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Abstract

In large-scale peer-to-peer (P2P) Video-on-Demand (VoD) streaming applications, a fundamental challenge is
to quickly locate new supplying peers whenever a VCR commandis issued, in order to achieve smooth viewing
experiences. For many existing commercial systems which use tracker servers for neighbor discovery, the increasing
scale of P2P VoD systems has overloaded the dedicated servers to the point where they cannot accurately identify
the suppliers with the desired content and bandwidth. To avoid overloading the servers and achieve instant neighbor
discovery over the self-organizing P2P overlay, we design anovel method of organizing peers watching a video. The
method features a light-weight indexing architecture to support efficient streaming and fast neighbor discovery at the
same time.InstantLeapseparates the neighbors at each peer into a streaming neighbor list and a shortcut neighbor
list, for streaming and neighbor discovery respectively, which are maintained loosely but effectively based on random
neighbor list exchanges. Our analysis shows thatInstantLeapachieves anO(1) neighbor discovery efficiency upon
any playback “leap” across the media stream in streaming overlays of any size, and low messaging costs for overlay
maintenance upon peer join, departure, and VCR operations.We also verify our design with large-scale simulation
studies of dynamic P2P VoD systems based on real-world settings.
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I. I NTRODUCTION

Peer-to-peer (P2P) Video-on-Demand (VoD) streaming has been successfully deployed over the Internet [1]–[3],
providing an abundance of online videos to hundreds of thousands of users. Unlike the traditional client-server
approach which tends to incur enormous server costs [4], P2P VoD applications allow peers watching the same
video to exchange available media blocks among themselves,and can therefore dramatically alleviate the server
load [5]–[7].

Most state-of-the-art P2P VoD streaming applications adoptmesh-pull based P2P protocols. Each application
typically consists of multiple mesh overlays, each of whichconnects the peers watching the same video. The peers
in an overlay request available video blocks in their local buffers from each other, based on the exchanged buffer
availability bitmaps (i.e., buffer maps). The buffer at each peer represents a sliding window of the video stream,
containing the block it is currently playing (referred to asits playback positionhereinafter) and a number of blocks
the peer has just watched or is about to watch in the near future.

When compared to P2P live streaming which has more mature applications in deployment, P2P VoD streaming
presents a fundamental technical challenge to the designers: Given a certain video, the users (peers) could be
watching different parts of the video, and may issue VCR commands (e.g., pause, random seek) at will to “leap” to
new playback positions (referred to as thetarget playback positions), which leads to a polarization of the buffered
and needed contents among the peers and consequently the necessity to frequently search for new supplying peers.
In order to provide the user with a smooth playback experience, there-buffering delayfrom the time when a VCR
command is issued to the time when playback resumes needs to be minimized, to a level comparable to that of
VCR operations with a videocassette recorder, or to the channel switching delay when watching TV. In existing P2P
VoD systems, this re-buffering delay can be as long as 18 seconds on average [8], which certainly needs improving
in the future.
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The re-buffering delayin P2P VoD streaming is typically composed of the time to search for new supplying peers
and the time for downloading and buffering new blocks from them. While existing research work by others have
investigated reducing the block downloading delay using such methods as optimized block scheduling algorithms
[9], this paper aims at minimizing the neighbor discovery delay which in most situations is the dominant component
in the re-buffering delay. In particular, we propose the design of a novel overlay architecture, with which given
any target playback position, a set of new supplying peers can be found as fast as possible; these supplying peers
(1) have the available blocks around the target playback position and (2) can aggregately provide theleaping peer
(i.e., the peer that is switching to a new playback position) with sufficient upload bandwidth to match the required
streaming rate.

