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Abstract 

Dynex is a next-generation platform for neuromorphic computing based on a 
groundbreaking flexible blockchain protocol. It consists of participating Proof-of-
Useful-Work (PoUW) miners that constitute a decentralised neuromorphic 
supercomputing network which is capable of performing computations at 
unprecedented speed and efficiency – even exceeding quantum computing. 

The Dynex neuromorphic chips run on miners' computers and are used to solve 
computational tasks, that's the algorithm called DynexSolve. Every progress miners 
contribute is stored in the blockchain. 

All this is wrapped in a sustainable and long term business model. Dynex 
customers are corporates, organisations or research bodies that are not able to solve 
their complex computational problems due to lack of computing power and high 
energy consumption of traditional computer networks. These DynexSolve projects 
are priced with a certain amount of Dynex coins. DynexSolve algorithm is the first 
mining algorithm which solves real-world computational problems while providing 
Proof-of-Useful-Work during the mining process. 

This document describes the DynexSolve algorithm used on the Dynex 
Platform since December 1, 2022. 

Rationale 

Herein, there will be many references to modern computers and the computation they 
perform. It is important to realise that computing is fundamentally a physical process . 1

The statement may seem obvious when considering the physical processes harnessed by 
the electronic components of computers (for example, transistors), however, virtually any 
physical process can be harnessed for some form of computation. Note, that we are 
speaking of Alan Turing’s model of computation , that is, a mapping (transition 2

function) between two sets of finite symbols (input and output) in discrete time.  

 Massimiliano Di Ventra and Fabio L. Traversa. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. 1

Journal of Applied Physics, 123(18):180901, 2018.

 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & 2

Co., New York, NY, USA, 1990.
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It is important to distinguish between continuous and discrete time: Dynex chips 
operate in continuous time , though, their simulations on modern computers require the 3

discretisation of time. Continuous time is physical time: a fundamental physical quantity. 
Discrete time is not a physical quantity, and might be best understood as counting time: 
counting something (function calls, integration steps, etc.) to give an indication (perhaps 
approximation) of the physical time. In the literature of Physics and other Physical 
Sciences, physical time has an assigned SI unit of seconds, whereas in Computer Science 
and related disciplines, counting time is dimensionless.  

Granting the infinite resources utilised by a Turing machine , universal Dynex chips 4

(UDCs) have been shown to be Turing-complete, meaning universal Dynex chips can 
simulate universal Turing machine. The universal Dynex chip class contains digital and 
analog machines. While analog Dynex chips theoretically have tremendous 
computational power, analog systems cannot be engineered for scalability, as their 
growing size requires growing resources to achieve the same accuracy. It is the digital 
Dynex chip that is scalable, and the focus of this algorithm.  

The Fourth Missing Circuit Element 

Modern computers rely on the implementation of uni-directional logic gates that 
represent Boolean functions . Circuits built to simulate Boolean functions are desirable 5

because they are deterministic: A unique input has a unique, reproducible output.  

Modern computers relegate the task of logic to central processing units (CPUs). 
However, the resources required for the task might exhaust the resources present within 
the CPU, specifically, cache memory. For typical processes on modern computers, 
random-access memory (RAM) is the memory used for data and machine code, and is 
external to the CPU. The physical separation of CPU and RAM results in what is known 
as the von Neumann bottleneck, a slow down in computation caused by the transfer of 
information between physical locations .  6

To overcome the von Neumann bottleneck, we propose computing with and in 
memory, utilising ideal memristors . Distinct from in-memory computation , it is an 7 8

efficient computing paradigm that uses memory to process and store information in the 
same physical location.  

 A physical process is necessarily continuous in time, as discrete time is not physical, rather a necessary consequence of simulating a 3

physical system. 


 A physical realization of Dynex chips will, of course, have finite resources. However, the “chips” used to study computational 4

complexity are theoretical and impossible to build 

 Behrooz Parhami. Computer arithmetic, volume 20. Oxford university press, 2010.5

 John Backus. Can programming be liberated from the von neumann style?: A functional style and its algebra of programs. Commun. 6

ACM, 21(8):613–641, August 1978.

 Chua, L. (1971). "Memristor-The missing circuit element". IEEE Transactions on Circuit Theory. 18 (5): 507–519.7

 H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang. In-memory big data management and processing: A survey. IEEE Transactions 8

on Knowledge and Data Engineering, 27(7):1920–1948, 2015.
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Conceptual symmetries of resistor, capacitor, inductor, and memristor

A memristor is an electrical component that limits or regulates the flow of electrical 
current in a circuit and remembers the amount of charge that has previously flowed 
through it. Memristors are important because they are non-volatile, meaning that they 
retain memory without power. 

The original concept for memristors, as conceived in 1971 by Professor Leon Chua at 
the University of California, Berkeley , was a nonlinear, passive two-terminal electrical 9

component that linked electric charge and magnetic flux (“The missing circuit 
element“). Since then, the definition of memristor has been broadened to include any 
form of non-volatile memory that is based on resistance switching, which increases the 
flow of current in one direction and decreases the flow of current in the opposite 
direction. 

A memristor is often compared to an imaginary pipe that carries water. When the 
water flows in one direction, the pipe's diameter expands and allows the water to flow 
faster -- but when the water flows in the opposite direction, the pipe's diameter contracts 
and slows the water's flow down. If the water is shut off, the pipe retains its diameter until 
the water is turned back on. To continue the analogy, when a  memristor's power is shut 
off, the memristor retains its resistance value. This would mean that if power to a 
computer was cut off with a hard shut down,  all the applications and documents that 
were open before the shut down would still be right there the screen when the computer 
was restarted. 

