-1, TELEX PARK MINNEAPOLIS, MINNESOTA
In Canada, Aths Radio Corp., Toronto


[^16]138A CROMWELU ROAD LONDOM.SWIEMCLAND.

LONDON

## SOLDERING IS A CINCH



No matuer how much you know about soldering, there's always a trich that will make it easier. This titule 20-pane pocket guide is crammed full of such time-andtrouble savers.

Withont wasting words, it covers the whole soldering operation-points out DO's and DOV'T's refreshes your memory on difficult points-suggests methods that help you work faster. Yet there's no hard studying, no tough technical tath. Every word is plain everyday English and every point is made clear by easy-to-understand illustrations.

Get this handy Soldering Guide today, and keep it on your bench for ready refcrence. It's a real handbook of professional soldering-not a catalog. Just mail the compon with 10 c in coin and we'll send your copy at once.
 Soldering Guns. Please send Calalog Bulletin.
$\qquad$
Aldress
City _ Staie _..._工_

## NEW PRODUCTS

feature continuous rotation. The smaller potentiometer, Model G, is particularly adapted to transmitting use and aircraft installation; the larger, Model $\mathbf{F}$, is designed and engineered for various types of computer systems. Nominal resistance values of both models are normally held within $\pm 5$ percent but can be maintained at tolerances as low as $\pm 1.0$ percent if required. Power dissipation rating of each is determined at a maximum continuous operating temperature of 80 C , which represents an internal temperature rise of 40 C above an ambient of 40 C .


## Bent-Gun Ion Trap

Allen B. Du Mont Laboratories, Inc., 2 Main Ave., Passaic, N. J., now features a bent-gun ion trap in its $12 \frac{1}{2}, 15 \frac{1}{2}, 16$ and $19-\mathrm{in}$. television tubes. The electron and ion beam is aimed by bending the gun so that the ions will be trapped by the anode barrel structure, and the electron beam is then brought to the axis by the action of a single magnetic field. This design eliminates screen blemishes due to ion bombardment and offers short neck length.


## Current Indicator

Industrial Devices, Inc., Edgewater, N. J. The Mini-Amp indicates load current of motors and other a-c operated electrical devices. It is less than $2 \times 2 \times 1$ inch thick

## SINGLE UNIT TWEETERS

MODELS 4408, 4409-600 CYCLE TWEETERS: Recom mended for highest quolity reproduction systems requir ing o low crossover fre quency. Cobra shoped horn results in perfect wide angle distribution. Frequency re sponse 600 to 15,000 cycles Model 4408 handles 6 watts and 440925 watts.


MODEL 4402, MODEL 4404: Model 4402 repro. duces to 15,000 cycles. Cross. over al 2000 CPs . Rorizontol Handles 12 watts. Campart design mounts in any radio. phono, or speoker cabinet. Model 4404 incorporates 4402 tweeter in handsome walnut cabinet complete with high-poss filter ond high fre auency volume contral. Any.
one can install.

## CROSSOVER NETWORKS



MODEL 4405 HIGH PASS filter: $A_{n}$ effective and economical unit for prevent. ing lows reaching the tweeter unit. Contains high frequency control to bolance highs and lows. Cutoff freavency 2000 cycles.

MODEL 4410,4420 LC CROSSOVER NETWORK: Genvine lC frequency divid. ers tor segregating highs and
lows. Not to be confused with lows. Not to be contused with Crossover frequencies: Model Crossover frequencies: Model
4410600 cycles, Model 4420 2000 cycles. Attenuator con. rols included and wired
Write for illustrated Catalog Today
Address Inquiries to Department E


LOUDSPEAKERSOINC
80 SO. KENSICO AY., WHITE PLAINS, N.Y.
with an opening in the center through which is passed the line carrying the current. Depending upon the number of turns through the center, a neon indicator lamp glows at minimum amperage flow. Accuracy is held within 5 percent. The neon indicator is guaranteed for a service life of at least 25,000 hours.


## Tele Signal Generator

SUPERIOR INSTRUMENTS $\mathrm{Co}_{H}, 227$ Fulton St., New York, N. Y. Model TV-30 television signal generator enables alignment of television i-f and front ends without the use of oscilloscope. Four frequency ranges are 18 to $32 \mathrm{mc}, 35$ to $65 \mathrm{mc}, 54$ to 98 mc , and 150 to 250 , without switching. Audio modulating frequency is 400 cycles (sine wave).


## Nondestructive Tester

Sperry Products, Inc., Danbury, Comn. The new type UR ultrasonic Reflectoscope can be used for metals and many other materials in quality control. The device employs the reflection of ultrasonic waves to indicate on a cathode-ray oscilloscope the presence of flaws or cracks in

## NOTHELFER <br> Custom Built TRANSFORMERS



Proven by Past
Performance


Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built $\dagger$ in quality proved by years of actual use.

From lova to 300 KVA Dry-Type only. Both Open and En-
 cascd. 1, 2, and 3 Phase. 15 to 400 cycles.

Send for NEW
8 page BULLETIN
NOTHELFER
WINDING LABORATORIES
9 ALBEMARLE AVE., TRENTON 3, N. J.
WHEN IT'S A

## Precision Bobbin



Precision gives you built-in insulation - other direct advantages: stronger magnetic fields, closer windings, more room for larger gauge. or more wire of the same gauge on the same size coil base.

Precision Bobbins are theat treated for greater strength and less weight -have swaged tube ends-and entire Bobbin impregnated for better electrical characteristies. Impregnation also permits attachment of terminal lugs to flanges in agreement with Underwriters' requirements. Precision Bobbins moke a lighter, stronger coil-at a definite economy and are available in any shape, any size, round, square, rectangular; in dielectric Kraft, Fish Paper, Cellulose Acetate or combinations.

WRITE FOR SAMPLE TODAY


## PRECISION PAPAR TUBE CO.

2041 W. Charleston St.
Cbicago 47, IIH.
Flant No. 2, 79 Chapel St., Hartford, Conn.

## 40 MC 10240 MC TV AMPLIFIERS



## "Another SKL first"

The Model 212 TV Amplifier has been specifically designed to cover the television band of 40 to 240 MC. With its low impedance this amplifier can be easily installed in any existing TV system. Because of its stability and reliability - a tube failure means only a slight loss of gain - the Model 212 can be safely left unattended for long periods of time. Its low noise level, wide bandwidth and high output make the Model 212 TV amplifiers ideal for distribution systems in hotels, apartment houses, salesrooms and TV manufacturing plants.
castings, shafts, gears, and forgings. A complete description and method of use are given in bulletin 50-105.


## Miniature Relay

American Relay \& Controls, Inc., 4926 West Flournoy St., Chicago 44, III. Type TKL miniature, tele-phone-type relay is available in contact combinations up to four-pole double throw in either silver or palladium contacts. Contacts are rated at 1 ampere at 115 volts a-c or 1 ampere at 32 volts d-c noninductive. The relay is $1 \frac{12}{2} \mathrm{in}$. long, ${ }_{6}{ }^{2}$ in. wide, and height varies in accordance with contact combinations, normally $1^{3}{ }^{3} \mathrm{z}$ in. A four-page illustrated bulletin is available.


Signal Tracer
Radio City Products Co., Inc., 152 W. 25th St., New York 1, N. Y. Model 777A Dynatrace provides a speedy type of trouble-shooting tool for tracing any type of disturbance or circuit defect from the antenna to the speaker. It indicates noise pickup at the antenna, checks avc, afc, link and filter circuits. Input capacitance is $3 \mu \mu \mathrm{f}$. Attenuation


TX-19 A steatite-insulated, flexible coupling for $1 / 4^{\prime \prime}$ shafts, conservatively rated at 5000 volts peak. Dia. $13 / 8^{\prime \prime}$, length $T^{\prime \prime}$. Length and flashover voltage can be increased by turn ing collars outboard. . . . . . \$1.25 net TX-23 A deluxe, insulated, flexible coupling designed for coupling $1 / 4$ " shafts. Will handle a maximum radio mis-alignment of $1 / 16^{\prime \prime}$, also a two degree angular misalignment
$\$ 1.35$ net TX-24 Same as TX-23 but shaft size 5/32" ................. \$1.. 35 net TX-25 Same as TX-23 but non-insulated ...... \$1.35 net XS. 9 Feed-through insulator. Hole size 13/64". Insulators are adjust able for different partition thicknesses on silver-plated terminal stud. Ceramic insulators are of high-grade material designed for high-frequency equipment
$\$ 30$ net


##  electron tube machinery

KAHLE CUSTOM-BUILDS ma chines to make the exact tubes you require-from big 20 -inchers to tiny sub-miniature-from laboratory types to those for high-speed production. Kahle puts each unit through exhaustive trial runs in our plant to assure trouble-free operation in yours.
\#1405 Cathode Ray Tube Sealing Machine 16 heads for sealing up to $121 / 2$ inch tubes; 12 heads for sealing $u p$ to 16 inch tubes. Adaptors for these sizes instantly interchangeable.


We specialize in cost-cutting, production boosting, tobor-saving equipment for complete manufacture of cathode ray tubes standard miniature and sub-miniaties radio tubes, sub-miniature tubes, fluoresent lam

Kahle
1309 Seventh Street ${ }_{i}$ North Bergen, New Jersey
Ta

## STODDART NM-10A

RADIO INTERFERENCE AND FIELD INTENSITY METER

- MEASURES radiated and conducted signals, including pulse or random interference.
- RANCE-14 ke to 250 kc .
- SENSITIVITY - Field strength using rod antennas one microvoll-per-meter to 2 volts-per-meter. Field strengith using shielded loop antennas 10 microvolts-per-meter to 100 valts-permeter. As a two-ferminal voltmeter,
either balaraed or unbalanced, one mitrovolf o one volt.
- REABS dreay in misrovalts and $d b$.
- A.c. PONEE sUpply REQUIREMENTS 105 to 12 E volts er 210 to 250 volfs A.C. Engle phase source may be aNy FALQUENCY BETWEEN 50 CPS AND 1600 CPS. No shock hazard.
- GRAPMIC RICORDER included with wh versstile ecoplement of accesiories.

Write for complete technical dara

## STODDART AIRCRAFT RADO CO.

Main office and plant: 8-247 General Motons Blds. 1346 Connecticut Ave. 6644 Santa Monica Blvd. Detroil 2, Michigan Alg, dupont Circle Bldg Hollywood 38, Calif. Weiroil 2, Michigan Washington 6, D. C. Phonc: Hillside 9294 Phone: Trinity 1-9260 Phone: Hudson 7313

## DETECT RF TROUBLE and its CAUSES



SPECIFICATIONS
Frequency Range
Imperlance
Connectors.

50 to over 1000 MCS are type $N$ to accept connectors supplied are RG-8/U and RG-9/U cable attached The instrument is supplied a with UHF type connectors to accept 82 . ISP attacled to RG-8/U and RG-9/U Adapt Adapters are available for attaching to Power Ranch
T/8 inch 51.5 ohm coaxial line.
Power Ranges:
Model MM $565 \ldots \ldots \ldots \ldots$ to 4

| M M 565 | 0 to | watts |
| :---: | :---: | :---: |
| M M 560 | 0 to 12 | watts |
| MM 561 | 0 to 40 | watts |
| MM 562 | 0 to 120 | watts |
| MM 56i3 | 0 to 400 | watts |
| M M 564 | 0 to 1200 | watts |

Accuracy, Plus or minus $5 \%$ of full seate
for RF power.
Plus or minus
Reflection Coefficient... Less S.W.R.

## MM 560 SERIES

This new MicroMatch provides direct reading of incident power, reflected power, net power to load, and VSWR of load-without reversing coupler. You can detect trouble wherever it may be in the transmitter, transmission line or antenna system. $\$ 97.00$ complete.

## M. C. JONES ELECTRONICS CO. bristol, connecticut


is 10,000 to 1 by means of a ladder attenuator with vernier control. Sensitivity is $10,000 \mu \mathrm{v}$ for full scale deflection of meter or $200 \mu \mathrm{v}$ per division. Frequency range covers approximately 160 mc .

## Voltage Stabilizers

Raytheon Mfg. Co., Waltham, 54, Mass. The new multiple-unit type voltage stabilizers were designed for capacities in excess of 2 kva . Multiple sections of 500 or 625 -watt capacity are built up on rails and connected in parallel with input and output connections located in a separate junction box. Capacities can be built up to 10,000 watts. The stabilizers deliver controlled output voltage to $\pm \frac{1}{2}$ percent over their full rating.

## Radioactive Counter Tubes

N. Wood Counter Laboratory, Box 76, Route 1, Chesterton, Ind. Mica end window counters are now available having a $1 \frac{1}{1}-\mathrm{in}$. window, 2 to 3 milligrams per square centimeter sealed to a stainless steel cathode by means of fused glass. The seal is unaffected by heat or filling vapors and remains tight since there are no gaskets or resins. The counter tubes have long flat plateaus, low backgrounds and long life.

## Literature

Facsimile Accessories. Alfax Paper and Engineering Co., 46 Riverside Ave., Brockton, Mass. Use of facsimile techniques is practically unlimited in the fields of signal recording, data memory, monitoring, analysis studies and telemetering. Suggestions along these lines and lists of materials necessary for facsimile recording are presented in two new brochures.

Industrial Electronic Coatings. Microcircuits Co., New Buffalo, Michigan. The manufacturers of micropaint, magnepaste, and magnepaint will gladly send copies of a new publication that covers pos-

## KWOW THE TRUE FACTS OF OPERATION <br> at 1101 ERECOENCY with CW-AM-FM-TV TRAMSMITTERS

## use

## TERMALINE COAXIAL LOAD RESISTORS

Frequency Range. . Zero (d-c) to 4000 mc Power Range.............To 2000 Watts Impedance.................. 51.5 OHMS


MODEL 81
Power Rating........................ 50 W V.S.W.R..... Less than 1.15 to 4000 mc

MODEL 81B
Power Rating.
Less than 1.
MODEL $\mathbf{8 2}$
Power Rating
500 W V.S.W.R...... Less than 1.2 to 2700 mc

## MODEL 82C

(whter-cooled)
Power Rating .................. 2000 W V.S.W.R...... Less than 1.2 co 2700 mc

NEW PRODUCTS
(continued)
sibilities and applications of conducting, resistance and magnetic paints. Those working with printed circuits should not fail to obtain a cops.

V-T Voltohmmeter. Simpson Electric Co., 5200 W. Kinzie St., Chicago 44, Ill. The new model 303 vacuum-tube voltohmmeter can be used as an electronic d-c voltmeter, and ohmmeter, an a-c voltmeter, and a-f voltmeter, and r-f voltmeter, an output meter and an f-m indicator. Read all about it in the single catalog sheet.

Power Cables. General Electric Co., Bridgeport 2, Conn. The proper selection of power cables is just as important to the electronics engineer as the decision whether or not to use Litzendraht. Save yourself some trouble by asking for Publication No. 19-269.

Selenium Stacks. Federal Telephone and Radio Corp., 900 Passaic Ave., East Newark, N. J. A single catalog sheet goes a long way towards clearing up confusion as to which selenium rectifier stack to use for which application. Dimensions, type numbers, voltages and currents are all given in Form F-400-A.

Wide-Band Amplifiers. SpencerKennedy Laboratories, Inc., 186 Massachusetts Ave., Cambridge 39, Mass. Several bulletins are now available for those seeking information on amplifiers with bandwidths approximating 200 mc . Described are type 200 A wide band chain amplifier, model 104 regulated power supply, type 202 wide band chain amplifier (dual stage) and the model 202P wide-band chain amplifier.

Radioactive Publication. Tracerlab, 130 High St. Boston 10, Mass. The Tracerlog, mentioned before in these columns, should not be overlooked by those interested in an dealing with nuclear materials and techniques. Current issue as of this writing runs to 12 pages and describes survey meters. tells methods of preparing beta and gamma samples for radioassay and lists, on

## you can

## do it better

with the
revolutionary

## ALTEC 21B MINIATURE MICROPHONE

It achieves uniformity of response... provides greater tonal fidelity... it is omnidirectional...it is blastproof, shockproof... there is no false bass build-ap . . . more net acoustic gain before encountering feedback. . . tiny size contributes to remarkable versatility of positioning ... extends the fidelity of sourid transmission.



Radio's newest, multi-purpose instrument consisting of a grid-dip oscillator connected to its power supply by a flexible cord.

> Check these applications:

- For determining the resonant frequency of tuned circuits, antennas, tramsmission lines, by-pass condensers, cholxes, coils.
- For measuring capacitance, inductance, Q, mutual inductance.
- For preliminary tracking and alignment of receivers.
- As an auxiliary signal generator; modulafed or unmodulated.
- For antenna tuning and transmitter neutralizing, power off.
- For locating parasitic circuits and spurious resonances.
- As a low sensitivity receiver for signal Pracing.


## TELEVISION INTERFERENCE

The Model 59 will enable you to make efficient traps and filters for the elimination of most TV interference.

Write for Special Data Sheet. 5gTVI

SPECIFICATHONS: Power Unit: $51 /{ }^{\prime},{ }^{\prime \prime}$ wide; Oscillator Unit deep; diameter; $2^{\prime \prime}$ deep
frEQUEMCY 2.2 mc . to 400 mc . severn plug-in coils. MODULATION CW or 120 eycles; or xternal
POWER SUPPIY $110-120$ volts, $50-60$ cycles; 20 wat's.

## MEASUREMENTS CORPORATION BOONTON new jersiy

separate sheets, the variousTracerlab products and services that make this particular organization unique.

Metal Detector. Allis-Chalmers, Milwaukee, Wisconsin. A wellillustrated 20 -page bulletin just released describes the operation and practical use of this electronic sentry for manufacturers of goods ranging from plastics to ceramics.

Voltage Measurements at H-F Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. National Bureau of Standards Circular 481 is an up-to-date presentation of the fundamental principles and techniques used in high-frequency voltage measurements. Myron C. Selby is the author. Price is $20 \phi$ (do not send stamps, foreign or defaced coins to the Superintendent of Documents).

House Organ. American Phenolic Corp., 1830 South 54th Ave., Chicago 50, Ill. Amphenol Engineering News may be of great use both to the engineer and the engineering executive. Besides frankly plugging the newer company products, each issue generally contains an application story and lists typical uses and production techniques.

Rectangular Video. American Structural Products Co., Toledo 1, Ohio. Tube and television set manufacturers had better write for the two-color brochure directed towards them by a subsidiary of Owens-Illinois. Many of the dimensional and applications details are given relative to rectangular television tube bulbs.

Electronic Control Book. Photoswitch Inc., 77 Broadway, Cambridge 42, Mass. Cutting Production Costs with Electronic Controls is the title of a 65 -page book that contains 45 case studies describing actual cost-saving production techniques.

Precision Ceramic Forms. Steatite \& Porcelain Products Ltd., Stour-port-on Severn, Worcestershire, England. Leaflet 40 describes the facilities now existing for the pro-

## JOHNSON Olfers-



GREATER MECHANICAL STRENGTH
No Brazing-No Cracking-No Distortion!
Solder Joint Stronger Than Tubing Ilsel!

This is the type of copper tubing ioint which has proved most successful in other applications for many years!
There is less distortion, better all. around contact-a joint that is stronger than the tubing itself!
JOHNSON hard temper, 70 ohm , and 51.5 ohm , Flange type line is supplied in 20 foot lengths. Special high conductivity copper is used in both outer and inner conductors and rigid tolerances are maintained to insure precision mechanical assembly, low loss and low standing wave ratio

The 70 ohm line is intended primarily for AM and has grade L-4 or better steatite beads. The 51.5 ohm line was designed primarily for high frequencies, has grade L-5 or better steatite and meets RMA standards for FM line. Both are fitted with flange couplings at the factory, which greatly simplifies field installation.
In addition, JOHNSON manufac tures a complete line of elbows, fittings, gas equipment and hardware for the above as well as semi-Hexible, soft temper line in continuous lengths up to 1200 feet in $5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}$ and $7 / 8^{\prime \prime}$ No expansion joints nor elbows are needed for the latter because of its flexibility.

The $5 / 16^{\prime \prime}$ line is especially recommended for phase sampling and other low power applications.
Whatever your co-dx requirements may be, JOHNSON - the oldest manufacturer of concentric line in the field - can meet them to your utmost satisfaction.
E. F. JOHNSON CO., WASEGA, MINN.

# PRICES REDUCED 

Du Mont Type 241
Was \$458...Now \$399
Du Mont Type 248-A
Was \$1870.Now \$1370
Du Mont Type 279
Was \$1300.Now \$1150


INSTRUMENT DIVISION CLIFTON, N. J.


Spechaty DRY BAML2: 5 cusion Bufly 10 Exacing hastiol ond Electron's: Rexpliemenils
Looking for a dry battery that's odd sized or with unusual capacity or lasting power? Spe:ialty Battery Company makes special batteries for every conceirable purpose. Send us your specifications. We can fill your needs from our stock or manufacture a battery to your specifications,

## Write For Catalog

Gives complete descriptions of hard-to-get industrial, laboratory, rad o and ignition batteries.

SPICIALTY BATIERY COMPANY A Ray-O-Vac Subsidiary

## RAYO.VAC

MADISON 3, WISCONSIN

*DIFFERENTIAL COMPUTING POTENTIOMETER

NOW-add or subtract two variables in one instrument-with one voltage source! This compact unit does work of two potentiometerssaves cost by eliminating one - has high inherent accuracy of a single potentiometer.
When one variable rotates shaft and other rotates body of this Type 748 Potentiometer, net voltage sum or difference is brought out through coin-silver precision slip rings in cover plate, shown above
Linearity of $0.10 \%$ is guaranteed - and the high resolution, long life, low noise level, and low torque found in all Fairchild Precision Linear Potentiometers can be depended upon as always.

Suggested applications for this new precision instrument include use in servomechanisms for computing or power amplification, direct replace. ment of 2 single potentiometers when one is being used for compensation or correction purposes, etc. For details, address: Dept. N, 88-06 Van Wyck Boulevard, Jamaica 1, N. Y.


CAMERA AND INSTRUMENT CORPORATION

REDUCE ASSEMBLY REJECTS WITH.


duction of low-loss ceramic forms in which the winding grooves are held to close tolerances.

Insulating Tape. Bishop G. P. Co., 420 East 25th St., New York $10, \mathrm{~N}, \mathrm{Y} . \mathrm{Bi}$-seal is a self-bonding electrical insulating tape with high dielectric strength. A four-page bulletin has been prepared to give engineering data in detail.

Half-Octave Filter. Gertsch Products, Inc., 11846 Mississippi Ave., Los Angeles 25 California. The applied Acoustics model SA-2 one half octave filter comprises separate high and low-pass filters each having seventeen different cutoff frequencies ranging from 37.5 to 13,300 cycles on one-half octave steps. Selection of each cutoff frequency is made by pushbuttons. Get the single-page catalog sheet for complete details.

Mica Capacitors. Arco Electronics, Inc., 135 Liberty St., New York, N. Y., has just published the 194950 catalog of El-Menco capacitors. While they are predominantly mica types, some tubular paper and ceramic trimmer types are also included.

Pressurized Capacitors. E. F. Johnson Co., Waseca, Minnesota. Fixed, fixed variable and variable pressurized capacitors are now available in many types and sizes at somewhat lower costs. Send for data sheet for the complete dope.

Precision Potentiometers. Technology Instrument Corp., 1058 Main St., Waltham 54, Mass. Six pages are required to tell the story on type RV2 high precision potentiometers. Special problems are welcomed for analysis and quotation.

Industrial Control Relay. Niagara Electron Laboratories, Andover, N. Y. The Thermocap, a capaci-tance-actuated electron relay mechanism previously described in these columns now rates a 23 -page booklet (Bulletin T2/8-49) in which various applications are described or pictured. Other industrial electronic equipment by the same company is also covered.

NEWS OF THE INDUSTRY
(continued from p 130)
The Cniversity of Connecticut, Stors,
Stumn of ultra-a
${ }^{\text {ity }}$ Theoretical study of transmission lines Space charge capacitor of as racuum tuise
Cornell linivernity, Ithaca, N. Y frequencr radiation (ONI)
Development of a wide-range oscilloscope

Solar noise
Troposphere electromagnetic fropagation studies (USAF)
Development of electronic instrumentation for cardiovascular research (USPHS) Develomment of method ot measuring clotting properties of blood by dielectric properties (ONR)
Univernity of Delaware, Newark, Del.
Investigation of the effects of noise in uhf reception
University of Elorida , Gainosville. Florida Development and testing of microwave ens antennas
Detection and location of atmospheric disturbances (SC)
Electromagnetic wave propagation and noise studies in the low-frefluency range (USAF)

Classified research (NBS)
Attenuation studies on radar signals in the presence of rain, fog and clouds
(USAF)
Development of a vibrator-tspe motor Georgia Institute of Technology, Athanta, G:
Design and construction of an electronic marker for synchronizing motion picture and electrocardiographic tracing of heart
Correlation of microwave propasmation with meteorological data

Television transmission studies Development of special radar components

Studes of basic radar phenomena
A-C network calculator studies Oscillator circuit studjes
Harvard Cmisersity, Cambringe 38. Mass. Transients in ferro-resonance circuits High-tension voltage dividers for shorttime measurements

Flectromagnetic energy transformation Interruption of ares in inductive and capacitive circuits

Focal properties of cathode-ray guns Tmpulse surge analyzers
Time and frequency domains in control systems
Illinois Institute of Technology, Chleago, IIV.
Linear electron accelerator Armonr Researel Foundation of llimois Inntitute of Technology. Chicago, ill Amplifiers for photoelectric control system

Flectron tube ruggedization
Flectronic blanket control
Mobile oscillograph laboratory (OD) Permanent magnet generator (SC) Torquemeter (NAMC)
University of lllinois, Urbana-Champaign, SIII. st the effects of ultrasonics on nerve tissue
Develomment of a network analy\%er for antenna problems having circular symmetry in one direction

Development of a search receiver an tenna for high-speed aircraft (USAF) Research and investigation on streamlined and flush-mounted airborne antemas. (USAF)
lowa state Collegr, Ames, lowa Expansion of a-c network analyzer to a
The state U. of Inwa, Iowa City, Inwa Development and use of the SUi nolyphase oscilloscope in harmonic amalysis Develomment and use of the SUT molyphase oscilloscope in symmetrical component analysis

Develonment of an improved power angle indicator and recorder

Investigation of transmission line transients under the effect of an impressed squarelication of traplace transform to the calculation of transmission line tran the calculation of transmission hine transients

Theoretical and experimental investigation of slotted-pipe and slotted-cylinder high-frequency resonators
Investigation of multi-tube ring-type high-freguency amplifier circuits
Kansas State College. Manhattan. Kinas Analysis and researeh on electronics materials

Development of television broadcasting

## FOR $\left\{\begin{array}{l}\text { DC TIMING CONTROL }\end{array}\right.$ DC INSTRUMENT DRIVE

## AMCLO Reed Synchronous DGMOTCR

- Constant frequency reed directly controls rotor speed, makes operation truly synchronous.
- Maintains constant speed under wide voltage and load variations.
- Self starting at all times-reaches full speed almost instantly.
- Integral switching capacity to control as many as 50 circuits possible.
- Shaft speeds available from 1 revolution in $\mathbf{2 4}$ hours to 900 RPM.
- Low current consumption - input ranges from . 1 to 3 Watts.
- Up to 200 inch ounces torque at 1 RPM.
Widely used in Military Aviotion, the Telephone Industry and many other fields. The versatile constant-speed DC motor that equals $A C$ synchronous performance in many battery and DC line applications. Designed to exceed strict government specifications, including vibration, gravity and temperature extreme tests. Silicone lubricated. Two frome sizes- $21 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$ $\times 15 / 8^{\prime \prime}$ (Wt. 10 oz .), and $2^{\prime \prime} \times 31 / 2^{\prime \prime} \times$ $33 / 4^{\prime \prime}$ (Wt. 15 oz .). For use at $3,6,12$, $24,32,48$ and 110 Volts. All motors to customer's specifications. Send details for prompt information.



## AMGLO CORPORATION

4234 LINCOLN AVENUE CHICAGO 18, ILLINOIS


They ALL come to Anchor...
for perfect, low-cost mounting and full insulation of metal TV tubes, which facilitates rapid Underwriters' approval. Mounting ring " and sleeve" in $8 \frac{1}{2} 2^{\prime \prime}, 16^{\prime \prime}$, and $19^{\prime \prime}$ sizes. Safe, secure, economical. Write or call:

ANCHOR PLASTICS CO., Inc.
533-535 Canal St., New York 13, N. Y.


## TEKTRONIX

## TYPE 121 PRE-AMPLIFIER

Voltage Gain . . . 100<br>Band Pass . . . 12 Mc.

The TEKTRONIX Type 121 Wide Band PreAmplifier has been designed primarily to increase the sensitivity of the Type 511, 511-A and 511-AD cathode ray oscilloscopes. The maximum gain of 100 , plus the combined attenuator and gain controls, permit a sensifivity range from $2.5 \mathrm{mv} / \mathrm{cm}$ to $25 \mathrm{v} . / \mathrm{cm}$ without the use of attenuators on the oscilloscope.


Price $\$ 265.00$ t.o.b. Portland, Oregon

As in all TEKTRONIX instruments, primary emphasis has been placed on the achievement of optimum transient response. The Type 121 band width, considerably in excess of 10 mc , preserves the excellent rise time of the oscilloscope.

A front panel power supply socket provides DC plate and heater voltages so that when both high input impedance and high gain are necessary, a cathode follower probe or a special pre-amplifier stage mounted directly on the signal source may conveniently be used.
INPUT IMP., 1 meg-20 mmf. PEAK OUTPUT $\pm$ IV. in 93 ohm cable.
FULL DETAILS UPON REQUEST

## TEKTRONIX, INC.

712 S. E. Howthorne Blvd, Portiond 14, Oregon-EAst 6197-Cables : Tektronix

and receiving apparatus
University of Kansas, Lawrence, hansas Network analyzer operating account
University of Kentucky, Lexington, Ky, An investigation of the operation of multi-grid high-vacuum tubes at electrode voltages other than recommended values Lehigh University, Bethlehem, I'a.

Transients
Filtering networks (AMC)
University of Loulsville. Lonisville, Ky. Mathematical study of machine harmonies

Modification of mobile units to operate
in the ten-meter band
Design and construction of a rotating
beam multiple-element antenna
Construction of a special feature cath ode-ray oscilloscope

Development of a new high-frequency tube
University of Maine, Orono. datne
Synchronized oscillating detector for $\mathrm{f}-\mathrm{m}$ reception
Construction and test of a 3 -phase arti
ficial transmission line
Square-wave analysis of compensated
Umplifiers University of Maryland, College Park
Universit
Mal.
The general design of triple and quadruple tuned circuits

Design of magnetic amplifiers
General design of distributed amplifiers
Masmachusets Institute of Technology Cambridge, Mass.
Strain-gage techniques for use in flight
instruments
Development of an electrical analog
computer for simulating fight
Investigation of single crystals of ferro-
electric titania ceramics, and applications
to communications equipment
Synthesis of new ersstal types
Ferromagnetic semiconductors
Perfecting the operation of a ditferen tial analyzer

New applications of the techniques of short-flash photography
Project Whirlwind: electronic-digital
computers
Studies of electron emission problems
Microwave gaseous discharges and breakdown characteristics
Microwave spectroscony: molecular
beam and magnetic nuclear resonance research
Studies of the statistical theory of com munication

Multipath transmission through travel
ing-wave iubes
Development of a vacuum spectrograph Development of magnetrons for high
power and efficiency
Construction of a linear accelerator for
muclear particles
Develop
analyzer
University of Michigan, Ann Arhor, Mich. Study and design of pulsed magnetrons Study of brightness control
Interdigital magnetrons and related
tubes
Cathode follower and amplifier circuits
University of Minnesota, Minneapolis,
study of transmission of transverse
acoustic waves in pipes of rectangular section
Experimental study of electrical contact phenomena
Stabilization of microwave oscillators employing feedback principies
On the mechanism of recording and reproducing signals; noise reduction in magnetic paper tapé

Sturly of noise in transistors
Design and performance of distributed constant amplifiers

Study of electronic pulse generator
Electrical computer for solving linear simultaneous equations
Experimental study of electron guns
University of Missouri, Columbia, Mo.
Efficiency of transfer of high-frequency power

Study of folded dipole antenna
Conversion of higli-frequency power
Gas and vaculum tube multivibrators
operational calculus operational calculus
Analysid of pulse storace networks delivering one to ten milli-second square pulse
Sulnall phase-angle measurement at high audio frequencies
$60-$ cycle frequency tripler
Response of circuits to pulses
The liniversity of Nebraska. Lincoln 8 , Nebraska
An investigation of the use of reducedscale models at high frequency for determining the zero-sequence impedances of


For quality engraving on

- Ponels - Name Plates - Scales - Dials - Lenses 8 Molds - Instruments
also does routing, profiling and three dimensional modeling.
*Price does not include master type and special work bolding fixtures. GREEN INSTRUMENT CO. URTM TX 385 Putnam Ave. Combridge, Mass.

STEATITE ceramic


Design engineers and manufacturers in the radio, electrical and electronic fields are finding in LAVITE the precise qualities called for in their specifications ... high compressive and dielectric strength, low moisture absorption and resistance to rot, fumes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its excellent workability makes it ideal for all bigh frequency applications.

> Complete details on request
D. M. STEWARD MFG. COMPANY

Main Office 2 Works; Chottanocga, Tenn. Needham, Mass. - Chicago • Los Angeles


Little thought-of facts about capacitors
The short time breakdown voltage of a well-made D.C. capacitor is not less than 5 to 6 times the actual working voltage at $20^{\circ}$ -
$\mathbf{E}=5 \times \ominus$ min
$\mathbf{E}=$ Breakdown voltage
$\mathrm{e}=$ Rated d.c. working voltage

INDUSTRIAL CAPACITORS are unvaryingly hold to this formula.
Designed for maximum saiety factor and the smallest possible volume, INDUSTRIAL CAPACITORS are the mont widely used capacitor in industrial applications. WRITE TODAY FOR DETAILED CATALOG INDUSTRIAL CONDENSER CORP.


Sales Offices in Sales Offices in
All Principal Clities
3243 N. California Ave


ADVANCED HOME STUD AND RESIDENCE COURSES IN PRACTICAL RADIO-ELECTRONICS AND TELEVISION ENGINEERING Reytuest your free bome study or resident school catalog by writind to:

## DEPT. 281 B

16th and PARK ROAD, N W WASHINGTON 10, D.C Approved for Veteran Traitions

FOR
DEMONSTRAtING
\& TESTING AUTO
from AC LI
 un filters.
The University of New Mexico, Albuquercull, N. M.
Timing circuits for cor oscillograph or Carolina State College, Raleigh
Automatic plotting of electrostatic fields tween arbitrary electrode shapes Evaluation of long-range radio-naviga

## A. Ma Man Mi ta mana ama menam

## ${ }^{6} A^{97}$ BATTEN Y ELIMNATORS


for DEMONSTRATING AND TESTING AUTO RADIOS

New Models . . . Designed for testing D. C. Electrical Apparatus on Regular A. C. Lines. Equipped with Full-Wave Dry Disc Type Rectifier, Assuring Noiseless, Interference-Free Operation and Extreme Long Life and Reliability.


## aUTO RADIO VIBRATORS

A Complete Line of Vibrators
Designed for Use in Standard Vibratot-Opercision Construction, featuring Ceramic Stack Spacers for Longer Lasting Life.


See your stabber or mite factor
American Thievision \& Radio Co Quality Product Sian 1931
SAINT PAULi, MINNESOTA-U.S.