For neighbor discovery upon playback “leaps”, existing commercial P2P VoD systems have largely resorted to
tracker servers which keep track of the block availability at all the peers, and the peers would query the server for
available serving peers. The disadvantages of such a centralized mechanism are: first, the tracker server can easily
become a bottleneck if peers join, depart, and issue VCR commands frequently; second, in order to return a set of
serving peers that can provide sufficient upload bandwidth toa requesting peer, the load on each individual peer
needs to be periodically reported to the tracker server as well, which may further overload the server.

A few recent P2P VoD proposals construct different overlay structures for neighbor discovery in a decentralized
fashion, using DHTs (Distributed Hash Tables) [10]–[12], dynamic skip list [13], and ring-based overlays [14].
These schemes typically involvelog(N) complexity (whereN is the total number of peers) for each lookup of
supplying peers with the required blocks, without taking their upload bandwidth sufficiency into consideration.

In this paper, we proposeInstantLeap, a new architecture of organizing peers watching the same video in a
P2P VoD application. The overlay structure is simple but efficient, supporting both effective streaming andinstant
neighbor lookup due to playback “leaps”. InInstantLeap, peers are grouped according to their playback locality.
Each peer strategically maintains connections to a number ofpeers with similar playback progress, as well as some
selected peers watching different parts of the video. The neighbors with similar playback progress provide efficient
streaming of media blocks the peer is currently watching andare referred to asstreaming neighbors; the neighbors
watching other parts of the video facilitate fast discoveryof new supplying peers with sufficient aggregate upload
bandwidth to serve the leaping peer, which are named asshortcut neighbors. The list of shortcut neighbors is
maintained loosely but effectively based on random neighbor list exchanges, which effectively pushes the neighbor
discovery delay to the shortest possible.

The highlights of our overlay architecture design are as follows.

⊲ We show anO(1) efficiency for discovering new supplying neighbors upon peerjoins and playback leaps
across the video stream. In most cases, the identified supplying peers in the target playback position can
provide sufficient aggregate upload bandwidths and are readyto transmit media blocks immediately after the
new connections are established.

⊲ We show anO(m) overlay maintenance overhead for dealing with peer dynamics, including joins, fail-
ures/departures, and any playback leaps upon various VCR operations, wherem is the number of peer groups.
We show that such an increment of control overhead in a typical mesh-pull based P2P VoD protocol is
negligible, as compared to the overhead in the basic protocol.

⊲ InstantLeap can be seamlessly integrated into the mesh-pullprotocol employed in prevailing P2P VoD systems,
as a simple add-on component for overlay management, which is implemented based on random exchanges
of neighbor information to build shortcuts among peers watching different parts of a video.

The remainder of this paper is organized as follows. Sec. II discusses related work on P2P VoD streaming and
indexing overlay design. In Sec. III, we present our network model and the architecture ofInstantLeapoverlay. In
Sec. IV , we discuss the detailed protocols inInstantLeap. In Sec. V, we analyze the performance and overhead
of the protocols. We evaluateInstantLeapby extensive simulations and comparisons against existingschemes in
Sec. VI, and conclude the paper in Sec. VII.

II. RELATED WORK

Riding on the prevailing success of P2P file sharing and live streaming applications, a number of studies have
been proposed to take the advantage of the P2P paradigm to provide VoD service. Most existing P2P VoD streaming
protocols fall into two main categories: one of them is tree-push based protocols which organize peers into multiple
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multicast trees, and distribute the media streams by pushing data from the tree root downward [15]–[18]. However,
such tree-push based protocols suffer from their low resilience to volatile peer dynamics. The other category includes
the mesh-pull based protocols, such as BitOS [19], BASS [20],Toast [5], and Redcarpet [21], which are based on
block “swarming” [22] over mesh overlay topologies. PPLive [1], UUSee [2], and PPStream [3] are early successful
deployments of such mesh-pull based P2P VoD service.

In contrast to P2P live streaming, many problems related to peer asynchrony and VCR operations in P2P VoD
streaming are more challenging [10], [13], [14], [23], [24]. One of the fundamental challenges is to minimize the
re-buffering delay after a VCR command is issued.