 L. Chua, "Memristor-The missing circuit element," in IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, September 9

1971, doi: 10.1109/TCT.1971.1083337.
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Memristors, which are considered to be a sub-category of resistive RAM, are one of 
several storage technologies that have been predicted to replace flash memory. Scientists 
at HP Labs built the first working memristor in 2008 and since that time, researchers in 
many large IT companies have explored how memristors can be used to create smaller, 
faster, low-power computers that do not require data to be transferred between volatile 
and non-volatile memory. 

A digital Dynex chip is realised as a memristor based bi-directional logic circuit. 
These circuits differ from traditional logic circuits in that input and output terminals are 
no longer distinct. In a traditional logic circuit, some input is given and the output is the 
result of computation performed on the input, via uni-directional logic gates. In contrast, 
a memristor based bi-directional logic circuit can be operated by assigning the output 
terminals, then reading the input terminals.  

Operating a logic circuit “backwards” has many applications. An example is integer 
factorisation: Given an integer, factor it into its prime factors. For simplicity, assume the 
given integer, b, is the product of two prime numbers, p and q. If given p and q, then a 
multiplication circuit can be employed to find the product, b, of the two prime numbers. A 
traditional logic circuit, appropriately designed, can easily perform this task. Now, if 
given b and told it can be factored into two prime numbers, we take the same 
multiplication circuit structure (logic gates connected similarly), but design it to be a 
memristor based bi-directional logic circuit so the logic gates become terminal agnostic, 
meaning signal can be received and sent on any terminal of the logic gate. However, the 
new logic gates are not bijective, so the entire circuit will have to self-organiae to 
produce the values of p and q on the “input” terminals. 

Self-organising logic is a recently-suggested framework that allows the solution of 
Boolean truth tables “in reverse,” i.e., it is able to satisfy the logical proposition of gates 
regardless to which terminal(s) the truth value is assigned (“terminal-agnostic logic”). It 
can be realised if time non-locality (memory) is present. A practical realisation of self-
organising logic gates can be done by combining circuit elements with and without 
memory. By employing one such realisation, it can be shown numerically, that self-
organising logic gates exploit elementary instantons to reach equilibrium points. 
Instantons are classical trajectories of the non-linear equations of motion describing self-
organising logic gates, and connect topologically distinct critical points in the phase 
space. By linear analysis at those points it can be shown that these instantons connect the 
initial critical point of the dynamics, with at least one unstable direction, directly to the 
final fixed point. It can also be shown that the memory content of these gates only affects 
the relaxation time to reach the logically consistent solution. By solving the 
corresponding stochastic differential equations, since instantons connect critical points, 
noise and perturbations may change the instanton trajectory in the phase space, but not 
the initial and final critical points. Therefore, even for extremely large noise levels, the 
gates self-organise to the correct solution. 

Page  of 4 21
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Note that the self-organising logic we consider here has no relation to the invertible 
universal Toffoli gate that is employed, e.g., in quantum computation . Toffoli gates are 10

truly one-to-one invertible, having 3-bit inputs and 3-bit outputs. On the other hand, self-
organising logic gates need only to satisfy the correct logical proposition, without a one-
to-one relation between any number of input and output terminals. Instead, it is worth 
mentioning another type of bi-directional logic that has been recently discussed in  using 11

stochastic units (called p-bits). These units fluctuate among all possible consistent inputs. 
However, in contrast to that work, the invertible logic we consider here is deterministic.  

With time being a fundamental ingredient, a dynamical systems approach is most 
natural to describe such gates. In particular, non-linear electronic (non-quantum) circuit 
elements with and without memory have been suggested as building blocks to realise self-
organising logic gates in practice .  12

By assembling self-organising logic gates with the appropriate architecture, one then 
obtains circuits that can solve complex problems efficiently by mapping the equilibrium 
(fixed) points of such circuits to the solution of the problem at hand, as shown in , , , . 13 14 15 16

Moreover, it has been proved that, if those systems are engineered to be point 
dissipative , then, if equilibrium points are present, they do not show chaotic behaviour  17 18

or periodic orbits .  19

It was subsequently demonstrated , using topological field theory (TFT) applied to 20

dynamical systems, that these circuits are described by a Witten-type TFT , and they 21

 Tommaso Toffoli. Reversible computing. In International Colloquium on Automata, Languages, and Programming, pages 632–644. 10

Springer, 1980.

 K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta. Stochastic p-bits for invertible logic. Phys. Rev. X, 7:031014, Jul 2017.11

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 12

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 13

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.

 H. Manukian, F. L. Traversa, and M. Di Ventra. Memcomputing numerical inversion with self-organizing logic gates. IEEE Transactions 14

on Neural Networks and Learning Systems, PP(99):1–6, 2017.

 Haik Manukian, Fabio L Traversa, and Massimiliano Di Ventra. Accelerating deep learning with memcomputing. Neural Networks, 15

110:1–7, 2019.

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 16

529:1700123, 2017.

 J.K. Hale. Asymptotic Behavior of Dissipative Systems, volume 25 of Mathematical Surveys and Monographs. American 17

Mathematical Society, Providence, Rhode Island, 2nd edition, 2010.

 M. Di Ventra and F. L. Traversa. Absence of chaos in Digital Memcomputing Machines with solutions. Physics Letter A, 2017.18

 M. Di Ventra and F. L. Traversa. Absence of periodic orbits in digital memcomputing machines with solutions. Chaos: An 19

Interdisciplinary Journal of Nonlinear Science, 27:101101, 2017.

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 20

529:1700123, 2017.

