
DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

DynexSolve: The Dynex Platform Proof-of-Useful-Work Scheme

Dynex Developers

February 1, 2023
V.1.0

Abstract

Dynex is a next-generation platform for neuromorphic computing based on a
groundbreaking flexible blockchain protocol. It consists of participating Proof-of-
Useful-Work (PoUW) miners that constitute a decentralised neuromorphic
supercomputing network which is capable of performing computations at
unprecedented speed and efficiency – even exceeding quantum computing.

The Dynex neuromorphic chips run on miners' computers and are used to solve
computational tasks, that's the algorithm called DynexSolve. Every progress miners
contribute is stored in the blockchain.

All this is wrapped in a sustainable and long term business model. Dynex
customers are corporates, organisations or research bodies that are not able to solve
their complex computational problems due to lack of computing power and high
energy consumption of traditional computer networks. These DynexSolve projects
are priced with a certain amount of Dynex coins. DynexSolve algorithm is the first
mining algorithm which solves real-world computational problems while providing
Proof-of-Useful-Work during the mining process.

This document describes the DynexSolve algorithm used on the Dynex
Platform since December 1, 2022.

Rationale

Herein, there will be many references to modern computers and the computation they
perform. It is important to realise that computing is fundamentally a physical process . 1

The statement may seem obvious when considering the physical processes harnessed by
the electronic components of computers (for example, transistors), however, virtually any
physical process can be harnessed for some form of computation. Note, that we are
speaking of Alan Turing’s model of computation , that is, a mapping (transition 2

function) between two sets of finite symbols (input and output) in discrete time.

 Massimiliano Di Ventra and Fabio L. Traversa. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. 1

Journal of Applied Physics, 123(18):180901, 2018.

 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & 2

Co., New York, NY, USA, 1990.
Page of 1 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

It is important to distinguish between continuous and discrete time: Dynex chips
operate in continuous time , though, their simulations on modern computers require the 3

discretisation of time. Continuous time is physical time: a fundamental physical quantity.
Discrete time is not a physical quantity, and might be best understood as counting time:
counting something (function calls, integration steps, etc.) to give an indication (perhaps
approximation) of the physical time. In the literature of Physics and other Physical
Sciences, physical time has an assigned SI unit of seconds, whereas in Computer Science
and related disciplines, counting time is dimensionless.

Granting the infinite resources utilised by a Turing machine , universal Dynex chips 4

(UDCs) have been shown to be Turing-complete, meaning universal Dynex chips can
simulate universal Turing machine. The universal Dynex chip class contains digital and
analog machines. While analog Dynex chips theoretically have tremendous
computational power, analog systems cannot be engineered for scalability, as their
growing size requires growing resources to achieve the same accuracy. It is the digital
Dynex chip that is scalable, and the focus of this algorithm.

The Fourth Missing Circuit Element

Modern computers rely on the implementation of uni-directional logic gates that
represent Boolean functions . Circuits built to simulate Boolean functions are desirable 5

because they are deterministic: A unique input has a unique, reproducible output.

Modern computers relegate the task of logic to central processing units (CPUs).
However, the resources required for the task might exhaust the resources present within
the CPU, specifically, cache memory. For typical processes on modern computers,
random-access memory (RAM) is the memory used for data and machine code, and is
external to the CPU. The physical separation of CPU and RAM results in what is known
as the von Neumann bottleneck, a slow down in computation caused by the transfer of
information between physical locations . 6

To overcome the von Neumann bottleneck, we propose computing with and in
memory, utilising ideal memristors . Distinct from in-memory computation , it is an 7 8

efficient computing paradigm that uses memory to process and store information in the
same physical location.

 A physical process is necessarily continuous in time, as discrete time is not physical, rather a necessary consequence of simulating a 3

physical system.

 A physical realization of Dynex chips will, of course, have finite resources. However, the “chips” used to study computational 4

complexity are theoretical and impossible to build

 Behrooz Parhami. Computer arithmetic, volume 20. Oxford university press, 2010.5

 John Backus. Can programming be liberated from the von neumann style?: A functional style and its algebra of programs. Commun. 6

ACM, 21(8):613–641, August 1978.

 Chua, L. (1971). "Memristor-The missing circuit element". IEEE Transactions on Circuit Theory. 18 (5): 507–519.7

 H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang. In-memory big data management and processing: A survey. IEEE Transactions 8

on Knowledge and Data Engineering, 27(7):1920–1948, 2015.
Page of 2 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Conceptual symmetries of resistor, capacitor, inductor, and memristor

A memristor is an electrical component that limits or regulates the flow of electrical
current in a circuit and remembers the amount of charge that has previously flowed
through it. Memristors are important because they are non-volatile, meaning that they
retain memory without power.

The original concept for memristors, as conceived in 1971 by Professor Leon Chua at
the University of California, Berkeley , was a nonlinear, passive two-terminal electrical 9

component that linked electric charge and magnetic flux (“The missing circuit
element“). Since then, the definition of memristor has been broadened to include any
form of non-volatile memory that is based on resistance switching, which increases the
flow of current in one direction and decreases the flow of current in the opposite
direction.

A memristor is often compared to an imaginary pipe that carries water. When the
water flows in one direction, the pipe's diameter expands and allows the water to flow
faster -- but when the water flows in the opposite direction, the pipe's diameter contracts
and slows the water's flow down. If the water is shut off, the pipe retains its diameter until
the water is turned back on. To continue the analogy, when a memristor's power is shut
off, the memristor retains its resistance value. This would mean that if power to a
computer was cut off with a hard shut down, all the applications and documents that
were open before the shut down would still be right there the screen when the computer
was restarted.