Some studies propose to use prefetching to minimize the re-buffering delay [10], [23], which may require placing
anchors throughout the media stream. VOVO [24] explores theassociation rules between two segments—the one
a user is playing and another one the user might jump to—and prefetches the potential destination segments. In
general, prefetching takes up extra bandwidth which may otherwise be used to improve streaming quality, which
may not be accurate due to the difficulty in predicting a futuresegment to watch. Other efforts on minimizing the
re-buffering delay focus on the improvement of the block selection and source selection algorithms [9].

For new supplying peer discovery without prefetching, existing commercial P2P VoD systems [1]–[3] have largely
resorted to tracker servers. In P2P file sharing applications,a peer only reports to a tracker server when it joins
or departs. In responding to a request for neighbors, the tracker server provides a random subset of peers in the
system to the requesting peer, which may work well since eachpeer is interested in the entire file. The case in
P2P streaming applications is quite different: to ensure a low streaming delay, tracker servers have to receive more
frequent updates from all peers in the system on their current segment availability, in order to provide a refined
list of neighbors to the requesting peers. CollectCast [25]and oStream [18] require peers to report their playback
progress to the tracker server periodically. Kangaroo [9] designs an algorithm to estimate the playback progress of
peers, which may introduce inaccuracy. In addition, the protocol does not guarantee that the peers found may have
sufficient upload bandwidth to serve the leaping peer, which is one of the focuses in our design.

To alleviate the load on tracker servers, DHT (Distributed Hash Table) has been adopted in a number of recent
P2P VoD proposals [10]–[12] to map block locations to peers. In general, each DHT lookup takeslog(N) steps,
whereN is the number of peers in the system, and DHT updates are required whenever the cached blocks are
changed at the peers as their playback progresses.

A few recent proposals suggest different overlay structures to implement neighbor lookup without the complexity
and cost of constructing a DHT. Wanget al. [13] utilize a dynamic skip list (DSL) to construct a P2P VoD overlay,
where all the peers are connected sequentially according totheir playback progress at the base layer of the skip list,
and each peer may also randomly connect to a few non-adjacentpeers in the higher layers. Alog(N) complexity
is shown for each lookup over the skip list. Chiet al. [26] suggest the use of an AVL tree for peer indexing,
which can achieve a search efficiency sublinear to the number of peers. Chenget al. [14] propose a ring-assisted
overlay management scheme, where each peer maintains a set of concentric rings with power-law radius and places
neighbors on the rings based on how similar their cached contents are. This overlay structure promises to achieve
an O(log(T/w)) lookup complexity (T andw are the video size and the buffer size, respectively), but a rigorous
proof is missing.

RanSub [27] is one of the earliest work to achieve load balancing among network nodes via random peer
selections. We also make use of the general idea of biased random neighbor selection at peers. Nevertheless,
RanSub provides a general scalable mechanism for deliveringstate about a random subset of global participants in
large-scale networks, whileInstantLeapmakes use of random peer selection to implement fast neighbor discovery
and load balancing at VoD peers at the same time.

In this paper, we aim to design an efficient overlay architecture and associated protocols which can achieveO(1)
lookup efficiency upon any playback leaps, and which can provide sufficient streaming bandwidth for any new
playback position with high probability.

III. A RCHITECTURE

Unlike live streaming where a peer’s playback position can only move continuously forward, VoD streaming
allows the users to freely change their playback position toany random point in the video stream. Such random
playback leapsnecessitates quick discovery of new supplying peers which are able to provide video blocks at
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the target playback position and have the upload bandwidth to actually serve these blocks. To achieve the fastest
possible neighbor discovery,InstantLeappresents a simple but efficient P2P overlay architecture, corresponding to
the streaming of one video toN peers.