Dit AN/FRS-5 (phase I) (AMC) Development of a broad-band electrical
Investigation of broad-band. low-freGuency antennas (phase II) (AMC)
Tum contract research. Evanston, III. Tonics contract research projects in elect tonics (USAF)
One contract research project in alecNorther (USAF)
Dielectric Multimode proser ar microwaves (SC) (SC) propagation in wa veguides
Effect of waveguide openings on beam niles (SC)
Fundamentals of microwave transmis
Aerial measurements ( SC )
Aerial measurements laboratory (Bud) Amalgam cathode materials for power Cor
Correlation of electric, temperature and radiation
materials
Electromechanical filters for low free quenches
Circuit analysis of nolyphase electronic frequency converter circuits
Experimental studies of industrial procCorrelation
response by moor transient and frequency Symbolic analysis of relay computer
Mapping of potentials in the brain
Electronic computer for woos of tenth
Analog-computing machines for com putations of multicomponent fractional and flash distillations
University of Note Dame. South Bend Ind. Study of second order differential microInvestigation of non-linear oscillatory Study of harmonics in 3 -phase transormers
Design of an electric analyzer
Characteristics of some unusual pentode
The Ohio State University. Columbus 10 , Ohio
Antenna development
Antenna radiation characteristics Pulse transformers
Microwave oscillators
Electronic circuitry research

## lines

dituency heating and control Adversity of Oklahoma Research In applied electron, okhalioma
wen St electronics
High-frenuency dielectric heating of slating materials
The Pennsylvania State College, State
Bandwidth ,

Bandwidth measuring instrument Precision firing control of ignitron for
Study of ionospheric effects on radio
Application of transistors to railway The Cuizirsity of
he diversity of Pittsburgh, Pittsburgh University
Electrical cyclotron-various researches Princeton Thiversits. princeton. N. J. Research in controllable reactors Traveling -Have electronic tube Radio-flequare electronic tube (ONT) ${ }^{\text {flefluency }}$ measurement devices Sound transmission through liguid-filled Purdue University, Lafayette, Ind.

Industrial instrument research
Rensselafr Polytechnic Institute, Troy

## Color filters in ty

C-W magnetron operation
Broadband coupling circuit for use with electric heating units
Nurrow-band highly stable amplifiers D-C amplifiers and die phase inverters

DUMONT

## TYPE P6M

SOLID
MOLDED
OIL
CAPACITOR


World's Finest Moulded Paper CAPACITORS
now USED IN

World's Largest and Best Selling Television Sets


FOR DEPENDABILITY ALWAYS SPECIFY DUMONT
DUpONT
EHFTRIC CORP.
MFR'S of Capacitors
FOR EVERY REQUiREMENT
308 DYCKMAN STREET
NEW YORK, N: Y.
motors, shunt motors and W-L systems Saturable reactors and d-c coniponents in iron-cored transformers Application of double-single sideband transmission transmission of binaural sound
for transmission of binaural sound
Guidance of missiles in free space dis Frequency chracterts tubes
Crystal Colpitts-Hartley oscillator
Magnetic amplifiers sms and their components
Lutrer Laiversity, New Brunswitk, N. J. Modulation system (USAF)
Automatic measuring circuit (USAF) The Lniversits of $^{\text {sonthern California, }}$ Los Angeles. Calif.
Development of apparatus for conversion of 6 -cycle power to power at consion of 6-cycle bower to frequencies from 60 cycles ner second to 500 cycles per second cycles ier second of a device for direct modulation of a high-velocity air stream Development of apparatus for continuous electric logging in oil well drilling ous electogical effects of high-intensity sounds
A new type electronic organ
Stanford University, stantord, Calit. Omnibus project covering electronics ( t -w tube, spectrum analyzer tube, local oscillator studies, meteoric ionization of the upper atmosphere, etc.) US.
single-sideband modulation systems (USAF)

Low-frequency loran studies (USAF) Ionosphere studies (NBS)
Stanford liescarch institute, Atanford. Calif.
High-level single sideband transmitter Development of tv transmitter
Microwave propagation measuement Tule laboratory and other electron electron optics, c-r and other
Aircraft radio systems laboratory, to contain research and development in antennas, propagation and aircraft commu-
Syracuse Unipersity, Syracuse. N. Y. Electronic electrocardiographic diagno-
sis Analysis of waveguide antennas and feeds D finding (USAF)
The $\mathbf{U}$. of Trnnessee, Knoxville 16. Tenn. Non-linear solutions for circuits containing iron-core reactances
taining iron-core of rotatrol speed control swistem Fundamental study of the mercury are rectifier Mathematical research on theory new type of recording process Project on new type of recordirg process Project on servomechanisms
Agricultural and Mechanical College of Texas. Collere station, Texas
A-C network calculator laboratory
Mass spectrometer laboratory
Trxas Engincering Experiment Station. Collece station, Jexas
Mass spectrometer development
Flectron microscope development Characteristics of oscillations produced in gaseous discharges
The University of Texas, Austin, Texas
A study of microwave mropagation in
the lower atmosphe of the signal strength received from commercial $\mathrm{t}-\mathrm{m}$ radio stations (NBS) Tufts Collcge. Medford. Mass.
Air-borne nagnetometer for measuring the earth's magnetic field at high altitudes Saturable reactor means of registering small d-c voltages air-borne telemetering equinment
equipment Construction of a modified television receiver to display hoth television and telemetering signals
Measurement of properties of the uppes air which have 10 no with the presence of free ions (USAF) salt Lake City. Utalt University of Utah, Salt kake err. Utah Solution of circuits for periodic nonsinusoidal waves
Analysis of instability of voltage regulators
State College of Washington, Pullam Wash.
Corona at high altiture
Flectronic heat pattern Fruit processing by ilelectric Engineering inton stale
Corona discharge interference with radio narigation aids (Continuet on p. 204)



## STODDART NM-20A

RADIO INTERFERENCE AND FIELD INTENSITY METER

- A portable unit that you can DEPEND upon! Designed especially to withstand the rigors of all-weather field operation and yef provide reliable performance.
- Measures FIELD INTENSITIES of radio signals and r.f. disterbances using either a rod antenna or a rotatable loop antenna.
- May be used as a two-ferminal' r.f.
volfmefer (balanced or unbalanced), frequency selective over the CONTINUOUS RANEE 150 ke to 25 me.
- ONE MICROVOLT SENSITIVITY as a two-terminal voltmeler; 2 microvolis-per-mefer using rod antenna.
- Operates from self-confained dry batteries or external A.C. power unif providing well-regulated filament and plate supplies.

STOPDART Amplet reataicol date

Main office ond plant
6644 Santa Monica Elvd.
Hollywood 38, Calif.
Phone: Hillside 9294

8-247 General Motors Bidg. Defroit 2, Michigan Phone: Trinily 1-9260

1346 Con
1346 Connecticut Ave. duPont Circle Bldg. Washington 6, D. C. Phone: Hudson 7313


Save Space and Weight With New, Plate-to-Plate TRANSICOIL Control Motors


Request on Company Letterhead

Low Inertia Motors,
Precision Gear Trains
And Combinations
for 400 eycle or
60 cycle operation.
Direct plate-to-plate winding eliminates the output transformer in the servo amplifier. Wherever weight and compactness are inportant in a military or industrial control system, this new Transicoil design development is your logical solution.

- Varied housing designs suitoble for all standard mountings.
- Motor stall torque .25 in oz. to $4.25 \mathrm{in}_{\mathrm{in}} \mathrm{oz}$.


## TRANSICOIL CORPORATION

114 WORTH ST., NEW YORK 13 , N. Y.

NEWS OF THE INDUSTRY (continued)

Corona discharge in supersonic air veacity
A flat gain r-f voltmeter
University of Washington. Seattle, WashExperim
Experimental field strength survey in
the Seattle area年 Seattle area
Design and construction of a high-speed cathode-ray oscillograph

Design and at high frequencies
Design and construction of a network
Wayne
ayne Univarsity, Detroit, Mich.
Telemetering temperature impressors
wutomatic and remote altitude selector
West Virginia University, Morgantown West Va
Study of servomechanisms used in auto-
matic pilots
Develonmen Wisconsin, Madison, Wisc converter for of an ignitron frequency Network for induction heating
Infra-red detector for locating hot spots
on electric conductors
Phototube amplifiers for stellar photom etry

Magnetic amplifiers
Surveys and analysis of $f-m$ propagaF'requency dividers
Application of multiple Laplace transforms in electric circuit analysis and olectromagnetic field theory
Basic theory and experimental confirmation of the percent limit capacitance bridge
A critical review of the theory and application of the Schwarz-Christoffel and Bickley transmutations in electromagnetic ield theory
Measurement of dielectric constants of gases at $9,000 \mathrm{mc}$ per sec
Electronic multipliers using mixer tubes
Carrier-type carrier-type multipliers
Carrier-type d-c amplifiers
Metalic delay lenses for microwaves
Distributed-type band-pass amplifers Distributed-type band-pass amplifiers Internediate-frequency
Reactance-tube f-m oscillator amplifiers Reactance-tube $f-m$ osclllator
High-gain television pre-amplifiers Non-linear circuit antennas
Synchronizing cuit phenomena
Yale Unirersity, New Haven, Comn
Vacuum tube research.
magnetron (USN) klystron and
Optimum phase and attenuation of Pulse modulation (SC)
Flectrical storage methods (AMC)
Transient recording (BuO)
Flight simulator control

## BUSINESS NEWS

Burndy Canada LTd., electrical connector manufacturer, has opened a new factory at 381 Greenwood Ave., Toronto, Canada, to expand manufacturing and engineering facilities.

The Brush Development Co., Cleveland, Ohio, manufacturers of piezo-electric devices and precision instruments, recently began the production of high-power ultrasonic units.

Electrical Reactance Corp., Franklinville, N. Y., has established an undergraduate fellowship at the New York State College of Ceramics of Alfred University, Alfred, N. Y., to carry on research and development work relative to ceramic dielectrics.

Electro Products Laboratories, INC.. manufacturers of $d$-c power

## CML

ELEGTRONIC PRODUCTS

## Outstanding For RESEARCH - PRODUCTION

varlable frequency generators
MODEL 1430
50-5000 Cycles
1400 Watts Output Powe
O-140
Frequency Stability - $2 \%$
Frequency Stablity
Distortion (Full-Load) Under
MODEL 1420
50-6000 Cycles
250 Watts Output Power
80-270 $\vee$ Output Voltage
STROBOSCOPE-MODEL 1201B
480-60,000 RPM (8-1000 CPS)
A Must for Motion Studies
ROTOBRIDGE—MODEL 1010
Automatic cireuit inspector checks
one circuit per second to pre-
determined tolerances.
REGULATED POWER SUPPLIES
Write for Complete Literature
COMMUNICATION MEASUREMENTS LABORATORY, INC.

120 Greenwich Street New Yoik 6, N. Y.


## LOGARITHMIC AC VOLTMETER WIDE BAND AMPLIFIER

Advanced Design gives you a sensitivity and frequency response never before obtained.

> Also MODEL 47
> AUDIO FREQUENCY VOLTMETER
> 40 Microvolts to 500 Volts
> 15 Cycles to 30 Kc .
> Amplifier Gain 40000

MODEL 45
No other Voltmeter offers all these advantages

- Range .0005 to 500 volts
- Input 2 Megohm 15 MMF
- Frequency 5 CPS to 1.6 MC
- Accuracy $\pm 2 \%$
- Logarithmic voltage scale
- Stability $\pm 1 \% 105$ to 125 V .

Ideal for Audio, Supersonics, Lower Radio Frequency Spectrum. Measures Stoge Gain, RF and IF Amplifiers on Broadcast Receivers. Write for Complete Information

## INSTRUMENT ELECTRONICS CORP.

## SMALL PRRTS

Filaments, anodes, supporth, springs, etc. for electronic tubes. Small wire and flat metal formed parts to Your prints for your assemblies. Double pointed plna. Wire straighlened and cut diameter up to $1 / 8$-inch. Any length up to 12 feet.
LUXON fishing tackle accessories.
Inquiries will receive prompt attention.

## FRT WIRE AND STAMPING CO.

227 High St.
Newark 2, N. J.



New Electro Products Plant
supplies, recently moved to a new plant at 4501 North Ravenswood Ave., Chicago 40, Ill.

Servo-Tek Products Co., Inc., Paterson, N. J., has acquired full ownership of Kent Laboratories, Inc., Hawthorne, N. J., a group specializing in electromechanical design, development and production.

Airborne Instruments Laboratory, Inc., Mineola, N. Y., will move about Feb. 1st to its new building immediately east of its site on Old Country Road.

AErovox Corp., New Bedford, Mass., capacitor manufacturers, recently purchased the entire outstanding stock of the Electrical Reactance Co., Franklinville, N. Y.

Mars Television Inc., Long Island City, N. Y., television receiver manufacturers, have moved to larger quarters at 112-33 Colonial Ave., Corona, N. Y.

## PERSONNEL

Everhard H. B. Bartelink, formerly head of the radio department of the General Telephone Corp., has been named assistant to the director of research at General Precision Laboratory, Pleasantville, New York.
R. T. Capodanno, after 11 years with Philco Corp., has been appointed director of engineering at Emerson Radio and Phonograph Corp., New York City.

William Vassar has been promoted to chief engineer of Emerson Radio and Phonograph Corp., New York City.

Lewis M. Clement, director of engineering and research of the Crosley Division, Avco Mfg. Corp.,


## FOR THE ELECTRONICS \&

 ELECTRICALINDUSTRIES
## TUNGSTEN

Wire - Rod for Contacts Rod for Valve Seals and Supports Electrodes for Therapeutic Apparatus Atomic Hydrogen Arc Welding Rods Rod and Wire for Metal Volatilization
processes - Hammered Slabs Sheet, Strip and Foil

## MOLYBDENUM

Rod for Contacts - Valve Stems Grid and Mandrel Wire Support Wires and Fiods
Wire for Furnace Windings Hammered Slabs
Sheet, Strip and Foil for all Purposes Sheet for Furnace Boats
We also supply Tungsten, Molybdenum and Tantalum Metal Powders, Titanium Hydride, Zirconium Hydride and many


Small physical size and high elficiency. Available in a wide range of sizes and shapes for the Electronics Industry.

Cincinnati, Ohio, has been named chairman of the executive committee of the Receiver Section, RMA Engineering Department.

Alexander Ellett, in charge of the research laboratories since 1946, has been elected vice-president in charge of research at Zenith Radio Corp., Chicago, Ill.

A. Ellett

G. G. Edlen

George G. Edlen, previously associated with Johns Hopkins in Baltimore as an instrumentation research engineer, recently joined the sales organization of M. J. Shapp and Co., Philadelphia, Pa.

EDWARD E. SCHULTZ, formerly associated with the Belmont Radio division of Raytheon Mfg. Co., has been appointed to the developmental engineering staff of Magnecord, Inc., manufacturers of professional tape recording equipment.

Ray A. Rugge, formerly head of the electrical design and development departments of the Airplane Division of Curtiss-Wright Corp. at Columbus, Ohio, has been appointed chief engineer of Lear, Inc., Grand Rapids, Mich.
L. J. N. du Treil, radio engineer with the FCC and its predecessors for the past 30 years, has retired from government service, and will engage in consulting radio engineering and will establish a frequency measuring service.

Harvey Fletcher, with Bell Labs since 1916 , has retired as physical research director to become an honorary professor in the electrical engineering department of Columbia University, New York, N. Y., where he will establish a department of acoustical engineering.

## COSsOR

 for adahty
## MODEL IO35 <br> The <br> OSCILLOSCOPE with BUILT-IN CALIBRATION

DIRECT Time Readings DIRECT Voltage Readings PLUS TWIN BEAM C. R. TUBE

$\$ 465$ r.o.b. Halifax $\$ 650$ fo.b. New York CONSIDER THE ADVANTAGES

* Optically flat face $4^{\prime \prime}$ single gun twin beam tube displays two waveforms simultaneously. All standard screen persistences available.
- Voltage scales calibrated from millivalt to 500 volts.
- Y I Response only $15 \%$ down at 7 Megacycles.
- Direct measurement of time from I microsec. to .15 second.
- Repetitive, triggered or single stroke lineartime bases, $\pm$ ve sync.

Write NOW for complete technical data. A few territories still available.

> COSSOR (CANADA) LIMITED
> Windsor St, Halifax, Nova Scotia $\star$ BEAM INSTRUMENTS CORP.
> Room 208, 55 W. 42nd Street, New York 18, N. Y.
manufacturers of FRACTIONAL HORSEPOWER MOTORS ( $1 / 1000 \mathrm{HP}$ to $1 / 8 \mathrm{HP}$ ) axial and centrifugal BLOWERS ( 6 TO 750 CFM ) alternators and tachometers - gear MOTORS - AND OTHER SPECIAL ROTATING DEVICES.

This new line of motor-driven blowers may be used for Commercial or Miditary applications. They are available with either sleeve bearings or ball bearings and can be designed for various single frequencies or variable frequency operation. These biowers can be easily modified to meet high temperature operational requirements and our Military type blowers meet all critical JAN specifications.


Type No. BE 10LC - Actual Size $65 / 8^{\prime \prime} \times 53 / 4^{\prime \prime}$

100 CFM at $.5^{\prime \prime}$ static pressure (NAFM), $1 / 30$ HP Capacitor Induction Motor, 120 Volts, single
phase, 60 Cycles, 3300 RPM, clockwise or counter-clockwise rotation.


Type No. BF 94DDL-2-Actual Size $83 / \mathbf{a l ~}^{\prime \prime} \times 95 / \mathbf{g}^{\prime \prime}$

250 CFM at . $5^{\prime \prime}$ static pressure (NAFM), 1/8 HP Capacitor Induction Motor, 120 Volts, single phase, 60 Cycles, 3200 RPM, clockwise or counter-clockwise rotation, rigid base.


Type No. BE 92FEK-2-Actual Size $113 / \mathbf{B}^{\prime \prime} \times 107 / 8^{\prime \prime}$

300 CFM at $.25^{\prime \prime}$ static pressure (NAFM), 1/12 HP Capacitor Induction Motor, 230 Volts, 1625 RPiv, single plase rotation, specia base.

WE ALSO MANUFACTURE A COMPLETE LINE OF AXIAL FLOW BLOWER UNITS RANGING IN CAPACITY FROM 100 CFM to 750 CFM.

## We Invite Inquiry

For additional data
send us your Engineering specifications.

## EASTERN AIR DEVICES, INC. 585 DEAN ST., BROOKIYN 17, N.Y.

## NEW BOOKS

## Networks, Lines and Fields

By John D. Ryder, Head, Department of Electrical Engineeriny, University of Illinois. Prentice-Hall, Inc., New York, 1949, 462 pages, $\$ 7.35$.
To INCLUDE a rather complete treatment on the undergraduate level of elementary network theory, filters, transmission lines at low and high frequencies, Maxwell equations, reflection of waves and waveguides in less than 450 pages is not an easy task. It can be said that the author of this book has succeeded in solving the problem that he proposed himself. The resulting textbook is one which will be useful not only to undergraduates but also to an average engineer for direct consultation.

Beginning with the usual $T$ and $\pi$ networks and elementary network theory, the author devotes a substantial percentage of the book to the study of resonant and coupled circuits. The importance of these results in ordinary communication work is obvious. The only criticism which could be raised is that some of the results which are obtained in the text could be considered as direct consequences of previous theorems and relegated to the position of problems.

The study of ordinary constant-K filters precedes the study of transmission lines which is based on the conventional approach but carefully emphasizes the errors likely to be made by the indiscriminate assumption of purely ohmic characteristic impedance.

Maxwell equations are briefly discussed with some of their immediate consequences, and particular emphasis is given to reflection of plane waves because of its application to the study of waveguides. The book ends with the study of the fundamental transmission modes in rectangular and cylindrical waveguides and with a few remarks regarding resonant cavities.

In dealing with such a large mass of results it was obviously impossible to avoid some omissions or some unbalance. It appears, for instance, that the introduction of matrices in the first chapter on networks is somewhat inconsistent with the procedures employed in the remaining part of the book where matrices are seldom if ever

## FREQUENCY MODULATED RADAR

1.A practical reference volume covering the principles and practices of $\mathrm{f}-\mathrm{m}$ radar. Takes up and develops the general principles of distance and speed determination by frequency-modulated radar . describes some of the apparatus useful in $\mathrm{f}-\mathrm{m}$ radar equipment vices suitable indicating or control derices suitable for utilization of f -m radar data. Covers kinematics of Simple tire-control problems and treats special principles and circuits typical of $f$-ml radar. By D. G. C. LUCK.
$\$ 4.00$

## FUNDAMENTALS OF VACUUM TUBES

2. Here are 584 pages of valuable facts describing the principle types of vacuum tubes-explaining the laws underlying them - giving engineering analyses of their more important applications. Discusses principal types of vacuum tubes-high vacuum tubes, mercury-vapor tubes, photo tubes and several special
varieties. The use of varieties. The use of mathematics is restricted. Third ediMAN. . . $\begin{aligned} & \text { M5.50 }\end{aligned}$


## FACSIMILE

3.This pionering new book on fac-- simiie iraws upon actual experience in pubishing a five-edition dally iacsimile newspaper to explain what it ned-how it do ine-the equipment you need-how to install it-the staff re-quired-the expenses involved-and its covers every phase of facsinile from Covers every phase of racsimile from its growth from early experiments, to its use in sending color pictures or minute. By L. HiLLS and T. J. SULLI-

## Components Handbook

Vol. 17. MIT Kad. Lab. Serles. Codifies available information on . properties and characteristics of electronic components. The book inclunts the results or original measuretory on manufi Radiation Laboratory on manuffactured components. electromagnetic delay lines special delay ines, special variable onben etc Fdited by J. F. BLACKBURN.



## - MICO ENGRAVER

Model 253 For LARGE PANELS


A further adaptation of the already proven model 252 Mico Engraver. Permits accurate engraving on metal or plastic panels up to 19 inches wide and of unlimited length. Maximum height of work above table, 19 inches. Micrometer spindle and four seduction ratios are standard equipment.

## MICO INSTRUMENT CO.

76E TROWBRIDGE STREET DEPT. I CAMBRIDGE 38, MASS.

THERE'S A DEFINITE SAVING OF ASSEMBLY TIME

## WHEN YOU USE <br> 

## SOCKET HEAD CAP SCREWS

The Knurled Head of the "UNBRAKO" Socket Head Cap Screw does triple duty: (1) the Knurling provides a sure, slip-proof grip; (2) the Knurling speeds assembly, because it enables the "UNBRAKO" to be screwed in faster and further with the fingers-handiest of all wrenches-before a "key" becomes necessary; (3) the Knurling permits positive locking. Available in both National Coarse and National Fine Thread Series, in full range of standard sizes. Other sizes to special order. Write for your copy of the "UNBRAKO" Catalog.

## Other "Unbrako" Products Include:

Knurling of Socket
Screws originated with
"Unbrako" in 1934
SPS
STANDARD PRESSED STEEL CO.
BOX 596, JENKINTOWN, PENNSYLVANIA
"UNBRAKO Counts with the Men who Count"

## NEW! LOWEST COST IMAGE ORTHICON CAMERA CHAIN!

## SCHOOLS - broadchasters - INDUSTRY - GOVERNMENT

- Ideal for remote observation with closed wire systems
- Extreme Sensitivity-High Definition
- Uses all types of Image Orthicon Tubes
- Simple Operation-Easily Portable
- Conforms to FCC Standards

Write TODAY for full data and prices


TELEVIIION EQUIPMENT CORP.
238 WILLIAM ST. - NEW YORK 7. N. Y.
IN CANADA: The Ahearn \& Soper Co., Ltd., Ottawa


Accuracy Craftimandich

$$
\begin{aligned}
& \begin{array}{l}
\text { The new BECO 250-A Universal Impedance } \\
\text { Bridge combines careful electrical design and } \\
\text { precision assembly to provide a rugged, port } \\
\text { able instrument having exceptional accuracy }
\end{array} \\
& \text { FEATURES } \\
& 1 \text { milliohm to } 1 \text { meghom } \\
& \text {-Wide Range } 1 \text { mmfd to } 100 \mathrm{mfd} . \\
& 1 \text { microhenry to } 100 \text { henrys }
\end{aligned}
$$

BROWN ELECTRO-MEASUREMENT CORPORATION
Successor to Brown Enģineering Co
4835.37 S. E. HAWTHORNE BOULIVARD

PORTIAND 15, OREGON


Designers of microwave transmission equipment are now taking full advantage of the flexibility of WAVEFLEX flexible waveguides without sacrificing any of the advantages of rigid waveguides. As a result, design problems are greatly simplified. WAVEFLEX waveguides offer lower attenuation loss, excellent impedance match, and extreme flexibility without loss of efficiency.
Standard WAVEFLEX flexible wave-
guides are made in accordance with joint Army-Navy specifications. We will gladly work with you in developing special Waveguides to serve in special applications. Literature on request
Titeflex Inc., 410 Frelinghuysen Ave., Newark 5, N. s.



AN ELEPHANT'S TRUNK!
While no files exist that prove an elephant ever tested his trunk's strength against a MINES Cable Connector assembly, if one ever does ... other records (details on request) prove, he'll be tackling a tough job.
Molded directly to cable as one-piece Neoprene units MINES electrical connectors are Jerk-proof, Shatterproof and Wear-resistant-Special construction and resilient rubber mounting of pins and spring loaded sockets insure a long life of low contact resistance - and the famous MINES Water-Seal automatically protects connections from dirt, oil or water.
A wide variety of sizes, shapes and pin combinations are available to meet the portable power requirements of TV, FM, AM or PA Circuits. No. 4 A093 Male plug illus.
employed; the student may be left to wonder about the usefulness of this very important symbolism.

In several chapters, on the other hand, the author seems to go too much into details. The study of resonant circuits, for instance, covers one-sixth of the total number of pages, and a paragraph on the Maxwell and Wien bridges is inserted as a part of the basic treatment of network theory. These and other similar objections cannot, however, detract from the value of the book. It is an excellent example of textbook writing and should be recommended as such.-E. G. Fubini, Supervising Engineer, Airborne Instruments Laboratory, Mineola, N. Y.

## Chimes and <br> Electronic Carillons

By Paul D. Peery. The John Day Co., New Yorl, 1948, 146 pages, $\$ 3.75$. Though aimed at aiding organists and others in adapting their musical knowledge to the art of campanology, this book also fills an important gap for the electronic engineer whose vocation or hobby is electronic synthesis of music. Available instruments for duplicating the sounds of bells are described and discussed in general terms, without comments on the merits of individual instruments or improvements. Much emphasis is placed on the general technique of playing bells and chimes from a keyboard.
The author defines a bell as any instrument of any shape or material that gives forth a ringing sound on being struck. An electronic carillon is a set of bells, tuned chromatically, playable from a clavier, and employing electronics in any or all of three steps-production, transmission and amplification of tones. The bells are generally carefully designed and machined rods or tubes rather than traditional bells, though a few electronic instruments do use small campaniform tonal sources. Differences in methods of hanging, points of suspension, tuning, striking, dimensions, pickup of tones and in location of speakers are the distinguishing marks of the different manufacturers. The bell tone is picked up either by microphone or by electronic pickup. It is also pos-
sible to generate bell tones electronically, but according to the author no such set has been commercially successful.

All manufacturers construct automatic players for their instruments, for use when a carillonneur is not available. Some use punched rolls much like those for player pianos, while others use slowly rotating dises that actuate the contacts of striking circuits. In addition, manufacturers make Angelus bells and automatic clecks that strike the quarters, halves and hours on the carillons.-J.m.

## Basic Electronics

By Royce G. Kloeffler and Maurice W. Horrell. John Wiley © Sons, Inc:, vew York and Chapman \& Hall, Limited, London, 1949, 435 pages, \$5.00.
The infiltration of electronics into virtually every branch of science and industry has created a demand for mechanical, chemical, civil and aeronautical engineers with a basic knowledge of electronic fundamentals. Basic Electronics furnishes an excellent test and reference book for college-level courses of this type. The reader need only have a knowledge of basic physics to understand the material presented.

Coverage of the field of electronics from high-powered industrial circuits to low-level communications circuits is complete and comprehensive without being sketchy. Liberal references to the literature suggest further study for those whose interests or needs go beyond the scope of the general text.

The first eight chapters of the book, covering basic physical concepts, electron emission, vacuum diodes, linear and nonlinear elements, and vacuum tubes and vacuum tube amplifier circuits, are taken almost verbatim from Kloeffler's previous book, Industrial Electronics and Control. These chapters are, however, up to date and thoroughly suitable for repetition in this book. since it is unlikely that any one reader would have need for both books.

The remaining half of the book presents the practical side of the subject with numerous circuits, curves and photographs to familar-

# Authow with a BROOK High Quality AUDIO AMPLIFIER 

ALI Attractive small remote control console for maximum TRIODES convenience in operation and installation


Model 12A3-10 watls

FOR BESTRESULTS - BROOK GIVES

- Extremely High Volume Without Any Loss of Quality
- Brilliant, Clear Tone
- Separate Controls - Stepped for Bass and Treble
- Minimum Distortion
- Reduces Listening Fatigue

For you who revel in tine music and abhor distortionover radio, television, phonograph-the BROOK all. triode bigb quality AUDIO AMPLIFIER has been developed, after years of intensive engincering research Now you can have "live" music in your own home clean ... clear ... bright music through any good speaker. The use of triodes in all stages-logether with Brook designed transformers-means amplification at its level best. For REALISM in critical music reproduction, hear this finest of amplifiers at your Brook Dealer's NOW!

ALL TRIODES


Write JODAD for FRE\& Jechnical bulletin and Detailed Distortion Analysis


BendixRadio onwers your

## TRANSFORMER and REACTOR PROBLEMS



Regardless of how unusual your specifications, or whether your order is for one or a million, Bendix Radio will design and build hermetically sealed transformers and reactors to meet your needs-as well as government
specifications Jan-T.27, U.S. Navy 16.T-30, Signal Corps 71.4942 and others. Whatever your application, get exactly what you want. from a completely reliable source -put your problems in the hands of Bendix Radio.

Write for more information or outline your requirements.


These new A. C. instruments are Magnetically Damped by use of Alnico Magnets and are of the Repulsion Vane Type
 using carefully aged and impregnated field coils and multipliers. All standard ranges available in round, rectangular or square case styles and are guaranteed A. C. MEER materials. Refer inquiries to Dept. F10.

Burlington Instrument Co., Burlington, lowa
ize the nonelectronic man with the tools used by the electronic engineer. A college course built up around the information presented in this book might conceivably become a required part of the curriculum at colleges.-J.J.

## TV Picture Projection and Enlargement

By Allan Lytel. John F. Rider, Publisher, Inc., New York, 1949, 192 pages, $\$ 3.30$.
The optics involved in television picture projection is becoming required knowledge for many electronic engineers engaged in this rapidly expanding field. This book presents a technician-level discussion of the various systems appearing in commercial receivers.
The physical concepts of light, including reflection and refraction, are presented first. The effects of lenses and mirrors, such as those used in projection television systems, are then explained and various systems are discussed.

To date, relatively few different projection television systems have received much attention. The Schmidt system, and modifications of it employed by North American Phillips, RCA, GE and others, furnishes material for a whole chapter. Another chapter deals with commercial applications of refractive projection systems, and a special section is devoted to the not yet commercially adapted darktrace system.

The book also includes a brief discussion of theater television, and lists the obstacles that must first be overcome before such possibilities become realities.-J.F.

## Radio Technology

By Ernest J. Vogt. Pitman Publishing Co., New York, 1949, 556 pages, $\$ 6.00$.
THis book represents a unique approach to the preparation for new FCC radio operators license examinations. The author has combined the objectives of a basic radio text book with a limited but representative number of actual FCC study guide questions at the end of each chapter. The objectives appear to be to give the reader a more com-

## RAWSON Thermocouple Meters


R.M.S. Readings No Wave Form Errors SINGLE RANGES from 1 ma full scale to 10 amperes full scale. Good from DC to 2 megacycles and higher.

MULTIPLE RANGE INSTRUMENTS RAWSON THERMAL MULTIMETERS Write for Bulletin 502

Other Rawson Instruments DC METERS AND MULTIMETERS FLUXMETERS
ELECTROSTATIC VOLTMETERS WATTMETERS
ELECTRODYNAMOMETER TYPES New!
SINE COSINE POTENTIOMETERS
RAWSON ELECTRICAL INSTRUMENT COMPANY 111 Potter Street Cambridge, Mass. Representatives
Chicago
Los Angelcs


FIED VaCUuM Thermocouples

- TYPE F, contoct type, and TYPE FI with insulated heater, available in ranges of 1.2 milliamperes and over
- TYPE M, contoct type, 25 MV output, constructed in ranges of 100 milli amperes and over
- TYPE U, with insulated heater, for measurements at ultro-high frequencies, made in ranges of 3 milliamperes and over. Streamlined to make convenient use in coaxial cables or fittings possible.
- TYPE R, for rodiant energy meosure ments.

Write Department VE for latest informative bulletins.

## FIELD ELECTRICAL INSTRUMENT COMPANY

 109 E. 184 St. - NEW YORK 53, N. Y.

> 6 to 8 db . Gain on MOBILE 75 WITH THE PREMAX BASE LOADED ANTENNA

Vastly improves the radiation characteristics over thase of the ordinary "whip" types! Its 6 db . gain is immediately apparent as it is more than equal to quadrupling transmitter power and greatly increases effectiveness and range.

Available os o " 75 " Base-Looded or can be had with auxiliary to make a powerful center-loaded job with an additional 2 to 3 db . gain. WRITE FOR SPECIAL BULLETIN


[^17]CUSTOM Manufacturers of PRECISION Products for the ELECTRONIC INDUSTRY

- precision wire wound resistors JAN R-93 and Commercial
- external meter multiplier resistors JAN R-29
- resistor switch assemblies Pre-wired
- SOLENOID, relay and r. f. COIL WINDINGS
- R. F. CAbLE and CONNECTOR ASSEMBLIES

Your Inquiry Will Receive Our Immediate Attention NEW RESISTOR AND MULTIPLIER BULLETIN Showing Both JAN and Commercial Ratings NOW AVAILABLE

## MIDPCD, TNC 37 Abbett Avenue Telephone: Morristown 4-5777




Illustration shows a Diesel engine performance curve. Ignition was about 8 degrees after top dead center. Peak pressure occurred 13 degrees after top dead center, thus angular position of crank is more favorable for efficiently converting pressure thrust into mechanical rotation. Small markers on curve are 5 degree indications, larger markers, top dead center.

PREVERETG OFT-FIRENG DAMAGE
maintain a perfect pressure-time curve with the
SYNCRO-MARKER PRESSUREGRAPH
Instantly Shows whether you're firing on top dead center. Off-firing may mean broken piston rings, crankshafts, other damage. The Pressuregraph gives you a full detailed picture of the firing, of pressure variations, both regular and instantaneous. It measures pressure rise with time, accurately and precisely, from vacuum to 14,000 PSI.

The Pressuregraph provides oscillograph pictures which show relation of pressures to engine shaft rotation (top dead center), relation of pressures to time (milliseconds) or indications in degrees of rotation. Also applicable to gas, steam or hydraulic line measurement of static, dynamic or instantaneous pressures. Installation requires only threaded hole in region where pressure is to be checked.
TODAY . . . Write For Booklet, "Electronic Methods For Measurement Of Pressure And Displacements"
prehensive treatment of the technical aspects of the FCC examination questions. Although the text gives a substantially detailed explanation of many actual examination questions it is obvious that a detailed treatment of all examination questions would be impossible within the limits of conventional text book size. However, the author has presented the subject matter in a clear and concise manner throughout, together with a generous quantity of well-coordinated illustrations. A chapter on the elements of radio mathematics is also included to provide a good foundation for circuit and problem solutions.

It is the opinion of this reviewer that Radio Technology is a valuable supplemental contribution to the field of radio operating, particularly to the new student preparing to qualify for the radio operators ex-aminations.-J. L. Hornung, Supervisor, Radio Electronics, Walter Hervey Junior College, New York, $N . Y$.

## Books Received for Review

BEAITA CATALOGUE 1949-50. Published for The Eritish Electrical \& Allied Manufacturers' Association Inc. by Iliffe $\&$ sons Lotd. for private distribution to principal buvers, distributors and other prospective customers of British industry. $\$ 68$ pages, cloth bound. Compilation of detailed information and illustrations of British electrical products ranging from heavy power plant apparatus to domestic appliances, with comprehensive reference data for rapid identification of supply. sources.
[NTENNATIONAL RADIO TUBE FN Cy(CLOPEDLA. Edited by Bernard B. Batbani. Bernards (lublishers) Ltd., The England. 410 pages, $42 /$ London, Wperating, chatacteristics anges, pin connections of some 15,000 difterent radio tubes of all types manufactured throughout the world, including tspes used by the Armed Seryices of the British Commonwealth, U. S. and furope. Instructions for using the tables are given in 14 foreign languages as weil as in English. Pin connections are given in columms adjacent to tube chardeteristics, eliminating heen for reference to other sections, cover : radio receiving complete in itself, cover: radio recelving
fubes: triode transmitting tubes; other transmitting tubrs; rectifiers: thyratrons: resulator and control tubes: turing indicators: cathode-ray tubes and phototubes. A teluth section covers rare tubes and their equivalents, without giving data. six pages of diagrams of tube bases give pin mumblers for the different types of bases used throughout the world. A timal sectin! wives thbe manufacturers abhreviat-
tions and addresses tions and addresses.