 L. Chua, "Memristor-The missing circuit element," in IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, September 9

1971, doi: 10.1109/TCT.1971.1083337.
Page of 3 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Memristors, which are considered to be a sub-category of resistive RAM, are one of
several storage technologies that have been predicted to replace flash memory. Scientists
at HP Labs built the first working memristor in 2008 and since that time, researchers in
many large IT companies have explored how memristors can be used to create smaller,
faster, low-power computers that do not require data to be transferred between volatile
and non-volatile memory.

A digital Dynex chip is realised as a memristor based bi-directional logic circuit.
These circuits differ from traditional logic circuits in that input and output terminals are
no longer distinct. In a traditional logic circuit, some input is given and the output is the
result of computation performed on the input, via uni-directional logic gates. In contrast,
a memristor based bi-directional logic circuit can be operated by assigning the output
terminals, then reading the input terminals.

Operating a logic circuit “backwards” has many applications. An example is integer
factorisation: Given an integer, factor it into its prime factors. For simplicity, assume the
given integer, b, is the product of two prime numbers, p and q. If given p and q, then a
multiplication circuit can be employed to find the product, b, of the two prime numbers. A
traditional logic circuit, appropriately designed, can easily perform this task. Now, if
given b and told it can be factored into two prime numbers, we take the same
multiplication circuit structure (logic gates connected similarly), but design it to be a
memristor based bi-directional logic circuit so the logic gates become terminal agnostic,
meaning signal can be received and sent on any terminal of the logic gate. However, the
new logic gates are not bijective, so the entire circuit will have to self-organiae to
produce the values of p and q on the “input” terminals.

Self-organising logic is a recently-suggested framework that allows the solution of
Boolean truth tables “in reverse,” i.e., it is able to satisfy the logical proposition of gates
regardless to which terminal(s) the truth value is assigned (“terminal-agnostic logic”). It
can be realised if time non-locality (memory) is present. A practical realisation of self-
organising logic gates can be done by combining circuit elements with and without
memory. By employing one such realisation, it can be shown numerically, that self-
organising logic gates exploit elementary instantons to reach equilibrium points.
Instantons are classical trajectories of the non-linear equations of motion describing self-
organising logic gates, and connect topologically distinct critical points in the phase
space. By linear analysis at those points it can be shown that these instantons connect the
initial critical point of the dynamics, with at least one unstable direction, directly to the
final fixed point. It can also be shown that the memory content of these gates only affects
the relaxation time to reach the logically consistent solution. By solving the
corresponding stochastic differential equations, since instantons connect critical points,
noise and perturbations may change the instanton trajectory in the phase space, but not
the initial and final critical points. Therefore, even for extremely large noise levels, the
gates self-organise to the correct solution.

Page of 4 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Note that the self-organising logic we consider here has no relation to the invertible
universal Toffoli gate that is employed, e.g., in quantum computation . Toffoli gates are 10

truly one-to-one invertible, having 3-bit inputs and 3-bit outputs. On the other hand, self-
organising logic gates need only to satisfy the correct logical proposition, without a one-
to-one relation between any number of input and output terminals. Instead, it is worth
mentioning another type of bi-directional logic that has been recently discussed in using 11

stochastic units (called p-bits). These units fluctuate among all possible consistent inputs.
However, in contrast to that work, the invertible logic we consider here is deterministic.

With time being a fundamental ingredient, a dynamical systems approach is most
natural to describe such gates. In particular, non-linear electronic (non-quantum) circuit
elements with and without memory have been suggested as building blocks to realise self-
organising logic gates in practice . 12

By assembling self-organising logic gates with the appropriate architecture, one then
obtains circuits that can solve complex problems efficiently by mapping the equilibrium
(fixed) points of such circuits to the solution of the problem at hand, as shown in , , , . 13 14 15 16

Moreover, it has been proved that, if those systems are engineered to be point
dissipative , then, if equilibrium points are present, they do not show chaotic behaviour 17 18

or periodic orbits . 19

It was subsequently demonstrated , using topological field theory (TFT) applied to 20

dynamical systems, that these circuits are described by a Witten-type TFT , and they 21

 Tommaso Toffoli. Reversible computing. In International Colloquium on Automata, Languages, and Programming, pages 632–644. 10

Springer, 1980.

 K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta. Stochastic p-bits for invertible logic. Phys. Rev. X, 7:031014, Jul 2017.11

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 12

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 13

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.

 H. Manukian, F. L. Traversa, and M. Di Ventra. Memcomputing numerical inversion with self-organizing logic gates. IEEE Transactions 14

on Neural Networks and Learning Systems, PP(99):1–6, 2017.

 Haik Manukian, Fabio L Traversa, and Massimiliano Di Ventra. Accelerating deep learning with memcomputing. Neural Networks, 15

110:1–7, 2019.

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 16

529:1700123, 2017.

 J.K. Hale. Asymptotic Behavior of Dissipative Systems, volume 25 of Mathematical Surveys and Monographs. American 17

Mathematical Society, Providence, Rhode Island, 2nd edition, 2010.

 M. Di Ventra and F. L. Traversa. Absence of chaos in Digital Memcomputing Machines with solutions. Physics Letter A, 2017.18

 M. Di Ventra and F. L. Traversa. Absence of periodic orbits in digital memcomputing machines with solutions. Chaos: An 19

Interdisciplinary Journal of Nonlinear Science, 27:101101, 2017.