A. Peer grouping with playback locality

We partition the video stream intom consecutive segments along the time axis. Each segment consists of multiple
media blocks. A peer is marked as a member of groupi if its current playback position falls into theith segment.
Peers in the same group (e.g., groupi), and those in the two adjacent groups (e.g., groupsi− 1, i + 1), may have
overlapping buffer contents and are thus potential supplying peers for one another.

Each peer in groupi maintains two neighbor lists: the first list (referred to as the streaming neighbor list) contains
a subset of peers within the same groupi as well as those in the two adjacent groupsi − 1 and i + 1; the second
list (referred to as theshortcut neighbor list) includes peers that are not in groupi nor the two groups adjacent to
group i, the connections to which serve as shortcuts to reach other parts of the video stream upon playback leaps.
A conceptual model of the overlay design is illustrated in Fig. 1 (A). The discovery of peers to be maintained in
the neighbor lists is based on a random exchange protocol, tobe discussed in Sec. IV.
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Fig. 1. P2P VoD overlay architecture inInstantLeap.

The two neighbor lists at a peer facilitate efficient streamingfrom neighbors in the same group or adjacent groups,
and meanwhile enable fast discovery of new supplying peers in other destination groups whenever a playback leap
occurs, by following connections to the shortcut neighbors. By maintaining neighbors in a random subset of all
groups at each peer, we decouple the complexity of inter-group neighbor discovery from the total number of peers
in the overlay,N ; the complexity is reduced to at most a simple function of thenumber of segments in the video,
m. What is more, in the following, we show that the complexity of neighbor discovery can be independent ofm
as well.

B. Inter-group connectivity

We can represent each group of peers in Fig. 1 (A) by one graph node and merge all the connections across
groups into one; the condensed overlay graph is shown in Fig. 1(B). In practical large-scale P2P VoD applications,
a streaming overlay of a video can be populated by thousands of peers or more, with a large number of peers in each
group. The node degrees in the condensed overlay graph in Fig. 1(B) can be much larger than the number of inter-
group connections at a single peer. Therefore, given a reasonable number of neighbors at each peer, the condensed
overlay graph can turn out to be a dense graph, or even a complete graph. Hence the number of hops between any
two nodes in the condensed graph would tend to be small,i.e., O(1) with high probability. For a peer currently at
segmenti who initiates a playback leap to a non-adjacent segmentj, the complexity of finding a neighbor in the
destination groupj is proportional to the number of hops between the nodes concerned in the condensed graph,
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TABLE I
NOTATIONS IN InstantLeapPROTOCOLS

N The total number of peers in the overlay
pi A peer in the overlay,i = 1, . . . , N

m The total number of groups
G(k) The set of peers in Groupk, k ∈ {1, · · · , m}

U(pi) Upload capacity of peerpi

Nu(pi) The set of neighborspi is uploading to
Nsc(pi) The shortcut neighbor list atpi

Nst(pi) The streaming neighbor list atpi

R(pi) Streaming bandwidth requirement atpi

β1 Minimum fraction of groups a peer’s shortcut neighbors span
β2 Maximum fraction of groups a peer’s shortcut neighbors span
T Upper limit on the number of times a peer exchanges neighbor lists with others,

in order to discover a peer in a destination group
L Upper limit on the number of times a peer exchanges neighbor lists with others,

in order to obtain more shortcut neighbors in one group

i.e., O(1) with high probability. After a neighbor in the destination group is located, the leaping peer can acquire
more streaming neighbors that can aggregately provide sufficient bandwidth for its media streaming, by exchanging
neighbor lists with the established neighbor in the group.

We present the detailed protocols for realizing the architecture in the Sec. IV, and extensive analysis of the
protocols in Sec. V, which shows that when each peer has a reasonable number of shortcut neighbors (i.e., O(m)),
anO(1) complexity for discovering supplying peers in any new playback position with sufficient upload bandwidth
can be achieved with high probability.