 E. Witten. Topological quantum field theory. Comms. in Math. Phys., 117:353–386, 1988.21
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support long-range order, mediated by instantons. Instantons are classical trajectories of 
the non-linear equations of motion describing these circuits (see, e.g.,  or ).  22 23

The intrinsic non-locality of instantons, coupled with the topological character of 
critical points, is reminiscent of the “rigidity” and topological character of the ground 
state of some strongly-correlated quantum systems that are currently investigated for 
topological quantum computation, namely quantum computation that is robust against 
dephasing and noise , , . This analogy is not far-fetched. In fact, in the case of self-24 25 26

organising circuits, instantons, by connecting topologically-distinct critical points in the 
phase space, correlate elements of the circuit non-locally in space and time . This non-27

locality is somewhat reminiscent of quantum entanglement. However, self-organising 
logic gates are circuits that achieve long-range order without quantum-mechanical 
effects.  

 S. Coleman. Aspects of Symmetry, Chapter 7. Cambridge University Press, 1977.22

 K. Hori, S. Katz, R. Klemm, A. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow. Mirror symmetry. Clay Mathematics, 23

2000.

 Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang. Topological quantum computation. Bulletin of the American 24

Mathematical Society, 40(1):31–38, 2003.

 Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological 25

quantum computation. Reviews of Modern Physics, 80(3):1083, 2008.

 A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003.26

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 27

529:1700123, 2017.
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Self-organising logic gates: Dynex chip’s building blocks 

Let us start by outlining a model of self-organising logic gates as a system of coupled, 
nonlinear, ordinary differential equations. We will then solve these equations 
numerically to identify instantons, their critical points, and, by diagonalising the Jacobian 
(the matrix of the derivative of the flow vector field), their topological features.  

In this figure, we show the self-organising AND/OR gates we employ in our 
algorithm. They are modelled with standard resistors, resistors with memory (memristive 
elements) , and voltage- controlled voltage generators . The memristive elements 28 29

contain a capacitance in parallel, representing parasitic capacitive effects. The difference 
between the circuitry of the self-organising-AND and self-organising-OR gates is the 
orientation of the memristive elements. 

We want these gates to self-organise into the correct logical proposition irrespective 
of the terminal to which the truth value is assigned. To better understand how this is 
accomplished, it is beneficial to start from a specific example. Let us then choose to 
encode the logical 1 (True) with 1 V and the logical 0 (False) with −1 V.  

Consider first the self-organising-AND. If we set the voltage v1 to 1 V, the system 
should evolve to either v2 = v3 = 1 V or v2 = v3 = −1 V. Both are logically consistent 
with an AND truth table. On the other hand, if we consider the self-organising-OR gate, 
and fix v1 to −1 V (logical 0), the system should evolve to either v2 =v3 =−1V or v2 =v3 
=1V. The final result will depend on the initial conditions, namely the initial values of all 
voltages and internal state variables.  

 M. Di Ventra, Y.V. Pershin, and L.O. Chua. Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. 28

Proceedings of the IEEE, 97(10):1717–1724, Oct 2009.

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 29

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.
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Below, we describe a set of dynamical equations that accomplishes the above tasks. 
For the evolution of the memristive state variables we choose an equation of motion of 
the form ,  30

where xj is the state variable for the j-th memristive element. The function h serves to 
cutoff the dynamics of the state variable in certain regimes. We choose the conductance of 
these elements, g(x) = ((Roff −Ron)x+Ron)−1, where we set Roff = 1 Ω and Ron = 0.01 Ω. 
Thus, g(x)vM is equal to the current flowing through a memristor. The voltage drop, vM, is 
measured based on the orientation of the memristor: vM = va − vb, where vb is measured 
from the thick-bar side of the electronic symbol for the memristor. The coefficient α is 
restricted to be positive, and we choose α = 60. The physical meaning of α is discussed 
in . Finally, the values of the state variables are bounded, and are typically chosen to be x 31

∈ [0, 1] .  32

Ideally, in order to strictly enforce x ∈ [0,1], h(x,vM) should be represented by step 
functions31. However, in practical realisations and numerical simulations, the step 
functions should be replaced by some differentiable function. We use32, 

where k = 2, and choose Vt = 0.1 V. The θˆ r function is defined as,  

where we use the simplest case, r = 1. The coefficients can be found by requiring 
continuity and differentiability in y = 0 and y = 1. The coefficients for our implementation 
are a2 = 3 and a3 = −2. If we analyse the particular case discussed above, we fix, for both 
self-organising logic gates, the voltage generator on terminal 1, and we perform standard 
nodal analysis on terminals 2 and 3 to find  

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 30

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.

 M. Di Ventra and Y. V. Pershin. On the physical properties of memristive, memcapacitive and meminductive systems. 31

Nanotechnology, 24(25), 2013.

 Fabio Lorenzo Traversa and Massimiliano Di Ventra. Polynomial-time solution of prime factorization and np-complete problems with 32

digital memcomputing machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:023107, 2017.
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where the capacitance is C = 10−5 F and R = 1 Ω 2. The voltage generators generate a 
voltage from the relation Vi, j = b1v1 + b2v2 + b3v3 + dcgate, with dcgate a constant voltage 
specific to each gate32. The coefficients, bk, along with dcgate, are given in32. Terminals 2 
and 3 are floating, therefore, i2 = i3 = 0. Additionally, d/dt v1 = 0, due to terminal 1 being 
attached to a voltage generator that is held constant. The role of the voltage generators is 
to inject a large current when the gate is in an inconsistent configuration, a small current 
otherwise.  

By solving numerically the equations from above, with appropriate substitutions, we 
obtain precisely what we were after: a consistent logical solution for the given gate.  