STYLU MANUAL FOR AMFRICAN STANDAKDS. American Standards Association, 70 E. 45 St., New Yorli 17. N. Y. to bring about greater Primarily intrnded entation of technical data by asA technilcall conmmittees. Princinal sections coveroutline form and Humburing sections cover : tion: punctuation : spelling: abbreviations for technical terms: handling tables and illustrations; standard bibliographical style; general fornat for illustrations. Useful to any organization responsible for editing and publishing technical documents.

## A rugged one-piece

 foot leveling screw made possible ... only by COLD HEADNS

Here is another example that shows what Scovill can do with cold heading to give a customer a finished part that is stronger and more reliable in service than if it were made by any other process. If you need fasteners or other special parts in this general size range, check with Scovill first.
"Guide to the Profitable Use of Cold Heading"-Bulletin No. 2 describes the advantages and limitations of this process. If you have not received your copy, write poday. Headed Parts

## STOUIIL <br> FASTENERS AND <br> SPECIAL PARTS

> Industrial Fastener Sales, Waterville Division Scovill Manutacturing Co., Waterville 14, Conn.

New York - Detroit - Wheaton, III. Los Angeles - Cleveland - San Francisco

## Backtalk

## This department is oper-

 ated as an open forum where our readers may discuss problems of the electronics industry or comment upon articles which ELECTRONICS has published.
## You Make 'EmWe'll Buy 'Em.

Dear Sirs:
In the April, 1949 Electronics, under Business Briefs there was an article to the effect that computer manufacturers are making their own tubes. This fact is of considerable interest to us, inasmuch as the aircraft industry has seemingly been a "lone cry in the wilderness" for over nine years, in an attempt to arouse some interest amongst the tube manufacturers toward some really reliable tubes. They have finally come out with a few of what they call a "ruggedized" line which, as far as we can determine, is simply hand picked from the regular production runs, and embody no real improvements. It isn't as if they rouldn't make them. For example: The telephone company has had some repeater tubes buried in the middle of the Atlantic Ocean, operating for years. Another example, the manufacturer of the first aircraft radio had felt that specially designed tubes were essential, and, some of these are still good after 19 years of practically continuous operation. However, they stopped making them because they cost too much and the market was too small. In this connection we did not complain about the price. In fact we have indicated our willingness to pay many times the usual cost in order to get reliable tubes. We have not even insisted on an extra long life, as long as we can be sure that they will run a certain length of time so we can change them before they fail.

The nroblem of reliable tubes is one of the most serious confronting the airlines (and the air forces) today. The modern airplane is an


## construction

This exploded view of a Triad Geoformer (Geophysical Transformer) illustrates the construction which makes Triad Geoformers and "HS" High Fidelity Tronsformers so outstonding in performance. Although of extreme small size, these units deliver a range of performance usually found only in much larger tronsformers-a feature of primary importance in the construction of high quality equipment for geophysical and general electronic applications.

Triad builds high performance into these units through advanced design, exact tooling, specialized engineering and the use of finest available materials. Built to meet JAN specifications, incorporating Triod's improved method of hermetic sealing, and vacuum impregirated by the exclusive "Climatite" process, Triad Transformers are more than meeting today's exacting performance requirements. Yet their cost is little more than that of oidinary cased types. For information and prices on Triad Electronic Transformers write for Catalog TR-49.

For information and prices on Triad Geoformers (Geophysical Transformers) write for Caíalog GP-49.





BALLBEARINGS

TUNGSTEN and MOLYBDENUM
Quality and accuracy in our fabrica. tion of Tungsten $\&$ Molybdenum Ribbons have characterized our service to the Electronic industry.

## 1. GiOSSGO. <br> S Beekman St., New York 7. N. Y.


 $\underset{\substack{\text { will } \\ \text { monitor }}}{ }$ monitor LAMPKIN FM or AM, 100 KC to 175 MC ABORATORIES, INC Bradenton, Fla., U. S. A.


PROBLEMS IN MANUFACTURING VACUUM TUBES?
We build any and all kinds of equipment to your specification and design for the manufacture of tubes or associated prod uct
37.39 Marcy St.

Colorful - Self Adhesive - Cellophane, processed in Rolls. Easy to buy - Easy to apply - used for Packaging-Point of Sale advertising-Parts marking and Aircraft Wire terminal identification.

## TOPFLLGHT TAPE - YORK, PA.

"electronic" airplane, from fuel gage to radio, and by far the major portion of our trouble with electronic equipment is from tube failures.

Incidentally, we would be happy to find out just exactly who is making reliable tubes. If they are types we can use, we would be glad to buy them.

A. F. Trumbull<br>Radio, Electrical, © Instrument Engineering Supt.<br>Uniterl Airlines<br>Chicayo, Illinois

## Too Many Irons

Dear Sirs:
This Letter is to comment on a portion of the article entitled, "Reducing Costs in Receiver Manufacturing" published in Electronics for October. I was especially interested in the problem of soldering irons which cooled off too rapidly, due to high speed production-line soldering, and the way the problem was solved.

It seems to me that a simpler and better solution would be to continue using the same irons, but hook them all to a supply line, and power this line through a transformer to raise the voltage of all irons just enough to keep them at the necessary temperature. As long as the irons are being used so rapidly that, with normal supply voltage they become too cool, it would not damage them any to run up the supply voltage so that they would supply enough heat and stay at a sufficiently high temperature.

If there were any question about an iron getting too hot, if a worker should pause a little, thermostat irons could be used, or thermostat iron stands, so that if any iron on this higher voltage supply line should be left without use for a while, its temperature will not become excessive.

Two advantages of this svstem over the system described in the article would be: (1) the worker would not need to be changing irons periodically, and (2) one iron only for each worker would mean only $\frac{7}{3}$ as many irons operating, reducing the cost of electricity required to heat the irons.

> Paul E. Smay ohicago, Ininion

## EL-TRONICS, INC.

Research, development, and manufacture of electronic equipment-a single model to large quantities.

Specialists in Geiger-Muller equipment 2647-67 N. Howard St., Phila. 33, Pa. Garfield 5-2026


We have more than 30 exciting models, $\bar{\equiv}$ 2 -speed recorders, $24-\mathrm{hr}$. recorders, con. ference recorders and many others. Get
 Complete specifications given. Write Etoday for your copy.

## Amphfigr Corp. of Ambrica <br> 398.7 Broadway New York 13, N. Y

[^18]
# Professional Services 

# Consulting-Patents-Design-Development-Measurement 

in
Radio, Audio, Industrial Electronic Appiicaces
S. BERTRAND BARNARD, LL.B., M.E. hegistered patent attonney Mechanical, Electrontc Automotive and Alrctaft Patenta. PATENT ANALYSES and INVESTIGATION 29-2841st Avenue
Long Isiand City 1 , $\mathrm{N} . \mathbf{Y}$.
STHwell 4-5428

## CROSBY LABORATORIES

Murray G. Crosby Ef Staff FM, Communleations, TV, Industrial Electronics,
Oflces, Laboratory \& Model Shop at: Garden City 7-0284

EDGERTON, GERMESHAUSEN \& GRIER, Inc.
Consulting Engineers
Research, Development and Manufacture of Electronic and Stroboseopic Equipment 160 Brookline Avenue, Bostan 15. Mass.

ELECTRO-MECHANICAL RESEARCH INC.
Specialized Research and Manufacture
High and Low Frequency Circult Derelopment Electronic Measuring and Test Equilpment Optical and Intra-Red Studits Spectal Geophysical Equipmest utomatic Inspection D

## ELECTRONIC ENGINEERING

 CO. of CALIFORNIARadio and Electronic Consulting and Designing.

ERCO RADIO LABORATORIES, INC.
Radio Communications Equipment
Fingineering - Design - Development - Production
Ploneers in Frequency Shift Telegraph
Garden City - Long Istand - New York

## PAUL GODLEY CO.

Consulting Radio Engimeers great notch, n. J.
Est. 1926
Little Falls 4-1000

YOUR card here builds prestige for you and belps to make your name familiar in the field. The cost is extremely small in proportion ts its value as a business aid.

## HANSON-GORRILL-BRIAN INC.

Product \& Mfg. Development Elfetrical - Electronic hydiaulic - mechanical
One Continental Hill
Glen Cove, N. Y. Glen Cove 4-1922

## KENT LABORATORIES, INC.

Model Work in Metals E Plastics Electro - Mechanical
Design - Development - Manufacture
Precision Mechanical Specialists
230 Warburton Ave.
Hawthorne N. J.
Telephone HA wthorne 7-6777

## MEASUREMENTS CORP.

Research छ® Manufacturing Engineers
Specialists in the Design and
Deveiopment of Flectronic Test Instruments i.,unton, N. J.

## ,



## MICROCIRCUITS COMPANY

Consultation-Development-Manufacture Pisinted circuit
APPLICATIONS and PAINTS
Conducting. Resistance, and Magnetic
Paints, Pastes, and Hot Melts
New Buffalo Michigan

Eugene Mittelmann, E.E., Ph.D.
Consulting Engincer \&゚ Physicist
High Frequency Heating - Industrial Electronics Applied Physics and Mathematics
543 W. Washington Blvd.
Chicago 6. Ill.
State 2-8021


## PICKARD AND BURNS, INC.

Consulting Electronic Engineers
Analyels and Evaluation of Radio Systems Research, Development \& Design
of Special Electronic Equipment
240 Highland Ave.,
Needham 94, Mags.

## ALBERT PREISMAN

Consulting Engineer
Television, Pulse Technicues, Video
Ampliffers, Phasing Networks.
Affliated with
MANAGEMENT-TRAINING ASSOCLATES
3308-14th St., N.W. Washington 10.D. C.

## bernard Sachs, B.E.E., M.S. <br> Registered Patent Agent Specialist in electronic cases <br> 1033 E. 12 th St. <br> Brooklyn 30. N. Y.

## SERVO <br> CORPORATION OF AMERICA <br> Consultants on <br> Electronic Control Problems <br> for Industry <br> New Hyde Park <br> Long Island, N. Y.

SERVO-TEK PRODUCTS CO., INC.
Servo-Systems • Position Recorders Motor-Integrator Systems
Specialists in Electronic Motor Speed Control
4 Godwin Arenue Paterson, N. J
Tel. ARmory 4-3366 Teletype PAT 199

## A. F. SMUCKLER \& CO., INC. <br> Electronic and Communication <br> Engineers and Manufacturers <br> 202-208 Tillary Street Brooklyn I. N. Y. <br> ULster 5-5141

## TECHNICAL

MATERIEL CORPORATION
Communications Consultants radioteletype - frfonency bhift

TELETYPE NETWORIS
$\begin{array}{ll}\text { TELETYPE } & \text { NETWORTS } \\ \text { th Street } & \text { New York 19. N. Y }\end{array}$
of placing your unusual problem in the hands of a competent con-
REAL sultant is that it eliminates the elements of chance and uncertainty from the problem and provides real facts upon which to base decisions.

## SEARCHLIGHT SECTION <br> (Classified Advertising) <br> GMPLOYMENT: BUSINESS: <br> "OPPORTUNITIES" <br> EQUIPMENT :USED OR RESALE <br> UNDISPLAYED <br> $\qquad$ <br> RATES <br> DISPLAYED <br> $\$ 1.20$ a line. Minitum $:$ lines. To figure advance bayment count 5 average words as a line. Indirinal Emmoymen Whter rate is one-hat of above ratte. Mayable in addance. Box Nemher:-Care of publication New York, ChiBox Numbers-Care of publication New York, Chi- cago or san Francisco offires rount as 1 line <br> Discount of $10 \%$ if full thayment is made in adrance <br> An adverfixing inch is measured $7 / \mathbf{c}^{\prime \prime}$ vertically on The publisher camot arcent adsertising in the Searchight section which lists the tames of the manufacturers of resistors, capacitors, , rheostats, and potentiometers or other names designed to describe such products. <br> Indivirnal smaces with border rules for prominent display of advertisements. <br> The advertising rate is \$10.25 pur inch for all adrerting apernes on oldor than

Positions Open For: PHYSICISTS TV ENGINEERS

ADVANCED CIRCUIT DEVELOPMENT ENGINEERS


Minimum of 5 years recognized experience in addition to formal education in TV, advanced circuit development, vacuum tube research and mechanical engineering.

Experienced microwave, servomechanism and analog computer engineers.
Salary commensurate with experience and ability-insurance plan-paid vaca. tions-excellent opportunity for suitably qualified personnel.

Please furnish complete resume of education, experience and salary requirements to:

## Industrial Relations \& Personnel Department CAPEHART-FARNSWORTH CORPORATION FORT WAYNE 1, INDIANA

## SENIOR <br> ELECTRONIC CIRCUIT PHYSICISTS

for
Advanced Research and Development

MINIMUM
REQUIREMENTS:

1. M.S. or Ph.D. in Physics or E.E.
2. Not less than five years experience in advanced electronic circuit development with a record of accomplishment giving evidence of an unusual degree of ingenuity and ability in the field.
3. Minimum age 28 years.

## Hughes AircraftCompany

(Mr. Jack Harwood) CULVER CITY, CALIFORNIA

SCIENTISTS AND ENGINEERS Wanted for interesting and professionally challenging research and advanced development in the anisms, instrumentation, computers and general alectronics. Scientifio or engineering degree or extensive technical experience required. Salary com-
mensurate with experience and ability. Direct inquiries to Mgr.. Engineering Personnel. Belt Aircraft Corporation, P. O. Box 1. Buffalo 5, N. Y.

## REPLIDS (Box No.): Address to office nearest you

40nd st. (18) SAN FRANCISCO: GS Post St. (11)

## POSITIONS VACANT

ENGINEER. EXPERIENCED electronic design. Expanding electronic consulting firm. Michi gan. P-1566, Electronics

ENGINEERS-CROSLEY Division, Avco Manufacturing Corporation is expanding its Engineering Department and has openings fol Junior, Senior, and Project Engineers in R.F. Circuit Development. Advanced Development, Product Design. and Cabinet Design and Development. College engineering degree is required. We vill only consider men with unless you have ihese qualifications. Write to Placement Supervisor, Crosley Division, Avco Manutacturing Corporation, 1329 Arlington Street, Cincimati 25. Ohio.
SERVICE TECHNICIAN: Radio Service Dealer requires capable mechanic. Should he qualifed to service all types radio and television ling TV aerials. servicing refrizerators, ai conditioning, ranges, etc. Must assume responsibility for managing repair denartment. Salary open. Applicant should submit complete resume showing educational background, positions, and salary. All replies confidential. P-1418, Elec-
tronics.

PHYSICls'T WANTED-For design and development of electronic and mechanical instrumentation equipment used in the pursuit of cal and practical experience necessary. Salary commensurate with qualifications. Permanent position. Give details in first letter: Cornell Sireet, Buftalo 21. New York. 4455 Genesee
(Continued on page 219 )

## RADAR, COMMUNICATIONS

## and SONAR TECHNICIANS WANTED

For Overseas Assignments
Technical Qualifications:

1. At least 3 years' practical experience in installation and maintenance.
2. Navy veterans ETM $1 / c$ or higher.
3. Army veterans TECH/SGT or higher.

Personal Qualifications:

1. Age, over 22-must pass physical examination.
2. Ability to assume responsibility.
3. Must stand thorough character investigation.
4. Willing to go overseas for 1 year.

Base pay, bonus, living allowance, vacation add up to $\$ 7,000.00$ per year. Permanent connection with company possible.

Apply by Writing to A-1, P. O. Box 3414 Philadelphia 22, Pa.

Men qualified in RADAR, COMMUNICA. TIONS or SONAR give complete history. Interview will be arranged for successful applicants.

## DESIGN ENGINEERS <br> - RADIO <br> - TELEVISION <br> - FM

Hoffman Radio Corporation has positions open for junior and senior radio and television design engineers. Write Engineering Department, giving education, experience and salary desired.

## HOFFMAN RADIO CORPORATION

3761 SOUTH HILL STREET, LOS ANGELES 7, CALIF.

## SELLING OPPORTUNITY OFFERED

 (Continued from page 218)SALES FNGINEER Wanted: A good technical min with background in the electrical, electronic and instrument fields. Sales experience necessary, and a reasonably good connection in dustry. Position involves the sales and promotion of a recognized line of Industrial Electronic Components. State age. hackground and salary requirements. Applicanls alreads located in New York area preferred. SW-1523, Electronics.

## EMPLOYMENT SERVICES

SALARILED POSITIONS \$3,500-\$35,000. If you are considering a new connection communicate with the undersigned. We of er the original personal emplowment service ( 39 years
recognized standing ant reputation). The prorecogmized standing allif reputationd of highest ethical standards. is individualized to your personal recuirements and develops overtures without initiative on vour parl. Your identity covered and present position protected. Send only name and adiress for details. R. W. Bixby Inc., 2 is Dun Blag.. Butfalo.
SALARIED PERSOXNEL, $\$ 3.000-\$ 25.000$. This gearer to needs of high estade men who seek a change of connection under conditions assuring, if employed. full protection to present position. Selld name and address only for details. Personal consultation invited. Jira Thayer Jennings, Dept. $L_{n} 241$ Orange St.,
New Haven, Conn.

## POSITIONS WANTED

SOUTH AMERICA. Flectronic Fingineer (Television), age 35 years at present chief engineer of research. 10 vears industrial experience, ${ }^{2} 1$ patents, puguese technical languages, wants executive position. PW-1485. Flectronics.

TELEVISION ENGINEFR, R.S in E.E. Northwestern. Tau Beta Pi. Eta Kapra Nu. Some graduate work. Age 23. $11 / 2$ years Television Broadcast. Former Navy R.I. Interested teleFision development or field work. Midwest. Chicago il, Ill.

## SELLING OPPORTUNITY WANTED

SALES REPRESINNTATIVE in Chicago area now handing electronic product, interested in simitar lines. Will serve area properly.
RA-1509, Electronics.

## WANTED

ANYTHING within reason that is wanted in the field served hy Electronics can be quickly located through bringing it to the altention of cause this is the business paper they read.

## Wanted

## AIDIDTIONAL ILINE

Established New Eng. Sales Representative Mechanical Engincer, desires ONE additional line.


## CONTRACT

ENGINEERING-MANUFACTURING electronic and electro-mechanical devices - developed to meet your specifications TELETRONICS LABORATORY, Inc. Westbury, L. I., N. Y.-Westbury '7-1028

## TELEVISION

 ENGINEERSTelevision Engineering Department requires the services of five project engineers for advance circuit development and product de sign for television receivers. These vacancies are the result of the ever-expanding television activities in this department.
Company is a major producer of finer television receivers and is well established Company is located in northwestern New Yoik State.

Opportunities for advancement are excellent Solaries commensurate with experience. Our employecs know of this odvertisement $\boldsymbol{P}-170 \%$ Electronics
L2nd St. New York 18. N. Y.

## R A D A R <br> ENGINEED-PHYSICIST WANTED

Must have heavy experience in basic study and research on new radar systems and similar electronic equipment
Excellent opportunity for Senior man Juniors please do not apply.
State full particulars. Replies confidential.
Write: A. Hoffsommer
W. L. MAXSON


## SALES KNOW-HOW CHICAGO AREA

Established manufacturer's agents with contacts in Radio, Electronic and Telephone industries, seek one additional line.
(1). Sixteen years continuous representation for 2 largest manufacturers in their field.
(2). Highly successful background in product development.
(3). Adequate personnel and office for customer service.
Hard intelligent sales effort guaranteed for your product.

RA-1120, Electronics
520 N. Michigan Ave, Chicago 11, Ill.
Time is money. Save it by referring to our
ACCUMULATIVE INDEX FOR
ELECTRONICS BIBLIOGRAPHY
Simple and Dependable
Write for descriptive literature
TECHNICAL INDEX SERVICE
Asbury Park, New Jersey

## OWNERS: Let factory-trained experts treat your ailing receiver

HALLICRAFTERS, HAMMARLUND, COLLINS, NATIONAL, PIERSON, RME Communication and television receivers and transmitters

- Complete realignment
- Bandspread Calibration
- Image Rejection Ratios
- S Meter Calibration

Rebuilding to factory standards
i Authorized Service Center
mers Radio Laboratory
11 WARREN STREET NEW YORK 7, N. Y. WO rth 2-7955

## rCA Victor

Camden, N. J.

Requires Experienced Electronics Engineers

RCA's steady growth in the field of electronics results in attractive opportunities for electrical and mechanical engineers and physicists. Experienced engineers are finding the "right position" in the wide scope of RCA's activities. Equipment is being developed for the following applications: communications and navigational equipment for the aviation industry, mobile transmitters, microwave relay links, radar systems and components, and ultra high frequency test equipment.

These requirements represent permanent expansion in RCA Victor's Engineering Division at Camden, which will provide excellent opportunities for men of high caliber with appropriate training and experience.

If you meet these specifications, and if you are looking for a carecr which will open wide the door to the complete expression of your talents in the fields of electronics, write, giving full details to:

National Recruiting Division
Box 155, RCA Victor Division
Radio Corporation of America Camden, New Jersey

## SALES POSITION

with excellent future possibilities with a new, progressive concern. Must have intimate acquaintance
with engineers and buyers in aireraft and electronic industries. Give full resume of experience, earnings, etc.

330 West 42 nd St., New York 18, N. Y.

## NATIONAL UNION RESEARCH DIVISION

There are several desirable openings for experienced

PHYSICISTS
and
ENGINEERS
capable of handling the design and development of electron tubes and UHF circuits.

Our growing organization can offer excellent prospects for security and advancement to qualified personnel.

Interested applicants are invited to send their resume to:

Divisional Personnel Manager National Union Research Division 350 Scotland Road, Orange, N. J.


## 7/8" RIGID COAX.— $3 / \mathbf{B}^{\prime \prime}$ I.C.

 7 spitg








7/8" RIGID $1 / 4$ "I.C."
C6 54,/0-4 foot fiextile section ik" Ic pres
 Sit


## MISCELLANEOUS

 AV TrPs-1B Hanged nipale and fion rotry couping ije ibij:
 Pulse cable assembly Western Electrle $\$ 1.85$ type
D163262. 10 feet long

 ADAPTER TYPE "NOTO RGAIVU CONNEC.



3 CENTIMETER
(STD. $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ GUIDE UNLESS OTHERWISE
723 A/B llystron mixer section with crystal mount
choke flange and lris llange output c.... $\$ 22.50$ choke flange and lris flange output........ $\$ 22.50$
$T R \cdot A T R$ Section for above w/ 724 ATR Cavity
90 degree twist, 6 inches long.
723 AB Mixer-
723 AB Mixer-Beacon Dual Osciliator 2 Way crystal lholder.
 CG 98B/APG 13, $12^{\prime \prime}$ flexibio section iin $\$ 18.50$ TR.ATR Section APS. 15 , 1224 . $\$ 10.00$ Carity with $1 \mathrm{H24}$ and 724 tubes. Complete $\$ 21.00$ Crystal mount in wavegulde......................17.5
SO3 ECHO BOX XMSN type carity w/belows $3 \mathrm{~cm}, 180^{\circ}$ bend with pressurizing nipple. $\$ 6.00$ ea.
$3 \mathrm{~cm}, 90^{\circ}$ bend, $14^{\prime \prime}$ long $90^{\circ}$ twlst with pressurlz-
 3 cm. " $\mathrm{S}^{\text {", }}$ curve 18 curve long................. $\$ 5.50 \mathrm{ea}$ ea. 3 cm . right angle bends. "E" plane is" long cover 3 cm . Cutler feed dipole. i1 from parabola mount
 CIRCULAR CHOKE FLANGES, solld brass. 55 SQ. FLANGES. FLAT
FLEX. WAVEGUIDE
TRANSITION $1 \times 1 / 2$ to $14 / 45 / 8,14 \mathrm{in}$ L "X" BANO PREAMPLIFIER. consisting of 2.723 A/B Iocal oscillator-beacon Peeding waregulde
and TR/ATR Duplexer sect. incl. 30 MC Pre Amp w/Tubes Duplexer sect. incl. 30 MC Pre
 WAVEGUIDE RUN. $1^{1 / 4{ }^{\prime \prime}}$ I $1 / 2^{\prime \prime}$ guide, consisting
 II" STRAIGHT WAVEGUIDE sect choke to cover 15 Decial heary Const. silver plated.......... $\$ 4.50$ 5 FT. SECTIONS choke to cover. Silver Piated TR CAVITY For ${ }^{724}$ A TR Tube
$3^{*}$ FLEX SECT. 724 TR TUBE (41 TTI ij
SWR MEAS. SECTION. -… $\$ 2.5$ Silver mated ... wave apart. Bell size gulde. WAVEGUIDE SECTION, i2 iong choke to cover 45 deg. trist \& ${ }^{2} 2^{\prime \prime}$ ªding, 90 deg. bend. $\$ 4.50$
SLUG TUNER/ATTENUATOR, W. E. guide, gold
 WAVEGUiDE SECTiONS $2 \% / 2 \mathrm{ft}$ : long sliver Dlated ROith choke flange. ... ROTARY JOINT choke to choke w/deck mig. $\$ 17.50$
3 cm . mitred elbow "E" plane unplated. $\$ 6.50$ ea

### 1.25 CENTIMETER



WAVEGUIDE


## RADAR DIV. MR. P. PLISHNER

Rated Concerns Send P.O.

3CM WAVEMETER Coverage $9000-9500 \mathrm{Mcs}$ w/



MODEL TS-268/U
Test sot designed to provide a means of rapid checking of crystal diodes IN2I, IN2IA IN2IB, IN23, IN23A, IN23B, Operates on $11 / 2$ volt dry cell Ne

CRYSTAL DIODES

| No. | Each | 2 for | 10 for |
| :--- | :---: | :---: | :---: |
| IN21 | $\$ 1.00$ | $\$ 1.79$ | $\$ 8.30$ |
| IN22 | 1.50 | 2.79 | 14.00 |
| IN23 | 1.50 | 2.79 | 14.00 |
| IN26 | 8.00 | 5.90 | 27.50 |

SL WAVEMETER Type Cw60ABM......... $\$ 125.00$ 1OCM ECHO BOX CABV $14 A B A B-1$ of OBU-3, eter head. Ring piediction scale plus $9 \%$ to minus $9 \%$. Type pio input. Iesonance indi. cator meter, New and Comp. W/access. 10x and 10 cm . horn assembly consisting of two ${ }^{2}$. $\$ 385.00$ with dipoles reeding single type " $\mathbf{N}$ " output. Includes TVG28/U type 'NN' "T"' junction and type 10 " cm " pickup probe. Mfg. cable. New.... s15. 50 diameter. Cozx output. Sllver plated $\$ 64.50$ ea 10 Cm . echo box part of SF radar w/115 volt DC tuning Motor sub sig $1148 A . . . . . . . . . . . . .347 .50$
THERMISTER BRIDGE: Power meter 1 -203-A, 10 cm mig. W.E. Complete with meter, interW.E. I 138. Signal generator, 2700 to 2900 Mc . range. Lighthouse tube oscillator with attenuator $\&$ output meter, 115 VAC input reg. Pwr. supply
With circuit diagram.................... 575.00
 input Hvy. silver plated................... $\$ 5.50$ TS. $89 /$ AP Voltage Divider: Ranges 100 ; $1 /$ for 200 to $20000 \mathrm{~V} 10 ; 1$ for 200 to 2000 v . Input Z 2000 10 CMS WAVEMETER WE type B-435490 Transmission type. N ittlngs. Veeder root mic. dial gold plated w/calib chart. P/O WE Freg mtr
$\mathbf{X} 66404$ New ............................. $\$ 99.50$

## R. F. EQUIPMENT

LHTR. LIGHTHOUSE ASSEMBLY. Part of RT 20/APG-5 \& APG 15. Receiver and Trans Carities w/assoc. Tr. Carity and Type N CPLGA To lRerr. Uses 2C40, 2C43. 1B27. Tunable APX
$2400-2700 \mathrm{MCS}$ Siver plated........ 549.50 APS-2 10CM RF HEAD COMPLETE WITH HARED Mixer all ${ }^{(71513)}$ Pulser. 714 Magnetron 417 A Beacon lighthouse cavity 10 cm with miniature $\$ 210$ volt DC FM motor. Mifg. Bernard Rice $\$ 47.50$ ea.
T. $128 . / A P N .1910 \mathrm{~cm}$. radar Beacon transmitter
 Pre. Ampliffier cavities tyve " M "' 7410530 GL , to use
446 A lighthouse tube. Completely tunable. Heavy
 Magnetron magnet pulse xfmr. TrA-ATR 723
 AN/APS.15A "X Band compl. RF head and kiystrons (local osc. \& heacon) 1B24. TR. reyr ampl. duplexer, $H V$ supply hlower: pulse xfmr. Peak Pwr Out: 45 KW aps. Invut: $115,400 \mathrm{cy}$. 13KV, PK. Pulse, with all tubes Incl. 715 B $829 \mathrm{~B}, \mathrm{BKR} 73$, two 72 's. Complete pkg... $\$ 210.00$ $S$ BAND AN/APS2. Complete RF head and modulator, including magnetron and magnet, 417A zalxer. Th receiver duplexer. blewer, etc.,
complete
 ceiver using
peak input. $707-\mathrm{B}$ recetrer-mixer....... 5150.00 ASB 500 Megacycles Itadar Recelver with two GL $10^{446} \mathrm{CM}$ Rec Assy. Less Local osc. Tube. Consists of mixer stabilizer cavity 30 MC. premp AFC.
Ind. Amp. plugs \& cables p/o APS2...... 337.50

## 200 MC COAXIAL PLUMBING




## MAGNETRONS - RADAR - PULSE EQUIPMENT

DIRECTION FINDERS
 bearing indicators
mimble receiver ........................ $\$ 185.00$
 DF Iffe. only. Bludworth Standard Arow, $\$ 150.00$

RADAR SETS (Many Others) Radar Set R36 TPS2 Ree indirator unlts, nes. $\$ 325$, no 400 CYCLE TRANSFORMERS
Inout Ratings Each


| 57.5 V | $2 \mathrm{x57.5V} / 0001 \mathrm{~A}$ P/oAPG2 |
| :--- | :--- |
| 115 V | $2 \mathrm{r} 145 \mathrm{~V} / 00145 \mathrm{~A}$. |
| 115 V | 780 V |
| $115 \mathrm{~V} / 4.3$. | $6.3 \mathrm{~V} / 2.9$ |


$\begin{array}{lll}115 \mathrm{~V} & 15.35 \mathrm{VCT} / 1 \mathrm{~A} \\ 115 \mathrm{~V} & 59.2 \mathrm{~V} .118,6 \mathrm{G} / \mathrm{B} .1,5 \mathrm{~V} / 2 \mathrm{~A}\end{array}$

$115 \mathrm{~V} \quad 2 \mathrm{x} 140 \mathrm{~V}, 00 \mathrm{~m} 14 \mathrm{~A}, 120 \mathrm{~V}$

| 115 y | 3 fing $400 \mathrm{Ma} . \mathrm{P} /$ O 1 PT 4 |
| :--- | :--- |
| 115 V | 235 V Tanned $22 \mathrm{~V} / 47 \mathrm{MA}$. |



$\begin{array}{ll}115 \mathrm{~V} & 6.4 \mathrm{~V} / 7.5 .6 .4 / 38,6.4 / 2.5 \mathrm{a} \\ 115 \mathrm{~V} & 780 \mathrm{~V} /-27 \mathrm{~V} / 4, \quad 6.3 / 2.9\end{array}$



$\begin{array}{ll}115 \mathrm{~V} & 6,3 / 2.7,6.3,666.3 \mathrm{VCT} \\ 118 \mathrm{~V} & 760 \mathrm{~V}, 61 \mathrm{~V}, 6.3 \mathrm{~V}, 5 \mathrm{~V}, 320 \mathrm{~V},\end{array}$ | 110 V | $200 \mathrm{~V} / 20 \mathrm{~V}$ |
| :--- | :--- |
| 110 V | 3 V |
| 55 V | $20 \mathrm{~V} / 20 \mathrm{~V}$. |


$115 \mathrm{~V} \quad 6.3 \mathrm{~V} / 9.1,6 \mathrm{~V}$ 6.3VCT/65a,




| 115 V | 2300VCT Large Qty |
| :--- | :--- |
| 115 V | $600 \mathrm{VCT} / 36 \mathrm{Ma}$ |


$115 \mathrm{~V} \quad 640 \mathrm{~V} / 5 \mathrm{~m} 1 \mathrm{a}$. $2.5 \mathrm{~V} / 1.75 \mathrm{a}$ P/o

$115 \mathrm{~V} \quad \begin{array}{lll}2 \times 29 \mathrm{~V} / 5 \mathrm{~A}, & 2.5 \mathrm{~V} / 10 \mathrm{~A} . & \mathrm{P} / 0\end{array}$



| 115 V |  |
| :--- | :--- |
| 115 V | $1150-1+50.23 / 4 \times 21 / 4 \times 31 / 4$ |
| $640 \mathrm{VCT} 250 \mathrm{MA}, 6.3 \mathrm{~V} / .9$ |  |




| 115 V | $\begin{array}{l}5 \mathrm{~V} / 2 \mathrm{a} . \\ 115 \mathrm{~V}\end{array}$ |
| :--- | :--- |
| $5 \mathrm{~V} 3 \mathrm{COT} / 250 \mathrm{MA} .0 .3 \mathrm{~V} / 2 \mathrm{M}$. |  |

$\begin{array}{ll}115 \mathrm{~V} & 5 \mathrm{~V} 3 \mathrm{a}, 6 \mathrm{~V} / 2 \mathrm{a} \\ 115 \mathrm{~V} & 70 \text { to } 111 \mathrm{~V}(\mathrm{a} 2,27-622 \mathrm{VA} . \\ 115 \mathrm{~V} & 50 \mathrm{~V} / 290 \mathrm{MA}, 5 \mathrm{~V} / 10 \mathrm{~A} .\end{array}$

| 115 V | $2200 \mathrm{~V} / 350$ |
| :--- | :--- |
| 115 V | $2.5 \mathrm{~V} / 5,5200 \mathrm{~V} / 2 \mathrm{MA}$. |


| 115 V | 13.5 KV 13.5 MA, |
| :--- | :--- |
| $115 \mathrm{VCT} / 177 \mathrm{a}, 17 \mathrm{VCT}$ |  |


| 115 V |
| :--- | :--- |
| $100 / 110$ |$\quad \begin{aligned} & 17.3 \mathrm{~V} / 9 \mathrm{~A}, 7.7 \mathrm{~V} / 365 \mathrm{~A}\end{aligned}$

## $120 / 130\} \quad 2.520 \mathrm{~A}$.

$115 \mathrm{~V} \quad 6.3 \mathrm{~V} / 12 \mathrm{a} .6 .3 \mathrm{~V} / 2 \mathrm{a}, \quad 6.3 \mathrm{~V} / \mathrm{La}$
$115 \mathrm{~V} \quad 6.4 \mathrm{VCT} / 5 \mathrm{FQ}, 5.4 \mathrm{VCT} / 3.8$,
$115 \mathrm{~V} \quad \begin{aligned} & 61 \mathrm{~A} 2,6 \mathrm{~V}, 250 \mathrm{~V} 100 \mathrm{MA}, 5 \mathrm{~V} /\end{aligned}$
$115 \mathrm{~V} \quad 400 \mathrm{VCT}^{\prime} 35 \mathrm{MA}, 6.4 \mathrm{~V} / 1 \mathrm{5}$

| $80-115 \mathrm{~V}$ | $650 \mathrm{VCT} / 50 \mathrm{MA}, 6.3 \mathrm{VCT} / 2 \mathrm{~A}$ |
| :--- | :--- |
| $\mathrm{fyCT} / 2 \mathrm{P} / \mathrm{R} 58 / \mathrm{RQR}$ |  |

$115 \mathrm{~V} \quad 2400 \mathrm{CT} 5 \mathrm{MA} \quad 640 \mathrm{~V} / .5 \mathrm{MA}$


PULSE NETWORKS




 -
SL
SN

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

©(1)
S(1):B
S( 8
S(1) 1

## BRAMD NEW SURPLUS OFFERED BY A LFADINO

5071930 , Delco, 115 V., 60 Cycle, 7000 r.p.m.