IV. I NSTANTLEAP: PROTOCOLS

InstantLeapassumes a P2P VoD streaming framework similar to that of most state-of-the-art mesh-pull based P2P
streaming protocols (e.g., CoolStreaming [28], UUSee [2], PPLive [8]): New peers are introduced into a streaming
overlay by a bootstrapping tracker server; they then streamthe video by retrieving needed blocks from neighbors
based on exchanges of buffer maps, and may request neighbor lists from each other to learn about more peers in
the overlay.

One of the original features ofInstantLeapis the construction of streaming and shortcut neighbor lists based on
simple exchanges of known neighbors among the peers. These lists facilitate efficient streaming and fast neighbor
discovery upon playback leaps with low additional protocoloverhead. In this section, we first discuss the core
neighbor list construction protocols inInstantLeapand then present the detailed procedures to handle peer join,
departure, and playback leap.

A. Neighbor List Construction

Based on random neighbor list exchanges between peers, the core procedures of constructing the streaming
neighbor list and the shortcut neighbor list at a peer, respectively, are given inAlgorithm 1. The notations used in
Algorithm 1 and those hereinafter are summarized in Table I.

In InstantLeap, the number of neighbors in the streaming neighbor list of a peer is a constant,e.g., 30–50, as
typically used in prevailing P2P streaming protocols [1]–[3]. The number of groups the peer has shortcut neighbors
in is in the range of[β1m, β2m], where0 ≤ β1 < β2 ≤ 1: our ConstructShortcutNeighborListprocedure would
stop finding neighbors in new groups when the shortcut neighbors the peer has obtained spanβ2m different groups;
this procedure will be restarted when the number of groups has fallen underβ1m.

In our design, a peer may maintain multiple shortcut neighbors from the same group, for two purposes: (1) to
maximally guarantee a sufficient aggregate streaming bandwidth when its playback “leaps” to the destination group,
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Algorithm 1 Basic Procedures at Peerpi in InstantLeap
1: procedure CONSTRUCTSTREAMNEIGHBORL IST()
2: while my streaming neighbor listNst(pi) is not full
3: randomly select a peerpj ∈ Nst(pi)
4: obtain the streaming neighbor list frompj , i.e., Nst(pj)
5: mergeNst(pj) into my streaming neighbor listNst(pi)
6: end if
7: end procedure
1: procedure CONSTRUCTSHORTCUTNEIGHBORL IST()
2: while the number of groups my current shortcut neighbors belong tois smaller thanβ2m
3: randomly select a peerpj from my streaming or shortcut neighbor listNst(pi) ∪ Nsc(pi)
4: obtain the shortcut neighbor list frompj , i.e., Nsc(pj)
5: mergeNsc(pj) into my shortcut neighbor listNsc(pi)
6: end while
7: for each groupk I have shortcut neighbor(s) in
8: if the SNM Conditionhas not been satisfied and the number of times for neighbor listrequests has not

exceededL
9: randomly select a peerpj from my shortcut neighbor list that belongs to groupk

10: obtain the streaming neighbor list frompj , i.e., Nst(pj)
11: mergeNst(pj) into my shortcut neighbor listNsc(pi)
12: end if
13: end for
14: end procedure

such that the peer can immediately start playback with satisfactory smoothness; (2) as our shortcut neighbor lists
are maintained loosely (i.e., with a low update frequency in cases of peer departures and playback leaps to incur
low maintenance overhead), such a redundancy in shortcut neighbors maintained for each group providesrobustness
in fast neighbor discovery,i.e., with high probability at least one neighbor can be successfully identified that still
caches the segment corresponding to the destination group.