From computational problems to Dynex chips 

Now, with the self-organising logic gates formulated with the concepts of above, we 
can build Dynex chips for solving a variety of use cases: 

• Federated machine learning , , , , , , , ; 33 34 35 36 37 38 39 40

 Yang, Q., Liu, Y., Chen, T. and Tong, Y., 2019. Federated machine learning: Concept and applications. ACM Transactions on 33

Intelligent Systems and Technology (TIST), 10(2), pp.1-19.

 Kaissis, G.A., Makowski, M.R., Rückert, D. and Braren, R.F., 2020. Secure, privacy-preserving and federated machine learning in 34

medical imaging. Nature Machine Intelligence, 2(6), pp.305-311.

 Wahab, O.A., Mourad, A., Otrok, H. and Taleb, T., 2021. Federated machine learning: Survey, multi-level classification, desirable 35

criteria and future directions in communication and networking systems. IEEE Communications Surveys & Tutorials, 23(2), 
pp.1342-1397.

 Konečný, J., McMahan, H.B., Ramage, D. and Richtárik, P., 2016. Federated optimization: Distributed machine learning for on-36

device intelligence. arXiv preprint arXiv:1610.02527.

 Li, T., Sahu, A.K., Talwalkar, A. and Smith, V., 2020. Federated learning: Challenges, methods, and future directions. IEEE signal 37

processing magazine, 37(3), pp.50-60.

 Huang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H. and Liu, D., 2019. Patient clustering improves efficiency of federated machine 38

learning to predict mortality and hospital stay time using distributed electronic medical records. Journal of biomedical informatics, 99, 
p.103291.

 Tan, K., Bremner, D., Le Kernec, J. and Imran, M., 2020, August. Federated machine learning in vehicular networks: A summary of 39

recent applications. In 2020 international conference on UK-China emerging technologies (UCET) (pp. 1-4). IEEE.

 Konečný, J., 2017. Stochastic, distributed and federated optimization for machine learning. arXiv preprint arXiv:1707.01155.40
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• Accelerating deep-learning , , , machine learning  and A.I. ; 41 42 43 44 45

• Constraint satisfaction problems , , , ; 46 47 48 49

• Mixed integer linear programming , , , ; 50 51 52 53

• Quadratic unconstraint binary optimisation , , ; 54 55 56

• Maximum satisfiability problem ; 57

• Subset sum problems ; and  58

• Integer factorisation . 59

The applications are limitless and fulfil the requirement of an ever growing demand 
for efficient computing power. The self-organising logic gates can be used to construct 
individual circuits to compute these computational tasks efficiently. It has already been 
demonstrated that such systems perform orders of magnitude faster than traditional 

 Manukian, H., Traversa, F.L. and Di Ventra, M., 2019. Accelerating deep learning with memcomputing. Neural Networks, 110, pp.1-7.41

 Shinde, P.P. and Shah, S., 2018, August. A review of machine learning and deep learning applications. In 2018 Fourth international 42

conference on computing communication control and automation (ICCUBEA) (pp. 1-6). IEEE.

 Balas, V.E., Roy, S.S., Sharma, D. and Samui, P. eds., 2019. Handbook of deep learning applications (Vol. 136). New York: Springer.43

 Sammut, C. and Webb, G.I. eds., 2011. Encyclopedia of machine learning. Springer Science & Business Media.44

 Mitchell, T.M. and Mitchell, T.M., 1997. Machine learning (Vol. 1, No. 9). New York: McGraw-hill.45

 Brailsford, S.C., Potts, C.N. and Smith, B.M., 1999. Constraint satisfaction problems: Algorithms and applications. European journal 46

of operational research, 119(3), pp.557-581.

 Arróyave, R., Gibbons, S.L., Galvan, E. and Malak, R.J., 2016. The inverse phase stability problem as a constraint satisfaction 47

problem: Application to materials design. JOM, 68, pp.1385-1395.

 Naruse, M., Aono, M., Kim, S.J., Kawazoe, T., Nomura, W., Hori, H., Hara, M. and Ohtsu, M., 2012. Spatiotemporal dynamics in 48

optical energy transfer on the nanoscale and its application to constraint satisfaction problems. Physical Review B, 86(12), p.125407.

 Roldan, E., Neágny, S., Le Lann, J.M. and Cortes, G., 2010. Constraint satisfaction problem for case-based reasoning adaptation: 49

application in process design. In Computer Aided Chemical Engineering (Vol. 28, pp. 397-402). Elsevier.

 Richards, A. and How, J.P., 2002, May. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. 50

In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) (Vol. 3, pp. 1936-1941). IEEE.

 Floudas, C.A. and Lin, X., 2005. Mixed integer linear programming in process scheduling: Modeling, algorithms, and 51

applications. Annals of Operations Research, 139, pp.131-162.

 Little, J.D., 1966. The synchronization of traffic signals by mixed-integer linear programming. Operations Research, 14(4), 52

pp.568-594.

 Morais, H., Kádár, P., Faria, P., Vale, Z.A. and Khodr, H.M., 2010. Optimal scheduling of a renewable micro-grid in an isolated load 53

area using mixed-integer linear programming. Renewable Energy, 35(1), pp.151-156.

 Lewis, M. and Glover, F., 2017. Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical 54

analysis. Networks, 70(2), pp.79-97.

 Neven, H., Rose, G. and Macready, W.G., 2008. Image recognition with an adiabatic quantum computer I. Mapping to quadratic 55

unconstrained binary optimization. arXiv preprint arXiv:0804.4457.

 Alom, M.Z., Van Essen, B., Moody, A.T., Widemann, D.P. and Taha, T.M., 2017, May. Quadratic unconstrained binary optimization 56

(QUBO) on neuromorphic computing system. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 3922-3929). 
IEEE.