36938-2, Haydon Timing Motor, 110 V., 60 cycle, 2.2 w.; 4/5 r.p.m.

Price $\$ 3.00$ ea. net.
Type 1600 Haydon Timing Motor-110 V., 60 cycle, 3.2 w., 4 r.p.m., with brake

Price $\$ 4.00$ each net Type 1600 Haydon Timing Motar- 110 V., 60 cycle, 2.2 w., $1 / 240$ r.p.m.

Price $\$ 3.00$ each net.
Type 1600 Haydon Timing Motor 110 V., 60 cycle, 2.3 w., 1 r.p.m.

Price $\$ 2.70$ each net. Type 1600 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., 1 1/5 r.p.m.

Price $\$ 2.70$ each net.
Type 1600 Haydon Timing Motor 110 V., 60 cycle, 3.5 w .1 l r.p.m. With shift unit for automatic engaging and disengaging of gear.

Price $\$ 3.30$ ea. net.
Type 1600 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., $1 / 60$ r.p.m.

Price $\$ 3.00$ each net.
Eastern Air Devices Type J 33 Synchronous Motor 115 V., 400 cycle, 3 phase, 8,000 r.p.m. Price $\$ 8.50$ each net. Telechron Synchronous Motor, Type B3, 115 V., 60 cycle, 2 r.p.m., 4 w .

Price $\$ 5.00$ each net.

## SERVO MOTORS

CK 1, Pioneer, 2 phase, 400 cycle.
Price $\$ 10.00$ each net. CK 2, Pioneer, 2 phase, 400 cycle.

Price $\$ 4.25$ each net. 10047-2-A Pioneer 2 phase, 400 cycle, with 40:1 reduction gear.

Price $\$ 7.25$ each net.
FPE-25-11, DiehI, Low-Inertia, 75 to 115 V., 60 cycle, 2 phase.

Price $\$ 16.00$ each net. FPE-49-7 Diehl, Low-Inertia, 115 V., 60 cycle, 2 phase, $3.0 \mathrm{amps} ., 10 \mathrm{w}$, output. Price $\$ 34.50$ each net. FPE-25-16 Diehl Low Inertia 20 V., 60 cycle, 2 phase, 1600 r.p.m., 85 amps .

Price $\$ 10.00$ ea, net. CK2, Pioneer, 2 phase, 400 cycle, with 40:1 reduction gear

Price $\$ 6.50$ each net. MINNEAPOLIS-HONEYWELL TYPE B Part No. G303AY, 115 V., 400 Cycle, 2 phase, built-in gear reduction, 50 lbs. in torque. Price $\$ 8.50$ each net.

## AMPLIFIER

Pioneer Gyro Flux Gate Amplifier, Type 12076-I-A.

Price $\$ 17.50$ ea. net, with tubes.

## COMPLETE LINE OF AIRCRAFT THERMOCOUPLES

## REMOTE INDICATING

 MAGNESYN COMPASS SETPioneer Type AN5730-2 Indicator and AN5730-3 Transmitter 26 V , 400 cycle.
Price $\$ 40.00$ per set new sealed boxes.


Kollsman Remote Indicating Compass Set Transmitter part No, 679-01, indicator part No. 680k-03, 26 V., 400 cycle. Price $\$ 12.50$ each net.

## GYROS

Schwein Free \& Rate Gyro type 45600 Consists of two 28 V. D.C. constant speed gyros. Size $8^{\prime \prime} \times 4.25^{\prime \prime} \times 4.25^{\prime \prime}$.
Price $\$ 10.00$ ea. net.
Schwein Free \& Rate Gyro, type 46800. Same as above except later design.
Price $\$ 15.00$ each net.
Sperry A5 Directional Gyro, Part No. 656029, 115 volts, 400 cycle, 3 phase.


Sperry A5 Vertical Gyro Part No 644841,115 V., 400 cycle, 3 phase.

Price $\$ 20.00$ each net.
Sperry A5 Amplifier Rack Part No. 644890. Contains Weston Frequency Meter. 350 to 450 cycle and 400 cycle, 0 to 130 voltmeter.

Price $\$ 10.00$ each net.
Sperry A5 Control Unit Part No. 644836 . Price $\$ 7.50$ each net.
Sperry A5 Azimuth Follow-Up Amplifier Part No. 656030 . With tube.

Price $\$ 5.50$ each net.
Pioneer Type 12800-1-D Gyro Servo Unit. 115 V., 400 cycle, 3 phase.

Price $\$ 10.00$ each net.
Norden Type M7 Vertical Gyro. 26 V., D.C. Price $\$ 19.00$ each net. Norden Type M7 Servo Motor. 26 V., D.C. Price $\$ 20.00$ each net. Allen Calculator, Type Cl Bank and Turn Indicator, Part No. 21500, 28 V. D.C. Contains 28 V. D.C. constant speed gyro.

Price $\$ 10.00$ each net.

5069625, Delco Constant Speed, 27 V . 120 r.p.m. Built-in reduction gears' and governor. Price $\$ 3.90$ each net. A-7155, Delco Constant Speed Shunt Motor, 27 V., 2.4 amps., 3600 r.p.m.; 1/30 h.p. Built-in governor. Price $\$ 6.25$ each net. C-28P-1A, John Oster Shunt Motor, 27 V., $0.7 \mathrm{amps} ., 7000$ r.p.m., $1 / 100$ h.p. Price $\$ 3.75$ each net. Jaeger Watch Co. Type 44-K-2 Contactor Motor, Operates on 3 to 4.5 volts D.C. Makes one contact per second. Price $\$ 2.00$ each net. General Electric Type 5BA10AJ52C, 27 V. D. C., $0.65 \mathrm{amps} ., 14 \mathrm{oz}$. in. torque, 145 r.p.m. Shunt Wound, 4 lead reversible. Price $\$ 5.00$ each net. General Electric Type 5BA10AJ37C, 27 $V$. D. C., 5 amps., 8 oz ., in. torque, 250 r.p.m. Shunt Wound, 4 leads reversible. Price $\$ 6.50$ each net.

## D.C. ALNICO FIELD MOTORS

5069456, Deico, $27.5 \mathrm{~V}_{\text {i, }} 10,000$ r.p.m. Price $\$ 4.70$ each net. 5069600, Delco, 27 V., 250 r.p.m. Price $\$ 5.00$ each net.

5069466, Delco, 27
V., 10,000 r.p.m.

Price $\$ \mathbf{3 . 5 0}$ each net.


5069370 , Delco, 27 V., 10,000 r.p.m. Price $\$ 4.70$ each net. 5069230, Delco, 27 V., 145 r.p.m. Price $\$ 5.00$ each net. S. S. FD6-16, Diehl, 27 V., 10,000 r.p.m. Price $\$ 4.00$ each net. S. S. FD6-18, DiehI, $27 \mathrm{~V}_{\not{\prime}, 10,000}$ r.p.m. Price $\$ 4.00$ each net. S. S. FD6-21, Diehl, $27 \mathrm{~V}_{\text {f }}$ 10,000 r.p.m. Price $\$ 4.00$ each net. Sampsel Time Control Inc. Alnico Field Motor, 27 V . D.C. Overall length $35 / 1^{\prime \prime} 6^{\prime \prime}$ by $13 / 8^{\prime \prime}$. Shaft $5 / 8^{\prime \prime}$ long by $3 / 16^{\prime \prime}, 10,000$ r.p.m.

Price $\$ 4.50$ each net.
GENERAL ELECTRIC D. C. SELSYNS


8TJ9-PDN Transmitter, 24 V .
Price $\$ 3.75$ each net.
8DJII-PCY Indicator, 24 V . Dial marked - $10^{\circ}$ to $+65^{\circ}$.

Price $\$ 4.50$ each net.
8DJ11-PCY Indicator, 24 V . Dial Marked 0 to $360^{\circ}$.

Price $\$ 7.50$ each net.

## SUPPLIER O Inverters <br> Wincharger Corp. Dynamotor Unit. PE-

$101-\mathrm{C}$. Input 13, V.D.C. or 26 V.D.C. D.C. AT, 12.6 or 6.3 amps. Output 400 V.D.C. AT. . 135 amps., 800 V.D.C. AT. . 02 amps., 9 V.A.C. 80 cycle at 1.12 amps . Price $\$ 10.00$ each net.

153F, Holtzer
Cobot, Input, 24
V.D.C. Output 115 V., 400 cycle, 3 phase, 750 V.A. and 26 V., 400 cycle, 1 phase, 250 V.A. Voltage and frequency regulated also built in radio filter.

Price $\$ 115.00$ each net.
149 H , Holtzer Cabot. Input 28 V . at 44 amps. Output 26 V . at $250 \mathrm{~V} . \mathrm{A} .400$ cycle and 115 V . at $500 \mathrm{~V} . \mathrm{A} .400$ cycle. Price $\$ 40.00$ each net.
149F, Holtzer Cabot. Input 28 V . at 36 amps. Output 26 V . at $250 \mathrm{~V} . \mathrm{A} ., 400$ cycle and 115 V . at 500 V.A., 400 cycle. Price $\$ 40.00$ each net. 12117, Pioneer. Input 12 V.D.C. Output 26 V., 400 cycle, 6 V.A. Price $\$ 22.50$ each net.

12117-2 Pioneer. Input 24 V.D.C. Output 26 V. 400 cycle, 6 V.A

Price $\$ 20.00$ each net.
5D21NJ3A General Electric. Input 24 V.D.C. Output 115 V., 400 cycle at 485 V.A. Price $\$ 12.00$ each net.
PE218, Ballentine. Input 28 V.D.C. at 90 amps. Output $115 \mathrm{~V}, 400$ cycle at 1.5 K.V.A. Price $\$ 50.00$ each net.

## METERS

Weston Frequency Meter. Model 637, 350 to 450 cycles, 115 volts.

Price $\$ 10.00$ each net.
Weston Voltmeter. Model 833, 0 to 130 volts, 400 cycle. Price $\$ 4.00$ each net.

Weston Voltmeter. Model 606, Type 204 P, 0 to 30 volts D. C.

Price $\$ 4.25$ each net.
Weston Ammeter. Model 506, Type S-61209, 20-0-100 omps. D. C.
Price $\$ 7.50$ each net with ext. shunt.
Weston Ammeter. Type Fl, Dwg. No. 116465, 0 to 150 amps. D. C.

Price $\$ 6.00$ each net.
With ext. shunt $\$ 9.00$ each net.
Westinghouse Ammeter. Type 1090D120, 120-0-120 amps. D. C.

Price $\$ 4.50$ each net.
Weston Model 545. Type 82PE Indicotor. Calibrated 0 to 3000 RPM. $23 / 4^{\prime \prime}$ size. Has built-in rectifier, $270^{\circ}$ meter movement.

Price $\$ 15.00$ each net.

## VIBRATOR

Rauland Corp. vibrator non-synchros type Stock No. 3HS694-11; 6, 12 or 24 V.D.C., irput frequency 200 cycle.
$\$ 3.50$ each net.
Sperry Phase Adapter. Port No. 661102. Used for operating three-phase equipment from a single phase source. 115 volts 400 cycle. Maximum load 50 watts. Price $\$ 15.00$ each net.

## PIONEER AUTOSYNS

AY1, 26 V., 400 cycle.
Price $\$ 5.50$ each net. AY14D, 26 V., 400 cycle, new with calibration curve.

Price $\$ 15.00$ each net. AY20, 26 V., 400 cycle

Price $\$ 7.50$ each net.
AY31, 26 V., 400 cycle. Shaft extends from both ends.

Price $\$ 10.00$ ea, net.
AY38, 26 V., 400 cycle. Shaft extends from both ends. Price $\$ 10.00$ each net.

PIONEER PRECISION AUTOSYNS

AYIO1D, new with calibration curve.

PRICE-WRITE OR CALL FOR SPECIAL QUANTITY PRICES AYI31D, new with calibration curve. Price $\$ 35.00$ each net. AY130D, new. Price $\$ 35.00$ each net. PIONEER AUTOSYN POSITION INDICATORS
Type 5907-17. Dial graduated 0 to $360^{\circ}$ 26 V., 400 cycle.

Price \$15.50 each net.
Type 6007-39, Dual, Dial graduated 0 to $360^{\circ}, 26 \mathrm{~V} ., 400$ cycle.

Price $\$ 30.00$ each net.
PIONEER TORQUE UNIT
Type 12602-1-A.
Price $\$ 30.00$
each net.
Type 12604-3-A.
Price $\$ 30.00$ each net.
Type 12606-1 A. Price $\$ 40.00$ each net.
Type 12627-1-A. Price $\$ 80.00$ each net.
MAGNETIC AMPLIFIER ASSEMBLY
Pioneer Magnetic Amplifier Assembly Saturable Reactor type output transformer. Designed to supply one phose of 400 cycle servo motor.

Price $\$ 8.50$ each net.
PIONEER TORQUE UNIT

## AMPLIFIER

Type 12073-1-A, 5 tube amplifier, Mag nesyn input, 115 V ., 400 cycle.

Price $\$ 17.50$ each net with tubes. Type 12077-1-A, single tube Amplifier, Autosyn input, $115 \mathrm{~V} ., 400$ cycle. Price $\$ 49.50$ each net, with tube.

John Oster, 28 V.D.C., 7000 r.p.m. Westion h.p. Price $\$ 4.50$ each net. Westinghouse Type FL Blower, 115 V., 400 cycle, 67000 r.p.m. Airflow 17 C.F.M.

Price $\$ 3.70$ each net.

## RATE GENERATORS



PM2, Electric Indicator Co., . 0175 V . per r.p.m. Price $\$ 8.25$ each net.
F16, Electric Indicator Co., two-phose, 22 V . per phase of 1800 r.p.m.

Price $\$ 12.00$ each net.
J36A, Eastern Air Devices, 02 V. per r.p.m

Price $\$ 9.00$ each net.
B-68, Electric Indicator Co., Rotation Indicator, $110 \mathrm{~V} ., 60$ cycle, 1 phase.

Price $\$ 14.00$ each net.
Weston Tachometer Generator (aircraft type) model 752-J4 single phase. A.C. output.

Price \$17.50 each net.

## SINE-COSINE GENERATORS

(Resolvers)
FPE 43-1, Diehi, 115 V., 400 cycle.
Price $\$ 20.00$ each net.

## SYNCHROS

IF Special Repeater, 115 V., 400 eycle. Will operate on 60 cycle at reduced voltage.


Price $\$ 15.00$ each net.
7G Generator, 115 V., 60 cycle.
Price $\$ 30.00$ each net.
2J1M1 Control Transformer 105/63 V.
60 eycle. Price $\$ 20.00$ eoch net.
2JIG1 Control Transformer, 57.5/57.5 V., 400 cycle. Price $\$ 1.90$ each net.

2J1H1 Selsyn Differential Generator, 57.5/57.5 V., 400 cycle.

Price $\$ 3.25$ each net.
W. E. KS-5950-L2, Size 5 Generator, 115 V., 400 cycle.

Price $\$ 4.50$ each net.
5G Special, Generator $115 / 90$ V., 400 cycle. Price $\$ 15.50$ each net
5SF Repeater, $115 / 90 \mathrm{~V}, 400$ cycle. Price $\$ 19.00$ each net.
2J1F1 Selsyn Generator, 115 V ., 400 cycle. Price $\$ 3.50$ each net. 5SDG Differential Generator $90 / 90 \mathrm{~V}$., 400 cycle. Price $\$ 15.30$ each net. ICT Control Tronsformer, $90 / 55$ volts, 60 cycle. Price $\$ 35.00$ each net.

# INSTRUMENT 

all prices, f.o.b. great neck, n. y.

## A ©NGE-N-A-LIFENME SURPLUS SALE OF BRAND NEW DELCO DUAL BLOWFBSH



4 HOLES $1 / 32$ DIA.
$18^{\prime \prime}$ CORD
3 HOLES \% DIA EQUALLY SPACED


- AC Shaded Pole Motor
- 2750 FPM Velocity!
- 2800 RPM Operation!
- Dual Multi-Blade Fans!
- Dual Outlet Blowers!
- Quiet, Continuous Duty!

IDEAL FOR:
Darkrooms, Kitchens, Cooling Transmitter Tubes, Home Use, Humidifiers, Furnace Draft Boosters, Hair Dryers, Marine and Commercial Ventilation, etc.

A lucky special-purchase by Boston's famous RADIO SHACK, enables you to SAVE over half on these BRAND NEW (in original shipping carton) dual blowers nade by the Delco division of GENERAL MOTORS! They have a multitude of uses wherever air is circulated in heating, cooling and ventilating services - with innumerable commercial, household and marine applications. Blowers are finished in durable, satin-black lacquer, have universal type mounting brackets (see sketch), and an $18^{\prime \prime}$ rubber cord with plug. Snail-type blower housings on each end of the double-shaft Delco Appliance motor employ multi-blade fans for quietness and maximum air volume. Motor will operate continuously with no attention except for lubrication. Convenient size for limited mounting spaces!
MOTOR SPECIFICATIONS:
Die cast alloy case and housings. Stator: 2 field coils, machine wound enamel wire, taped, dipped and baked in insulating varnish for complete protection. Starting Coil: single-turn copper hairpin. Rotor: squirrel-cage type, skewed for quietness. High-grade silicon steel laminations. High-grade precision-ground steel armature shaft. Self-aligning bronze bearings. Universal-type mounting brackets. Lubrication: felt washers in large oil reservoir with sealed oil holes. Operates on 115 volt 60 cycle AC.

## blower specifications:

Pressed steel housings, welded two piece, snail type. Two multi-blade squirrel-cage type fans.

CHARACTERISTICS:
2800 RPM operating speed. Rotation clockwise from right-hand end. 62 watts input 2750 feet per minute velocity. Air delivery $120 \mathrm{cu} . \mathrm{ft}$. per min. free volume. $1 / 2^{\prime \prime}$ water static-pressure. Weight 11 lbs .

STILL SOME LEFT! HURRY
SAVE $\$ 80.50$ NOW On STEPHENS TRU-SONIC HIGH FREQUENCY SPEAKER with electrodynamic driver!

List Price $\$ 170.00$
$\$ 2950$ Modernize PM or dynamic speakers into 800 cycle chis-off (flat to 15,000 CDS) dual twecter-woofer
systems of incomparable fidelity! True-Sonic born systems of incomparable fidelity! True-Sonic born
$\# 824 H$ has 8 cells, cach $4 \times 4 \times 11^{\prime \prime}$. True-
 has 16 .ohm aluminum voice coil; 31 b . 150 -ohm copper field coil; field dissipation 15 watts. Ship. ping wht. 26 lbs. Perfect tor hi-fi enthusiasts, small theatres, schools, labs, sound studios. WRITE, PHONE or WIRE your order today, because bargain-hunters will immediately, recognize this as the most unusual audio "buy since the war! New (not surplus) ! Limited quantity! 800 Cycle Crossover Network Kit Driver Unit Field Supply Kit

Write for free schematic
FREE 138 pg . CATALOG and SURPLUS BULLETIN

TERRIFIC VALUE! RCA SOUND-POWERED HEAD-AND-CHEST SET
Type MI-2045-E, Worth Over \$50 ONLY

## \$2750 <br> per pair

## RADIO SHACK CORP.

167 Washingion St., Bosion 8, Mass.
Please RUSH me the following
[ Delco Dual Blowers @ \$
$\square 1950$ Catalog
$\square$ Surplus Flyer
$\square$ Stephens Tweeter's
$\square$ Crossover Kits
$\square$ Field Supply Kits
Sound-Powered Sets
Name
Street
Town

IDEAL FOR TV REPAIR AND INSTALLA. TION CREWS, TELEPHONE LINEMEN, INTERCOM SYSTEMS - especially suited for chemical and other plants where battery or line-
operated systems are not allowed. NO BATTERIES or POWER ARE NEEDED. Just connect units and talk! These sets were built for naval use and are BRAND NEW IN ORIGINAL CARTONS! Each set includes: pair of earphones with rubber cushions and metal headband: telephone type metal chest-plate with straps, connecting block and transmitter with swivel 25 foot rubber connecting cord and brass olug 25 foot rubber connecting cord and brass plug.
These powerfully constructed RCA sets have NEVER BEWERGRE constructed RCA sets have (to our knowledge), and are not to be confused with inferior or gadget-type products. Useable range computed in Milt.ES, not feet! Quantity LIMITED - only 200 pairs available! Order today!

# \$87.50 RCA WV-65A <br> <br> VOLTOHM YST FOR S39.50 

 <br> <br> VOLTOHM YST FOR S39.50}

The Battery VoltOhmyst is a push-pull VTVM with 2-tube bridge circuit, possessing excellent linearity and stability characteristics. Circuit innovations that include zero grid current and controlled inverse feedback produce accurate readings over all ranges.
A 1 -meg. shielded signal-tracing probe makes possible dynamic voltage measurements in signal-carrying circuits. The $W V-65 A$ is exceedingly stable in operation, requires no adjustment of zero controls when changing ranges and is essentially independent of changes in both tube characteristics and battery voltages during normal life. A neon lamp mounted on the panel flashes whenever the battery is on. This indicates the condition of the battery, and reminds one that the instrument is on.

The Battery VoltOhmyst may be used for accurate mecsurements of a-c and $d-c$ voltage, for $d-c$ current and for resistance. It moy be used for measuring AVC, AFC and FM discriminator valtages; d-c supply and bias cell valtages; oscillator strength; and resistance of coils, resistors, and insuiation. This VoltOhmyst is quite helpful for measuring the $d-c$ voltage developed across the picture channel of a television receiver when makirg antenna adjustments. It also is applied to determining when gassy tubes are present. D.C measurements may be made when $a-c$ is present. In addition, it is a useful tool for servicing all types of electronic equipment.

## Battery Kit

 $\$ 2.52$ EXTRA IF DESIRED
D.C Voltmeter:

Six Ronges Input Resistance
Sensitivity (max.)
C Voltmeter:
five Ranges
Sensifivity.
Ohmmeter:
Six Ranges

D-C Ammeter:
Six Ranges.
Voltage Drop
Power Supply:
Botteries .
Tube Complement
2 RCA.ICSGI, 1 GE-NESI
$0.1000,0.10,000,0-100,000 \mathrm{hmm}^{2}$ $0.1,0.10,0.1000$ megohms

Two 45 volt. Four $11 / 2$ volt
$91 / 2^{\prime \prime}$ high, $61 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ deep
$0-3,0-10,0-30,0-100,0.300,0.1000$ rolls 11 megohms constont for all ranges
3.7 megohms per volt on 3 -volt range
$0.10,0-30,0.100,0.300,0-1000$ volis 1000 ohms per volt
$0-3,0-10.0-30,0-100,0.300$ milliamp. and 0.10 amp . 450 mv . for full scole deflection

Q lbs. (incl botteries)

## BIG SPECIAL PURCHASE OF TOP QUALITY RADIO PLIERS <br> Below Dealer Net!

World-famous KLEIN, KRAUTER, WAYMOTH and PEXTO radio pliers! Thanks to a wery special purchase, we are able to offer precision pliers below cost for the first time in many years.
familiar with the name KLEIN, will recognize it as the hallmark of quality. These are NOT the common variety of pliers found in most radio stores. Quantity prices on request.

$$
M f_{g} . N o
$$

KLEIN 245-5 KLEIT 240-5 KLEIN 201-6NE KHAEUTER 1801.6 WAYMOTH TL-13A PEXTO 40

Type Vest-pocket oblique-cutting $5^{\prime \prime}$ Oblique-cutting, wire-strip $5^{\prime \prime}$ Side-cuting $6^{\prime \prime}$ Side-cuting $6^{\prime \prime}$ Side-cuting, wire-strip $6^{\prime \prime}$ Side-cutung, lap-joint $6^{\prime \prime}$


Lowest Price in the U.S.A. on Brand New TACHOMETER GENERATORS
ROTATION GENERATOR (Elinco B.68), operates trom 110 V 60 cy soutce to provide constant frequency output whose ${ }^{2}$. mplitude varies lineal with speed. Vse
to 6600 RPM. Votage output at 1000 RPM is minimum of 1.2 V . Size $21 / 2^{2010}$ Stock No. RS. 904 ....... ONLY $\$ 9.50$
 A.
1.3 V per 100 RPM . 60 cy output ai 1800 RPM.
Size $21 / 2 \times 3^{3}$

Stock No. RS. 905 .......ONLY $\$ 8.95$
Famous-Make 220 VOLT \$8-List SOLDERING IRON SPECIAL AT ONLY $\$ 2.95$

100 WATT irons, with $3 / 8$ tips, made by America's most famous maker: Our special purchase from an over-stocked user of these 220 $\$ 2$ each on their Dealer net price. $\$ 2$ each on their Dealer net price. Designed primarily for production and maintenance work. Each pand ling, and separate heat-insulating stand!

## WESTERN ELECTRIC MERCURY CONTACT RELAY, ONLY \$3.95 <br> 

## List Price $\$ \mathbf{2 8 . 0 0}$

## Type D-171584. Glass-sealed, mer-

 cury-wetted contact switch surrounded by operating coils andencased in metal housing mounted encased in metal housing mounted on an octal tube base. APPLABA
TIONS: high-speed keying, tabu-lating-sorting-computing machines, relay amplifiers, vibrator power supplies, servo-mechanisms. CHARACTERISTICS: high speed of operation, constant operating characteristics, freedom from chatter, high current capacity. SPECIFICA-
TIONS: SPDT, two coils of 250 TIONS: SPDT, two coils of 250 ohms and 450 ohms, operst with coils connected in series 6 ma. Over-all size: $33 / /^{\prime \prime}$ long, $1-5 / 16^{\prime \prime}$ in diameter. A check through current relay advertisements will show you that our price of $\$ 3.95$ each is the LOWEST in the U.S.A. Order Stock
No. RS-837. No. RS-837.

ORDERS FILLED PROMPTLY TERMS , cash or $20 \%$ deposit, bolance C.O.D.

| SUPER- |
| :---: |
| SPECIAL! |
| FG27A |
| THYRATRON |
| In lots of 100 |
| \$4.45 each |
| In lots of 50 |
| $\$ 4.95$ each |

## VECTOR Socket Turrets For Immediate Delivery



New Plug-in units combine tube socket, terminal post, octal plug and shield can--

Just think -- all the condensers and resistors in any tube circuit mounted right on the socket of that very tube! You'll find it so simple, so logical an improvement, that you'll wonder why you never dreamed up such a gadget yourself. This new development in electronic wiring is catching on like wildfire and already is to be found in use wherever modern design is truly modern.

Permits use of sub-assemblies which can be installed quickly with minimum of connections. Cuts number and length of leads -- reduces stray capacitance. Components may be mounted from socket toturret, entirely on or within the turret, or from one turret to another. With some types, colls may be wound on the turret with iron cores inside. A great time-saver for the experimenter -- if an assembly does not operate as expected it can be removed as a unit and another quickly installed. Cuts cost on the production line -- ellminates terminal strips, mounting parts. Saves chassis space. Improves high frequency performance, makes parts more accessible and gives neat appearance.


| Dimensions |  | Catalog Numbers |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Can Size | A | Octal | Price | 7 pin | Price | 9 pin | Price |
| $1.37^{\prime \prime}$ sq. $\times 2.0^{\prime \prime} \mathrm{h}$. | 0.87' | B8-0 | \$1.43 | B8-M | \$1.52 | B8-N | \$1.57 |
| $1.37^{\prime \prime}$ sq. x 2.5 ' h. | 1.37' | B10-0 | 1.45 | B10-M | 1.55 | B10-N | 1.60 |
| $1.37^{\prime \prime}$ sq. $\times 3.0^{\prime \prime} \mathrm{h}$. | 1.87" | B12-0 | 1.48 | B12-M | 1.57 | B12-N | 1.62 |
| $2.0^{\prime \prime} \mathrm{sq} . \times 2.0^{\prime \prime} \mathrm{h}$. | 0.87' | C8-0 | 1.64 | C8-M | 1.76 | $\mathrm{CB}-\mathrm{N}$ | 1.81 |
| $2.0^{\prime \prime} \mathrm{sq} . \times 2.5^{\prime \prime} \mathrm{h}$. | 1.37" | C10-0 | 1.67 | C10-M | 1.79 | C10-N | 1.84 |
| $2.0^{\prime \prime} \mathrm{sq} . \times 3.0^{\prime \prime} \mathrm{h}$. | 1.87" | C12-0 | 1.69 | C12-M | 1.81 | $\mathrm{C} 12-\mathrm{N}$ | 1.86 |
| No Can | 0.87" | A8-0 | . 89 | A8-M | . 94 | A8-N | . 97 |
| No Can | 1.37' | A10-0 | . 91 | A $10-\mathrm{M}$ | . 96 | A10-N | 1.00 |
| No Can | 1.87' | A12-0 | . 94 | A12-M | . 98 | A12-N | 1.02 |

Add 'H' to number for 9 pin plug; ' K ' to number for 11 pin plug.
Plug-in units also available in two-tube types and in types without sockets but with terminal turrets and plugs-- useful in plug-in applications where tubes are not involved. Write for free copy of Sun Radio "Monthly Mailer" for November which lists these units in full.


## RCA Battery Type VOLTOHMYST (WV-65A)

Limited Quantity Ouly \$39.50 formerly $\$ 87.50$ !

## FEATURES

Power supply completely self-contained.
Measures voltage, current, and resistance. 11 -megohm input resistance for all DC ranges. 1 -megohm isolating resistor in DC dynamic probe. Electronic circuit--meter protected against burnout. Polarity reversing selector switch.
DC Voltmeter:
Six Ranges: $0-3,0-10,0-30,0-100,0-300,0-1000 \mathrm{~V}$.
Input Resistance: 11 megohms constant for all ranges.
Sensitivity (max.): 3.7 megohms per volt on 3 V range. AC Voltmeter:
Five Ranges: $0-10,0-30,0-100,0-300,0-1000$ volts.
Sensitivity: 1000 ohms per volt.
Ohmmeter:
Six Ranges: $0-1000,0-10,000,0-100,000$ ohms, $0-1,0-10,0-1000$ megohms.
DC Ammeter:
Six Ranges: $0-3,0-10,0-30,0-100,0-300$ milliamp. and $0-10 \mathrm{amp}$.


## - STANDARD SOCKET-TURRETS -

Mica-Filled Miniature Socket ( 7 pin ) with crimp-on saddle, $7 / 8^{\prime \prime} \mathrm{mtg}$. centers. Requires $5 / 8$ " socket hole. Military dome type socket is standard but flat top type obtainable by addition of letter " $F$ " following " $M$ " in number as \#8.MF. 9T. Turret $1 / 2^{\prime \prime}$ dia., $\frac{1}{16 "}$ wall appx.: Grade XX natural tan laminated phenolic tube joined to socket with tubular rivet thru center of socket and turret. One lug at end of rivet for shield ground. Six terminals at far end of turret plus three terminals near socket for $2^{\prime \prime}$ type only.

Cat. No. Ht. Description Price
8-M-9T $2^{\prime \prime} \quad 9$ Terminaıs in 2 rings spaced $1^{\prime \prime}$
8-M-9TS $2^{\prime \prime} \quad 8$-M-9T plus standard shield mounting base
6-M-6T $\quad 11 / 2^{\prime \prime} 6$ Turret Terminals at far end only
6-M-6TS $11 / 2^{\prime \prime}$ 6-M-6T plus standard shield mounting base 4-M-6T $\quad 1^{\prime \prime} \quad 6$ Turret Terminals at far end only
4-M-6TS 1" 4-M-6T plus standard shield mounting base .67

Mica-Filled Octal Socket, wrap-around contacts, steel saddle with 1 fe" mtg. centers, 4 ground lugs. Requires $1^{\prime \prime}$ dia. socket hole. Turret $1 / 2^{\prime \prime}$ dia., $1^{1 / \prime \prime}$ wal appx.; Grade XX natural tan laminated phenolic tube set into recessed hole in socket and bonded with phenolic adhesive. Six terminals at far end of turre plus three near socket except in shortest type.
Cat. No. Ht.
Description
Price
10-0-9T $21 / 2^{\prime \prime} \quad 9$ Turret Terminals in 2 rings spaced $17 / 16^{\prime \prime} \quad \$ .59$
8-0-9T $2^{\prime \prime} \quad 9$ Turret Terminals in 2 rings spaced $1^{\prime \prime} \quad .57$
6-0-6T $11 / 2^{\prime \prime} \quad 6$ Turret Terminals in 1 ring only far end .54

Mica-Filled Noval Socket ( 9 pin) with crimp-on saddle. $11 / 8^{\prime \prime}$ mtg. centers. Requires $3 / 4^{\prime \prime}$ dia. socket hole. Turret $1 / 2^{\prime \prime}$ dia., $\frac{1}{16 \prime \prime}$ wall appx.; Grade XX natural tan laminated phenolic tube joined to socket with tubular rivet thru center of socket and turret. One lug at end of rivet for shield ground. Six terminals at far end of turret plus three terminals near socket for $2^{\prime \prime}$ type only.
Cat. No. Ht
Description
8-N-9T $2^{\prime \prime} \quad 9$ Terminals in 2 rings spaced $1^{\prime \prime}$
mounting base $\quad .77$
$6-\mathrm{N}-6 \mathrm{TS} \quad 11 / 2^{\prime \prime} 6-\mathrm{N}-6 \mathrm{~T}$ plus standard shield mounting base $\quad .74$
4-N-6T $\quad 1^{\prime \prime} \quad 6$ Turret Terminals at far end only
4-N-6TS $1^{\prime \prime} \quad 4-\mathrm{N}-6 \mathrm{~T}$ plus standard shield mounting base
.71
Heights measured from chassis to far end of turret.


## $\square$ JUS ONLY ONE NIAGARA for great radio values




ATTENTION: SCHOOLS, LABS, MILITARY INSTALLATIONS!

## A NIAGARA EXCLUSIVE

The 5NN Automatic Film Rater
The 5NN Automatic Film Rater is designed for individual self-rating by the question and multiple choice answer system. The basic feature is a 35MM slide film projector, projecting a series of illustrated questions on the rear of a $9^{\prime \prime} \times 12^{\prime \prime}$ translucent screen. Each ques tion is combined with six possible answers for upon correctness, plus rapidity of selected upon co

Operating panel consists of rear projection screen, 10 numbered timing lights, 6 answer selection buttons, score-question number, correct and incorrect indicators and starting bu ton.
Film consists of about 200 frames of 35 MM film in a continuous loop.