The number of shortcut neighbors from the same group that a peer maintains is decided by: the streaming quality
the peer aims to obtain, the available upload bandwidth of peers from the group, and the upper limitL on the
number of neighbor list exchanges a peer can carry out. In particular, peerpi decides whether it should obtain
more shortcut neighbors from groupk by examining the followingShortcut Neighbor Maintenance Condition(SNM
Condition):

∑

pj∈Nsc(pi)∩G(k)

U(pj)

1 + |Nu(pj)|
≥ R(pi). (1)

The left side of inequality (1) represents an estimate of the aggregate upload bandwidth peerpi can obtain from
its current shortcut neighbors if its playback “leaps” to group k, whereG(k) represents the set of peers in group
k, U(pj) denotes the upload capacity at peerpj , andNu(pj) is the set of neighborspj is concurrently uploading
to. Here we estimate the available supplying bandwidth frompj to pi by evenly dividing the upload capacity ofpj

among all its receivers. Information on the upload capacityand the number of concurrent uploading peers can all
be exchanged among peers with their neighbor list exchangesand status probing at low frequencies.R(pi) denotes
the desired streaming bandwidth at peerpi. For constant rate video streams, the streaming bandwidth is equivalent
to the streaming rate of the video; in cases that layered coding or multiple description coding is employed [29],
R(pi) can be set to different levels according to the number of layers/descriptions the peer may retrieve. Using the
SNM condition, peerpi wishes to maximally guarantee a sufficient streaming bandwidth when its playback “leaps”
to a new group, within the limit ofL neighbor exchanges.

By limiting the number of groups and the number of shortcut neighbors per group, we aim to achieve a good
tradeoff between neighbor discovery efficiency and maintenance overhead. Further discussions and appropriate
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Algorithm 2 Join Procedure at Peerpi in InstantLeap
1: procedure PEERJOIN(PlayPosition)
2: Calculate group IDk corresponding toPlayPosition
3: Request a few neighbors from the tracker server and add them into Nst(pi) andNsc(pi) according to their

group membership
4: while my streaming neighbor list is empty,i.e., Nst(pi) == ∅, and the number of times for neighbor list

requests has not exceededT
5: Randomly select a peerpj from my shortcut neighbor listNsc(pi)
6: Obtain the shortcut neighbor listNsc(pj) from peerpj

7: Merge peers inNsc(pj) into my streaming neighbor listNst(pi) or shortcut neighbor listNsc(pi)
8: end while
9: if no neighbor with group IDk has been discovered

10: Request a neighbor with group IDk from a tracker server
11: end if
12: ConstructStreamNeighborList()
13: ConstructShortcutNeighborList()
14: end procedure

values of these parameters will be presented in Sec. V.

Main protocols inInstantLeapcan be implemented based on the procedures inAlgorithm 1.

B. Peer Join

With InstantLeap, we seek to minimize the load on the tracker servers. When a peer first joins a streaming
overlay, the number of existing peers assigned to it can be assmall as one or a few. These bootstrapping peers are
added to the new peer’s streaming or shortcut neighbor lists, according to their group membership. Following the
procedure ofPeerJoinin Algorithm 2, if none of the assigned neighbors is in the group where the peer’s desired
playback position falls into, the new peer discovers a peer in the destination group by exchanging neighbor lists
with the few known neighbors. Then the new peer executesUpdateStreamNeighborList()to obtain more neighbors
with similar playback progress for video streaming, andUpdateShortcutNeighborList()to establish shortcuts to
segments across the entire video stream, as described inAlgorithm 1.

C. Continuous playback

When a peer watches the video continuously, its group membership changes whenever it moves on to play the
next video segment. The peer notifies all its neighbors in the two lists with its new group membership. Nevertheless,
there would be little changes to its streaming neighbor list, when most of its streaming neighbors are pursuing
a continuous playback and they can continue serve media blocks to each other. In addition, most of its shortcut
neighbors remain intact as well, except the few that have switched to the streaming neighbor list. Only when the
number of groups its shortcut neighbors span falls belowβ1m will the ConstructShortcutNeighborListprocedure
be invoked again.