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 20

529:1700123, 2017.

 E. Witten. Topological quantum field theory. Comms. in Math. Phys., 117:353–386, 1988.21

Page of 5 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

support long-range order, mediated by instantons. Instantons are classical trajectories of
the non-linear equations of motion describing these circuits (see, e.g., or). 22 23

The intrinsic non-locality of instantons, coupled with the topological character of
critical points, is reminiscent of the “rigidity” and topological character of the ground
state of some strongly-correlated quantum systems that are currently investigated for
topological quantum computation, namely quantum computation that is robust against
dephasing and noise , , . This analogy is not far-fetched. In fact, in the case of self-24 25 26

organising circuits, instantons, by connecting topologically-distinct critical points in the
phase space, correlate elements of the circuit non-locally in space and time . This non-27

locality is somewhat reminiscent of quantum entanglement. However, self-organising
logic gates are circuits that achieve long-range order without quantum-mechanical
effects.

 S. Coleman. Aspects of Symmetry, Chapter 7. Cambridge University Press, 1977.22

 K. Hori, S. Katz, R. Klemm, A. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow. Mirror symmetry. Clay Mathematics, 23

2000.

 Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang. Topological quantum computation. Bulletin of the American 24

Mathematical Society, 40(1):31–38, 2003.

 Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological 25

quantum computation. Reviews of Modern Physics, 80(3):1083, 2008.

 A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003.26

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 27

529:1700123, 2017.
Page of 6 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Self-organising logic gates: Dynex chip’s building blocks

Let us start by outlining a model of self-organising logic gates as a system of coupled,
nonlinear, ordinary differential equations. We will then solve these equations
numerically to identify instantons, their critical points, and, by diagonalising the Jacobian
(the matrix of the derivative of the flow vector field), their topological features.

In this figure, we show the self-organising AND/OR gates we employ in our
algorithm. They are modelled with standard resistors, resistors with memory (memristive
elements) , and voltage- controlled voltage generators . The memristive elements 28 29

contain a capacitance in parallel, representing parasitic capacitive effects. The difference
between the circuitry of the self-organising-AND and self-organising-OR gates is the
orientation of the memristive elements.

We want these gates to self-organise into the correct logical proposition irrespective
of the terminal to which the truth value is assigned. To better understand how this is
accomplished, it is beneficial to start from a specific example. Let us then choose to
encode the logical 1 (True) with 1 V and the logical 0 (False) with −1 V.

Consider first the self-organising-AND. If we set the voltage v1 to 1 V, the system
should evolve to either v2 = v3 = 1 V or v2 = v3 = −1 V. Both are logically consistent
with an AND truth table. On the other hand, if we consider the self-organising-OR gate,
and fix v1 to −1 V (logical 0), the system should evolve to either v2 =v3 =−1V or v2 =v3
=1V. The final result will depend on the initial conditions, namely the initial values of all
voltages and internal state variables.

 M. Di Ventra, Y.V. Pershin, and L.O. Chua. Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. 28

Proceedings of the IEEE, 97(10):1717–1724, Oct 2009.

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 29

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.
Page of 7 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Below, we describe a set of dynamical equations that accomplishes the above tasks.
For the evolution of the memristive state variables we choose an equation of motion of
the form , 30

where xj is the state variable for the j-th memristive element. The function h serves to
cutoff the dynamics of the state variable in certain regimes. We choose the conductance of
these elements, g(x) = ((Roff −Ron)x+Ron)−1, where we set Roff = 1 Ω and Ron = 0.01 Ω.
Thus, g(x)vM is equal to the current flowing through a memristor. The voltage drop, vM, is
measured based on the orientation of the memristor: vM = va − vb, where vb is measured
from the thick-bar side of the electronic symbol for the memristor. The coefficient α is
restricted to be positive, and we choose α = 60. The physical meaning of α is discussed
in . Finally, the values of the state variables are bounded, and are typically chosen to be x 31

∈ [0, 1] . 32

Ideally, in order to strictly enforce x ∈ [0,1], h(x,vM) should be represented by step
functions31. However, in practical realisations and numerical simulations, the step
functions should be replaced by some differentiable function. We use32,

where k = 2, and choose Vt = 0.1 V. The θˆ r function is defined as,

where we use the simplest case, r = 1. The coefficients can be found by requiring
continuity and differentiability in y = 0 and y = 1. The coefficients for our implementation
are a2 = 3 and a3 = −2. If we analyse the particular case discussed above, we fix, for both
self-organising logic gates, the voltage generator on terminal 1, and we perform standard
nodal analysis on terminals 2 and 3 to find

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 30

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.

 M. Di Ventra and Y. V. Pershin. On the physical properties of memristive, memcapacitive and meminductive systems. 31

Nanotechnology, 24(25), 2013.

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 32

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.
Page of 8 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

where the capacitance is C = 10−5 F and R = 1 Ω 2. The voltage generators generate a
voltage from the relation Vi, j = b1v1 + b2v2 + b3v3 + dcgate, with dcgate a constant voltage
specific to each gate32. The coefficients, bk, along with dcgate, are given in32. Terminals 2
and 3 are floating, therefore, i2 = i3 = 0. Additionally, d/dt v1 = 0, due to terminal 1 being
attached to a voltage generator that is held constant. The role of the voltage generators is
to inject a large current when the gate is in an inconsistent configuration, a small current
otherwise.

By solving numerically the equations from above, with appropriate substitutions, we
obtain precisely what we were after: a consistent logical solution for the given gate.