Manufactured by Mills Industries, Inc. for use in training military personnel with speed and eff.ciency. Device is 24 wide, $19^{\circ}$ deep and $50^{\circ}$ high. Shipping weight 225 lbs. Complete with SVE Projector, 1l0V.A.C. Supply
Spare parts and film. . Used but in excellent Spare par
condition
Cat. \#FR-280
$\$ 49.50$

[^19]
# SUPERIOR VALUES FROM AMERICA'S LARGEST ELECTRICAL CONVERSION HOUSE 

CENTURY MOTOR GENERATOR SETS
 R.PM. directly connect ed to alternator deliver ing 120 valts. A.C
Single Pla fio cps parts. controlling field rheoslath spare GENERAL ELECTRIC DC/AC MG SETS Nour Bearing Marime Units: 25 HP 230 oits, DC coupled to alternator 18.75 KVA set; marine duly. Brand New.... 5545.01
G. E. ROTARY CONVERTERS
 Dynamolor Model 5D46aibs 78 Volts DC input to deliver
110 Volts AC. single phace 10 cycles. 1.5 amp. S1'E CIAI, PRICE $\begin{aligned} & \text { (Rebuilt) }\end{aligned}$

## TAPE WINDERS

These tape winders con sist of a motor operative
at 110 volts D C 6 anat 110 volts D. C. . 6 am-
peres: 1800 speed. A motor which is separablu and which can be emploved for of the unit of purposes, :llone or of purposes, mine or with the gear reducshunt wound and the speed thereof is controlled by a luilt-in rheostat. This makes an invaluable lahoratory unit. Special

MARATHON MOTOR GENERATORS


Input:
Output:
110 VAC
M
Outp ut: $110 \mathrm{VAC}^{1}$
phase. 60 cy. 500 VA Marine Type with voltage regulator and
frequency contraller Rebuilt $\begin{aligned} & \text { Same unit as above with } 32 \text { vDC } \$ 65.00\end{aligned}$ same Output. 300 V.A................. $\$ 54.00$


WESTINGHOUSE TRANSFORMERS
399 VA : $115 / 240$ Volts: Brana New. SIPECIAL PRICE. . $\$ 3.35$


Westinghouse Transformer Controller contains 300 watt. 110 220 volt transformer with mul-t1-taps. The transformer with tap switch alone is worth more than the special price....so.2:;

ONAN HIGH FREDUENCY MG UNITS lnput: $110 / 220$ single phase, 60 cyc. Output: ${ }^{6} \mathrm{~K} \mathrm{~W}^{\mathrm{W}} .115$ VAC. singie ph. 480 cps


## G. E. Motor CONTROLLED

VOLTAGE
Cat. $=837625$. Type AlRS, Folm M mary volis 11 a . Lant Amps 16.2 . In door semice loltaze controlled hy
mir. $120 / 1 / 60.1 / 40 \mathrm{HP}$. $\$ 39.50$


Ideal AC to DC MG sel 300 watts Rebuilt like new erative at $110 / 220$ Output: $1: 0$
Price PIENERAI FLECTRIC 8 KW High $\$ 6.00$ mutalo 3000 Volts. DC at 5 , 4 at 4000 Volls, DC. 2.5 amperes; ciln be connected Units weigh about 800 amperes or 4000 volts, 5 amperes in parallel Separately to give

IF T'S FROM ONEFREOIEN

IF IT'S FROM ONE FREQUENCY TO ANOTHER; FROM DC TO AC OR AC TO DC; IF IT'S FROM ONE VOLTAGE TO ANOTHER, THEN CALL ON US.
Established in 1922
409 ATLANTIC AVE.

## SPECIAL METERS

SENSITROL RELAY, 0 -50 Microampere sensitivity, wost Ac solenold reset and adjustable index to indicate operating point. Fas two scales, one for setting index, the other for reading pointer posi-
tion. Contact closes on decreasing value and has tion. Contact closes on decreasing value and has List Price $\$ 68.50$ Your cost ONLY $\$ 27.50$ FREQUENCY METER, 55 to 65 cycles, lames Bididle Co., type MF-11 Frahm vibrating reed type, 11 reeds, 100 to 150 volt operation, $31 / 2^{\prime \prime}$ round flush bakelite case
F REQUENCY
covers frequency ranges from $48-52$ cyeles and $58-62$ covers frequency ranges from 48 - 52 cycles and 58 -62
cyeles: Dual eiement, vibrating reed type 115 rolt. 31/2" rd dush metal case....... $\$ 5.95$ to Dlus 6 DR, $32 / 2=1$ rd fl bake case, 6 MW 600 ohms, High speed tspe, with :i external wire wound DECIBEL METER, Weston 5ili. minus io to plus 6 DB, $21 / 2^{\prime \prime}$ round flush bakelite case. Black suale. PORTABLE A.C. AMMETER 0.3 and O-15 Amms A.C. Weston Model 528. Complete With leather
carrying case and test leads................. $\$ 12.50$

## AIRCRAFT METERS

all aircraft meters listed are $2 \frac{1}{2}{ }^{\prime \prime}$ type with blach scales
30
vo


## D. C. MICROAMMETERS

ZERO CENTLIR MICROAMMETER icleal (or nuly indicator, Approx: $10-0-10$ microampere movement.
Scale approx. $1 \% 4^{\prime \prime}$ long ralibrated $0-20$, resistance
 case (3) $\$ 6.50$
D. C. MiCROADLIETTER $0-50$ Weston Model
$4^{\prime \prime}$
$41 / 2^{\prime \prime}$
Rectangular bakelite case. Approx. $2.0 \%$
 $0-200$
$0-500$
W. H. NX

 Switchboard meter, R-M flush case with internal
resistor and scale calibrated for 40 tolts D. C.

## D. C. MILLIAMMETERS


D. C. KILOVOLTMETERS

All meters are furnished complete with precision,
wire wound, 1000 ohms per volt, hermetically sfaled multiplers and mounting clips.
$0-1$ Weston $301,3^{3 \prime}$ S-1.
0-1.5 W.H, NX-35
$0-1.5$ Weston 301.
$0-2$ Weston
-2 Weston 301.
10 Weston
$0-20$ Weston 301,3 S-B. $\$ 8.00$
.$\$ 7.50$
.$\$ 9.50$
$\$ 10.50$
$\$ 10.50$
$\$ 12.00$
$\$ \$ 4.00$
$\$ 15.00$
$\$ 22.50$

## A. C. VOLTMETERS



MIL ITEMS ARE BRAND NETV-SURPLUS-GUAR ANTEED UNLESS SPECINIEI OTHEHWISE, All materials shopprd from stock same day as order receiverd, subject to prior sale. Orders accepted from rated concerns, public institutions and agencies on oben account, others please send $25 \%$ deposit, halance C.O.D. or check with order. All prices POOE our warehouse. N. Y.C

## A. C. AMMETERS

0-10 G.E. A0-25. $3^{\prime \prime}$ S-B. expanded butween ${ }^{4}$ \& $\boldsymbol{q}^{8} 7$ Amps. Scale calibrated $0-101$ Amps. For Direct
Reading divide seale reading by $10 . . . . . . . . . \$ 4.95$ Reading divide scale reading by
$0-30$ Triplett $331-$ IP, $3^{x}$
$\mathbf{R}-\mathbf{B}$




## R. F. AMMETERS



## SOCKET SELECTOR SET WESTON 666 TYPE IC

Designed for purpose of taking readings of currents, voltages and resistance and other electrical
measurements in a vacuun tube circuit. It can be used with nans Western Analyzers or other make multirange volt-ohm-milliammeters. To test a tube circuit and the is pur inserted in the tube socket This brings all cur ents and boltages ont throngh a cable where they may be measured with an analyzer.


## COMBINATION OFFER

150 Volt A.C. Meter
Triplett 331-JP, 31/2 Rd flush case

30 AMP A.C. METER
Triplett 331-JP, 31/2" Rd flush case
Both meters for $\$ 7.95$


WESTON 341
 Accuracy on D.C. and A.C. FROM 25 to 1200 CYCLES. Indicates true rm s roltage. Shielded in mahogany carrying case with cover. Nven though these instruments are Brand New Surplus, we had
Weston check each and every unit and furnish a Weston check each and every unit and furnish a
NEW Cerificate to guarantee the accuracy of each
instrument Idral for use in conjunction with Model 311 Potential Transformer to extend the range to 750 \& 1500 volts.
List Price §226.50 Your Cost Only \$115.00

## PORTABLE TACHOMETER

Multiple Range Continuous Indicating This unit is of the centrifugal mechanical type and is designed CONTINUOUSLY the speed or change in speed of
other mechanisn required. M. and three in F.P.M Low Range 300-1,200 (Each division equal Medium Range $1,000-4,000$ (Each division equals
High Range 3,000-12,000 (Each division equals Large open dial $4^{\prime \prime}$ diameter

- Large open dial ${ }^{\text {- }}$ diameter. diamed constructed for heavy duty service.
- Rall bearing and oilless bearings-require no Iubrication whatsoever.
- Readily portable-Fits neatly into hand.
- Gear shift for selecting low, med., high ranges Made by Jones Motorola, Stamford, Connecticut 7 $1 / 9^{\prime \prime} \mathrm{L}^{2} \times 4^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W}$. Your cost................. $\$ 24.50$

PORTABLE TACHOMETERS
300-1500, $1000-5000, \quad 3000-15000$ RPM. Jones Mo ${ }_{\text {torola }}$ Co., Multiple Range. Continuous Indicat

PORTABLE (CHRONOMETRIC) TACHOMETER
Jaegor Watch Co. Model \#43A-6

- Can be used for speeds up to 20,000 R.P.M.
- Can be used for lineal speed measurements to 10,000 F.P.M.

Ideally suited for testing the speeds of motors
particularly of fractional horse power, generator parbines, centrifugals, fans. etc.

- Very small Torque-requires practically no
- Unwer to deive. $\begin{aligned} & \text { Readability } 2^{\prime \prime} \text { Open face dial-each }\end{aligned}$ division on large dial equals 10 R.P.M. . each division on small dial ectuals 1,000 R.P.M.
Createst Accuracy-meets Navy specificationsCreatest Accuracy-meets Navy specifications-
guaranteed to be within $1 / 2$ of $1 \%$. - guaranteed to be within $1 / 2$ of $1 \%$
- test taken.
- Push button for automatic resetting.
- Complete with the following accessories
- Large pointed rubber tip
- ${ }^{\prime \prime}$ circumference Wheel
- Temperature Cortection chart.

The combination of the above features will give the R.P. M. of shafts or the lineal speeds of surfaces without any accessories or timing of any kind. Each unit comes conplete in a red velvet lined carrying
case $5^{\prime \prime} \times 31 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$. Net List Price............ $\$ 70.00$ case $5 " \times 31 / 2^{\prime \prime}$
Your Cost


An internal combustion type heiter which will give 15,000 B.T.U. of heat per hour. Ideally suiter for use with equipment, farms, boats, bungalows,
calins, trailers, work sheds, darkrooms. mobile equipment, transmitter stations, etc., and any place where a quick heat is reatired in volume.
Cery economical in operation-tank holds one galon of Easoline which is sufficient for 6 hours This wnit is designed primarily for aircraft installation. $2 t-28$ volis de. but it can be readily adapted for a 115 or 230 volt foccle nower supply by use
of a transformer and rectifier. Simple circuit diaof a transformer and rectitier. Simple circuit dia-
gram for adaption to 115 or $2: 0$ volt 60 cyele use gram for adaption to 115 or $2: 0$ volt 60 cycle use
suplied with each unit. Can be used on 32 volt farm or boat systems as is without the instanlation of additional transtormers. etc. Power consumption adproximately 75 to 100 watts. be readiv. stored when not in use measures approximately $12^{\prime \prime}$ long $x \quad 91 /^{\prime \prime}$
high $x 9^{1 / 2^{\prime \prime}}$ wide. weighs only 30 lbs complete with 11 accessories.
These inits are complete with exhaust pipe. $3^{\prime \prime}$ air and are supplied with Technical Minual and Paris Catalng. SIMPLE TO INSTALL-SAFE TO USEBRAND NEW-IN ORIGINAL GARTONS-
,

NET PRICE
$\$ 22.50$

## MARTITME SWITCHBOARD

338 CANAL STREET NEW YORK, 13, N. Y.

## TESTED NEW PANEL METERS

EACH METER TESTED RFFOHE SHMMENT PAYELS IF METELS ARE FOR LSE ON MAGNII WE WHL Calibrate AicomdiNoli at ond art flush mounted unless specified otherwise. S-Stuare M-Meral


[^20] POWER RHEOSTATS STANDARD BRANDS

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | WATT | 25 | WATT | ， |  |
| esist． | Shaft | 1，5008 |  | 123 |  |
| 108 |  | 2，500 | S．D．＊ 69 | 1，250 | 1／2， 79 |
| 15 | $\frac{7^{\frac{7}{16}}{ }^{\prime \prime}}{} 59$ | 3.500 5 | 兂 69 | 2，000 | 1／2079 |
| 35 | 祩 59 | 5，000 | S．D． 69 | 3，500 | 1／8＊ 59 |
| 145 | 1／2＊ 49 |  |  | 0 | WATT |
|  | with switch |  |  |  |  |
|  | ＂${ }^{\circ}{ }^{\circ} 9$ | 8 | S．D．＊ 69 |  | （2．${ }^{1.99}$ |
| 250 | ［ $\frac{7}{18}{ }^{\text {\％}}$ | 12 |  | ＇S．D．S | － |
| 370 | $1 / 2^{\prime \prime} 49$ | 20 | 69 |  |  |



## METERS

## $0-7.5$ V．A．C． $31 / 2^{\prime \prime}$ Westinghouse



## TOGGLE SWITCHES

## Bat Handle，S．P．S．T． $6 \mathrm{~A} ., 125 \mathrm{~V}$ ．Off－On Dlate

Ball Handle，
BRASS BINDI
mounting serew

## RANGE UNIT

From AN／APS－15．Contains 11 Utah X－124 sistors 28 V．D．C．Blower metal 12 Prec．Re other useful parts．．．．．．．．．．．．．sPECIAL $\$ 10.95$
 POWER TKANSFORMER，Pri． $110 / 220 / 440$ $\begin{array}{r}\text { SPECiAL } \$ 9.95 \\ \hline\end{array}$

## ALLEN SET SCREWS


ALL SIZES（Cup Point）．．．．．．．．．．．$\$ 1.50$ per 100

## BC－1072－A TRANSMITTER

$115 \mathrm{~V}, 60$ Cyc．； $150-200 \mathrm{mc}$ ．Power supply gives V．D．C．， 6.3 V．A．C．also contains blower 115 and many other useful parts．Shipping Wt．




SOUND POWERED HANDSET
Brand New！TS－10



## RG 8／U 52 OHM <br> $\$ 50.00$ per 1000 ft ．

 RG $22 / \mathrm{U} 95$ OHM（ 2 cond．）per 1,000 ft．$\$ 100.00$ RG 59／U 73 OHM．．．．．．per $1,000 \mathrm{ft}$ ．$\$ 40.00$ RG 62／U 93 OHM per i，000 ft．


Adapter for PL－259 A for use on small coax．

| $83-1 \mathrm{SP}$ | \＄． 28 | UG 13／U | ． 60 | UG 60／U | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $83-1 \mathrm{~J}$ | 80 | UG 21／U | ． 60 | UG 61／U | 60 |
| $83-1$ T | 1.12 | UG 22／U | ． 60 |  |  |
| $83-22 A P$ | ． 85 | UG 24／U | ． 60 | UG 87／ | ． 60 |
| $83-22 \mathrm{~J}$ | ． 85 | UG 25／U | ． 60 | UG 87／U | ． 50 |
| 83－2J | 1.50 | UG 27 U | .60 | UG 167／U | 2.00 |
| 83－1F | 1.12 | UG 59／U | ． 60 | UG 281／U | ． 60 |

PRECISION CAPACITOR

Fuse Holder－Littlefuse $\# 342001$ ．3AG size
Fuse Holder－Sane as alove，for 4 AG fuse
Telephone Field Wire－W110及， $1 / 2$ mile reels．．．．．．．．． $\mathbf{\$ 7} .95$


## CARBON RESISTOR ASSORTMENT

Color coded，insulated．．．．．．．．．．．．．．．．．．．．．．．． 100 onty $\$ 1.19$
PULSE TRANSFORMERS
X 124 T2，UTAH，marked 9262 or 9280 ．small gray case $17 /{ }^{\prime \prime}$ high $\times 11 /{ }^{\prime \prime} \times 5 /$＂$^{\prime \prime}$ with two 6,32
 120 to 2350 ohms．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

 352－7250－2A，cased $16 / 10 "$ dia．x $15 /{ }^{2}$ high，DC 10 ohm， $31 /$ ohm， 140 cy to $175 \mathrm{KC} . . .$. K89800，Ratio． $1: 1: 1,2: 1$ ，Freq．range 380 to 520 D106173，＇v．＇E．Freq．response 10 K C to ${ }_{2}^{\$ 3.50}$ 300 KVA GE 7557296 ． 50 ohm pulse cable 8.8 nection； $3,850 \mathrm{~V}$ ．in．， $17,300 \mathrm{~V}$ ．out（ 250 KVA ＠ 800 KVA G．E．K2i31．， 28000 volt pk．Sutput Bifilar，pulse width；one－microsecond．．．$\$ 14.50$

Delay Network－All 1400 ＇
T 113 －Approx． 1.2 micro sec．delay．．．．．．．．．
T 114 －Apjor． 2.2 miero sec．delay．．．．．．．．．
T 115 Simila to $T 114$ with tap brought out 856
$85 c$
854

TIME DELAY RELAY

|  | － 115 V．focycle <br> －Idi． $50-i 6$ Seconds <br> －21／2 seconds recyeling time． sprine return <br> －Miero Switch Contact，10A <br> －Holds On as long as power is applied．Fuly Cased <br> ONLY |
| :---: | :---: |


| JONES BARRIER STRIPJ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Price | Type | Price | Type | Price |
| ${ }_{3}^{2-1404}$ | －$\$ .05$ | ＋141Y | $¢ 6$ | $10-14136 \mathrm{~W}$ | 8.47 |
| ${ }_{4}^{3-14094} \mathrm{~V}$ | V 12 | 5－141 | ． 19 | 17－141\％ | ． 78 |
|  | ． 13 | $5-1+13{ }^{5}$ | ． 27 | $2-1423 / 4 \mathrm{~W}$ | 15 |
| $\bigcirc-140$ | 17 | 5－1．11 | ． 25 | 3－142 | 15 |
| T－140 | ． 21 | 6－141 | ． 23 | $5-142$ | ． 21 |
| 8－140 | ． 23 | 7－141 | ． 27 | 6－142 | 28 |
| 10－140 $8 / 6$ | V $\quad .41$ | $7-1+13{ }^{3}$ | ． 37 | 0－142 | ． 41 |
| 13－140 | 36 | 7－1＋1Y | ． 37 | 10－142Y | ． 64 |
| 3－14130 ${ }^{\text {a }}$ | V 17 | ${ }_{9-1+3}^{8-1+13}$ W | ． 38 | 11－142 4 W | ． 57 |
| 4－141\％／4 | ． 22 | 9－1＋1Y | ． 42 | 13－1423 W | ． 82 |
| 3 AG |  | FUSES |  | Amp \＄2．50 | 3AG |
| $1 / 8$ Amp $\$ 4$ | \＄4．00 ner 100 |  |  |  | er 100 |
|  | 4.00 | 100 | 3 | 2.50 |  |
| $3 / 14$ | 4.00 | 100 | 4 | 2.75 |  |
|  | 2.50 | 100 | 10 | 3.00 |  |
| 1源 2 | 2.50 | 100 | 15 | 3.00 |  |
| TUBE SPECIAL－New－Guaranteed |  |  |  |  |  |
| $2{ }^{2} \mathrm{~J} 26$ | \＄8． 29 | 6AL5 | 8.72 | $6 \times 5 \mathrm{CT}$ | \＄．57 |
| $\cdots \times 2 / 879$ | ． 44 | 6SJ ${ }^{7}$ | ． 59 | 6Y＇6 | ． 84 |
| 3 CP 4 | 49 | 6 SN 7 GT | ． 65 |  |  |
| $6 A C 7$ $6 A K 5$ | 884 | 6SQ7 GT | ． 47 | 8．2A | 1.88 |
| 6AK5 | 84 | 616 GT | ． 59 | C5B | 6.98 |



Distributors: Our standard jobber arrangement applies. Order directly from this ad.

NEW CATALOGS READY
Complete listings of all Wells Electronic Components now available for Distributors, Manufacturers and Amoteurs. Write for your copy today.

SEARCHLIGHT SECTION

GUARANTEED
BRAND
NEW

## LECTRONIC RESEARCH <br> TUBE SPECIALS

STANDARD
BRANDS ONLY


## Type "J"" POTENTIOMETERS

 ${ }_{500}^{100}$ (SS) $\quad \begin{aligned} & 50 \mathrm{~K} \\ & 60 \mathrm{~K}\end{aligned}$ (SS)1000 (SS) $\quad{ }^{60 K}$ All shaft lengths min. 6500 (SS) $\quad 100 \mathrm{~K}$ (SS) $3 / 8^{\prime \prime}$ excent where marked $\begin{array}{llll} & & 150 \mathrm{~K} & \text { (SS) } \\ \text { 0K } & \text { (SS)-screw slot } \\ \text { (SS }\end{array}$
${ }_{25 \mathrm{~K}}^{25 \mathrm{~K}}$ (SS)

## RADIATION COUNTER TUBES

AMPEREX 151 N GAMMA COUNTER......... 9.85
AMPEREX 100 C BETA COUNTER........... 49.50 AMPEREX 200 G ALPHA COUNTER.......... 59.40

All material brand new and fully guaranteed.
Terms 20\% cash w/ order, balance C. O. D. unless rated. All prices F.O.B. our warehouse, Phila., Penna.


Antennas for AN/APR-4 Receivers AT-38A/APT-(70 to 400 MC$)$.i.
AT-49/APR-4-( 300 to 3300 Mi )
MODEL ASB. 4 - Radar Fquipment - Com CWI-60AAG Range Calibrator for ASB.................................. 95 PHASE SHIFT CAPACITOR-Tspe D-150734-4
Stator-Single Rotor ............................ $\$ 2.69$

## KOLLSMAN INSTRUMENT LOW INERTIA SERVO MOTOR <br> Type 937-0240



Will Operate Satisfactorily at 60 Cycles
Original Price $\$ 34.50 \rightarrow$ Our Price $\$ 8.22$ ea
$\$ 750$ EACH—Lots of 10

| GENERAL ELECTRIC FG-172 | AMERTRAN <br> FILAMENT TRANSF. |
| :---: | :---: |
| THYRATRONS <br> \$ 50 | Pri- 115 Volt, 60 cy . Sec-5 Volt-I90 Amp. 35 KV . Insul. |
|  | \$ 950 |


| $\$ 1000$ EA. | AT-48/UP |  |
| :---: | :---: | :---: |
| IN LOTS OF 10 | 3 CM HORN ANT. |  |
| BRAND NEW |  |  |

IEGROMC RESEARH LABDRATODIISS

## BUY NOW <br> AND SAVE <br> JANUARY CLEARANCE SALE <br> PRICES EFFECTIVE THIS MONTH ONLY



## HIGH CURRENT PLATE

 TRANSFORMER820 Volts CT at 775 MA . Pri. $110 / 220$ Volts 60 Cycles. Wt. 36 lbs. Fully cased ............ $\$ 5.95$

GENERAL PURPOSE TRANSFORMERS Ideal for Bias. Filament. Isolation. Stepdown. etc.
 amps. Fully casei


Heavy Duty Tap Switch. Ohmite Model 412
Single Pole 6 Positions. Non-Shorting. Single Pole 6 Positions. Non-Shorting.
50 amp. contacts. Vitreous Enamei
rase

WESTERN ELECTRIC TRANSTAT INPUT 115 V . 60 CY OUTPUT, 0.130 V 10 AMP MAX. 1.3 KV V
SPECIAL EA. spegial Ea


## MOSSMAN SWITCHES

4 Pole Single Throw
3 DPT, plus 6 PST
1.10
1.75


MINIATURE HEADPHONES 250 ohms imp. Can be used for sound power Telephones, etc. Type HS 30. . 69 ea.
0 For . 4.99
Hi lmp Transf. for above.


\begin{abstract}

| MF | vDC | Price | 1 | C |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | ${ }_{\substack{1000}}^{6000}$ | \$. 18 | C. 005 | 3 KV | 1.24 |
| ${ }_{\text {D }}^{\text {¢ }}$. 01 |  | 26 | C. 006 | 3 KV | 50 |
|  | fion | 26 | 1) . 002 | 3 KV | 70 |
| ${ }_{C}^{\text {C }}$. 01 | 1 KV | 45 | C. 00001 | 5 KV | 5 |
| C. 056 | 1 KV | 50 | C. 00005 |  |  |
| C. 07 | 1 KV | 35 | $\mathrm{C}_{\text {C }} .0015$ | 5 KV | 1.90 |
| C.024 | 1500 | 65 | C. 0005 | 5 KV | 2.50 |
| C. 033 | 1500 | 75 | ${ }^{\text {B }} .007$ | ${ }_{6} \mathrm{~K} \mathrm{KV}$ | 2.75 3.50 |
| C. 015 | 2 KV | 80 | B. |  |  |
| C. 02 | 3 KV | 95 | 3, 03 | 6 KV | 4.25 |
| D 0002 | - | 55 | ${ }^{18}$. 000 | KV | 2.90 |
| ${ }^{\text {c }}$ | 2500 | 1.25 | B 00012 | lv | 3.25 |
| C. 000 | 3 KV 3 | .90 | ${ }_{13}^{13.00}$ | ${ }_{8}^{8} \mathrm{KKV}$ | 5.59 |
| C. 002 | 3 KV | .5 | B. 00 | 8 KV | . 9 |



HIGH CURRENT MICAS
Type G4 Ceramic Case 53/4" High, 5" Diameter Tolerance 5\% or Better


## MEGOHM METER

Industrial Instruments model L2AU $10 / 220$ volts 60 cycle input. Direct reading from 100000 megohms
 external supply. Sloping hardwood cabinet
ior Brand new with tubes plus run ning spare parts inciuding extra tubes. Great value. Only $\$ 49.50$.

Tremendous stocks on hand. Please send requests for quotas. Special quantity discounts. Price f.a.b. N. Y. $20 \%$ with order
uniess rated, balance C. 0. Minimum uniess $\$ 5.00$

## SCOPE AND FIL. TRANSFORMER



Pri. 115 volts, 60 cycles. Sec. 4400 volts RMS 4.5 MA., 5 volts CT 3 amps., Fil. Ins. 15 kV RMS test. Hermetically sealet. Has insulated plate cap for rec. tifier. Made by Raytheon. $41 / 2 \times$


SCOPE TRANSFORMERS
Pri lloV 60CY - Hermetically Sealed $2500 \mathrm{~V} @ 12 \mathrm{MA}$
$1050 \mathrm{~V} 20 \mathrm{MA} .20 \mathrm{~V} 4.5 \mathrm{~A}, 2.5 \mathrm{~V} 5 \mathrm{~A}$ $\$ 2.95$
4.75

WESTINGHOUSE

overcurrent relay
Type MN Overcurrent Relay. Adjustable from 250 ma . to 1 amp. External Push Button Reset. Enclosed in glass case. Hand calibrated adjustments, only $\$ 4.95$.
general electric selenium rectifier 32 volts innut. 28 Volts Output at 2 Amps. Full Wave

GENERAL ELECTRIC Type PBC Instantaneous Overcurrent Relay. Adjustable from
MA. Electrical and Manual Reset. ${ }^{100}{ }^{\text {to }}$ PDT. ${ }^{200}$ MA.
Reset
Electrical
110 Volts 60 Cycles................... 7.95

General Electic Overload Relay. Electrical Reset 110 Volts 60 Cycle
adjustable for other currents. TerBreaks at 640 Milliamps but easin
rific value at only................

10 for 25.00


ADVANCE
D.P.D.T.

ANTENNA RELAY
110 V. 60 cycle coil Steatite insulation. 0 nly $\$ 1.95$ each.

DUNCO RELAY, 6 Volt 60 Cycle AC Coil DPDT Ceramic Insulatio

SOLENOIDS


115 Voit 60 Cycle Cois D.P.S.T 25 Amp Contacts. Model 702

10 For 29.00

## FILAMENT TRANSFORMERS

10 V 60 Cy Pri. Fully Cased.

.5 Voit 10 Amp
.5 Volt CT 21
Amp
3 Volt 100 Amp. 10 OA, 7.5 V 6 A



5 Volt 4A. $6.3 \mathrm{~V}, 3 \mathrm{~A}$. CT 20 A
$2.5 \mathrm{CT} 20 \mathrm{~A}, 2.5 \mathrm{~V}$
CHOKE BARGAINS
${ }^{6}$ Henry 50 ma 300 ohms.
6 Henr 80 ma 220 onms.
8 Henry 160 ma 140 omms .
1.5 Henry 250 ma 72 ohms.
Henry 300 nıa 65 ohms........................75 3
WHEOSTAT


250 hms , 675 Watts Max, with Knob and Hardware.... 3.95 10 for 29.50
W. W. POWER RHEOSTATS 1500 hms 50 Watt
250 hms 50 Watt 250 Ohms 50 Watt.
300
0 hms
50
watt Oual 2000 hms 50 watt

|  | 50 megohm 35 watt Resistor with mount. . . $\$ 1.49$ each; 10 for $\$ 9.90$ |
| :---: | :---: |
| 10 Meg 10 W atts. | .49; 2 Meg 5 Watt |

UTC type PA 5000 ohm plate to 500 ohm line and 6 ohm voice coil 10 watts. 60 to 10.000 eps $\pm 1$
DB. GREAT VALUE.................... $\$ 2.75$

## MISCELLANEOUS BARGAINS

## 02400 volt te tubulars

G.E. 2 mifl 250 volts ae oil cond

10 meg 10 watt resistor IRC.
Heineman 6 amp $1 t 0$ volt ace ckt breake
Heineman 25 amp 110 volt ac ckt breake
Ceramicon .alios mifd
01600 volt de pigtail micas.
001600 volt de pigtail mic
Butterfly cond. 2 to 11 mmf
............ 10 for .99
Hammarlund 250 mmf variable cond (me250s) . 59
RL 10.000 ohm potentiometers
5 meg poientiometers
CD 15 infa $\$ 50$ volt electrolytic (EB9160)
Hanmarlund cond. 150 mmf .07 spacin
 Western Electric silver variable .5 to 2.5 nimf 8 for 99 Western Electric silver variable .5 to 2.5 nimi 8 for . 99.
G. E. weatherproof switch DPDT $20 a \mathrm{mp}$ I20vac .99 ea. CRL steatite switch 3 section- 2 pole 5 posi-
tions per section, model 2524 contralab. . 2 for .99
1 \% PRECISION RESISTORS W. W.
 $10000-750010.1 \mathrm{meg}$ a. .25
a. .29
a. 69

## WIRE WOUND RESISTORS

5 Watt type AA. 20-25-50-200-470-2500- $\$ .09$ ea
10 watt type AB, 25.40-84-400-470-1325
10 watt type AB, 25-40-84-409-470-1325
20 watt type DG, $50-70-100-150 \cdot 300-750-$
wa00 $1500-2500-2700-50100-7500$
$10000-1600-20000-30000 \mathrm{hms}$
15 еа.
$10000-16000-20000-30000 \mathrm{ohms}$
30 WATT WIRE WOUND RESISTORS


$\qquad$ ard 4 prong socket, $33 / 4 \mathrm{~h} \times 3 \mathrm{l} / 8 \mathrm{w} \times 17 / 8 \mathrm{~d} \ldots . . \$ 1.39$ Thermal Time Delay Relay. 15 to 30 seconds, plugs Thto 4 Prong Tube Socket Glass Enclosed. 250 V .

Mallory Vilropack Kit. 6 Voft Input. Output 300 Volts at 100 MA . Transformer \& Vibrator. $\$ 5.95$ for both
U. H, F. COAX. CONNECTORS

83IAP.UG12U, UG-14U.831, R83ISP....... . 35 ea.
Precision 15 Meg. $1 \%$ Accuracy Resistor, Noninductive, 1 watt, hermetically sealed in glass 25 ea 10 for

| OIL CONDENSERS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{2} 0$ | mfd | $330 \mathrm{vac}-1.85$ |  | mfd 2000 | do-5.95 |
| 5 | mid | $150 \mathrm{vac}-.49$ |  | d 20 | $\mathrm{vde}-6.95$ vic -4.95 |
| 1 | mid | $600 \mathrm{vdc}-.29$ $600 \mathrm{vdc}-.39$ |  | d 50 | dc-4.95 |
| 4 |  | 600 vide- .59 | .1/1 | mfr 7000 | vdo- 2.25 |
| $3^{6}$ | med | $600 \mathrm{vdc}-.79$ |  | mfd 7500 | vdc-1.95 |
| ${ }_{1}^{1 / 3}$ |  | $\begin{aligned} & 600 \mathrm{vdc}-.79 \\ & 600 \mathrm{vdc}-.89 \end{aligned}$ |  | mrd 7500 | vo-9.25 |
| 20 | mfd | $600 \mathrm{vdc}-1.99$ |  |  | de-5.75 |
|  |  | $1000 \mathrm{vdc-} .95$ | . 005 | 01 mrd | de-5.50 |
| ${ }_{2}^{6}$ |  | $1500 \mathrm{vdc}-1.25$ | . 65 m | cd 12.500 |  |
| 4 |  | $1500 \mathrm{vdc}-2.25$ |  |  | vde- 12.95 |
| 6 | mid | 1500 vde - 2.95 | .75/. | $5 \mathrm{mPd8} / 1$ | 6kV-7.95 |
| 1 | midd | 2000 vde- 1.45 | ${ }_{1}{ }_{1} \mathrm{mf}$ | 18 kV | de-15.90 |

PEAK ELECTRONICS CO.
188 Washington St., New York 7, N. Y. defaftment fa

## SEARCHLIGHT SECTION



## TUBES!

BRAND NEW! STANDARD BRANDS! NO SECONDS! COMPARE!
TUBES!!


| OIL CONDENSERS <br> All Ratings DC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{5}^{25}$ | mid | ${ }_{6000}^{800}$ | ${ }^{5.37}$. 37 |  | mfd | 20000  <br> 2000 v 1.47 <br> 1.72  |
| $\frac{1}{2}$ | mod | ${ }_{8000 \mathrm{p}}^{600 \mathrm{p}}$ | . 37 |  | mid | 2000 ${ }_{2}$ |
| ${ }_{2 \times 2}$ | matd | ${ }^{6000}$ | . 77 |  | ${ }_{\text {midd }}^{\text {mid }}$ | ${ }_{25000 \mathrm{~V}}^{2000 \mathrm{~V}} \mathrm{l}$ |
| ${ }_{6}$ | mad |  | . 97 | ${ }^{25}$ | ${ }_{\text {mid }}^{\text {mid }}$ | 25007 <br> $2500 \%$ <br> 1.7 .98 |
| 10 | ${ }_{\text {midd }}^{\text {mid }}$ | ${ }_{6}^{600 \mathrm{~V}}$ | ${ }_{1}^{1.27}$ | ${ }^{05}$ | midd | (enti.7 |
| 25 | mfd | 1000 V 1000 v |  |  | mfid |  |
| ${ }_{2}^{1}$ | ${ }_{\text {mfd }}^{\text {mid }}$ | ${ }^{100000}$ |  |  | mid | 30000  <br> 3000 V 3.47 <br> 3.47  |
| ${ }_{8}^{4}$ | ${ }_{\text {midd }}^{\text {mid }}$ | ${ }^{10000 V}$ |  |  | mfod |  |
| ${ }_{15}$ | ${ }_{\text {mfd }}$ | ${ }^{10000 v}$ |  |  | $\xrightarrow{\text { mird }}$ mod | ${ }^{40000} 40$ |
| 20 | mid | ${ }^{1000 \%}$ | 2.47 |  | ${ }_{\text {midd }}^{\text {midd }}$ | 40000 <br> 5000 V |
| ${ }^{5}$ | ${ }_{\text {mfd }}^{\text {mfd }}$ | ${ }^{1500 \mathrm{~V}}$ |  |  | $\xrightarrow[\text { mid }]{\text { mid }}$ |  |
|  | ${ }_{\text {mid }}^{\text {mid }}$ | 15007 |  |  | mid |  |
| ${ }_{2}^{24}$ | ${ }_{\text {madd }}$ | 1500v | 5.47 | .02 | ${ }_{\text {mid }}$ | 7500 V 2.45 <br> 78500  <br>   |
| . 25 | mrd | 2000v | 1.17 |  | $\underset{\text { midd }}{\text { mid }}$ | 7500 y 2.97 <br> 7560 v  <br> 6.95  |
|  | mfd | 2000 y 200 | li:27 |  |  | 12000 V 9.97 |

HI CAPACITY CONDENSERS All Ratings DC



## SELENIUM RECTIFIERS Full Wave Bridge Type <br> <br> up to 12 vDC

 <br> <br> up to 12 vDC}FILTER CHOKES
HI-VOLTAGE INSULATION

$\qquad$
60 hy @ 40 ma .