D. Playback Leap

When there is a playback leap due to a VCR operation, the procedure of PlaybackLeapin Algorithm 3 is
executed. In the procedure, a peerpi looks for neighbors in the destination group by exchanging neighbor list with
its existing neighbors. When it still fails to discover sucha neighbor peer afterT exchanges of neighbor lists, it
queries the tracker server as the last resort.T is a protocol parameter, which represents the maximum number of
times a peer exchanges neighbor lists with others, in its attempt to discover a supplying peer in the destination
group, before it resorts to the tracker server. We discuss anappropriate choice ofT based on our analysis in Sec. V.

After connecting to discovered peers in the destination group, the peer starts retrieving video blocks right away,
since the shortcut neighbors maintained at each peer maximally guarantee a sufficient streaming bandwidth to a
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Algorithm 3 Playback Leap Procedure at Peerpi in InstantLeap
1: procedure PLAYBACK LEAP(DestPosition)
2: Calculate group IDk corresponding toDestPosition
3: while there is no peer with group IDk on my shortcut neighbor listNsc(pi) and the number of times for

neighbor list requests has not exceededT
4: Randomly select a peerpj from my streaming neighbor listNst(pi) or shortcut neighbor listNsc(pi)
5: Obtain the shortcut neighbor listNsc(pj) from peerpj

6: Merge peers inNsc(pj) into my shortcut neighbor listNsc(pi)
7: end while
8: if no neighbor with group IDk has been discovered
9: Request a neighbor with group IDk from a tracker server

10: end if
11: Clear my streaming neighbor listNst(pi)
12: Add the discovered neighbors with group IDk into my streaming neighbor listNst(pi)
13: Start streaming from the current streaming neighbors
14: ConstructStreamNeighborList()
15: ConstructShortcutNeighborList()
16: end procedure

new requesting peer, based on the procedure ofConstructShortcutNeighborList. Meanwhile, the peer executesCon-
structStreamNeighborListto obtain more new streaming neighbors, andConstructShortcutNeighborListto update
its shortcut neighbor list.

The leaping peerpi may reside in the streaming or shortcut neighbor lists of other peers. When peerpi has
changed its group membership, those peers can still keep peer pi in their respective streaming or shortcut neighbor
lists, as long aspi still caches the segment corresponding to its previous group. In this way, a peer which has cached
multiple segments in its local buffer can effectively servepeers in multiple groups, leading to maximal utilization
of peer cache and bandwidth resources.

E. Peer departure and failure

When a peerpi leaves a P2P VoD overlay gracefully, it will notify its streaming neighbors and shortcut
neighbors, which remove the peer from their neighbor lists and may invokeConstructStreamNeighborListor
ConstructShortcutNeighborListto rebuild the respective list when necessary.

When a peerpi unexpectedly fails, its information may still be cached at the streaming neighbor lists or shortcut
neighbor lists of some other peers. Such outdated information will be purged out of the streaming neighbor list
of a peer when it notices the connection to the streaming neighbor pi has been shut down, and can be removed
from the shortcut neighbor list of a peer when it tries to connect to peerpi upon playback leaps. The redundancy
provided byConstructShortcutNeighborList, in that typically more than one shortcut neighbor from the same group
is maintained in a peer’s shortcut neighbor list, guarantees there may still be available neighbors to resort to in
case of such lagged updates.

V. A NALYSIS

Although InstantLeapprotocols appear to be simple add-ons to the existing typical mesh-based streaming
protocols, we show in the following that anO(1) neighbor discovery efficiency can be achieved upon any playback
leap. We also carefully analyze the overlay maintenance overhead upon various peer operations inInstantLeap, and
explain the tradeoff between neighbor discovery robustness and maintenance overhead.

A. Neighbor discovery efficiency

We first show that a peer can obtain shortcut neighbors acrossO(m) groups by only a small number of neighbor
list exchanges. In our analysis, we focus on the simplified case for each peer to obtain one shortcut neighbor from
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a group. To acquire more neighbors from the same group, we know at most a constant numberL of neighbor list
exchanges are involved, based onAlgorithm 1.