 Creignou, N., 1995. A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System 57

Sciences, 51(3), pp.511-522.

 LaMacchia, B.A., 1991. Basis reduction algorithms and subset sum problems.58

 Brent, R.P., 2000. Recent progress and prospects for integer factorisation algorithms. In Computing and Combinatorics: 6th Annual 59

International Conference, COCOON 2000 Sydney, Australia, July 26–28, 2000 Proceedings 6 (pp. 3-22). Springer Berlin Heidelberg.
Page  of 10 21



DynexSolve The Dynex Platform Proof-of-Useful-Work Scheme

algorithmic approaches on a wide variety of combinatorial optimisation 
problems , , , , . 60 61 62 63 64

 As an example, we show a Dynex chip mapping a constraint satisfaction problem, 
specifically, a Boolean satisfiability problem . The formulation a Dynex chip 65

representing a SAT problem will be detailed, along with its importance in computational 
complexity theory. Other use cases follow the same concept and principles and can be 
derived given the equations of motion provided. Since Dynex chips are non-quantum 
systems, their equations of motion can be efficiently integrated numerically. 

The Boolean satisfiability problem60 (SAT) is an important decision problem solved 
by determining if a solution exists to a Boolean formula. Apart from its academic interest, 
the solution of SAT instances is required in a wide range of practical applications, 
including, travel, logistics, software/hardware design, etc. , . The SAT problem has been 66 67

studied for decades, and has an important role in the history of computational complexity 
theory. Computer scientists, while categorising the efficiency of algorithms, defined the 
NP class for difficult decision problems , . NP-completeness is not exclusive to SAT, 68 69

with hundreds of other NP-complete problems ranging from those of academic interest 
(graph theory, algebra and number theory, mathematical programming) to industry 
application (network design, data storage and retrieval, program optimisation). 

 F. L. Traversa, P. Cicotti, F. Sheldon, and M. Di Ventra. Evidence of exponential speed-up in the solution of hard optimization 60

problems. Complexity, 2018:7982851, 2018.

 Massimiliano Di Ventra and Fabio L. Traversa. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. 61

Journal of Applied Physics, 123(18):180901, 2018.

 Haik Manukian, Fabio L Traversa, and Massimiliano Di Ventra. Accelerating deep learning with memcomputing. Neural Networks, 62

110:1–7, 2019.

 F. L. Traversa and M. Di Ventra. Memcomputing integer linear programming. arXiv:1808.09999, 2018.63

 Forrest Sheldon, Fabio L. Traversa, and Massimiliano Di Ventra. Taming a nonconvex landscape with dynamical long-range order: 64

Memcomputing ising benchmarks. Phys. Rev. E, 100:053311, Nov 2019.

 Justyna Petke. Bridging Constraint Satisfaction and Boolean Satisfiability. Springer, 2015.65

 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & 66

Co., New York, NY, USA, 1990.

 Joao Marques-Silva. Practical applications of boolean satisfiability. In 2008 9th International Workshop on Discrete Event Systems, 67

pages 74–80. IEEE, 2008.

 Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of 68
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An instance of SAT is a Boolean formula with three components : 70

1) A set of N Boolean variables: y1, y2,...,yN.  
2) A set of literals. A literal is a variable (l = y) or a negation of a variable (l =  ̄y). 
3) A set of M distinct clauses: C1, C2,..., CM. Each clause consists of literals combined 

by logical OR connectives.  

SAT is the decision problem of determining if an assignment of variables exists for 
which the Boolean formula returns TRUE, that is, all clauses must evaluate to TRUE as 
they are connected by AND operators to create the Boolean formula. If a such a solution 
exists, we say the SAT instance (Boolean formula) is satisfiable, otherwise, the instances 
is unsatisfiable. Commonly, it is said the instance is SAT or UNSAT, respectively.  

 

Example of a Boolean circuit, in conjunctive normal form (CNF), representing a 3-
SAT. The three OR clauses (seen inside the gates) are then converted to self-organising 
logic gates where the propositional variables yi are represented as electrical voltages vi. 
The traditional output of the self-organising-OR is forced to be true (logical 1), because 
all clauses must be true to satisfy a Boolean proposition in CNF. If a literal is the 
negation of a variable, then the associated “input” terminal on that gate must pass 
through a NOT gate (triangle symbol) before the terminal is connected to other terminals 
sharing the same variable.  

The idea behind this approach is that the solutions of the SAT instance are mapped 
into the equilibrium points of a dynamical system. If the initial conditions of the 
dynamics belong to the basin of attraction of the equilibrium points, then the dynamical 
system will have to “fall” into these points. The approach is fundamentally different from 
the standard algorithms because dynamical systems perform computation in continuous 
time. Numerical simulation of continuous-time physical systems, an algorithm, requires 
the discretisation of time to integrate the ordinary differential equations (ODEs) 
representing the physical system. As such, the dynamical-systems approach is ideally 
suited for a hardware implementation, especially on Graphic-Processing-Units (GPU) 
with their capability of massively perform floating point operations in parallel. 

 Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. Algorithms for the satisfiability (sat) problem. In Handbook of 70

Combinatorial Optimization, pages 379–572. Springer, 1999.
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The ability of continuous time dynamics to perform the solution search without 
resorting to chaotic dynamics results in efficient simulations (an algorithmic 
implementation) of Dynex chips using computationally-inexpensive integration schemes 
and modern computers. In addition, it was shown that such systems find the solution of a 
given problem by employing topological objects, known as instantons, that connect 
critical points of increasing stability in the phase space , . Simulations found that they 71 72

then self-tune into a critical (collective) state which persists for the whole transient 
dynamics until a solution is found . It is this critical branching behaviour that allows 73

them to explore collective updates of variables during the solution search, without the 
need to check an exponentially-growing number of states. This is in contrast to local-
search algorithms which are characterised by a “small” (not collective) number of 
variable updates at each step of the computation . 74

To construct a Dynex chip that finds a satisfying assignment for SAT we follow the 
general procedure outlined in . To begin, the Boolean variables, yi, are transformed into 75

continuous variables for use in the Dynex chip. The continuous variables can be realised 
in practice as voltages on the terminals of the self-organising OR gate. The gate can 
influence its terminals to push voltages towards a configuration satisfying its OR logic 
regardless of whether the signal received by the gate originates from the traditional input 
or the traditional output. The voltages are bounded, vi ∈ [−1, 1], with Boolean values 
recovered by thresholding: TRUE if vi > 0, FALSE if vi < 0, and ambiguous if vi = 0. To 
perform the logical negation operation on the continuous variable, one trivially multiplies 
that quantity by −1. The self- organising logic circuit that comprises the Dynex chip is 
built by connecting all of the self-organising OR gates. 

Next, we interpret a Boolean clause as a dynamical constraint function, with its state 
of satisfaction determined by the voltages. The m-th Boolean clause, (li,m ∨ lj,m ∨ lk,m), 
becomes a constraint function,  

where qi,m = 1 if li,m = yi, and qi,m = −1 if li,m = y ̄i. The function is bounded, Cm ∈ 
[0,1], and a clause is necessarily satisfied when Cm < 1/2. The instance is solved when Cm 
< 1/2 for all clauses. By thresholding the clause function we avoid the ambiguity 
associated with vi = 0. If some voltage is ambiguous (vj = 0) and all clauses are satisfied, 

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 71

529:1700123, 2017.

 M. Di Ventra and Igor V. Ovchinnikov. Digital memcomputing: from logic to dynamics to topology. Annals of Physics, 409:167935, 72

2019.

 S. R. B. Bearden, F Sheldon, and M Di Ventra. Critical branching processes in digital memcomputing machines. EPL (Europhysics 73

Letters), 127(3):30005, 2019.

 Alexander K. Hartmann and Heiko Rieger. New Optimization Algorithms in Physics. John Wiley & Sons, Inc., Hoboken, NJ, USA, 74

2004.

 Massimiliano Di Ventra and Fabio L. Traversa. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. 75

Journal of Applied Physics, 123(18):180901, 2018.
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then any Boolean assignment to yj will be valid in that configuration. The use of a 
minimum function in Cm preserves an important property of 3-SAT. A clause is a 
constraint, and, by itself, a clause can only constrain one variable (via its literal). The 
values of two literals are irrelevant to the state of the clause if the third literal results in a 
satisfied clause.  

Finally, a Dynex chip employs memory variables to assist with the computation74,75. 
The memory variables transform equilibrium points that do not correspond to solutions of 
the Boolean formula into unstable points in the voltage space, leaving the solutions of the 
3-SAT problem as the only minima. We chose to introduce two memory variables per 
clause: short-term memory, xs,m, and long-term memory, xl,m. The terminology intuitively 
describes the behaviour of their dynamics. For the short-term memory, xs,m lags Cm, 
acting as an indicator of the recent history of the clause. For the long-term memory, xl,m 
collects information so it can “remember” the most frustrated clauses, weighting their 
dynamics more than clauses that are “historically” easily satisfied. Both the number and 
type of memory variables, as well as the form of the resulting dynamical equations, are 
not unique provided neither chaotic dynamics nor periodic orbits are introduced74. 

We chose for the dynamics of voltages and memory variables the following,  

where the summation is taken over all constraints in which the voltage appears. The 
memory variables are bounded, with xs,m ∈ [0,1] and xl,m ∈ [1,104M]. The boundedness of 
voltage and memory variables implies that there are no diverging terms in the above 
equations. 

The parameters α and β are the rates of growth for the long-term and short-term 
memory variables, respectively. Each memory variable has a threshold parameter used for 
evaluating the state of Cm, and the two parameters are restricted to obey δ < γ < 1/2. (This 
also guarantees that there is a sufficiently large basin of attraction for the solutions. The 
equations have a small, strictly-positive parameter, 0 < ε ≪ 1, to remove the spurious 
solution (xs,m = 0). However, ε additionally serves as a trapping rate in the sense that 
smaller values of ε make it more difficult for the system to flip voltages when some Cm 
begins to grow larger than γ.  

In the equations, the first term in the summation is a “gradient-like” term, the second 
term is a “rigidity” term . The gradient-like term attempts to influence the voltage in a 76

clause based on the value of the other two voltages in the associated clause, 

 S. R. B. Bearden, F Sheldon, and M Di Ventra. Critical branching processes in digital memcomputing machines. EPL (Europhysics 76

Letters), 127(3):30005, 2019.
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Consider the two extremes: if the minimum results is Gi,m = 1, then vi needs to be 
influenced to satisfy the clause. Conversely, if the minimum gives Gi,m = 0, then vi does 
not need to influence the clause state. For the rigidity term, we choose  

The purpose of the three rigidity terms for a constraint is to attempt to hold one 
voltage at a value satisfying the associated m-th clause, while doing nothing to influence 
the evolution of the other two voltages in the constraint. Again, this aligns with the 3-SAT 
interpretation that a clause can only constrain one variable. The short-term memory 
variable acts as a switch between gradient-like dynamics and rigid dynamics. During the 
solution search, Gm will seek to influence three voltages until clause m has been satisfied. 
Then, as xs,m decays to zero, Rm takes over. The long-term memory variables weight the 
gradient-like dynamics, giving greater influence to clauses that have been more frustrated 
during the solution search. The rigidity is also weighted by xl,m, but reduced by ζ.  