PHONEDIGBY 9.0347

## RADIO HAM SHACK Inc. 189 GREENWICH STREET . NEW YORK, N. Y

 SELENIUM RECTIFIER
Input up to 36 V A.C.
Output up to 28 V D.C. at 1.1 amps. 8 plates $2^{11 / 2 " ~ d i a m a t e r ~}$
Fed. Tel. \& Tel. Co.

MICROWAVE RECEIYERS
Types APR1, APR4, APR5A
Also Tuning Units in stook
Prices on request


## 12 and 24 Vol POWER KIT

Conisists of Power Trans. and ifier. Input: $115 / 230$ A.C Output: $12 / 24 \mathrm{~V}$ D.C. at 1.1 amps. Fine for operating relays, small motors dynamo tors, or for lotr voltage D.C Brand New \$7.95


Filament Transformers put: 115 yolts. nter tapped, at 10 amps. 2.5 rolts orcelain standotf insulated for high oltage breakdown. Mfgd. by Ken

Brand New \$3.95
Micro-Wave
Lavoie Freq. Meter 375 to 725 MCS Model TS-127/U is a compact.
 rides quenck, meter mate read 1ngs. Requires a standard
1.5 V " A " and 45 V "'r " battery. Has $9-5$ MIN. time
switch. Contains sturdily constructed HII- " ${ }^{\text {? }}$ " ${ }^{\text {s. }}$ resonator
with average 3000 worbing directly into detector
tube. Uses 957, IS 6 and 3 S 4 inst. book, probe and spare
kit of tubes. Less batteries


P22 Mast Base Insulator Iteal for marine mobile vertical whip antennas. Complete, new with mount-
ing plate and hardware...... $\$ 2.75$ (cM Antenna Horn F recelving or transmitti
Type $\Delta \mathrm{T}-48 / \mathrm{UP}$ with co


LINE FILTER Elimostat 20 amp Brand new …... $\$ 1.75$ PILOT LAMP Hrcraft "grain of wheat'
3 V Mazda G.E. 323

brand New 104 ea.
High Voltage Capacitors Oil Filled 25 MLD., 20 KV .

 lbs. 5 Mi.......... 25 K V $\$ 15.75$ 35 lbs. 1 MFD., $25 \mathrm{KV} ., 15 \mathrm{~K} \mathrm{~V}$., $\$ 16.50$ 35 lbs MFD., $7.5 \mathrm{KV} . \$ 16.50$ 15 lbs. All brand new. Made b
prominent manufacturers

## BROADCAST EQUIPMENT

 Limiter Amplifiers. type BC730C. Rack Mounting with dust covers. Milliameter and D.1. meter on $\$ 89.5$ Attenuator Panel, R.C.A. Type 89-C. Model Mi-MODEL AN/APA 10 PANORAMIC ADAPTER


Provides 4 Types of Presentation (1) Panoramic (2) Aural
3) Oscillographic (4) Oscillosocopic besigned for use with receling equipment AN/
ARR-7, AN/ARR-5. AN/APR-4, SCR-587 or any ARR-7, AN/ARR-5, AN/APR,4, or operation on 115 V . 60 cycle sourc Includes 80 page T . 11
$\$ 195.00$

## LINE VOLTAGE



## AUTO TRANSFORMER

G.E. 400 cy Cat. No. $80 \mathrm{G184}$
${ }_{345 / 230 / 115 \text { New ............ } 54.50}$

## FILAMENT TRANS

400/2600 cy.
$\begin{array}{llll}\text { Input: } & 0 / 75 / 80 / 85 / 105 / 115 / 125 V & \text { Output: } \\ 5 \mathrm{~V} 3 \mathrm{~A}, \\ 5 \mathrm{~V} 3 \mathrm{~A}, & 5 \mathrm{~V} 3 \mathrm{~A}, & 5 \mathrm{~V} 6 \mathrm{~A}, & 5 \mathrm{~V} 6 \mathrm{~A}, \\ 6.3 \mathrm{~V} 5 \mathrm{~A}, & 6.3 V 5 \mathrm{~A}\end{array}$ $5 \mathrm{VBA}, 5 \mathrm{~V} 3 \mathrm{~A}, 5 \mathrm{~V} 3 \mathrm{~A}, 5 \mathrm{~V} 6 \mathrm{~A} .5 \mathrm{~V} 6 \mathrm{~A}, 6.3 \mathrm{~V}$.,$~ \$ 3.9$

THYRATRON POWER TRANS Raytheon UX8876. $400 / 1600$ cy. MRI: 115 V , 1 I'H.
Sec: $50-0-50 \mathrm{~V}$ at $0.5 \mathrm{~A}, 6.3 \mathrm{~V} \quad 1.2 \mathrm{~A}$ Test IMis $\$ 80$

Pulse, Input Trigger Inverting Westinghouse \#145 ENT Fosterized.................9.95 PULSE
Utab No. 9350
BLOCKING, OSC
Westinghouse \#132 AWP Fosterized $\$$


Synchro Differential $90 / 90$ rolts, 400 cycles. Brand news in sealed containers. Ford Inst.
type 5 SDG. 1 rand new..... $\$ 12.50$ $\longrightarrow$


SYNCHRO TRANSMITTERS
15 Volt-60 cycle. Brand new in sealed metal con tainers. No. C78248. Size 5. Brand New. f'er l'air ......\$14.75



| WESTERN ELECTRIC CRYSTAL UNITS Type CR-1A/AR |  |
| :---: | :---: |
| Arailable in quantity-following fremuencies |  |
| 5910-6350-6370-6470-6510 |  |
| 6810-6870-6690-6940-7270 |  |
| 7350-7380-7390-7480-7580 |  |
| 9720 -Kilocycles |  |
| Brand New $\quad \$ 1.00$ |  |

Brand New $\$ 1.00$

SOUND POWERED BATTLE PHONES
Western lilectric No. D173312. Trie o. Combination headset and chest microphone as illus-
trated. Brand new including 20 it. of rubber covered cahle. $\$ 19.50$ Automatic Elec. Co. No. GLS43AO. Similar to above but inclunding Throat microphorie in addi-
thon to chest microphone. Isrinci new with 20 ft. rubber covered cable


## 400 CYCLE INVERTERS

Bencix 1'ioneer type $12121-A$. . 1 nput: 24 volts D.C. at
18 amps. 12,000 RPM. OutDut: 115 volts, 400 cy. 3 PII., 250 V . A. Weight: 10.6 lbs . Brand new... S129.50 Bendix lloneer type $12117-2-\mathrm{B}$. Input: 24 volts $\mathrm{D} . \mathrm{C}$. at 1 amp. Out pu
Weight: 2.1 lbs..
General Electric trpe 5 D21N.J3A. Input : 24 volts D.C.
Output: $115 \mathrm{~V} ., 400 \mathrm{cy}$ at 485 V . A. Brand new. $\$ 12.50$

All prices indicated are F O B Tuckahoe, New York. Shipments will be made via Railway Express unless other instructions issued.

## ELECTRONICRAFT <br> inc. <br> 5 WAVERLY PLACE PHONE: TUCKAHOE $3: 0044$

All merchandise guaranteed. Immediate delivery, subject to prio
All Prices Subject to
Change Without Notice

## SELENTUM RECTIFERS and <br> ELECTRONTC COMPONENTS

THREE PHASE FULL WAVE BRIDGE RECTIFIERS

| $\stackrel{\text { Input }}{0-23.4 \mathrm{VAC}}$ |  |  |
| :---: | :---: | :---: |
|  |  | Oatput |
|  |  | 0-250 V VDC |
|  | Current | Price |
| ${ }^{3 \mathrm{3} 13} 13-4$ | 4 AMP. | \$56.00 |
|  | ${ }^{6}$ AMP. | 81.50 |
| 3B13-15 | 15 AMP. | 120.00 |
| CENTER TAPPED RECTIFIERS |  |  |
| $\begin{aligned} & \text { Input } \\ & 10-0-10 \mathrm{VAC}_{\mathrm{AC}} \end{aligned}$ |  | Output |
|  |  | 0-8.DC |
| $\mathrm{Typef}_{\text {Cl- }}^{\text {f }}$ | Current, | Price |
| C1-20 | 20 AMP. | $\$ 8.95$ <br> 10.95 <br> 1 |
| C1-30 | 30 AMP . | 14.95 |
| C1-40 | 40 MMP . | 17.95 |
| C1-50 | 50 AMP. | 20.45 |

RECTIFIER MOUNTING BRACKETS

.70
1.05
per set set

## SINGLE PHASE FULL WAVE BRIDGE RECTIFIERS



## RECTIFIER CAPACITORS

| CF-14 | 3000 MFD | 12VDC | 69 |
| :---: | :---: | :---: | :---: |
| CF-15 | 6000 MFD | 12 VDC | 2.95 |
| CF-1 | 1000 MFD | 15 VDC | 98 |
| CF-2 | 2000 AIFD | 15 VDC | 69 |
| CF-20 | 2500 M PD | 15 VDC | 1.95 |
| CF-3 | 1000 M FD | 25 VDC | 1.25 |
| CF-4 | $2 \times 3500 \mathrm{MFD}$ | 25 VDC | 3. |
| $\mathrm{CFF}^{\text {cos }}$ | 1500 MFD | 30 VDC | 2.49 |
| CF-6 | 4000 MFD | 30 VDC | 3.25 |
| CF-7 | 3000 MFD | 35 VDC | 3.25 |
| CF-8 | 100 MFD | 50 VDC | . 98 |
| CF-19 | 500 MFD | 50 VDC | 1.95 |
| $\mathrm{CF}^{\text {C-21 }}$ | 2000 MFD | 50 VDC | 3.25 |
| CF-9 | 1200 MFD | 90 VDC | 3.25 |
| CF-10 | 500 MFD | 150VDC | ${ }_{3.69}$ |
| CF-12 | 125 MFD | 350 VDC | 2.49 |

## RECTIFIER TRANSFORMERS

All Primaries 115 VAC 50/60 Cycles $\begin{array}{llll}\text { Yype } & \text { Volts } & \text { Amps } & \text { Price } \\ \text { XY15-12 } & 15 & 12 & \$ 3.95\end{array}$ TXF36-2
T $4136-5$
TXF36-10
TXF36-15
TX136-20
XFC18-14
$\begin{array}{lrrr}\text { XFC18-14 } & 36 & 18 & 20 \\ \text { All TXF } & 17.95 \\ & 14 & 5.95\end{array}$
All TXF Types are Tapped to Deliver 32 ,
34,36
$16,17,18$ Volts Center-Tapped
$\qquad$
RECTIFIER CHOKES

| Type No. | Hy, | Amps. $^{2}$ | D.C. Res. | Price |
| :--- | :--- | :---: | :---: | :---: |
| HY5 | 02 | 5 | 25 | $\$ 3.25$ |
| HY5A | 028 | 5 | 09 | $\mathbf{3 . 9 5}$ |
| HY10 | 02 | 10 | 30 | $\mathbf{9 . 9 5}$ |

HY10A
HY15
HY20A
Type "A" low resistance chokes are 12.95 suited to circuits requiring excellent voltage adoitional selenium rectifier types and general information may be found in our cataloc No. 719


VACUUM CAPACITORS

| Standard Brands |  |  |
| :--- | :--- | :--- |
| 12 Mmfd | 20 Kv. | 4.95 |
| 50 Mmfd | 32 Kv. | 5.95 |

EDISON THERMO TIME DELAY RELAY Healur voluage 115 V Norm. open SPST 115 V. 3 A., 40 vec. delay. Contact rating


## OIL CONDENSERS

5. Mid 400才DC telephone type. 3110 ype 26 F 381 w brkts volage Doubler
SPECIAL-LIMITED QUANTITY FAMOUS BRAND VITAMIN $Q$ PHOTOFLASH CAPACITORS
 Each

3 for $\$ 15.00$ ATTENTION!!!
Bulletin $二 \mathbf{7 1 3}$, listing various government and commercial surplus items, is now available upon request.

PILOT LIGHT ASSEMBLIES

amber type. Danel mounting, trols "Dim-Bright." Bakelite and aluminum construction. Bulb remaceahte from front panel. For single contact bayonet bulbs
$\mathrm{T}-3 \% / 4$ or $\mathrm{G}-31 / 2$ size. Dimensions T- ${ }^{1 / 4}$ or G-31/2 size. Dimensions
$2^{\prime \prime}$ nuerall length. $3 \pm 4$ diame-
 letterhead.

## G-R VARIAC

Type $100-\mathrm{R}$
V.A.C. KVA. Input: 60 CPS., 110 or 220
Output: $0-220$ or $0-270$ Solts. Brand new-limited fuantily Shjg. W't. $36 \mathrm{lbs} . . . . . . . . . . . . .$.



## IMMEDIATE DHLIVERY <br> BROWN TELEPLOTTER RECEIVER



Model $791 \times 1 R$

115 volt 60 cycles

Contains a pen driven by two balancing motors Which writes on
rear of a translurear of a translu
cent chart. Pen arm position is in terms of two co-ordi nates supplied balancing motors thru two amplifiers. Originally intended for recording plotted or written data from central 18 ing boar. Writes at one half scale on 18 in. chart. Discriminator input circuit designed to operate unit as function of about mean of approx. 430 KC . Further data oll reituest. (Shipping weight 435 lbs.) Price $\$ 375.00$ each

## D.C. MOTORS

Universal Electric IDC W.E. KS-5603-1-02, 28 v. d-c 0,6 amns. $1 / 100 \mathrm{hp} .{ }^{4}$ lead 1rice $\$ 2.95$ ea, plus 15: p.p

OSTER PM MOTOR
Alinco Field
27.5 v. d-c. Can also be used as rate generator. \#SA-2s1 \$3.75 each


DELCO CONSTANT SPEED MOTOR A-7 155
1/30 hp. 27.5 V d-c 3600
 diam. 4 hole base mounting. Stock \#SA 94. Price \$1.75


Delco 5069625 Constant Speed DC Motor, 27 v . d-c 120 rpm . Governor 249. Price $\$ 3.95$ each controlled. Stock + SA

General Electric 2 RPM Motor. Type 5BA10FJ228, $27 \mathrm{v} . \mathrm{a}-\mathrm{c}$ (G) 0.6 amps .10 $1 \mathrm{~b} / \mathrm{in}$ torque at 2 rpm . Shunt wound. L-C
noise filter. Stock
$=$
SA each.

## DC SERVO MOTORS

C-1 Autopilot Servo Unit- 28 v. d-c Shunt motor. 2250 rpm. 2 magnetic clutches, netic brakes. Output shaft 15 rpm . Torque $25 \mathrm{in} / 1 \mathrm{lbs}$.
Stock \#SA-180 Price $\$ 19.50$ each
Elinco B-64 DC Servo Unit-armature voltage, 80 v d-c max. 27.5 v . feld $1 / 165$ hp 3100 rpm. Field current 200 ma . ArmaStock \#SA-211 Price $\$ 12.50$ each

## LOW

 PRICESAC-SERVO MOTORS


## Minneapolis-Honeywell

60 cycle Servo Motor Type M623CY1X1 17 watts, 162 rpm \#SA-277.
Price \$19.50 ea.
 Pioneer Type CK-2. 26 v .400 eycles fixed phase, var. phase 49 v . max. 1.05 in $/ 0 z$. Siall torque. Rotor moment or inertia $7 \mathrm{gm} / \mathrm{cm}$ : tion.
Stock \#SA-97A. Price able less gear


KOLLSMAN 400 Cycle RATE GENERATOR Arodel 863-04302
Output 4.2 volts per 1000 \#SA-28 Price $\$ 16.50$

SWEEP GENERATOR CAPACITOR


Hi-speed bearings. Split stator. Silver-plated coaxial type. $5-10 \mathrm{mmf}$.
Stock \#SA-167 Price $\$ 1.75$ each

## INVERTER SPECIALS

General Electric PE-218 D-Input 28 v. d-c @ 92 amps. Output 115 v .400 cycles vt. 100 lbs. New-Original Cartons. Stock $=$ SA-112. Price $\$ 39.50$ each. Leland or Russell PE-218 E or PE-20.8H. Similar to PE-218D. Stock \#SA-112A. Special Price $\$ 29.50$ each.

Leland SD-93-(10285)-Input 28 volts DC
at 60 amps. Output 115 volts three phase 400 cycles. at 750 va. 0.90 P.F. Second output voltage of 26 volts 400 cycles at 50 V.A. Voltage and freduency regulated. Designed for use with various autopllots.
Stock \#SA-209. Price $\$ 79.50$ each

Holtzer Cabot MG-149Y-Similar to MG149 F but draws 44 amps DC at 28 v . Output ratings are at 0.90 P.F. Equipped with
high altitude brushes. Stock \#SA-4.

Price $\$ 34.50$ each
General Electric 5D21NJ3A - Input 28 volts DC at 35 amps. Output 110 volts 400 ibs. Stock \#SA-41 Price $\$ 9.95$ each

## MERCURY CONTACT RELAY

Millisecond switching at up to 60 cycles per sec. Ideal for servo amplifiers of relay type. 4 page brochure on request. Stock \#SA-259. l'rice $\$ 4.75$ each.

## MINIATURE DC SELSYN INDICATOR

Miniature indicator, 24 v . d-c operation with G.E. Position Transmitter or with Ohmite $360^{\circ}$ type potentiometer. Has iron plug for zero dial adjustment. Stock \#SA-268. Price sic.75 each
G.E. POSITION TRANSMITTER Type 8'tJ9-continuously rotatable 360 wound potentiometer. Taps every 120
degrees. Fwo $180^{\circ}$ opposed sliders. 24 v . d-c operation with indicator deseribed above. Stock $\pm$ SA-13. Price $\$ 4.75$ erch


LP-21-LM Compass Loops


## MAGNESYNS <br> Pioneer CL-3

Use as transmitter or in. dicator on 26 v .400 cy or 52 v . 800 cy . May be used as indicator with $360^{\circ}$ potentlometer on d-c.
Stock \#SA-6 Price $\$ 1.45$ each
 DYNAMOTOR D-101 27 v. d-c in $\theta^{9}$ 1.5 amps d-c out. 285 \#SA-187.

Price $\$ 1.50$ each


Remote Position
Indicoting System

$6-12$ v. 60 cycles 5 inch Indeator with 0 to $360^{\circ}$ dial. Heavy duty transmitter. Stock \#SA-115. Price $\$ 9.95$ ner system
products co.
4 Godwin Ave. Paterson, N. J.
Prices F.O.B. Paterson Phone ARmory 4-3366 Teletype PAT. 199

WRITE FOR LISTING

## SEARCHLIGHT SECTION

## SWITCHES AND CIRCUIT

 BREAKERS```
Helnemann circult breakere
    110.15 amp.
    110-20 amp
\[
\begin{aligned}
& 110-20 \text { amp. } \\
& 110-5 \text { amp. }
\end{aligned}
\]
    110-5 amp.
```

$\qquad$