From computational problems to Dynex chips

Now, with the self-organising logic gates formulated with the concepts of above, we
can build Dynex chips for solving a variety of use cases:

• Federated machine learning , , , , , , , ; 33 34 35 36 37 38 39 40

 Yang, Q., Liu, Y., Chen, T. and Tong, Y., 2019. Federated machine learning: Concept and applications. ACM Transactions on 33

Intelligent Systems and Technology (TIST), 10(2), pp.1-19.

 Kaissis, G.A., Makowski, M.R., Rückert, D. and Braren, R.F., 2020. Secure, privacy-preserving and federated machine learning in 34

medical imaging. Nature Machine Intelligence, 2(6), pp.305-311.

 Wahab, O.A., Mourad, A., Otrok, H. and Taleb, T., 2021. Federated machine learning: Survey, multi-level classification, desirable 35

criteria and future directions in communication and networking systems. IEEE Communications Surveys & Tutorials, 23(2),
pp.1342-1397.

 Konečný, J., McMahan, H.B., Ramage, D. and Richtárik, P., 2016. Federated optimization: Distributed machine learning for on-36

device intelligence. arXiv preprint arXiv:1610.02527.

 Li, T., Sahu, A.K., Talwalkar, A. and Smith, V., 2020. Federated learning: Challenges, methods, and future directions. IEEE signal 37

processing magazine, 37(3), pp.50-60.

 Huang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H. and Liu, D., 2019. Patient clustering improves efficiency of federated machine 38

learning to predict mortality and hospital stay time using distributed electronic medical records. Journal of biomedical informatics, 99,
p.103291.

 Tan, K., Bremner, D., Le Kernec, J. and Imran, M., 2020, August. Federated machine learning in vehicular networks: A summary of 39

recent applications. In 2020 international conference on UK-China emerging technologies (UCET) (pp. 1-4). IEEE.

 Konečný, J., 2017. Stochastic, distributed and federated optimization for machine learning. arXiv preprint arXiv:1707.01155.40

Page of 9 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

• Accelerating deep-learning , , , machine learning and A.I. ; 41 42 43 44 45

• Constraint satisfaction problems , , , ; 46 47 48 49

• Mixed integer linear programming , , , ; 50 51 52 53

• Quadratic unconstraint binary optimisation , , ; 54 55 56

• Maximum satisfiability problem ; 57

• Subset sum problems ; and 58

• Integer factorisation . 59

The applications are limitless and fulfil the requirement of an ever growing demand
for efficient computing power. The self-organising logic gates can be used to construct
individual circuits to compute these computational tasks efficiently. It has already been
demonstrated that such systems perform orders of magnitude faster than traditional

 Manukian, H., Traversa, F.L. and Di Ventra, M., 2019. Accelerating deep learning with memcomputing. Neural Networks, 110, pp.1-7.41

 Shinde, P.P. and Shah, S., 2018, August. A review of machine learning and deep learning applications. In 2018 Fourth international 42

conference on computing communication control and automation (ICCUBEA) (pp. 1-6). IEEE.

 Balas, V.E., Roy, S.S., Sharma, D. and Samui, P. eds., 2019. Handbook of deep learning applications (Vol. 136). New York: Springer.43

 Sammut, C. and Webb, G.I. eds., 2011. Encyclopedia of machine learning. Springer Science & Business Media.44

 Mitchell, T.M. and Mitchell, T.M., 1997. Machine learning (Vol. 1, No. 9). New York: McGraw-hill.45

 Brailsford, S.C., Potts, C.N. and Smith, B.M., 1999. Constraint satisfaction problems: Algorithms and applications. European journal 46

of operational research, 119(3), pp.557-581.

 Arróyave, R., Gibbons, S.L., Galvan, E. and Malak, R.J., 2016. The inverse phase stability problem as a constraint satisfaction 47

problem: Application to materials design. JOM, 68, pp.1385-1395.

 Naruse, M., Aono, M., Kim, S.J., Kawazoe, T., Nomura, W., Hori, H., Hara, M. and Ohtsu, M., 2012. Spatiotemporal dynamics in 48

optical energy transfer on the nanoscale and its application to constraint satisfaction problems. Physical Review B, 86(12), p.125407.

 Roldan, E., Neágny, S., Le Lann, J.M. and Cortes, G., 2010. Constraint satisfaction problem for case-based reasoning adaptation: 49

application in process design. In Computer Aided Chemical Engineering (Vol. 28, pp. 397-402). Elsevier.

 Richards, A. and How, J.P., 2002, May. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. 50

In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (Vol. 3, pp. 1936-1941). IEEE.

 Floudas, C.A. and Lin, X., 2005. Mixed integer linear programming in process scheduling: Modeling, algorithms, and 51

applications. Annals of Operations Research, 139, pp.131-162.

 Little, J.D., 1966. The synchronization of traffic signals by mixed-integer linear programming. Operations Research, 14(4), 52

pp.568-594.

 Morais, H., Kádár, P., Faria, P., Vale, Z.A. and Khodr, H.M., 2010. Optimal scheduling of a renewable micro-grid in an isolated load 53

area using mixed-integer linear programming. Renewable Energy, 35(1), pp.151-156.

 Lewis, M. and Glover, F., 2017. Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical 54

analysis. Networks, 70(2), pp.79-97.

 Neven, H., Rose, G. and Macready, W.G., 2008. Image recognition with an adiabatic quantum computer I. Mapping to quadratic 55

unconstrained binary optimization. arXiv preprint arXiv:0804.4457.