It is important to realise that any simulation of a dynamical system is an algorithm 
because the continuous-time dynamics of the system must be discretised. The equations 
of motion of the individual Dynex chip constructed is numerically integrated with the 
forward-Euler method using an adaptive time step . The number of possible initial 77

conditions for a parallel integration on GPU is defined with the number of variables 2n, 
representing the positive and negative occurrence of each variable, two polarities 
(positive and negative) as well as four stages: 

Number of initial conditions (IC) = 16n 

Comprehensive empirical studies of the integration method have demonstrated that the 
algorithm has an upper bound complexity of n5 integration steps when all initial 
conditions are being simulated in parallel. Thus, to guarantee a solution of the 
computational problem, 16n Dynex chips have to be simulated in parallel for the 
maximum duration of n5 integration steps. 

 Lei, Z. and Hongzhou, J., 2012, December. Variable step euler method for real-time simulation. In Proceedings of 2012 2nd 77

International Conference on Computer Science and Network Technology (pp. 2006-2010). IEEE.
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Collective behaviour (long-range order) ,  in the Dynex chips is responsible for the 78 79

observed efficiency in the solution search. The dynamics described by the equations of 
motion terminate only when the system has found the solution to the 3-SAT problem 
(namely the phase space has only saddle points and the minima corresponding to the 
solution of the given problem. In addition, neither periodic orbits nor chaos can coexist if 
solutions of the 3-SAT are present. Finally, using supersymmetric topological field theory, 
it had been demonstrated that the continuous-time dynamics (physical implementation) 
reach the solution of a 3-SAT instance, for a fixed αr, in linear or sub-linear continuous 
time, irrespective of the difficulty of the instance.  

DynexSolve Proof-of-Useful-Work 

The DynexSolve mining algorithm performs the numerical integration of all Dynex 
chips required for the computational job and is therefore classified as a Proof-of-Useful-
Work (PoUW) mining algorithm. 

Depending on problem size (number of variables n and number of clauses m) and the 
memory available on the provided Graphic-Processing-Units (GPUs) the capacity for 
each miner to run parallel Dynex chips is determined. As all miners are working 
collectively on computational jobs, a job and chip scheduling system is required to assign 
and balance the work required: 

The Dynex Mallob system, named after the term malleable, which defines a 
distributed computing environment , , has been inspired by  and  . It dynamically 80 81 82 83

assigns jobs with the respective available initial conditions to the individual miners and 
ensures that all 16n initial conditions are being computed for a maximum duration of n5 
integration steps.  

DynexSolve combines two algorithms, namely the numerical integration of Dynex 
Chips as well as a modified CryptoNight hashing function to confirm blocks on the 
Dynex block chain. It has been designed to spend the majority of the computational 
energy on the numerical integration (meaningful work) to ensure that almost no 
resources are being wasted with hashing: 

 M. Di Ventra, Fabio L. Traversa, and Igor V. Ovchinnikov. Topological field theory and computing with instantons. Ann. Phys. (Berlin), 78

529:1700123, 2017.

 M. Di Ventra and Igor V. Ovchinnikov. Digital memcomputing: from logic to dynamics to topology. Annals of Physics, 409:167935, 79

2019.

 Desell, T., Maghraoui, K.E. and Varela, C.A., 2007. Malleable applications for scalable high performance computing. Cluster 80

Computing, 10, pp.323-337.

 Ghafoor, S.K., 2007. Modeling of an adaptive parallel system with malleable applications in a distributed computing environment. 81

Mississippi State University.

 Schreiber, D. and Sanders, P., 2021. Scalable SAT solving in the cloud. In Theory and Applications of Satisfiability Testing–SAT 2021: 82

24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24 (pp. 518-534). Springer International Publishing.

 Sanders, P. and Schreiber, D., 2022. Mallob: Scalable SAT Solving On Demand With Decentralized Job Scheduling. Journal of Open 83

Source Software, 7(76), p.4591.
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Algorithm: DynexSolve 

1: Input: Computational problem  := DynexMallob() 
2: space := parallel Dynex chips fitting on GPU memory 
3: available Dynex chips := DynexMallob(space) 
4: Build Dynex Chip circuit for numerical integration = n 
5: solved := false 
6: for each CHIP do 
7:   initial conditionsCHIP = available Dynex chips 
8:   while solved = false & integration stepsCHIP < n5 do 

9:   integration stepsCHIP := 0 
10:  init statehash, statenonce and statediff 
11:   pouwblob := nonceblockchain + timestamp + pouwstate 
12:  while integration steps < batch-size do 
13:   stateCHIP,n < Adaptive Forward Euler step 
14:   if solved = true then 
15:    return (solved) 
16:   end if 

17:   statehash, statediff := lighthash(pouwblob, statenonce) 
18:   pouwblob,loc := localMinima(state) 
19:   integration stepsCHIP := +1 

20:  end while 

21:  DynexMallob(state) 
22:  eligiblecounter := pouweligable 

23:  hashingcounter := 0 
24:  while hashingcounter < eligiblecounter do 

25:   hash := CryptoNightmodified(blocktemplate, nonce) 
26:   if hashdiff > blockdiff then 

27:    submit pouwblob + pouwhash + nonce 
28:   end if 

29:   hashingcounter := +1 
30:  end while  

31: end while 
32: end for 
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Initially, DynexSolve retrieves the definition of the assigned computational task 
from the Dynex Mallob system, which allows to calculate the total capacity of all parallel 
Dynex Chips fitting on the connected Graphic-Processing-Units (GPUs), defined as 
space. 