```1.49
1.49 .95
```

Aircraft ckt. breakers $24 \mathrm{~V},-20$ amp. amp.-AN 3160-Square $\dot{D}$ Co...... $\$ 1.49$

DPST 30 amp. toggle switch-bakeilte
DPDE 110 V . Blide switch. .39
DPDT Toggle Ewitch_-_

## RELAYS

Potter \& Brumfield OVERLOAD relay current 10 ma., relay No. 2 is 110 V . current 10 ma., relay No. 2 is 110 V .
60 cy. Ac coll. SPDT............

Telephone type, plate sensiltive relay-


Plate senslifive relay- 5000 ohm coll 1.49

BK422-K relay-used in conjunction with SCR-269.F-contains 28 V step relay, 5 deck, 6 pos. switch-12VDPST

REGISTORS and RHEOSTATS POWER RHEOSTATS-25W. 25 ohmPOWER RHEOSTATS-25W-25 ohm

$$
1.7 \text { amp. max }-
$$

1,000 ahm . max. 200 W .-----e------.95
.95 11,296 ohm, 100W. bleeder, inc type tapped at $750-23$-23-7500-3000..-
 Myrlit discharge reststor type $5 F$
HE 130 V AC/DC 100 assorted $1 / 2$ watt resilotors in popular sizes

SILVER CERAMIC CONDENSERS 500 W.V.D.C.

0c e 12 10r 80 Avallable capaclty (MFFD's), $2,3,4,5$,
 $100,120,125,140,232,350,375,400,470$,
$45,50,51$, dual $60,70,72,75,80,81,95$, $45,50,51$, dual 60 .
500,1000 and 5000 .


## VARIABLE CAPACITORS

5 Gang varlable, approx. 50 MMFD per sect.-Individual alr tuned pad-ders-18 to 1 vernier drive-shiel.
 Gang variable-silver plated-sec.
 BUTTERFLY WAVEMETER AN
OSCILLATOR CONDENSERS TN-2A OSC1LLATOR CONDENSERS $106-300 \mathrm{MC}$ Antenna conden. ser-wlth acorn socket_-.......... $\$ 3.95$ TN-3A 300.1000 MC Detector (uses
 $\begin{array}{ll}\text { TN } & 30 \\ \text { TN } & 135.485 \\ 300.1000 ~ M C ~ O e l i l l a t o r ~\end{array}$ TN $300-1000 \mathrm{MC}$ oscillator (uses 368AS doorknob tube) ator (uses Ceramic sllver paddere dual 3 to $12-12$
MMFD or 3 to 20 MMFD Ceramic or mica padder-single 5 MMFD mer

## TRANSFORMERG

MODULATION \& DRIVER XFMRS. RC 1206 mod. xfmr., 815 class AB2,
 6SN7 to 815 , class AB-2 (com
panion to RC 1206 ). Both units for panion to RC 1206). SCOPE XFMR.-pri. 110 V .60 cy.,
 BACK and OUTPUT windings-F XFMR-5 MC with air trimmer-im. pedence coupled, mounted in Alum. shield can
DISCRIMINATOR XFMR. to match IF Ximr. above
FILAMENT XFMR. prI. 110.60 cy., sec. 4 volts at 16 amps. and 2.5 FOR 5000 volts. Ideal for $2 \times 2$ and 826 tubes. Herr etically sealed,
 500 ohm to GRID matching xfmr. No. 81749 (used with T-17 mike) --

## TUBES

304 TL -Ideal for 1 KW finat, induc tion heater or dlelectric heater Efficlent operation at 1500.3000 V ma. typleal operation 2500 V . at 400

CATHODE RAY TUBES



тив

CE PHOTOCELL-for use in projec. tors or burglar alarm $\quad$ THOTOFLASH $12,000,000$ lumens output. Ignition coll included mens output. bult. 10,000 flashes. diagrams furnished on request_---5.95 Complete Photoflash kits-Write for information
Complete Stock of GE Photoflash Tubes

## PLUGS AND CONNECTORS

AN-3102-24-3P SK.C16. 226
SK.C16-23$\begin{array}{ll}\text { PL-Q65 } & \text { SK-C16-23- } \\ \text { AN. } 3106 \text {-36-1S } & \text { SK }\end{array}$ AN.3108-36-15S M-359-A $\begin{array}{ll}\text { AN-3108-28.2S } & \text { AN-3100-32.6P }\end{array}$ PL-O37 AN-3109
1OH-529
AN 3057
$\begin{array}{ll}\text { AN-3106-24.2S } & \text { AN-3057.24 } \\ \text { AN-3106.26-2P } & \text { AN-3102-14S-1P }\end{array}$ AN-3057.16 PL. 147
$\begin{array}{ll}\text { AN-3057.8 } & \text { AN-3106-32-101S } \\ \text { UG-21/U } & \text { AN-3102.18-20S }\end{array}$
PL-Q171.10H/414
AN-3108-14S.2S
AN-3102.14S-2S
AN-3108-40.1S
PL- $182-10 \mathrm{H} / 258-\mathrm{S}$
AN-3108-22.17P
$\mathrm{UN}-16 /$
PL .112

## PL-112

PL-118
AN. 3102 -20.27P MC-136
AN-3102-22.14P AN. 3102 -22.14P
$\begin{array}{ll}\text { AN- } 3100.22 .1 \mathrm{~S} & \text { AN-3102-14S.75 } \\ \text { AN-3102-18-5S } & \text { AN-3106-18.12S } \\ 2255-25 & \text { AN-3106.16S.1P }\end{array}$
AN-3102-18.5S
$2255-26$ AN-3106.16 AN-3102-36-8P

## 45 ench

BUILD YOUR OWN GEIGER COUNTER. Detects both Beta and
All
barts,
batteries,
diagrams and Anstructions, nothing else to buy. This instructions, nothing else Geiger counter. as described in Sept. Radio Electronics.
DETROLA RECORD CHANGER, automatic chan
$12^{\prime \prime}$ records

AIRCRAFT COMPONENTS



## RADIO RADAR

RCVRS-XMTRRS-COMPONENTS
BC 223 AX Transmitter-BRAND NEW-
801 osclilators and 801 PA's, (2) 46 801 osclilators and 801 PA's, (2) 46 mods. \& (1) 46 speech amp. selector freqs. and master or CW mod., $10-30$ W. output. Ideal for 80 meter band. Complete with 2.5250 kc ._black crackle case. Two extra cases to store colls. Freq. chart and tubes Incl., packed In orig. chases, less xtals....-.......... $\$ 39.95$

BC. 702 A HIGH FREQ. RADAR XTMR. (4) $2 \times 2$ tubes; squirrel cage blower, 12 .
$24 \mathrm{~V}, 25 \mathrm{MA}, 2^{\prime \prime}$ meter; $02-8000 \mathrm{~V}$ cond.;
 cond. -------------------------------14.95
BC.AR230 TRANSMITTER with 4 tubes and RF ammeter
BC.AL229 RECEIVER with 6 tubes-airment, both unite_-------\$9.95

T85/APT-5 UHF NOISE.MODULATED JAMMING XTMR-WIth these tubes
(2) 6AC7, (1) 6L6, (2) 829 , (1) 931A (1) 6AG7, (1) 522 blower-cooled UHF oscillator tube. This unlt contalns $A$ lecher-line tuned cavliy, with tunable plate, grid, and cathode ines Lecher line settings are read directiy in cM on front panel with veeder type counters. Neon resonance Indicator. Filate supply. operate irom orta. case with instruction


BC-375 XTMR TUNING UNIT-Approx. 65 MMFD cond., colls, RF chokes, diats, assorted micas, 25 WVDC and many other parts
ARR7 AIRBORNE HALLICRAFTER VERSION OF SX-28A-Search rcvr., complete with tubes, less power supply,
In sealed cases-......-.-. $\$ 129.00$

BC.620A-TRANSSEIVER — $20-27.9 \mathrm{MC}$, dual channels, built-In fil. and plate meters, whth (1L) 1 LH 4 , (2) 1291. (4) 1299. (1) 1294-Ideal for use between boats, vehicles, etc. Used, In good cpncomplete with carrying case and diagrams.
GE CONTROL BC. 1103 -Contains fuse F301, indic. lamps 1301, Re, tacles as follows: 3 pole Russell Stote No. 6852, 2 pole Hart and Hegeman No. F7723, 4 pole Russell Stole No. 8087. Also relay 120 Viltch. Alten-Bradley cat. 2 AS , and 250 V . 10 amp. inter-
SCR-625 Mine Detector, used-.-.-. $\$ 39.50$

## METERS and INDICATORS

Remote position indicator-1.82, 6-12V. 400 cy., $5^{\prime \prime}$ indicator with 0.360 degree Azimuth control MN-52H-360 degree dial60 to 1 ratio crank control-ideal for antenna rotating indicator, used-- $\$ .49$ Meter- $3 \mathrm{t} / 2^{\prime \prime}$ cross pointer. Two $200 \mathrm{micro-}$ amp movements, brand new--...-- $\$ 2.95$ METER, type DO.41, 0.1 mil. movement scales $0-5$ DC Kito $V$. and 0.10 MA DC

## MISCELLANEOUS

BN IFF Antenna duplexer, 156-157 MC $\quad$ BN IFF non directional doughnut an- $\$ 5.95$ tenna ---GULATOR, carbon pite, magnetic type, coll current 105 ma .magnetic type, coll current 105 ma .-
max. 5 amps at 18.25 volts.....max, ${ }^{\text {mHERMOSTAT, normally opens at }}$ 95 deg. F., No. F85-1/H5.....-BLOWER, 400 cy. 1 , style No. $17145 \mathrm{C}, 6700$ RPM. Westinghouse $-\cdots$ c.-. BLOWER, squirrel cage, $110 / 60 \mathrm{cy}$.
AC, $2^{\prime \prime}$ outlet, silent oil lite bearing motor, with mtg. bracket .....-.-.-. Eclipse 24 V. carbon plle type, GE Voltage REGULATOR, brand new,
Co., $21 / 2$ lbs. .95

Free Catalog
GUARANTEED GOVT SURPLUS

420-750 MC OSCILLATOR
Compact, beautifully built line oscillator employing two W E. 368AS (703A) "door. knob tubes in puthtable. SW output at $420 \mathrm{mc}, 2 \mathrm{~W}$ at 700 mc Independent grid and plate tuning. Adjustable output coupling and tuning assembly. Coaxial output connection. Bullt-in blower may be operated from 110VAC. Power requirements: $500 \mathrm{VDC} / 150 \mathrm{ma}$. $1.2 \mathrm{~V} / 4 \mathrm{~A}, 1.2 \mathrm{~V} /$ plete with tubes. Ideal for 420 mc amateur operation or for use in the 460.470 mc citizens radio band. Stock No. APO-66....88.95 Spare 368 AS/703A tubes........... $\$ 1.69$ ea.
WE CARRY A LARGE AND VARIED INVENTORY WHICH INCLUDES:



| RS | - COILS | - INVERTERS | METERS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - AN CONNECTORS | - CORDS | - JACKS | - MOTORS |  | TEST EQUIPMENT |
| CABLE | - CRYSTALS | - KLYSTRONS | - POTENTIOMETERS | - SCOPE AC |  |
| CAPACITORS | - delar Lines | - KNOBS | - POWER PLANTS | - SHOCK MOUNT |  |
| CHOKES | - FILTERS | - MAGNETRON | - POWER SUPPLIES | - SOCKETS | - WAVEGUIDE |
| IRCUIT-BREAKERS | - FUSES | - MAGNETS | - PROJECTION LAMPS | - SWITCHES | - WAVEMETERS |
| COAX-CONNECTORS | - HANDSETS | - MICROPHONES | RECORDERS | - TELEPHONE EQUIP. | - WIRE |

Immediate delivery from stock (subl. to prior sale). Open acct. to rated
organizations, others $20 \%$ with order balance coD. Prices fOB $\begin{aligned} & \text { corona, }\end{aligned}$ A PENNY POST-CARD WILL PUT YOUR organizotions, others $20 \%$ with order balance COD. Prices FOB Corona,
N. Y. and subject to change without notice.

## HOOK-UP WIRE

as per JAN-C-76
(Braided white body with any tracer color)
PRICES: per thousand feet of each size and color for single Conductor:

| Gauge No. | Stranded | Solid | Shielded |
| :---: | :---: | :---: | ---: |
| 12 | 26.05 | - | - |
| 14 | 17.50 | 15.60 | 25.00 |
| 16 | 14.00 | 12.30 | 22.00 |
| 18 | 11.50 | 10.50 | 18.50 |
| 20 | 9.25 | 8.50 | 14.50 |
| 22 | 8.05 | 7.40 | 14.00 |
| 24 | 7.50 | 6.80 | - |

NOTE: If our choice of color or tracer allow $20 \%$ discount.

## SAMPLES ON REQUEST - NO RETURNS ACCEPTED

Also twisted, double, and triple conductor and shielded single and double

## Legri S Company, Inc.

## 130 West 102nd Street

Phone ACademy 2-0018


## 2 BIG BUYS at NEWARK

Smashing Reduction! RCA WV-65 VOLTOHMYST


Thie Famous RCA isattery-Operated VoltOhmyst at a Sensational Low Price! Accurately reads AC-DC volts and DC current. 6 ranges for each function, except AC volts
which has 5. DC volts: $0-1000$ : AC volts: $0-1000$; Olms: $0-1000$ megs; IPC current: $0-300$ ma, 0-10 amps. 2-tube bridge circuit. 11 megs constant input resistance on DC.
 $51 / 6^{\prime \prime}$ D. 8 lbs
No. A8, with probe, less batteries $\begin{gathered}\text { Special } \$ 39 . j 0\end{gathered}$
hallicrafters S-37 AM-FM RCVR


A Terrific Buy: We have a limited quantity of these Famous AM/FM Receivers Priced Far Below Manufacturer's Cost!
Cover 130 to 210 Nc. Perfect for TeleCover 130 to 210 Mc, Perfect for Tele-
metering, Mobile Service, Indusirial or
Amateur use! Pre-loaded Amateur use! Pre-loaded gear drive with
separate bandspratl dial. Ao Band-
Switching Switchingt 2 RH stakes (using acorn
tubes) and IF of 18 IIc assure high ratio image rejection, high sensitivity, selec-
tivity. AVC switch, ANL. RF and AF Gain Controls. Tone Control, Dual-purpose $S$ and Tuning Meler. Drift compensated, 500 $3-954$. $2-6 \mathrm{AC7} 6 . \mathrm{ABF}^{6} 6 \mathrm{SK} 7,2-6 \mathrm{H} 6$ 6SC7, VR150, 6V6GT, 5U4G, $955,1914 \times$ 19/2 $\times 143^{\prime \prime} \mathrm{D}$. 95 lis.
No. Az062, with tubes.
special $\$ 169.50$
 tronic and Sound Equipmont Catalot.

- Speciall
High
Fidelity
Section
$\square \longrightarrow \square$
NEMARK


## MEWARK GLEGTIC co., rNG.

3 GREAT STORES! Uptown: 115 WEST 45th Street Downtown at 212 Fulton Street in NEW YORK 323 West Madison Street in heart of CHICAGO MAIL ORDER DIVISIONS: 242 W. 55 th St., N. Y. 19 and 323 West Madison Street, Chicago 6, Illinois

## WORTHWHILE SAVINGS TO YOU:




# TUBE STOCK CLOSEOUT 

$\begin{array}{ll} & 20 \% \text { on orders over } 100.00 \\ \text { DISCOUNTS } & \mathbf{3 0} \% \text { on orders over } 500.00\end{array}$

## NEW CAPACITORS

$2 \mathrm{mfd} \quad 600{ }^{\mathrm{Y}} . \mathrm{d}-\mathrm{c}$ tubular. $\$ .30$ : 10 for $3.5 / 5 \mathrm{mfd} 1.000 \mathrm{per}$. $\mathrm{d}-\mathrm{c} \$ .90$ \& for $\$ 3.00$

 d-c; Standard krand .

$.25 / 25 \mathrm{mfd} 7.5 \mathrm{kv} d-\mathrm{c}$ or | $\mathrm{d}-\mathrm{c}$ |
| :--- |
| $1.0 \mathrm{mfd} 25 \mathrm{kV} \mathrm{d}-\mathrm{c}$; Standard Brand. . $\$ 36.00$ | 500 mfd 200 WV d-c electrolytic; insulated

 | kc . |
| :--- |
| $50 \mathrm{mmfd} 32 \mathrm{kv} \mathrm{d}-\mathrm{c}$ tubular vacuun. $\$ 25.00$ |
| 1.95 |



## METERS

Weston or Westinghouse
$3^{\prime \prime} 0-120$ a-c amps. w/eurrent transf. . $\$ 8.50$


## SPECIALS

Westinghouse Meter Multiplior: Type R-5 Westingeg., $1 / 2 \%$ tol., w.W noninductive Tube WL $386 / \mathrm{ML}-3 \mathrm{~W} ; 125 \mathrm{KV}$ X-ray oil CRAMER Time Delay Relay: TD2-120S;
 motor: 27 จ. d-c. 0.7 A., 110 R.P.M.

 Indicator: 1-81-A Radio Compass. New $\begin{gathered}\text { New } \\ \$ 3.85\end{gathered}$

## RESISTORS

200 watt wire wound resistors, ferrule ends
ohm

All Tubes aro New. of Standard Mfg., in original boxes.

Type
1B22

| 1822 (10) |
| :--- |
| $\begin{array}{l}\text { 1822 } \\ \text { (50) } \\ 3 B 22 \\ (175)\end{array}$ |
| $8028(150)$ | $\begin{array}{ll}\text { 3B22 } & (175) \\ \text { 3B24 } & (15) \\ 3 \mathrm{C} 23 & (300) \\ \end{array}$

Price
.$\$ 4.25$
.37 .50
.2 .50
$\therefore 1.50$
.2 .25

6 A. Rection (450)
15E (200)
250 T ( 6 ) $\begin{array}{lll} & \\ 250 \mathrm{TL} \\ 304 \mathrm{~T} & 6) & \cdots \cdots 1.2 \\ 19.50\end{array}$ 304TL IIS V. 60 c. HV flament $\begin{array}{cccc}\text { transformer } & \text { \& } & \\ \text { s.cket } 40) & & 7.50 \\ 307 A / R K 75 & (40) & 3.75\end{array}$ 307A/RK75 (40) 3.75
$316 A(30)$
$700 A$
701
(2)
7
702 A ( 7 )
703 )
703
$703 A$
$704 \mathrm{~A}(125)$
705 A
${ }^{705 A} \mathrm{~T}^{706 \mathrm{~B}}{ }^{(30}$
706 BY (6)
707 A
707 B
708 A $\mathbf{7 5}$ )

$714 \mathrm{AY}(15)$
$714 A Y(15)$
$717 A$
710
717 A
719 A
(10)
10
$719 \mathrm{~A}(10)$
721 A (1)
72
722 A
72 A
730 A
830 B
846

931A (30
C5B (20)
C5B (20)
C6A (40)
C6J (50)
FG81A (200

| WE -203A (4) | 8.75 |
| :--- | :--- |
| VT98(Br.) | $(30)$ |
| 12.50 |  |

        NEW RA-38 RECTIFIERS
    
detailed informstion.

G.E. BATTERY CHARGER TRANSFORMER
Cat. \#WS-99316. Pri. 105-115-125\%. 60 cyc. : Soc ondary 105-90-75-60-45-30w. @ ${ }^{6}$ amps. each side of
center tap. Voltage reduced $10 \% ~ \& ~ 20 \% ~ t h i r u ~ t a p p e d ~$ primary: Two X 5 r .18 amp. C.T. (Thingar flaments)
 price

## GASOLINE GENERATOR

 , () indicates stock on hand. Subject 10 prior
sale \& limited to stock.

## - THE BEST IN ELECTRONIC SURPLUS

PRESS WIRELESS PW-98IA. 2.5 KW Radioteletype and Radiotelegraph transmitter, operating over a frequency range of 2.5 to 23 megacycles. Includes car-
rier shifter to 1,000 cps, with additional provision for external frequency shitter. Complete unit, with oven crystal controlled exciter, all amplifler stages and power supply in one cabinet. Operates from $220 / 230$ V. $50 / 60$ cycles, ${ }^{3-p h a s e}$ AC. VXCELLENT Condi-
tion. WRITE FOR PRICES.
2.5 KW PRESS WIRELESS. Model 2.5 consisting of 2 sections, one-the 2.5 KW P.A. With power supply, second section containing exciter-driver
stages with erystal-contronled oscillator (with oven for constint temperature control). Emission A1.
Freg. range 2 to 23 me. Operates from 220 . Freg. range 2 to 23 me. Operates from $22 n$ V.A.C.
Fxcellent condition. Iness Tubes. WRITE FOR PRICE BC-3I9-A TRANSMITTEB, CW only 300 watts out put Fred tange 4.0 to 13.4 me. Oyerates from Less tubes.
. $\$ 300.00$
WiLCOX. 96-200A 2-KW RF section. Jarge cabinet With complete RF end containing the VFO, Interlacks PA inductance only. Lass tubes. ... $\$ 300.00$
TBK-10, $500 \mathrm{~W} . \mathrm{2}$ 2-18.I MC. ©W Telegraph Trans mitter designed for ship insrallation. Almost new condition. complete with tubes but less MG set
and accessories. PRICE, EACH.......... $\$ 350.00$ WILCOX 98A Ground Station, A-3 emission 50 to 200 uc, 50 W. output. 4-channels dial telephone selection, with receiver for above frequency cover-
age, and remote control unit. For 110 rolts AC. Fxellent condition. With tubes. LINK FM Transmitter-Receiver, $70-100$ MC, 50 Containink transmitter, receiver and style calinet power supply, handset, Dim.: $34^{\prime \prime} \times 21^{\prime \prime} \times 11^{\prime \prime}$, NEW telesconic antenna, instruction book. erystals, specral $50 \mathrm{~W} .{ }^{\text {ontput. }}$
PRICE EACH............................ $\$ 500.00$ MODEL SVCIOOL/110 TRANSMITTER. Output A1 150 -watts, A2-A3-50 W. Mfd. by Phillips. Freq.
2 to 20 mes., with 6 pretuned channels. Operates 2 to 20 mes. With 6 pretuned channels. Operates
from $90-260$ volts $50 / 60$ cy. A.C. COMPLETE, with
tubes.....................................................$~$
Immediate Delivery from Stock

All Prices F.O.B. N.Y.C.
BEACHMASTER PORTABLE ANNOUNCING SYS. TEMS. 250 and 500 Watt Units, complete with Ready For Immediate Operation, from ilo volt $50 / 60$ cycles AC. Some AC Gas.Engine Generators, for field
use, available. ALL NEW to EXCELLENT Condi. Use, availiable. ALL NEW to EXCELLENT Condi.
tion equipment. Ideal for Alrports Stadiums. Bail lion equipment. Ideal for Alrports, Stadiums. Bail
Parks. Carnivais. Marine. and Military use. These are good fidelity units, to 6 , OON cps , and can be used
for entertainment (music) as weil as speech and tor entertainment music) as well as speeeh an
modulator applications. WRITE FOR PRICES.

MAB WALKY-TALKIES, hadiotelephone. 2.3 to 4.5 MC, with anterna base loading coil (aidustable) to
put more power into antenna. A realls efficient put more lower into antenna. A really efficient.
Walky-Talky with crysial control of both receiver and transmifter sections. NTW Condition, complete with all accessoriies, batteries and spare thatteries, plus
some miscellaneus part spares. WRITE FOR SPE. some miscellaneous part spares. WRITE FOR SPE. SCR. 508 and 528 Eqpt. NEW, Complete, and Excellent Condition units botli available. WRITE FOR SCR-509/510 and 609/610 Equipments. Vehicular Transmitter-Reveirer, FM, 20 to 40 MC , New and PF-120, 6-12-24 volt Power Sk-97, or PE-1TE F-12-24 VNIT POMET SU
RC-I63 RADIO BEACON EQPT, $20-40 \mathrm{MC}$. Con rerts SCli-508/528/608/628 to directional transmit ters and receivers, Ideal for Airborts. for homing
application. NEW and Comple apphedtion NRITE FOR QUANNTTY PRICES.
 dlal selection of channel. $1.5-10^{\circ}$ mes. $110-260 \mathrm{~V}$ EACH AC., with remote control. New, $\$ 575.00$ SUPREME ship-to-shore transmitier receiver. 110 W output, ${ }^{9}$ channel, $2-3$ mes., crystal cont ol 11 ed for
$110 \mathrm{~V}, 60 \mathrm{c}$. ACC Condition $\mathrm{N}-2$. Complete with tubes and mlcrophone. EACH …..... $\$ 500.00$ voltage, current, and frequency of 2 to 450 kk
 Measures current $0-3 n n^{2}$ or $0-600$ mps. throad
selection
 $\$ 15000$ DZ-2 DIRECTION-FINDING EQUIPMENT, with


SCR-5II "POGO STICK" WALKY-TALKY, Port
 operation, with 13 mug-in tuning coils contalning
crystals for crystal control of both receliver and transhitter. Transmitter receiver BC-745 of this Taik' Switch as well as ill callies. Range 5 mess plus. With PE-157 2 -voit storage battery operated Vibrator Power supply, 2 -Volt Battery (less electro lyte), T-17 mike, thl ready for immediate operation
ALTW. PRICE, EACH

.... $\$ 95.00$ 32 VOLT DC to AC ROTARY CONVERTER, mPd lion. Output 1 in $\mathbf{V}$ V 60 wholes ic farmi installa | but |
| :--- |
| PRICE, EACH |
| 10 |
| 300 |
| watts. All NHW units. | DECK ENTRANCE INSULATORS, bowl and flange type. 8\%a dac. with heaty gavanized metal thange and bell. Top hell $6 \frac{1}{4} 4^{\prime \prime}$ dia. $1111 /^{\prime \prime}$ brass feed-thru packed in cartons, all NFy. Indirlduall 12 FOR GENERAL ELECTRIC AMPLIDYNE M.G. SET generator tyll \#V-5875477, motor type \#T3AB58 $3 / 4 \mathrm{HP}$.. generator output 200 V . DC at 375 W . NEW. GENERAL ELECTRIC AMPLIDYNE MODEL $3 \mathrm{HP}{ }^{440 \mathrm{~V}}$ C0V. DC at 12.5 amps. Excellent Condition. $\$ 85.00$

## "SNOOPERSCOPE" TUBE

Infra-Red Image Converter Tube (British) to make Snooperscopes." "Sniperscopes," and other revices applications. operates with manisble infrat industria without scanning or amplifiers. See article! Suppled with technical data and diagrams. Every tube guar

$\$ 33.00$
BAUSCH \& LOMB Front-End Lans, Assembly for
best images. F2.1, 3.5 in. E.F. EACH...... ${ }^{2} 2.00$ MOUNTED LENS UNIT, also for front-end, results
 m. PRICE, EACH $\quad \$ 9.00$

All Material Offered Subject to Prior Sale N. Y. $1, \mathrm{~N} . \mathrm{Y}$.

RADIO \& RADAR EQUPPMENT<br>Prompt Shipment BRAND NEW<br>AN/CRW-2 VHF Receiver $\$ 6.15$<br>Radio Receiver BC-688-A \$15.95<br>Radio Transmitter BC-689-A \$15.95<br>Antenno AS-5/APS-2 \$22.95<br>Antenno RC-94-C \$33.95<br>Terms: Cash with order<br>CIMCO<br>2432 West Third St., Cleveland 13, Ohio

## RADAR EQUIPMENT

SCR-717B 10 cm search Radar
APS-3 and APS-4 3 cm search Radars complete
SO-9 10 cm shipborne search Radar complete
APR-4 Receivers
BD. 71 and 72 Switchboards
MAGNETRONS—KLYSTRONS
Dumont type 213A Madulation Monitor scope .4 to 40 MC , brand new
BC-223 transmitter with tuning unit and tubes, new.
19.50

Write for listings of other surplus bargains
LERU LABORATORIES, INC.
360 Bleecker St.
New York 14

## RADAR SEARCH RECEIVERS AN/ARD-2

Frequency Range: 80 to 3000 MCS (Continuous)
Made for the US Navy for installation in PBY planes, this precision search receiver covers a frequency of 80 to 3000 MCS . It incorporates built-in pulse analyzer, with a pulse repetition rate of 50 to 8000 cycles per second. Has 115 Volt, $60-2600$ cycle AC power supply, test oscillator, antennos (2) and manual.
This unit is a very excellent substitute for the APR-I and 4 series, and can olso be used as a precision frequency meter.
COMPLETE WITH SPARES! BRAND NEW! IN ORIGINAL CASES Price, each . . . . . . ... \$175.00 COMMUNICATION DEVICES COMPANY
Cable:

## Communider <br> 2331 Twelfth Avenue

New York 27, Tel: AD.

## I-208 FM Signnal Generators

A limited number of this finest available laboratory instrument is offered subject to prior sale. Range: $1.9-4.5 \mathrm{mc}$. \& $19-45 \mathrm{mc}$
Deviation: $0-5$ kc. each side of center frequency in first range and $0-50 \mathrm{kc}$. each side in second Modulation: internal 150, 400, 1000, 2500, or 5000 Accuracy: $03 \%$ with aid of internal 500 kc . crysOutput: up to 100,000 microvolts calibrated with internal V.T, V.M., 84 volts uncalibrated.
Termination: 30 ohm line.
Power source: 12 volts de or 115 volts 60 cycles
Futher details can be obtained by writing
FS-1706. Electronics
330 W .42 nd St., New York $18, \mathrm{~N}, \mathrm{Y}$

## COMPUTER CONDENSERS

Precision Polystyrene D161270 Low Retentivity, Low Temp. Coef. 1.0 M.F., 200 V. D.C.


## SYNCHROS

## SINE/COSINE RESOLVERS

2-phase stator and rotor, 60 cycles or higher, suit able saw tooth waveforms, length $61 / 4^{*}$, diameter
砳
HOPTON RADIO 1, HOPTON PARADE
Streatham High Rd., London, S.W. IG
> "SEARCHLIGHT"
> IS
> Opportunity Advertising
> -to help you get what you want.
> -to help you sell what you no longer need.
> Take Advantage Of It
> For Every Business Want
> "Think Searchlight First"


## EDISON TIME DELAY RELAY

Vacuum sealed in glass, s.p.s.t. contacts normally closed. 30 v .7 second delay to open. Many experimental applications.

Special Price Three for $\$ 1.95$

## ALNICO FIELD MOTOR

Sampsel Time Control lnc., 27 จ. D.C. Overall length $35 / 16^{\prime \prime}$ by $13 / 8^{\prime \prime}$. Shaft $5 / /^{\prime \prime}$ long by $3 / 16^{\prime \prime}$, 10,000 r.p.m.

Price $\$ 4.25$ each net.
Synchron Model 6001 RPM Motor $110 \mathrm{\nabla} .60$ cycles timing motor.
Special Low Price $\$ 2.45$ each
INVERTER SPECIAL—PE-218
Various manufactures. Used conditionrepairable. Ideal for spare parts or for repairable. Ideal ine spare parts or for damaged.

A bargain at $\$ 8.95$ each


NOISE FILTERS 3 chokes and three oil-
filled AC $\begin{aligned} & \text { apaceitors }\end{aligned}$ mounted in an assembly with 4 pin Ampheno connector.

A Steal at $39 ¢$
NEON BLOWN FUSE INDICATORS
Rated for 110-220
volts either AC or
DC. Can also be used for general "shorts". etc.

Price 39 c
TUBES
6SN7; 7F7: 7N7; 7Y4
83
$\$ .59 \mathrm{ea}$.
-Grid control rectifier (thyratron) 1.95
TERMS: $20 \%$ cash with order-balance C.O.D. Orders accompanied by payment in full must include sufricient posiage. otherExpress collect. Minimum order $\$ 2.00$. Box No. 1941 PATERSON,N.J.

## TEST EQUIPMENT

$\times$ BAND SIGNAL GENERATOR, 8500-9600 MC. 60 cps operation.
SPECTRUM ANALYZER FOR X BAND, TSX${ }_{60}{ }^{3} \mathrm{cpse}$.
TS-45A/APM-3 SIGNAL GENERATOR. 9200 9600 mO .110 V 60-800 cDS.

* BAND WAVEMETER CAVITY. TRANSMIS SION TYPE, $9200-11000 \mathrm{mc} . . . . . . . . .$. WAVEMETER CAVITY, $8500-9600 \mathrm{mc}$, TRANS. TS 155B/UP S BAND SIGNAL GENERATOR pulsed. calibrated output, $110 \mathrm{v}, 60 \mathrm{cy}$. NEW. TS-I55A/UP S BAND SIGNAL GENERATOR pulsed calibrsted output, 110 , 60 cy, NEW. SPECTRUM ANALYZER FOR S BAND, TSS4SE, Sylvania, good working order, 110 V. 60 TPS-5IPB/20, S BAND 20 db PAD......... $\$ 20.00$ X BAND PICK-UP HORN
$\$ 10.0$
TS-62/AP ECHO BOX FOR $X$ BAND
APR-1 RADAR SEARCH RECEIVER, complete with tuning units for range of $38-4000 \mathrm{mc}$. 30 me I.F., 2 mc wide.
TUNING UNITS for APR-I or APR-4 RE.
CEIVERS (can be used with any 30 mc CEIVERS
ampliner)


## TN-16, range $30-90 \mathrm{mc}$

TN-17. range $80-300 \mathrm{mc}$
TN-18. range 300-1000
TN-18. range $1000-2000 \mathrm{me}$ TN-54. range 2000-4000 mc
X BAND VSWR TEST SET TS. $12 /$ AP, complete with linear amplifier direct reading vin meter, slotted wave givde wina gear dive farlous adadters. with carrying case, NEW. UNITS
I AND II are arallable separately, or together
as a test set
$S$ BAND SIGNAL GENERATOR CAVITY With cut-off attenuator. $2300-2950 \mathrm{mc}, 2 \mathrm{C} 49$ tube, HIGH PASS FILTER F-29/SPR-2, cuts off at 1000 He and below; used for receivers above 1000 mc
$\$ 1200$
UPN.I S BAND BEACON RECEIVER TRANS: $S$ BAND TEST LOAD, TPS-55P/BT. $50 \begin{gathered}\text { ohmg } \\ \$ 8.00\end{gathered}$ X BAND TEST LOAD, TS-108/AP. 150 watts LAE-2 SIGNAL GENERATOR, $520-1400 \mathrm{mc}$. CW \& Dulse modulation, calibra
LAF-I SIGNAL GENERATOR, $100-600 \mathrm{mc}$. CW \& puise modulation, calibrated output, sood condition. 110
GENERAL RADIO SIGNAL GENERATOR MODEL 522, 250-1000 me, good opersting condition.
GENERAL RADIO POWER OUTPUT METER, GENERAL RADIO VACUUM TUBE VOLT. METER MODEL 726, good working order
GENERAL RADIO PRECISION WAVEMETER, type 724 A , range 16 kc to $50 \mathrm{mc} .0 .25 \%$ acwith accessories and carrying case. new $\$ 175.00$ FEDERAL RADIO SIGNAL GENERATOR FEDERAL RADIO SIGNAL GENERATOR
MODEL $804 \mathrm{C}, 7.5-330 \mathrm{mc}$, good oDerating conditlon
MEASUREMENTS 78E, $50-75 \mathrm{mc}$, calibrated output $M O D E \cdot . . . . . . . . . . . . . . . . . . . . . . . .$. FERRIS MODEL 22A SIGNAL GENERATOR, 85 kc to 25 mc . Output 2 microvelts to
volt. modulation variable, good worklng $\$ 175.00$

FERRIS MODEL 10 B SIGNAL GENERATGR, 85 ke to 25 mc, calbrated output. good work-
ing order
FERRIS 18 C SIGNAL GENERATOR $5-175 \mathrm{mc}$, calibrated output, good working order.... $\$ 250.03$
STANDARD SIGNAL GENERATOR MEASURErood working order....... 1 . $0 . . . .$. good working order.
HEWLETT-PACKARD: MOOEL 300A
DISTORTION ANALYZER MODEL 330B and AUDIO SIGNAL GENERATOR 205A
LABORATORY RECTIFIER, Sylvania 541.A. LABORATORY RECTIFIER, Syivania 541-A.
3500 volts at 2 amperes DC LB-3 LIMIT BRIDGE, INDUSTRIAL PROD-P-4 SYNCHROSCOPES, made by Sylvanla or SIGNAL GENERATOR $1-72-\mathrm{K},{ }^{100} \mathrm{kc}-32 \mathrm{mc}$,

AUDIO OSCILLATOR, HICKOK 198, RC tuned 20-20000 cDs ..................................... 545.00 TEST SET TS.278/AP FOR AN/APG-13, ayn430 mc , callbrated wavegutde below cutor it tenustor, synchronized marker senerator, $115 \nabla$ 60 cDS, NEW, COMPLETE
TS.10/AP FOR APN-1....................... $\$ 40.00$ RCA SCOPE, 5" MODEL 160B, NEW, export CLOUGH BRENGLE RESISTANCE CAPACITY BRIDGE model 230A FIXED ATTENUATOR PADS, $20 \mathrm{db}+0-2$ db, DC- $1200 \mathrm{mc}, 50$ ohms. VSWP 1.8 or less. MUTUAL INDUCTANCE ATTENUATOR, Cali brated: frequency range 1 to 1000 me by
mesas of plug-in colls, attenuation range 120 db MUTUAL INDUCTANCE OR PISTON TYPE ATTENUATOR, type N connector's rack and pinion drive. attenuation variable 120 deciblea d. frequency rango ..... $\$ 32.0$

MUTUAL INDUCTANCE OR PISTON TYPE



CERAMIC FEED-THRU CAPACITORS
 TRANSFORMERS, 115 volts. 60 cDs primaries:

1. 6250, 3250 and 2000 volts, tapped prlmary,
2. 6250 volts 80 ma . ungrounded, G.E. roltage
doubler, 12.5 kF ins.................... $\$ 12.00$
 PULSE INPUT TRANSFORMER, permalloy core. 50 to 4000 kc Impedance ratio 120 to 2350 ohms PULSE TRANSFORMER, UTAH $9280 \ldots \ldots . . \$ 1.50$ PULSE TRANSFORMER 182-AWP......... $\$ 6.00$ PULSE TRANSFORMER, GE 68G, 828G-1. . $\$ 5.00$ PULSE TRANSFORMER, Westinghouse $\begin{array}{r}145 \text {-EWP } \\ \$ 10.00\end{array}$ TS. 10/AP CALIBRATED DELAY FOR APN.I TS-203/AP CALIBRATED SELSYN......... $\$ 10.00$ UG-27/U TYPE N RIGHT ANGLE ADAPTERS U.H.F. RIGHY ANGLE ADAPTER 83.1 AP W.E. TELEPHONE NETWORKS: D-161638, D161844,
162632,
$D-162624$,
D-162635........... $\$ 1.00$ each SD-3 SHIPBOARD RADAR, New and complete with test equipment......................... $\$ 1050.00$ SQ RADAR, used but in good working order, comSN RADAR. used, good working order. comHYPERSIL CORE CHOKE, 1 Henry, WestingPULSE FORMING NETWORK, 20 ky. .22 microsecond, 50 ohms, 800 p.D.s................... ANCHOR SCREWS from AB26CR Mant Eaulp-

## ELECTRO IMPULSE LABORATORY

P. O. Box 250

Eatontown 3-0768
Red Bank, N. J.

## BRAND NEW <br> U. S. GOV'T SURPLUS <br> GUARANTEED



## ALWAYS BUY TYPE "J"

|  |  | TPE | "J" | Mrd. | Volt. | h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | aft bush ${ }_{\text {d }}$ | Ohms | shaft bus | ${ }^{.1} 25$ | 3000 <br> 2000 | 0.75 |
| 50 60 60 |  | ${ }^{100}$ |  | -25 | 3000 3500 50 | ${ }_{1}^{1.15}$ |
| 100 | 5/8 $8^{\circ}$ 1/2 ${ }^{\text {c }}+$ | 12 L | $3 / 8^{\prime \prime} \frac{1 / 88^{\prime \prime}}{}$ |  | 300 600 | ${ }^{28}$ |
| 100 | 1/8*** $1 / 8 / 8^{*+}$ | ${ }_{15} 15$ |  | 2 | 400 600 | 39 |
| 300 | 3/8.8. $1 / 4^{\circ}$ | 165 | 1/4** $1 / 4^{* *}$ | 4 | ${ }_{600}$ | 39 59 |
| ${ }_{500}^{400}$ | 1/8*** $1 / 8^{* / 2}+$ | ${ }_{20 \mathrm{~K}}^{20 \mathrm{~K}}$ |  | 6 | 400 | 75 |
| ${ }_{5}^{500}$ |  | ${ }^{225}$ | 1/8*** 1 | 10 | 600 | 98 |
| 6000 | ${ }^{\text {2\% }}$, $1 / 2^{*}$ | ${ }_{30 \mathrm{~K}}$ | 1/4** ${ }^{\text {/ }}$ | ${ }_{15}$ | ${ }_{600}^{60}$ | 1.98 |
| ${ }_{1000}^{600}$ |  | 50K | $1 / 88^{* * *}$ <br> $3 / 2 / 8^{* *}$ <br> 1 | ${ }_{30}^{15}$ | ${ }^{1000}$ | 2.75 <br> 3.95 |
| 1000 | ${ }_{1 / 22^{n+}}$ | ${ }^{756}$ |  | $3 \times 4$ | 3 Phase |  |
| 1200 1300 1500 | *** $1 / 4.4$ | ${ }^{800}$ | (1/8** | 384 | ${ }_{\text {Pluss-ln }}^{400}$ | 49 |
| ${ }_{2000}^{1500}$ | ${ }^{1 / 2} 8^{+1}+$ |  | ${ }^{9 / 88^{* *}}$ |  |  |  |

200
210
250
250
$\qquad$ ohms shaft bush

*Screwdrlver slot.
†Locking bushing.




BIRTCHER TUBE CLAMPS


| AMPHENOL "AN" |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| LARGE VARIETY AVAILABLE AT GREAT SAVINGS |  |  |  |
| Send your specs and let us guote |  |  |  |
| "UHF"' Coax Cable Connectors |  |  |  |
|  |  |  |  |
| 83.19 | B3-1ap | 33. |  |
| Cat. No. | Army No. Typ |  |  |
| $83-1.4 \mathrm{P}$ | M-359 Plug | . 35 | - |
| 83-1D | PL-271 Adap | 1.25 | 1.00 |
| 83-1F | PL-274 Feed | 1.10 | 90 |
| $83-1 \mathrm{R}$ | S0-239 Rec. | . 35 | . 28 |
| $83-1 \mathrm{SPN}$ | PL-259A Plug | . 35 | 28 |
| 83-22R | SO-264 Rec. | . 50 | 40 |
| 83-22SP | UG-102/U Plug | . 45 | . 40 |
| Open Accounts to Rated Concerns Prices net FOB our whise NYC Send for our Catalog |  |  |  |


| BATHTUBS |  |  |  |
| :---: | :---: | :---: | :---: |
| Mfd | 200 V | 400 V | 600 V |
| 033 |  | 174 |  |
| . 05 | 174 | 19. | 218 |
| . 1 | 18. | 20. | 22 ¢ |
| . 25 |  | 21. | ${ }_{23}^{22}$ d |
| . 35 | 19 | 224 | 23 |
| . 5 | 20.8 | 23. | 25 ¢ |
| ${ }^{75}$ |  |  | 30 d |
| 1.0 | 29 ${ }^{\text {d }}$ | 324 | $35 ¢$ |
| 2.0 |  | 44. | 49. |
| 354 | $2 \times 05$ | 1500 V |  |
| 504 | 2x.1 | 600V | 28. |
| 554 | 2x. 25 | /600V | 302 |
| 276 | 2x.5 | 600 V | 354 |
| 284 | 2x1/60 | 600V | 59. |
| 30 d | 2x20 | /9V | 49. |
| 276 | 3x.05 | /600V | 40 d |
| 28. | 3x.1 | 600 V | $45 ¢$ |
| 25* | 3x. 25 | /600 V | 50. |
| 350 | 3x1/100 | 100 V | 404 |

> OIL CONDENSERS

## $\qquad$ <br> 

AMPHENOL "AN" CONNECTORS

LARGE VARIETY AVAILABLE AT GREAT SAVINGS "UHF" Coax Cable Connectors


## Transformers, Coils SATURABLE REABTORS

 SPECIAL TRANSFORMERS Short Runs-Fast Delivery Low Cost-High Quality
## LEEDS ELECTRO PRODUCTS CO.

14 W. 4th St. New York 12, N. Y. GR. 7-8536

## ONE-HALF MILLION <br> BATHTUB CONDENSERS <br> - OIL IMPREGNATED - <br> PRICES ON REQUEST <br> SHRIRO TRADING CORP. <br> 130 W .42 d St.

## AIRCRAFT RADIO EQUIPMENT and TEST SETS

1-96 UHF Sig. Gen. (Record)
AN/ARM-1 Test Set for ARC.
AN/ARM-I Test Set for ARC-3
A- 27 Phantom Antenna
$\$ 200.00$
150.00 set
A. 58 Phantom Antenna $100 \mathrm{w}, 200 \mathrm{kc}-12 \mathrm{mc} .00 \mathrm{ea}$

A-98 Phantom Antenna with special R-F Meter, for testing Gibson Girls ..................15.00 for 1-100 Test Set for ARN-7 or 269 Compass 450.00 set $1-139$ Test Motor for SCR-522.............. 12.00 ea. E. 19 Test Set for SCR- 522 complete.... 200.00 set TS-16/APN Altimeter Test Set $24-\mathrm{v}$ AN/APN-1 TS-16X/APN Altimeter Test $12-\mathrm{v}$ AN/APN-1 TS-80/U Test Meter for AN-ARC-1. $\quad 12.00$ each R-86 Test sel 12.00 each
$\cdots .95 .00$ RC-54 Test Set for ARC-5 or 274 -N Receivers 150.00 set RC-55 Test Set for ARC-5 or 271.N Transmitters $\begin{gathered}150.00 \text { set } \\ \text { R }\end{gathered}$ I-95 UHF Field Strength Ind, ( $100-150 \mathrm{MC}$ ) A. 83 Phantom Antenna ............................ 2.50 PP-29/CRN-2 Rectifier Pow W. E. Type 27B Marker Receivers $12-v$ (complete Bendix RTA.IB Transmitter only (recond. I L. N. Net
Some of the above Test Sets are one of a kind in
Also in stock: AN/ARC-1. AN/ARC-3. AN/ART.
13. BC-318. AN/ARN-7. MN-26, SCR-269-G.

## LARGEST DYNAMOTOR LIST AT LOWEST PRICES

## 

DM-32-AZ (I2V) $\$ 10.0$ DM-33 (24V) … 5.00 DY-21/ARC. 3
$\begin{array}{llll}\text { DM-28 w/filt } & 3.50 & \text { DM-53-A (24V) } \\ \text { DM- } \\ \text { DM }-28 \text { Ifss filt }\end{array}$ DM-24 w/fit (I2V) 10.00 PE-86 w/filt (24V) 12.00 PE. 73 less filt $\cdots 8.00$ PE-86-AZ w/filt (12V) D-IOI (APN-24V) ea. 5.00 DY-12/ART-13 w/filt ${ }^{12 . G 0}$ D. 101 (APN-1 12V) 10.00 DY-12/ART-13 I/AIt PE.94-C (522 24V) 5.07 BD.77 (12V) 10.00 DA.7A (Bendix TA-21) $\quad$ PE-109 inverier (12.00 50.00 DA.IB (MN-26 I2V) 10.00 ZA Dyn. for 12 V R-89 ABOVE MATEIIIAK ALIA BRAN゙D NEW IN MAN-