 Alom, M.Z., Van Essen, B., Moody, A.T., Widemann, D.P. and Taha, T.M., 2017, May. Quadratic unconstrained binary optimization 56

(QUBO) on neuromorphic computing system. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 3922-3929).
IEEE.

 Creignou, N., 1995. A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System 57

Sciences, 51(3), pp.511-522.

 LaMacchia, B.A., 1991. Basis reduction algorithms and subset sum problems.58

 Brent, R.P., 2000. Recent progress and prospects for integer factorisation algorithms. In Computing and Combinatorics: 6th Annual 59

International Conference, COCOON 2000 Sydney, Australia, July 26–28, 2000 Proceedings 6 (pp. 3-22). Springer Berlin Heidelberg.
Page of 10 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

algorithmic approaches on a wide variety of combinatorial optimisation
problems , , , , . 60 61 62 63 64

 As an example, we show a Dynex chip mapping a constraint satisfaction problem,
specifically, a Boolean satisfiability problem . The formulation a Dynex chip 65

representing a SAT problem will be detailed, along with its importance in computational
complexity theory. Other use cases follow the same concept and principles and can be
derived given the equations of motion provided. Since Dynex chips are non-quantum
systems, their equations of motion can be efficiently integrated numerically.

The Boolean satisfiability problem60 (SAT) is an important decision problem solved
by determining if a solution exists to a Boolean formula. Apart from its academic interest,
the solution of SAT instances is required in a wide range of practical applications,
including, travel, logistics, software/hardware design, etc. , . The SAT problem has been 66 67

studied for decades, and has an important role in the history of computational complexity
theory. Computer scientists, while categorising the efficiency of algorithms, defined the
NP class for difficult decision problems , . NP-completeness is not exclusive to SAT, 68 69

with hundreds of other NP-complete problems ranging from those of academic interest
(graph theory, algebra and number theory, mathematical programming) to industry
application (network design, data storage and retrieval, program optimisation).

 F. L. Traversa, P. Cicotti, F. Sheldon, and M. Di Ventra. Evidence of exponential speed-up in the solution of hard optimization 60

problems. Complexity, 2018:7982851, 2018.

 Massimiliano Di Ventra and Fabio L. Traversa. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. 61

Journal of Applied Physics, 123(18):180901, 2018.

 Haik Manukian, Fabio L Traversa, and Massimiliano Di Ventra. Accelerating deep learning with memcomputing. Neural Networks, 62

110:1–7, 2019.

 F. L. Traversa and M. Di Ventra. Memcomputing integer linear programming. arXiv:1808.09999, 2018.63

 Forrest Sheldon, Fabio L. Traversa, and Massimiliano Di Ventra. Taming a nonconvex landscape with dynamical long-range order: 64

Memcomputing ising benchmarks. Phys. Rev. E, 100:053311, Nov 2019.

 Justyna Petke. Bridging Constraint Satisfaction and Boolean Satisfiability. Springer, 2015.65

 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & 66

Co., New York, NY, USA, 1990.

 Joao Marques-Silva. Practical applications of boolean satisfiability. In 2008 9th International Workshop on Discrete Event Systems, 67

pages 74–80. IEEE, 2008.

 Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of 68

computing, pages 151–158, 1971.

 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & 69

Co., New York, NY, USA, 1990.
Page of 11 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

An instance of SAT is a Boolean formula with three components : 70

1) A set of N Boolean variables: y1, y2,...,yN.
2) A set of literals. A literal is a variable (l = y) or a negation of a variable (l = ̄y).
3) A set of M distinct clauses: C1, C2,..., CM. Each clause consists of literals combined

by logical OR connectives.

SAT is the decision problem of determining if an assignment of variables exists for
which the Boolean formula returns TRUE, that is, all clauses must evaluate to TRUE as
they are connected by AND operators to create the Boolean formula. If a such a solution
exists, we say the SAT instance (Boolean formula) is satisfiable, otherwise, the instances
is unsatisfiable. Commonly, it is said the instance is SAT or UNSAT, respectively.

Example of a Boolean circuit, in conjunctive normal form (CNF), representing a 3-
SAT. The three OR clauses (seen inside the gates) are then converted to self-organising
logic gates where the propositional variables yi are represented as electrical voltages vi.
The traditional output of the self-organising-OR is forced to be true (logical 1), because
all clauses must be true to satisfy a Boolean proposition in CNF. If a literal is the
negation of a variable, then the associated “input” terminal on that gate must pass
through a NOT gate (triangle symbol) before the terminal is connected to other terminals
sharing the same variable.

The idea behind this approach is that the solutions of the SAT instance are mapped
into the equilibrium points of a dynamical system. If the initial conditions of the
dynamics belong to the basin of attraction of the equilibrium points, then the dynamical
system will have to “fall” into these points. The approach is fundamentally different from
the standard algorithms because dynamical systems perform computation in continuous
time. Numerical simulation of continuous-time physical systems, an algorithm, requires
the discretisation of time to integrate the ordinary differential equations (ODEs)
representing the physical system. As such, the dynamical-systems approach is ideally
suited for a hardware implementation, especially on Graphic-Processing-Units (GPU)
with their capability of massively perform floating point operations in parallel.

 Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. Algorithms for the satisfiability (sat) problem. In Handbook of 70

Combinatorial Optimization, pages 379–572. Springer, 1999.
Page of 12 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

The ability of continuous time dynamics to perform the solution search without
resorting to chaotic dynamics results in efficient simulations (an algorithmic
implementation) of Dynex chips using computationally-inexpensive integration schemes
and modern computers. In addition, it was shown that such systems find the solution of a
given problem by employing topological objects, known as instantons, that connect
critical points of increasing stability in the phase space , . Simulations found that they 71 72

then self-tune into a critical (collective) state which persists for the whole transient
dynamics until a solution is found . It is this critical branching behaviour that allows 73

them to explore collective updates of variables during the solution search, without the
need to check an exponentially-growing number of states. This is in contrast to local-
search algorithms which are characterised by a “small” (not collective) number of
variable updates at each step of the computation . 74

To construct a Dynex chip that finds a satisfying assignment for SAT we follow the
general procedure outlined in . To begin, the Boolean variables, yi, are transformed into 75

continuous variables for use in the Dynex chip. The continuous variables can be realised
in practice as voltages on the terminals of the self-organising OR gate. The gate can
influence its terminals to push voltages towards a configuration satisfying its OR logic
regardless of whether the signal received by the gate originates from the traditional input
or the traditional output. The voltages are bounded, vi ∈ [−1, 1], with Boolean values
recovered by thresholding: TRUE if vi > 0, FALSE if vi < 0, and ambiguous if vi = 0. To
perform the logical negation operation on the continuous variable, one trivially multiplies
that quantity by −1. The self- organising logic circuit that comprises the Dynex chip is
built by connecting all of the self-organising OR gates.

Next, we interpret a Boolean clause as a dynamical constraint function, with its state
of satisfaction determined by the voltages. The m-th Boolean clause, (li,m ∨ lj,m ∨ lk,m),
becomes a constraint function,

where qi,m = 1 if li,m = yi, and qi,m = −1 if li,m = y ̄i. The function is bounded, Cm ∈
[0,1], and a clause is necessarily satisfied when Cm < 1/2. The instance is solved when Cm
< 1/2 for all clauses. By thresholding the clause function we avoid the ambiguity
associated with vi = 0. If some voltage is ambiguous (vj = 0) and all clauses are satisfied,

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 71

529:1700123, 2017.

 M. Di Ventra and Igor V. Ovchinnikov. Digital memcomputing: from logic to dynamics to topology. Annals of Physics, 409:167935, 72

2019.

 S. R. B. Bearden, F Sheldon, and M Di Ventra. Critical branching processes in digital memcomputing machines. EPL (Europhysics 73

Letters), 127(3):30005, 2019.

 Alexander K. Hartmann and Heiko Rieger. New Optimization Algorithms in Physics. John Wiley & Sons, Inc., Hoboken, NJ, USA, 74

2004.

 Massimiliano Di Ventra and Fabio L. Traversa. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. 75

Journal of Applied Physics, 123(18):180901, 2018.
Page of 13 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

then any Boolean assignment to yj will be valid in that configuration. The use of a
minimum function in Cm preserves an important property of 3-SAT. A clause is a
constraint, and, by itself, a clause can only constrain one variable (via its literal). The
values of two literals are irrelevant to the state of the clause if the third literal results in a
satisfied clause.

Finally, a Dynex chip employs memory variables to assist with the computation74,75.
The memory variables transform equilibrium points that do not correspond to solutions of
the Boolean formula into unstable points in the voltage space, leaving the solutions of the
3-SAT problem as the only minima. We chose to introduce two memory variables per
clause: short-term memory, xs,m, and long-term memory, xl,m. The terminology intuitively
describes the behaviour of their dynamics. For the short-term memory, xs,m lags Cm,
acting as an indicator of the recent history of the clause. For the long-term memory, xl,m
collects information so it can “remember” the most frustrated clauses, weighting their
dynamics more than clauses that are “historically” easily satisfied. Both the number and
type of memory variables, as well as the form of the resulting dynamical equations, are
not unique provided neither chaotic dynamics nor periodic orbits are introduced74.

We chose for the dynamics of voltages and memory variables the following,

where the summation is taken over all constraints in which the voltage appears. The
memory variables are bounded, with xs,m ∈ [0,1] and xl,m ∈ [1,104M]. The boundedness of
voltage and memory variables implies that there are no diverging terms in the above
equations.

The parameters α and β are the rates of growth for the long-term and short-term
memory variables, respectively. Each memory variable has a threshold parameter used for
evaluating the state of Cm, and the two parameters are restricted to obey δ < γ < 1/2. (This
also guarantees that there is a sufficiently large basin of attraction for the solutions. The
equations have a small, strictly-positive parameter, 0 < ε ≪ 1, to remove the spurious
solution (xs,m = 0). However, ε additionally serves as a trapping rate in the sense that
smaller values of ε make it more difficult for the system to flip voltages when some Cm
begins to grow larger than γ.

In the equations, the first term in the summation is a “gradient-like” term, the second
term is a “rigidity” term . The gradient-like term attempts to influence the voltage in a 76

clause based on the value of the other two voltages in the associated clause,

 S. R. B. Bearden, F Sheldon, and M Di Ventra. Critical branching processes in digital memcomputing machines. EPL (Europhysics 76

Letters), 127(3):30005, 2019.
Page of 14 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Consider the two extremes: if the minimum results is Gi,m = 1, then vi needs to be
influenced to satisfy the clause. Conversely, if the minimum gives Gi,m = 0, then vi does
not need to influence the clause state. For the rigidity term, we choose

The purpose of the three rigidity terms for a constraint is to attempt to hold one
voltage at a value satisfying the associated m-th clause, while doing nothing to influence
the evolution of the other two voltages in the constraint. Again, this aligns with the 3-SAT
interpretation that a clause can only constrain one variable. The short-term memory
variable acts as a switch between gradient-like dynamics and rigid dynamics. During the
solution search, Gm will seek to influence three voltages until clause m has been satisfied.
Then, as xs,m decays to zero, Rm takes over. The long-term memory variables weight the
gradient-like dynamics, giving greater influence to clauses that have been more frustrated
during the solution search. The rigidity is also weighted by xl,m, but reduced by ζ.