1: Input: Computational problem  := DynexMallob() 
2: space := parallel Dynex chips fitting on GPU memory 

Given space, DynexSolve retrieves the set of assigned Dynex Chips from the Dynex 
Mallob system which also define the initial conditions for the Dynex chips to compute. 
Based on that data, DynexSolve builds the corresponding system of equations of 
motions to be numerically integrated.  

3: available Dynex chips := DynexMallob(space) 
4: Build Dynex Chip circuit for numerical integration = n 

Every chip is integrated in parallel on each of the connected Graphic-Processing-
Units with the different initial conditions provided, as long as either a solution was found 
or the maximum number of integration steps n5 has been reached.  

5: solved := false 
6: for each CHIP do 
7:   initial conditionsCHIP = available Dynex chips 
8:   while solved = false & integration stepsCHIP < n5 do 

The numerical integration is performed in batches (typically 10,000 integration steps 
per batch per Dynex chip). Every integration step creates a unique state for each Dynex 

chip:  

13:   stateCHIP,n < Adaptive Forward Euler step 

The algorithm also performs hashing on the provided PoUWblob as well as the 
calculation of the current energy landscape (local minima): 

17:   statehash, statediff := lighthash(pouwblob, statenonce) 
18:   pouwblob,loc := localMinima(state) 

 This ensures that the performed work is unique and accurate. The current energy 
landscape given a current state can be verified quickly with a simple function call for any 
given computational job. 
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Each initial condition has a different number of integration steps required to reach the 
lowest possible global energy level of the underlying computational problem, which 
represents a solution. As soon as a solution to the job has been found, the Dynex Mallob 
system is being updated, the solution state submitted to Dynex and the job marked as 
“finalised”. 

14:   if solved = true then 
15:    return (solved) 
16:   end if 

 The successful PoUW work continuously defines the overall hash-rate of the miner, 
also determining the number of eligible hashes DynexSolve can use for the blockchain 
related CryptoNightmodified hashing function to confirm blocks in the Dynex block chain: 

22:  eligiblecounter := pouweligable 

23:  hashingcounter := 0 
24:  while hashingcounter < eligiblecounter do 

25:   hash := CryptoNightmodified(blocktemplate, nonce) 
26:   if hashdiff > blockdiff then 

27:    submit pouwblob + pouwhash + nonce 
28:   end if 

29:   hashingcounter := +1 
30:  end while  

Submitted blocks to the Dynex block chain require a successful verification from its 
PoUW data as well as the calculated block nonce itself. Per definition of the algorithm, 
both are entangled and uniquely connected to the underlying computational job, which 
guarantees that block nonces can be found only if the entire Proof-of-Useful-Work 
scheme has been performed with the DynexSolve algorithm. 
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Mining renumeration scheme 

The renumeration scheme for DynexSolve mining consists of the following elements: 

(i) Block reward: Miners who are finding a block nonce of a block are receiving the 
block reward for this block. The block reward follows a smooth emission curve . 84

(ii) Transaction fees: In addition to the block reward, also the transaction fees 
included in the mined block are being rewarded. 

(iii)  Block fees: Dynex customers who post and run computation jobs on the Dynex 
platform can define a block fee they are paying for the computations. The block fee is 
paid for every block which is being mined working on the computational problem. As 
a) the network hash-rate, b) the maximum complexity (16n) and c) the upper bound 
of required integration steps (n5) are known at job creation, customers can allocate a 
pre-defined amount for any job. The Dynex Mallob system is assigning highest paid 
jobs first, then in descending order. The block fee is rewarded to the miners similarly 
as the block reward. This guarantees continuity and sustainability of the business 
model for miners, also for the period when all blocks have been mined. 

(iv)  Solution reward: As an additional motivation for miners, Dynex customers can 
define a solution reward for the miner who completed the computational job first. It 
is being automatically rewarded to the first miner completing a job. This incentivises 
miners to continuously perform DynexSolve PoUW calculations (rather than often 
restarting jobs) and also provides CPU miners a valid chance to win the solution 
reward. In contrast to GPU miners, where the initial conditions are pre-defined in the 
unique Dynex chips, are the initial conditions for CPU miners randomised. 

 https://dynexcoin.org/wp-content/uploads/2023/01/Dynex-whitepaper.pdf84
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Additional Ressources 

Main Dynex website:  
https://dynexcoin.org/ 

Dynex white paper:  
https://dynexcoin.org/wp-content/uploads/2023/01/Dynex-whitepaper.pdf 

Dynex in 10 Layman’s Terms:  
https://dynexcoin.org/dynex-in-ten-laymans-terms/ 

DynexSolve: Proof-of-Useful-Work (PoUW):  
https://dynexcoin.org/discover-dynex/ 

Dynex History & Roadmap:  
https://dynexcoin.org/discover-dynex/#roadmap 

Dynex Mining Pools on MiningPoolStats:  
https://miningpoolstats.stream/dynexcoin 

Dynex Mining Pools Certification Status:  
https://dynexcoin.org/mining-pool-certifications-status/ 

Dynex Mining Software (DynexSolve):  
https://github.com/dynexcoin/Dynex/releases/tag/DynexSolve 

Dynex Node and CLI Wallet:  
https://github.com/dynexcoin/Dynex/releases/tag/Dynex_2.2.2 

Dynex Blockchain Explorer:  
https://dynex.dyndns.org/home.php 

Dynex Bounty Program:  
https://dynexcoin.org/dynex-bounties/ 

Dynex Wallets:  
https://dynexcoin.org/get-dnx/#wallets 

Dynex Mobile Web Wallet:  
https://wallet.dynexcoin.org/ 

Dynex Introductory Video:  
https://dynexcoin.org/video/ 
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