 TIONS, PRIOR SALE

## aircraft radio industries

780 State Street, New Haven, Conn.
N.Y.C. Office- 274 Madison Ave. Phone LExington 2-6254

## WESTINGHOUSE HIPERSIL CORES

OVER 40,000 UNITS IN 20 DIMENSIONS, SEVERAL GAUGES: UP TO 16.000 UNITS IN SOME SIZES. AVAIL ABLE FOR IMMEDIATE DELIVERY SEND FOR LIST WITH COMPLETE DESCRIPTIONS.

RAYTHEON MFG. CO.
Surplus Sales Dept., Waltham, Mass.
Tel. Waltham 5-5860-Ext. 2

## ELECTRONIC TUBE-MAKING MACHINERY

 For manufacturing radio tubes, electronic ubed, Rathode-ray tubes, lamps. New and guaranteed.AMERICAN ELECTRICAL SALES CO
67 E. 8th St.
New York, N. Y

## 12-HEAD STEM MACHINE

Hoffrann, automatic. Barrel-cam movements. Now set for transmitting tube stems. Will sacrifice.

American Electrical Sales Co.
67 E. 8th St.

## NEW YORK'S RADIO TUBE EXCHANGE

$\underset{\text { OAPE }}{\text { OPG }}$<br>$\underset{\text { CAB }}{\text { OAB }}$<br>1A3.<br>$1 \mathrm{~B}_{2} 3$ $1 \mathrm{~B}_{24}$ 1826<br>11826 1138 $1 N 21$<br>3RP1

PRICE TYPE IWIO


## FOR SALE

200 INDICATORS ID.93-APG/13A for APG/13A RADAR, new, export packed 15000 UG-27/U TYPE N RIGHT ANGLE CONNECTORS
100 MODULATORS BC-748A
20 BC 800 AM RECEIVER-TRANSMIT TERS
2000 W.E. 704A TUBES
1000 W.E. 705A TUBES
1000 W.E. D161310 PULSE INPUT TRANSFORMERS
100 DM-43A DYNAMOTORS
120 BC 733D LOCALIZER RECEIVERS
Above Equipment Is Brand New

## ELECTRO IMPULSE LABORATORY

P. O. BOX 250 RED BANK, N. J.

EATONTOWN 3-0768

AVAILABLE AT ONCE
1, 2, or 3
400 Foot, Type SGN

## BLAW-KNOX TOWERS

 at a great bargainCopper wire and ribbon for ground nets for these towers available in any quantity. Phone, Call, Write or Wire C. H. WESSER

4500 Penobscot Bldg., Detroí, Mich. WOodward 3-1213

# MILLIONS of MICA CAPACITORS JAN and RMA coded 

ALL SIZES
ALL VALUES
ALL MAKES

DELIVERY FROM STOCK IN NEW YORK

## LEGRI S COMPANY, INC.

New York 25, N. Y.
Phone: Academy 2-0018
"HEADQUARTERS" for Resistors and Potentiometers

## COMMUNICATIONS

HANDY-TALKIES (SCR-536) and WALKIE TALKIES (SCR-5IIC) and other types. All complete, NEW, and attractively priced. COMPACT PORTABLE RADIOTELEPHONEMfged. by RCA, includes Transmitter (xtal) (6-10watts) $2500-6500 \mathrm{KC}$ ): Receiver (MO x(al) $2300-6700 \mathrm{KC}$ ); Vibrator Power Supply for use on $6 \& 12$ V.DC., mike, whip antenna, headsel and accessories. Complete $\&$ NEW. For mobile, boats, general field use.
TRANSMITTERS: BC-325 (400 watts A1 100 watts A2,A3) 1.5-18.0 Mc, MO \& Xtal. 110/220 VAC. TDE (125 watts) $300-18100 \mathrm{KC}: E T-8019$ (200 watts) $4.0-22.0 \mathrm{Mc}$; W.E. $34-A$ ( 350 watts) A-1,3.0-13.OMC: BC-365 (200 watt radio range) 150-550 Kc. TCS (COLLINS); SCR 522-C; JT-350A \& others all complete, mostly NEW.

## SPECIAL DEVICES

Direction Finders AR-8709, Miged by Radio marine Corp. excellent ................ $\$ 295.00$ MK-14 Sperry Gyro Compass, with generator excellent .................................. $\$ 325.00$ CW-3 coils ( 3 per set), $5.6-10 \mathrm{Mes}$, and 9.4 16.5 Mcs.......NEW ...................... $\$ 4.95$ Whip Antenna, $10^{\prime} 6^{\prime \prime}$ collapses to $17^{\prime \prime}$. AN131A (p/o SCR-300) ......................... $\$ 1.65$ BC-221 Frequency Meters, NEW ..... $\$ 99.00$ (same as above-excellent used . . ..... $\$ 85.00$ IE-36 Test Sets for SCR-522, excellent condition
$\$ 25.00$

Bulletins pictorially describing above and other stock items on request. We deliver F.A.S. or F.O.B. export packed

## RADAR \& LORAN

Portable Radar Search
SN RADAR, Miged. by Gen. Elec. Co. for US Navy portable use. An excellent 10 CM equipment self contained and complete with all accessories. Input: 110 V AC, (and 110 V DC-with generator included). Ranges on $5 \& 25$ mile scales on $5^{\prime \prime}$ scope. Complete accessories, complete equipment spares, 200\% tube spares, cables. All complete \& NEW.
Components and equipment for radar and I.F.F. installations: Mk-16 antennas, RC-127A, TPS-1, TPS-2, APG-13, APS-2 and more.
DAS/DAS-2 LORAN, Miged. by Gen. Elec. Co. for US Navy, with all components, $\&$ accessories, for $110 / 220$ VAC use. Brand New and Complete.

## WANTED

## WILL BUY

Any quantities of new or used Electronic Surplus Equipment :

APN-9, RTA-1B, TS-67, TS-170 ARC-1, ARC-3, ART-13, BC-221, BC-348, SCR-522, etc.

## State Condition and Best Price

W-1476, Electronics
330 W. 42 nd St., New York 18, N. Y.

## WANT TO BUY

MARINE and AIRCRAFT Receivers,
Transmitters, Radar and Test Equipment
All types and models, including MARINE RADAR, DIRECTION FINDERS, MARINE RADAR,
RADIOTELEPHONES
AIRCRAFT-All AN/ARC-, AN/APN-, AN/APS. AN/TPS., AN/APR., otc.
TUBES-Mannetrons, klystrons, transmitting and special purpose
Send full details to

## AMBER COMPANY

467 Greenwich St.
New York, N. Y

## WANTED

ELECTRONIC SURPLUS TUBES, CONDENSERS, WIRE, ETC.

Write for Circular

## GOULD GREEN

252 Greenwich St.
N. Y. C. 7

## WANTED TO BUY

UNIVERSAL WINDIAG MACHINE
Model No. 96 with all accessories. State price and condition

SOUTHWESTERN
INDUSTRIAL ELECTRONIC CO.
P. O. BOX 13058, Houston 19, Texas

## WANTED TO BUY

SCR-615B, 573-574-566-522-300 BC-923A-1016-1063A-1065A-1059A
Wilcox CW3-AN/CPX-1, RC-215A
State quantity, price, and condition

W-1382, Electronics
330 West 42 nd St., New York 18. N. Y


## WANTED

## TEST EQUIPMENT

of high quality: state asking price, age and condition in first letter.

W-1150, Electronics


## Don't forget

## THE BOX NUMBER...

when answering the classified advertisements in
this magazine. It's our only means of identifying the advertisement you are answering.

## Prompt ANSWERS

 to business problems$M^{\text {ISCELLANEOUS business problems }}$ are daily being solved quickly and easily by the use of the Searchlight (classified advertising) Section of this and other McGraw-Hill publications.

When you want additional employees, want to buy or sell used or surplus now equipment, want additional products to manufacture, seek additional capital, or have other business wants - advertiso them in the Searchlight Section for quick, profitable results
American Machinist
Aviation Week
Business Week
Bus Transportation
Chemical Engineering
Coal Age
Construction Methods
Electrical Construction \&
Maintenance
Electrical Merchandising
Electrical World
Electronics
Eng. \& Mining Journal
E. \& M. J. Markets
Engineering News-Record
Factory Mgt. \& Maintenance
Food Industries
Nucleonics
Operating Engineer
Power
Product Engineering
Textile World
Welding Engineer

Classified Advertising Division
McGraw-Hill Publishing Co.
330 W. 42nd St., New York City 18, N. Y.

will find the instrument described below to be a most useful piece of equipment for laboratory or shop purposes. Accurate measurement of R.P.M. is seldom obtained through the use of friction type tachometers. Calculation is tedious and seldom accurate. With the unit described below speeds from 500 to 3600 R.P.M. are instantly analyzed.
$\ominus$ The motion analyzer is a stroboscopic light source utilizing the strobotron tube 1D21 (which is on electron gun type tube) and pulsed by a C-R circuit which is made variable through the use of a wire wound tapered resistance potentiometer.
( All components in the pulsing circuit are precision parts insuring accuracy in performance.
(0) A colibrated scale which follows the C-R curve of the pulse circuit is etched on the front panel. The unit is housed in an ottractive black crackle cabiret. The strobotron tube may be plugged in either the front panel or in the polished aluminum extension reflector which comes with the unit. The extension is approximately 40 inches long.

- This unit is operable at 115 volts A.C. 50 or 60 cycles. For 50 cycle operation simply re-adjust the indicator knob with a small screwdriver to match a known R.P.M.

Price complete with Strobotron
Tube F.O.B. N.Y. $\$ 34.95$
Quantities Limited - Subject to Prior Sale

## M. RADIO SALES COMPANY

radio parts and electronic eouipment
sas Canal street
NEW YORK 13. N.Y.

## WESTERN ELECTRIC

## 5 D 21

Write for quantity prices!
Write for complete list of tubes
and illustrated catalog
ARROW SALES, Inc., Dept. EL
Chicago 1772, III., Michigan Avenue

## HIGH VOLTAGE

RF POMER SUPTIIF,
For INDUSTRIAL USE and PROJECTION TELEVISION
EMBASSY ENGINEERING CO.
224 East 204 St., N.Y.C.

## F3L SANGAMO MICAS

$.9-600 \mathrm{v}, .8-600 \mathrm{v}, .7-600 \mathrm{v}, .09-2000 \mathrm{v}, .08-2000 \mathrm{v}$ All types, $\$ 2.50$ each. CW-3 110VAC Fixed Channel Receivers......... $\$ 25.00$

## K-F DEVELOPMENT CO.

820 Woodside Way San Mateo, Calif.

## COMTI) RECORD SMASHING VALUES! <br> FOR QUICK SALE!

- High Vacuum Mercury Pump with "McLeod Gauge". Mercury Diffusion Pump is electrically heated. Pressure
pump. Switch controls operation of
Diffusion Pump exhausts into a me. chanlcal rotary vacuum pump. McLeod Gauge measures vacuum to .5 microns
- Bombardment Equipment $\begin{gathered}\text { Grid Controlied Rectifler using two metal }\end{gathered}$ A Grid Controlled Rectifer using two metal control of anode current.
- Hi Pot Transformers

General Electric 78G 342
$25 \mathrm{Kva}, 60 \mathrm{Cyc\mid}$
$440-1100 / 400-2200$
General Electric 7374889
Type K
$2 \mathrm{Kva}, 60$ Cycle
$2 \mathrm{Kva}, 60 \mathrm{Gycle}$
$110 \mathrm{~V}, 60.000 \mathrm{~V}$


| ROUND PANEL METERS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0-4 | RF' | Amps | GE | $2{ }^{2}$ \$3.95 |
| 0-5 | RF | Amps | Weston | $3)^{\prime} 4.50$ |
| 0-15 | R $\mathrm{F}^{\prime}$ | Ampls | GE | $2)^{\prime \prime} 3.75$ |
| ()-300 | MA | DC | Simpson | $23^{\prime \prime}{ }^{\text {P }} 3.75$ |
| $0-3001$ | MA | DC | Westing. | $2{ }^{1 / 2} 3.75$ |
| 5-0-5 | MA | DC | Weston | 3** 25 |
|  | With | 50MA | Shunt | 4.25 |
| 0-8 | Amps | DC | McClin. | 21' 1.95 |
| 0-50 | Amps | DC | Weston | $3{ }^{\prime \prime} 4.75$ |
| 0-100 | Amps | DC | Hoyt | 3.00 |
| 0-15 | Volts | ${ }^{\text {AC }}$ | GE | 3) 4.95 |
| 0-3 | Volts | DC | Sun |  |
| 0-2500 | Volts | DC | Simpson | $3{ }^{\text {a }}$ |
|  | Wlth | 2500 | Volt resis | stor 4.95 |
| 0-5 | KV | DC | 0-10 |  |
| 0-150 | Volts | DC | Hoyt | 31" 3.95 |
| 10-0-6 | D13 |  | Weston | $2{ }^{2}$ - 4.50 |
| PORTABLE METERS |  |  |  |  |
| $\begin{aligned} & 0-10 \\ & 0-3-6-30 \\ & 0-25 \\ & 0-300 \\ & 0-1.5-6 \end{aligned}$ | Amps | DC | Weston 489, 7.50 |  |
|  | Volts | DC | Weston | 28017.50 |
|  | Amps | AC | Weston | 43323.95 |
|  | Volts | AC | Weston | 43324.95 |
|  | Volts | $\wedge C$ | Output <br> Weston' | $\begin{aligned} & \text { Meter } \\ & 571 \mathbf{1 2 . 0 0} \end{aligned}$ |

## TIME DELAY SWITCHES

1 Minute 115 Vao 60 Cy Finc. in water proof metal case. Now............ 2.95 New See Time Delay 110V AC motor. 2 Minute 110 Y ge Motor operates 3 nufcro
switches. New.................. 4.00 Therno Switch $50^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}, 115 \mathrm{Vac}$ @ 6A, 230Vac @ 5 A . Breaks contact TUBES

TERMS Mail Orders promptly filled-All prices FOB Boston, Mass. Send Minimum order $\$ 5.00$-Mail Orders promptly filled-All prices FOB Boston, Mass. Send
$M$. O. or Check. Shipping Charges sent COD. $25 \%$ deposit required on all COD orders. INQUIRIES FROM DEALERS, SCHOOLS AND INDUSTRIAL FIRMS INVITED

COMET ELECTRONIC SALES CO.
22 WASHINGTON ST

BRIGHTON 35, MASS.
BEACON 2-7863

## FOR SALE MAGNET WIRE

Heavy Formvar

$428 \mathrm{lbs}, 38 \mathrm{ga} .3^{\prime \prime}$ G. E. Spools
198 lbs. 35 ga. $2^{1 / 2^{\prime \prime}}$ P. D. Spools
201 lbs. 34 ga. $21 / 2^{\prime \prime}$ G. E. Spools PRIME MATERIAL.
ORIGINAL CONTAINERS
Mill price $\$ 1064$, Our price $\$ 800$ for the lot F.O.B. N. Y.

## Immediate Delivery

PURCUASING AGENTS EXCHANGE
208 West 23rd St., New York 11, N.Y.

## POWER FOR 400 CYCLE EQUIPMENT!

32 M.G. units. output 1200 Watts 480 Cycles 105 to 125 V . i phase plus $261 / 2 \mathrm{~V}$. D.C. at tanips; Motor
3 ho . 115 or 230 V . 1 ph . 60 cy with C-H 6922 A 3 hp : 115 or 230 V ., 1 ph . 60 cy . with C-H 6922 A
Starter, MG215 0 nan \& Sons: $\mathrm{N}-\mathrm{f}$; also 6 sanre but Starter, M G215 onan \& Sons: N-t, also 6 san
600 Watts size. N.I: all have ball bearings.
$48-2 \mathrm{hp}$. and $12-3 \mathrm{hp} .115 \mathrm{VD} . \mathrm{C}$. Onan and Sons, BB motors, all with Cutler-Hammer Bill. 6909 starters pares: N-I, above 60 motors $\$ 1400.00$ as a lot 16 Oss. TCS RCVRS. TBL's.eto

## GEORGE BELLING ELECTRONICS

4107 Brookdale Ave., Oakland 19, Calif, Kellog9 2-1640

## ONE KW FM TRANSMITTER

Complete with Power Monitor and Antenna. Meets FCC broadcast tolerance. Mfr. G.E.

Price, fob N. Y.C.

## \$3,000.00

## other transmitters

From 25 watts o 2.5 kilowats, ineluding MARINR and AVIATION equipment. TDE- 125 watls cw, 40 watts phone TAJ-500 watls cw, $150-550 \mathrm{lies}$.
T13K-500 watts cw, 2,2-20.0 nce
TBI- 850 watts ew, 50 watts phone 175-600 and $2.0-18.1 \mathrm{mes}$.
Each of above hats motor generator and Also TCs for 12, 24 or 115 Vde

## MARINE RADAR

He have in stock a quantity of SN radar sets in excellent condition; also, some complete and some partial sets of SA. SD, SF, SG. SK, SO, Sit and YJ re

## AIRCRAFT RADAR

APN-, AI'S-. ANB-, etc, complete and partian compass and sCR-260's in stock, both

MOTOR GENERATORS \& CONVERTORS
We carry a large variety in stock for
ship, arreraft and general use, 100 watis and up

110 de- $110 / 1 / 60$. 1 kva; new, $\$ 100$ 110 de- $110 / 1 / 60,350 \mathrm{va}$; new, $\$ 55$ 110'de- $220 / 1 / 50,300 \mathrm{va;}$ new, $\$ 50$ 32 de- $110 / 1 / 60,225$ va: new, $\$ 10$ and many others.

## SPECIALS:

METER MULITIPLIERS-PRECIIION RESISTORS

20,000 volts, 20 megohms. Accuracy + $0.5 \%$. New, in origimal packing. Standis more than $\$ 240,000$ ! Our price: $\$ 28.00$.

100,000 STANDOFF INSULATORS
to 10" henss or brone
bases and caps-12 in. @ $\$ 1$ ea.
Thougands of strains ami leed thru's too.
We carry an extensive stock of marine and aircraft acessories, as well as end equipment. Your requests for quototions are irvited.

Terms: Cash or net 10 if rated. Prices tob our warehouse.
All material offered subject to pricr sale.
Compass Communications Co.
37 Montgomery St. Jersey City 2, N. J. Walker 5-1160


10 MFD.-600 VOLTS-57 CENTS
Famous make $2 \times 5$ mid. with $4 \# 13 \mathrm{mtg}$. New Glyptal sprayed units measuring $35 / 16 \times 2 \times 325 / 32$ overal tested 1800 VDC . holes spaced $33 / 4 \times 17 / 16$ on centers. Capacity tolerance $+14-6 \%$. for $\$ 1,00$ postpaid. Discounts for larger quantities. 400 V up to $72^{\circ} \mathrm{C}$. Sample forwarded

WESTON LABORATORIES, Weston, Massachuseits

## TELEVISION TUBE MACHINERY

TUBE STEM MACHINES Mfd. by Kahle Eng Co. 4-5-6-7-8 positions with Geneva move ments.
HYDROGEN FURNACES Complete with automatic controls, $20^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}$. Brick lined, with two Bristol autoratic control ers, Brown pyrometers
EXHAUST MACHINE 32 head, capacity 60 tubes per hour, 60 W . type B174 Sealiex chassis.
FLARE MACHINE.
VACUUM FIRING EQUIPMENT Mfd by GE. SEALING \& STEM MACHINE 16 head, mfd. by GE.
EXHAUST MACHINE 16 head, mfd. by GE, can be converted to standard tube producion,
Many other items of good, used glass-working equipment. Please write for details:

HAYDU BROTHERS
Plainfield,
New Jersey
CLARE STEPPING SWITCHES


Tyne sl)-14. 20 steps, 6 lemols. Coil 12V, DC Lists at si0.26; our low price $\$ 3.100$. Brand new in original boxes-not war surplus. Quantities or lour or more $\$ 12.25$ each. Satisfaction guaranteed or money re funder

NEOMATIC, INC.
879 Wellesley Ave., Los Angeles 49, Cal. ARizona 3-4897

## An

## Investment

Productive advertising is an INVESTMENT rather than an EX. PENDITURE.
"Searchlight" advertis ers almost invariably re port prompt and satis factory results.

## BE CONVINCED -

send us your advertise ment TODAY

Address Classified Advertising Division ELECTRONICS

330 W. 42nd St., New York 18, N. Y.



NEW YEAR Specials! Unbelievable Low Prices on Precision Electronic Equipment


Ama SNOOPERSCOPE
Finazing Infra-Red Tube That ion of Orlginal Coss. $\$ 7 \mathbf{F r a c}$
With Data. NEW. 2/14.49; 5/28.75. Kit 866A's \& 10kv 2 Tubes, $2.5 \mathrm{rct} / 10 \mathrm{~A} / 10 \mathrm{Ky}$ Kit 872A's \& 12 kr 2 Tubes, Sckts. Xfmr. . $\$ 12.95$ HiPower Variable
Network-1 KW HF RF was. Has R-Freq. s . Matches Most Antent Mint of Parts Worth Ten Times the BRAND NEW $\times 15 \times 23$ iff Dmgd). $\$ 7.98$ 860 WATT VARIAC
Famous GENERAL RADIO Model 200 C . 0 to 135 Volts Out-
put. A Terrfic 13uy $\mathbf{\$ 1 5 . 9 8}$

## METER MULTIPLIER

Fabulous Saring to Any One Who
Enows Multipllers. BRAND NEW 20



RCA Multimatch
Output Transformer Output Tronsformer
10 Watts-to 10 Ke's. Matches
any line or speakers with 3 to 4 or 150 orbm voicers coils to any load $\&$ tube impedance be
tween 50 and 10240 ohms tween 50 and 10240 ohms,
Usable As Filter. For Ideai


## Hi-Gain Dynomic Mike

 \& Matching Transformer UTC/Super Elec 3 winding 150 Herm'Sld. Both \$1.39 Television or CRT Power



G. E. 2J1G1 Selsyns With data for 24 or 110 Volt Condition-Used, Tested Two (2) for $\$ 1.49$
Haydon Clock Motor d Switch Sync6tol0vac/60cyef
$24 \mathrm{rpm} . . . . . . . .96: 12 / \$ 10$ SYNC 1 rpm $/ 115 \mathrm{v} 60 \mathrm{cyc}$ Círculor Söide Rule
 Equivalent $12^{\prime \prime}-$ Only $21 /{ }^{\prime \prime}$
Radius! LAMINATED Radius! LAMINATED
Print Stays On! Mult, Print Stays On! Mult,
Dir. Sis, Cubes, Roots: ata\&Case, 984:6 for $\$$ Parallel Rules Diagrams. $6^{\prime \prime}$ Long. Mfr
DRUNING BRUNING, ONJY...39C
Microwave Lighthouse
 Assy p/orT39/APG5\&15 es $24-2700 \mathrm{Mc} \$ 2 \mathrm{C43} .2 \mathrm{C}-$


FILTER CHOKES
$13.5 \mathrm{Hy} / 1 \mathrm{Amp} / 42$ ohm/17KVins . . . $\$ 49.00$

 $501 \mathrm{y} / 125 \mathrm{maCsd} \$ 1.95 ; 12 \mathrm{Hy} / 275 \mathrm{~m}$
$811 y / 100 \mathrm{ma} . .1 .10 ; 10 \mathrm{Hy} / 30 \mathrm{ma}$.

Ceramic Condensers (Tubular)
$\mathrm{M} M \mathrm{M}: 1 / 2 / 3 / 4.7 / 5 / 7.5 / 10 / 11 / 22 / 25 /$
$33 / 43 / 47 / 50 / 60 / 75 / 100 / 120 / 200 / 1000$

> Write for other sizes \& Qty Prices, $1 / 2$ Postac: 10 10r 696 : 100 for $\$ 4$ $1 / 2$ Postage Micos MAT: : $20 / 22 / 40 / 82 / 100 / 200 / 300 / 420 /$ 470/1000/1100/2000. Each .............. ${ }^{4}$.


Over $\$ 20$ List, ONLY 98 c ; 12 for...... $\$ 10$ 16 Flyback \& Hi-Voit Xformer De ourt: sim RCA $2^{\prime \prime} / 30 \mathrm{~cm}$ AT5/AlRR1 Usable Citizens \&
IamBand Insltel Coax Term SilpPiCont ramband Insitd Coax Term SilvPlCon*
 Sensational AC/DC Phono-Amplifier 2' SPEED COMBINATION In professional Carrying Cose. Powerful HuyDuty Gov12 -inches. Adj. Speed Control 78 and $331 / 3$ RPM. Plus Exceptional Fidelity Vol \& Tone Controls, Mike or phone fack Used, Tested. Guaranteed. $105-125 \mathrm{~V}$ AC or DC. Easily a $\$ 35$ Buy! Grab Yours
Now for ONLY.................... $\$ 12.49$

## INDEX TO ADVERTISERS

## 1949 BUYERS' GUIDE ADVERTISING INDEX

Adams \& Westlake CoCommunications Equipment,140
Inc.
Aircraft Radio Corp. ..... 163
Alden Products Co ..... 165
Allen-Bradley Co. ..... 145
Allen Co., Inc., L. B ..... 216
Allied Control Co., Inc. ..... 22
Allmetal Screw Products Co., Inc... ..... 203
Altec Lansing Corp ..... 195
American Gas Accumulator Co ..... 181
American Lava Corp ..... 47
American Phenolic Corp ..... 134
American Television \& Radio ..... 202
American Time Products, Inc. ..... 30
Amglo Corp ..... 199
Amplifier Corp. of America. ..... 216
Anchor Plastics Co., Inc. ..... 199
Andrew Corp ..... 152
Aft Wire \& Stamping Co ..... 20
Astatic Corp. ..... 188
Audak Company ..... 252
Audio Devices, In ..... 127
menatic Coil Winder \& Electrical Equip ..... 183
Ballantine Laboratories, Inc. ..... 142
Bean Istru ..... 1
Beaver Gear Works, Inc. ..... 140
Bell Telephone Laboratories ..... 14
Bendix Aviat212
Red Bank Div ..... 53
Berkeley Scientific Co ..... 206
Bird Electronic Corp. ..... 195
Birtcher Corp. ..... 213
Biwax Corp. ..... 252
Blitey Electric Co. ..... 186
Boonton Radio Corp ..... 121
Borg Corp., George W ..... 173
Bradley Laboratories, Inc ..... 46
Brand \& Co., Wm.211
Brown Electro-Measurement Corp........ ..... 209
Brown Instruments Div., MinneapolisHoneywell Regulator Co.
Browning Laboratories, Inc. ..... 29
Buck Engineering Co., Inc ..... 172 ..... 216
Burgess Battery Co..
Burlington Instrument $\mathbf{C}$
212
212
Burnell \& Co. ..... 6
Cambridge Thermionic Corp ..... 173
Cannon Electric Development ..... 136
Capitol Radio Engineering Institute. ..... 201
Carborundum Co. ..... 157
Centralab Dir ..... 14
Cinch Manufacturing Corp. ..... 113.
Clarostat Mfg. Co., Inc. ..... 192
Cleveland Container Co. ..... 179
Cohn Corporation, Sigmund. ..... 177
Communication Measurements Laboratory, ..... 205
Condenser Products Co ..... 153
Cornell-Dubilier Electric Corp.
41
41
Cossor (Canada) Limited ..... 207
Cross Company, H. ..... 216
Crucible Steel Co. of America ..... 141
Dano Electric Co. ..... 205
Daven Company Third Cove
Dial Light Co. of America

$\qquad$
Driver-Harris Co.177
39
Duluth, Minnesota C ..... 39
181
Dumont Electric Corp ..... 181
202
Du Mont Laboratories, Inc., Allen B. .15,
du Pont de Nemours \& Co., E. I., Inc ..... 197
34
Eastern Air Devices, Inc ..... 208
Eastman Kodak Co. . ..... 135
Fisler Engineering Co., Inc. ..... 201, 216

Eitel-McCullough, Inc. ...................... 45
Electrical Industries, Inc. 55
Electrical Reactance Corp................ 20
Electro-Motive Mfg. Co..
Electro Products Laboratories, Inc....... 214 Electronic Instrument Co., Inc............. 206 Electronics Research Publishing Co., Inc.. 159 El-Tronics, Inc. 159
Erie Resistor Corp ..... 31
airchild Camera \& Instrument Corp.,167, 197Fairchild Recording Equipment Corp...... 182Federal Telephone \& Radio Corp.......... 50
Fidelity Chemical Products Corp. ..... 94
Field Electrical Instrument Co.94
Fusite Corp ..... 61
4General Aniline \& Film Corp.
General Ceramics \& Steatite Corp. ..... 197
General Electric Co.Apparatus Dept.Electronics Dept48, 49, 58
General Industries Co. ..... 51
General Radio Co ..... 137
G-M Laboratories, Inc. ..... 209
Graphite Metallizing Corp. ..... 85
Green Instrument Co. ..... 201
Hathaway Instrument Co ..... 148
Haydu Brothers ..... 59
leath Company ..... 177
Helipot Corp. ..... 139
Iudson Wire Co ..... 213
Hytron Radio \& Electronics Corp. ..... 3
ndustrial Condenser Corp. ..... 201
Instrument Electronics Corp ..... 205
Instrumeat Resistors Co.... ..... 200
International Resistance Co ..... 8, 9Jones Diy., Howard B., Cinch Mfg. Corp. 205
Jones Electronics Co., M. C.205
Joy Manufacturnig Co.. ..... 210
Kahle Engineering Co.. ..... 193
Karp Metal Products Co., Inc. ..... 56
Kester Solder Co. ..... 185
Lampkin Laboratories, Inc. ..... 16
Lavoie Laboratories ..... 129
Leach Relay Co.. ..... 144
Leland, Inc., G. H ..... 171
Lewis Engineering Co. ..... 160
Lewis Spring \& Mfg. Co ..... 189
Linde Air Products Co. ..... 6
Lord Mfg. Co. ..... 180
Mallory \& Co., Inc., P. R. ..... 64, 115
Marion Electrical Instrument C ..... 24, 25
Measurements Corp. ..... 196
Mepco, Inc ..... 214
Mico Instrument Co. ..... 
Millen Mfg. Co., Inc., James. ..... 168
Miniature Precision Bearings, Inc ..... 216
Morris Co., J. I. ..... 216
Mosinee Paper Mills Co. ..... 138
Muirhead \& Co., Ltd ..... 3
Multicore Solders, Ltd..
207
Mycalex Corp. of America ..... 176
National Company, Inc. ..... 193
National Moldite Co. ..... 170
National Varnished Products Corp.. ..... 143
New York Transformer Co. ..... 154
Ney Co., J. M ..... 173


## Fivay <br> Toc

HIGH VOLTAGE RESISTORS

FOR
Television Power Supplies Television Test Equipment V.T. Voltmeter Multipliers Van de Graaff Generators Dust Precipitators X-Ray Equipment
VOLTAGE RATINGS 3.5 TO 125 K.V. POWER RATINGS 1 TO 90 WATTS
Also manufacturers of Precision Wire Wound High Frequency and High Megohm Resistors.
hanRisburg - pennsyivania

Plastics \& Electronics Co................... . . . 216
Polarad Electronics Co....................... 16
Polytechnic Research \& Development Co. Inc.
Potter Instrument Co.. Inc. .
Precision Paper Tube Co. 191
Premax Products, Div. Chisholm-Ryder Co., Inc.
Presto Kecording Corp........................ . . . . . . 14
Progressive Mfg. Co........................ 160
Pyramid Electric Co...................... 60
Radio Corp. of America....156, Fourth Cover
Radio Receptor Co.. Inc.................... 38
Railway Express Co., Air Express Div...... 162
Rawson Electrical Instrument Co.......... 213
Raytheon Manufacturing Co............... 125
Resistance Products Co . 252
Revere Copper \& Brass, Inc............ 26
Richardson Company ................ 44
Robinson Aviation, Inč.................... 184
Rogers Corp.
184
Sampamo Electric Co
Scientific Electric. Div. of " $S$ " Corrugated Quenched Gap Co....................... 18
Scintilla Magneto Div. Bendix Aviation Corp. 19
Scovill Manufacturing Co............... 215
Sigma Instruments, Inc. . ..................... 63
Simpson Electric Co......................... 18
Sorensen 8 Co. In
Specialty Battery Co.

Sprague Electric Co.
Stackpole Carhon Co
Standard Piczo Co.
Standard Pressed Steel Co
Standard Telephones \& Cables, Ltd.
Stevens Mfg. Co.. Inc.
Steward Manufacturing Co., D. M.
Stoddart Aircraft Radio Co..........193, 204
Superior EItctric Co
5
Superior Tube Co.
187
Sylvania Electric Products, Inc......... 131, 151
Tech Labotatories, Inc. 203
Technology Instrument Corp.
150
Tektronix, Inc.
200
TEL Instrument Co., Inc.
Telechron, Incorporated
Television Equipment Corp
Telex, Inc.
Titellex, Inc.
Topilight Tape Co.
Transicoil Corp.
Transradio Lid
Triad Transtormer Mfg. Co.
Triplet Electical Instrument Co. Turace Company
Union Carbide \& Carbon Corp..
Uniced Transformer Co....... 16
University Loudspeakers. Inc............... 190
Varflex Corp.
Victorcen Instrument Co.............................. 122
Ward Leonard Electric Co. 161

Weller Manufacturing Co. 132

Westinghouse Electric Corp
Weston Electrical Instrument Corp.............. 10
White Dental Mfg. Co., S. S........... 158, 185

HROIESSION.IL SERVICES ..... 217
SEARCHILGHT SECTION (Classified Adacrtising) EMPIOY゙MENT
Positions Vacant .......................218, 219
Selling Opportumities offered ............ 219
Positions Wanted ........................ 219
Selling Opportunities Watued ............
Employment Services ................. 219
219
Employment Services .................................... 219
219
PECIAL SERIICES .................................................. 219
Contract Vork .......................................................... 219
Rebuilding ........ 219
EOUIPNENT
(Used or Surplis New)
Hor Sale
$.220-250$
Figulipment

## 246

ADVFRTISERS INDEX
Areratt Radio Industrics Co. ............ 244
Imber Co. ................................ 246
Anerican Electrical Sales Co.. Inc. ...... $2 \nmid 4$
\rrow Sales, lnc. ............................. 247
Bell Aircraft Corp. ......................... 218
Pelling, George.
Blan
Capehart-Famsworth Corp.
(nmet Electronic Sales Co.
1 ICO
Communication i. .....
Communication Devices .............242. 246
Commanications Equipment $\mathrm{Co} . .220,221,249$
Dubin Electronics Co
Bubin Electronics Co., Inc
Electro-Devices, inc.
Lectro Impulse Latoratory
Embassy Engineering Co.
Embass
EPCO
Gould Greets
Javdu Bros.
Hersliel Radio Cu
Hersliel Radio Cu. ...
Hoffmatn Radio Corp.
Hopton Radio
Horlick Co., Willian
Hughes Aircraft Co.
Instrument Associates
K-F Development Co.
Leeds Electro Products Co.
Lectronic Researcli Lahoratories
Leru Laboratories, Inc.
iberty Electronics. Inc
Life Electronics Sales.
Legri, S. Co., Inc.
Maritime Switcliboard
Mognon Corp., Inc., Alexamder
National Union Radio Corp
Neomatic lnc.
Newark Electric Co. Inc.
Niagara Radio Supply Curp
Opad-Green Co.
Peak Electronics Co.
Powell, Harold H.
Precision Electrical Instrument Co
Purchasing Agents Exchange
Radio Corporation of America
Radio Ham Shack, lnc.
Radio Sales Co., A. M
Radio Shack Corp. .........
Raytheon Mfg. Co. . . .
Reliance Merchandising Co.
Servo-Tek Products Co., Inc.
Shuro Trading Corp. . ...
Shriro Trading Corp. ............... Sun Radio \& Vlectronics Co., Inc.
TAB .....................
Technical Index Service
Telemarine Commanications Co
Teletronics Laboratory Inc.
Universal General Corp.
Wells Sales Co
Wesser, C. H. ....
Winters Radio I ahorator

## CDMIDUNDS

Nciontitically compounded for specific applidations from waxes, resima, asphalts, pilches. oils. and minerals. Available in wide raner of melting points and hardnesses. Sperial polting fompominds are heat condacting and crack resistant at extremely low temperatures. Recommendations. speritic data, and samples will be fiurnishod on requesi.


BIWAX CORPORATION
3445 HOWARD STREET SKOKIE, ILLINOIS



## ...the new, short metal-cone kinescope with "Filterglass" face plate

The new RCA-16GP4 offers special advantages to designers of large-screen television receivers:
Shorter-Nearly 5" shorter than the 16AP4, the new, wide-angle RCA-16GP4 permits reduction in depth of chassis and cabinet, and thus makes possible greater compactness in receiver styling. In addition, the 16 GP 4 permits economies in tube stocking, packaging, and shipping. "Filterglass" Face Plate-Of high-quality glass and almost flat, the "Filterglass" face incorporates a neutral lightabsorbing material to give improved contrast by minimizing ambient-light reflections and reflections within the face plate itself. The circular face plate provides a large picture with full scan.
Tilted Ion-Trap Gun-New tilted gun requires only a singlefield, external magnet.
Duodecal 5-Pin Base-Permits use of lower-cost segment socket.

Less Weight-The RCA-16GP4 weighs substantially less than a comparable all-glass tube so that, with ordinary precautions, it can be safely shipped in the receiver.
RCA Application Engineers are ready to co-operate with you in applying the 16 GP 4 and associated components to your specific designs. For further information write RCA, Commercial Engineering, Section A42R, Harrison, N. J.



[^0]:    Contents Copyright 1949, by McGraw-Hill Publishing Company, Inc. All rights Reserved. McGRAW-HILL PUBLISHING COMPANY, INCORPORATED, JAMES H McGRAW (1860-1948), founder P PUBLICATION OFFICE, 99-129 North Broadway, Albany 1, N. Y., U. S. A. EDITORIAL AND EXECUTIVE OFFICES, 330 West 42 nd St., New York 18, N. Y., U. S. A. - Member Á. B. P., Member A. B. C.

    James H. McGraw, Jr., President; Curtis W. McGraw, VIce.President and Treasurer; Eugene Duffeld, Senior Vice. President, Publications Division: Nelson Bond, VicePresident and Director of Advertising: J. E. Blackburn, Jr., Vice-President and Director of Circulation; James A. Gerardi, Secretary; Dexter Keezer, Director Economic Department; Russell F. Anderson. Editor; World Nows. Latin America; $\$ 2.00$ for all other forejon countries. Directery issue $\$ 2.00$ Allow at least ten days for change of address. All communleations about subscriptions unds accepted). $\$ 10.00$ a year, $\$ 16.00$ for two years, $\$ 20.00$ for three years. Latin American eountries $\$ 15.00$ for one year, $\$ 25.00$ for two years, $\$ 30$.00 for threo yars Alt other countries $\$ 20.00$ for one year, $\$ 30.00$ yor two yoars, $\$ 40.00$ for three years. Please indicate position and company, connections on all subscription orders. Entered as Second Class matter August 29, 1936, at Post Offee, Albany, New York, under the act of Mareh 3. 1879. BRANCH OFFICES: 520 North Michigan Avenue. Chicapo 11 .
    

[^1]:    - Canada: Infernationo Resistance Co.,Ltd., Toranto, Licensee

[^2]:    $\star$ SCINFLEX dielectric material is a new development that assures unequalled insert performance. It is available only in Bendix-Scintilla Electrical Connectors.

[^3]:    Expert Salet: Bondix Intornational Division, 72 Fitth Avonue, Now York 11, New Yark,

[^4]:    Resistance Welding Materials

[^5]:    * All statistics are rhased on RMA pub lished figures and thus are short of the industry total by about 20 percent.

[^6]:    This article is based on paper presented at the 1949 National Electronics Conference. The Conference paper will appear in the N.E.C. Proceedings.

[^7]:    United Kingdom F'atent Specification 436,420.
    C. E. Wynn-Williams, The Use of Thyratrons for High Speed Automatic Counting of Plyysical Phenomena, Proc. Roy. Soc., $132, ~ p$
    C. E. Meinheit and
    W. W. Snyder Electronic Counter and Divider Circuits, Sylvania Technologist, 1, p 5, July 1948.

[^8]:    *A system having some resemblance to systems described in this paper has heen announced by the Radio Corporation of America. Similarities and dissimilarities between the RCA system and those described here are not known to the author and the two developments have been independent.

[^9]:    Specialists in the Development and Manufacture of UHF Equipment

[^10]:    ELECTRONIC DEVICES；RADIO TUBES：CATHODE RAY TUBES：PHOTOLAMPS：FLUORESCENT LAMPS，FIXTURES．WIRING DEVICES：ELECTRIC LIGHT BULBS．

[^11]:    SgIS AVALON BOULEVARD. * LoS ANGELES 3, CALIf

[^12]:    Modified SCR-784 installation by Dow Chemical Co. at Freeport, Texas, on level land about 18 feet above sea level and two miles from the open Gulf. Trailer is supported on concrete foundation. Emergency gasoline power unit is separately housed nearby

[^13]:    

[^14]:    ROSELLE, NEW JERSEY

[^15]:    FOR ELECTRONIC PRODUCTS FOR EXPORT, CONTACT DRIVER-HARRIS COMPANY, HARRISON, N. J., HARRISON 6-4800

[^16]:    
    CABLES: TRANSRAD

[^17]:    PRMNAX PRODUCIS
    DIVISION CHISHOLM-RYDER CO., INC.
    5001 HIGHLAND AVE., NIAGARA FALLS, N. Y.

[^18]:    When you're in need of some product or service to speed and improve operation, or save money, you may find it here-in the Contacts Scetion. each issue. isske. ㄴ..

[^19]:    IMPORTANT NOTICE: Minimum order \$2.00. Please include $20 \%$ deposit with C. 0 .D. orders unless rated. Orders received without postage will te shipped Railway Express collect. Send us your inquiries today. We
    correspond in English, Spanish, French, Italian, Polish. Rumanian. Hebrew, German, Portuguese, etc. Prices correspond in English, Spanish, French, to change without notice. All stock F.O.B. our warehouse. N. Y.C., subject to prior sale.

[^20]:    surt -surface mounted