It is important to realise that any simulation of a dynamical system is an algorithm
because the continuous-time dynamics of the system must be discretised. The equations
of motion of the individual Dynex chip constructed is numerically integrated with the
forward-Euler method using an adaptive time step . The number of possible initial 77

conditions for a parallel integration on GPU is defined with the number of variables 2n,
representing the positive and negative occurrence of each variable, two polarities
(positive and negative) as well as four stages:

Number of initial conditions (IC) = 16n

Comprehensive empirical studies of the integration method have demonstrated that the
algorithm has an upper bound complexity of n5 integration steps when all initial
conditions are being simulated in parallel. Thus, to guarantee a solution of the
computational problem, 16n Dynex chips have to be simulated in parallel for the
maximum duration of n5 integration steps.

 Lei, Z. and Hongzhou, J., 2012, December. Variable step euler method for real-time simulation. In Proceedings of 2012 2nd 77

International Conference on Computer Science and Network Technology (pp. 2006-2010). IEEE.
Page of 15 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Collective behaviour (long-range order) , in the Dynex chips is responsible for the 78 79

observed efficiency in the solution search. The dynamics described by the equations of
motion terminate only when the system has found the solution to the 3-SAT problem
(namely the phase space has only saddle points and the minima corresponding to the
solution of the given problem. In addition, neither periodic orbits nor chaos can coexist if
solutions of the 3-SAT are present. Finally, using supersymmetric topological field theory,
it had been demonstrated that the continuous-time dynamics (physical implementation)
reach the solution of a 3-SAT instance, for a fixed αr, in linear or sub-linear continuous
time, irrespective of the difficulty of the instance.

DynexSolve Proof-of-Useful-Work

The DynexSolve mining algorithm performs the numerical integration of all Dynex
chips required for the computational job and is therefore classified as a Proof-of-Useful-
Work (PoUW) mining algorithm.

Depending on problem size (number of variables n and number of clauses m) and the
memory available on the provided Graphic-Processing-Units (GPUs) the capacity for
each miner to run parallel Dynex chips is determined. As all miners are working
collectively on computational jobs, a job and chip scheduling system is required to assign
and balance the work required:

The Dynex Mallob system, named after the term malleable, which defines a
distributed computing environment , , has been inspired by and . It dynamically 80 81 82 83

assigns jobs with the respective available initial conditions to the individual miners and
ensures that all 16n initial conditions are being computed for a maximum duration of n5
integration steps.

DynexSolve combines two algorithms, namely the numerical integration of Dynex
Chips as well as a modified CryptoNight hashing function to confirm blocks on the
Dynex block chain. It has been designed to spend the majority of the computational
energy on the numerical integration (meaningful work) to ensure that almost no
resources are being wasted with hashing:

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 78

529:1700123, 2017.

 M. Di Ventra and Igor V. Ovchinnikov. Digital memcomputing: from logic to dynamics to topology. Annals of Physics, 409:167935, 79

2019.

 Desell, T., Maghraoui, K.E. and Varela, C.A., 2007. Malleable applications for scalable high performance computing. Cluster 80

Computing, 10, pp.323-337.

 Ghafoor, S.K., 2007. Modeling of an adaptive parallel system with malleable applications in a distributed computing environment. 81

Mississippi State University.

 Schreiber, D. and Sanders, P., 2021. Scalable SAT solving in the cloud. In Theory and Applications of Satisfiability Testing–SAT 2021: 82

24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24 (pp. 518-534). Springer International Publishing.

 Sanders, P. and Schreiber, D., 2022. Mallob: Scalable SAT Solving On Demand With Decentralized Job Scheduling. Journal of Open 83

Source Software, 7(76), p.4591.
Page of 16 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Algorithm: DynexSolve

1: Input: Computational problem := DynexMallob()
2: space := parallel Dynex chips fitting on GPU memory
3: available Dynex chips := DynexMallob(space)
4: Build Dynex Chip circuit for numerical integration = n
5: solved := false
6: for each CHIP do
7: initial conditionsCHIP = available Dynex chips
8: while solved = false & integration stepsCHIP < n5 do

9: integration stepsCHIP := 0
10: init statehash, statenonce and statediff
11: pouwblob := nonceblockchain + timestamp + pouwstate
12: while integration steps < batch-size do
13: stateCHIP,n < Adaptive Forward Euler step
14: if solved = true then
15: return (solved)
16: end if

17: statehash, statediff := lighthash(pouwblob, statenonce)
18: pouwblob,loc := localMinima(state)
19: integration stepsCHIP := +1

20: end while

21: DynexMallob(state)
22: eligiblecounter := pouweligable

23: hashingcounter := 0
24: while hashingcounter < eligiblecounter do

25: hash := CryptoNightmodified(blocktemplate, nonce)
26: if hashdiff > blockdiff then

27: submit pouwblob + pouwhash + nonce
28: end if

29: hashingcounter := +1
30: end while

31: end while
32: end for

Page of 17 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Initially, DynexSolve retrieves the definition of the assigned computational task
from the Dynex Mallob system, which allows to calculate the total capacity of all parallel
Dynex Chips fitting on the connected Graphic-Processing-Units (GPUs), defined as
space.

1: Input: Computational problem := DynexMallob()
2: space := parallel Dynex chips fitting on GPU memory

Given space, DynexSolve retrieves the set of assigned Dynex Chips from the Dynex
Mallob system which also define the initial conditions for the Dynex chips to compute.
Based on that data, DynexSolve builds the corresponding system of equations of
motions to be numerically integrated.

3: available Dynex chips := DynexMallob(space)
4: Build Dynex Chip circuit for numerical integration = n

Every chip is integrated in parallel on each of the connected Graphic-Processing-
Units with the different initial conditions provided, as long as either a solution was found
or the maximum number of integration steps n5 has been reached.

5: solved := false
6: for each CHIP do
7: initial conditionsCHIP = available Dynex chips
8: while solved = false & integration stepsCHIP < n5 do

The numerical integration is performed in batches (typically 10,000 integration steps
per batch per Dynex chip). Every integration step creates a unique state for each Dynex

chip:

13: stateCHIP,n < Adaptive Forward Euler step

The algorithm also performs hashing on the provided PoUWblob as well as the
calculation of the current energy landscape (local minima):

17: statehash, statediff := lighthash(pouwblob, statenonce)
18: pouwblob,loc := localMinima(state)

 This ensures that the performed work is unique and accurate. The current energy
landscape given a current state can be verified quickly with a simple function call for any
given computational job.

Page of 18 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Each initial condition has a different number of integration steps required to reach the
lowest possible global energy level of the underlying computational problem, which
represents a solution. As soon as a solution to the job has been found, the Dynex Mallob
system is being updated, the solution state submitted to Dynex and the job marked as
“finalised”.

14: if solved = true then
15: return (solved)
16: end if

 The successful PoUW work continuously defines the overall hash-rate of the miner,
also determining the number of eligible hashes DynexSolve can use for the blockchain
related CryptoNightmodified hashing function to confirm blocks in the Dynex block chain:

22: eligiblecounter := pouweligable

23: hashingcounter := 0
24: while hashingcounter < eligiblecounter do

25: hash := CryptoNightmodified(blocktemplate, nonce)
26: if hashdiff > blockdiff then

27: submit pouwblob + pouwhash + nonce
28: end if

29: hashingcounter := +1
30: end while

Submitted blocks to the Dynex block chain require a successful verification from its
PoUW data as well as the calculated block nonce itself. Per definition of the algorithm,
both are entangled and uniquely connected to the underlying computational job, which
guarantees that block nonces can be found only if the entire Proof-of-Useful-Work
scheme has been performed with the DynexSolve algorithm.

Page of 19 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Mining renumeration scheme

The renumeration scheme for DynexSolve mining consists of the following elements:

(i) Block reward: Miners who are finding a block nonce of a block are receiving the
block reward for this block. The block reward follows a smooth emission curve . 84

(ii) Transaction fees: In addition to the block reward, also the transaction fees
included in the mined block are being rewarded.

(iii) Block fees: Dynex customers who post and run computation jobs on the Dynex
platform can define a block fee they are paying for the computations. The block fee is
paid for every block which is being mined working on the computational problem. As
a) the network hash-rate, b) the maximum complexity (16n) and c) the upper bound
of required integration steps (n5) are known at job creation, customers can allocate a
pre-defined amount for any job. The Dynex Mallob system is assigning highest paid
jobs first, then in descending order. The block fee is rewarded to the miners similarly
as the block reward. This guarantees continuity and sustainability of the business
model for miners, also for the period when all blocks have been mined.

(iv) Solution reward: As an additional motivation for miners, Dynex customers can
define a solution reward for the miner who completed the computational job first. It
is being automatically rewarded to the first miner completing a job. This incentivises
miners to continuously perform DynexSolve PoUW calculations (rather than often
restarting jobs) and also provides CPU miners a valid chance to win the solution
reward. In contrast to GPU miners, where the initial conditions are pre-defined in the
unique Dynex chips, are the initial conditions for CPU miners randomised.

 https://dynexcoin.org/wp-content/uploads/2023/01/Dynex-whitepaper.pdf84

Page of 20 21

DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

Additional Ressources

Main Dynex website:
https://dynexcoin.org/

Dynex white paper:
https://dynexcoin.org/wp-content/uploads/2023/01/Dynex-whitepaper.pdf

Dynex in 10 Layman’s Terms:
https://dynexcoin.org/dynex-in-ten-laymans-terms/

DynexSolve: Proof-of-Useful-Work (PoUW):
https://dynexcoin.org/discover-dynex/

Dynex History & Roadmap:
https://dynexcoin.org/discover-dynex/#roadmap

Dynex Mining Pools on MiningPoolStats:
https://miningpoolstats.stream/dynexcoin

Dynex Mining Pools Certification Status:
https://dynexcoin.org/mining-pool-certifications-status/

Dynex Mining Software (DynexSolve):
https://github.com/dynexcoin/Dynex/releases/tag/DynexSolve

Dynex Node and CLI Wallet:
https://github.com/dynexcoin/Dynex/releases/tag/Dynex_2.2.2

Dynex Blockchain Explorer:
https://dynex.dyndns.org/home.php

Dynex Bounty Program:
https://dynexcoin.org/dynex-bounties/

Dynex Wallets:
https://dynexcoin.org/get-dnx/#wallets

Dynex Mobile Web Wallet:
https://wallet.dynexcoin.org/

Dynex Introductory Video:
https://dynexcoin.org/video/

Page of 21 21