Let st
i denote the average number of groups the shortcut neighbor list at peeri spans (referred to as “group span”

hereinafter) aftert times of random neighbor list exchanges. We first prove a lemma.

Lemma 1. Let peerpi and peerpj be two randomly selected peers from allN peers in the streaming overlay,
with an initial group span of the shortcut neighbor list ofs0

i = a and s0
j = b, respectively. The average group span

of pi’s shortcut neighbor list afterpi exchanges neighbor list withpj is s1
i = s1

j = a + b − a×b
m

.

Proof: The average group span of the merged shortcut neighbor list isthe sum of the group span of the
shortcut neighbor list ofpi (i.e., a) and that of the shortcut neighbor list ofpj (i.e., b), minus the expected number
of overlapping groups which isa

m
× b

m
× m.

Based on Lemma 1, we have the following theorem.

Theorem 2. Assumings0
i ∈ [K, (1+α)K], whereK ≥ 1 and0 ≤ α ≪ 1, for any peerpi in the streaming overlay.

After t times of shortcut neighbor list exchanges with randomly selected other peers in the overlay, the average
group span of the shortcut neighbor list ofpi is st

i≥m[1 − e−
2

t
×K

m ].

Proof: Given that each peer’s shortcut neighbor list has a similar group span, based on Lemma 1, the average
group span of shortcut neighbor list at peerpi after one exchange for neighbors with another random peer is
s1
i = 2s0

i −
(s0

i )
2

m
.

After t + 1 times of exchanges betweenpi and other peers, we can derive that

st+1
i = 2st

i −
(st

i)
2

m
, (t≥0),

Let Q(t) = st
i − m. We have

Q(t + 1) = st+1
i − m = 2st

i −
(st

i)
2

m
− m = −

1

m
[st

i − m]2 = −
1

m
[Q(t)]2

We then haveQ(t) = − [Q(0)]2
t

m2t−1
= −m(1 − s0

i

m
)2

t

, and thus we derive the expression forst
i:

st
i = Q(t) + m = m[1 − (1 −

s0
i

m
)2

t

]

Since1 − s0

i

m
≤ e−

s0
i

m with 0 ≤ s0
i ≤ m, we have

st
i ≥ m[1 − e−

2
t
×s0

i

m ] ≥ m[1 − e−
2

t
×K

m ]

Corollary 3. Assuming initiallys0
i = 1 for any peeri in the streaming overlay, afterlog(m) times of shortcut

neighbor list exchanges with randomly selected other peers, the average group span of the shortcut neighbor list
of peeri is slog m

i ≥(1 − 1
e
)m≈0.63m.

This corollary tells us that even in the extreme cases that each peer is assigned with only one neighbor initially,
after a small number (log(m)) of neighbor list exchanges, the peer can obtain shortcut neighbors covering more
than half (0.63) of all the groups.

log(m) is generally a very small value. Based on the corollary, we know that a peer will have a shortcut neighbor
list spanning no less than(1 − 1

e
)m groups after a few exchanges after joining the overlay. As a side note, in our

protocol design discussed in Sec. IV-A, parameterβ2 can be set to a value of23 considering this effect. In addition,
we can set the maximum number of neighbor list exchanges in order to build the shortcut neighbor list,T , to be
log(m) × 1

(1− 1

e
)

= e
e−1 log(m), representing the expected number of neighbor list exchanges in order to obtain a

neighbor in each group.
In this case, when a peer, which has finished the joining procedure, initiates a playback leap, the probability that it

already has a neighbor belonging to its destination group isat least1− 1
e
. If there is no such a neighbor, according to

our protocol inAlgorithm 3, the peer will exchange neighbor lists with its current neighbors. The probability it can
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successfully obtain a shortcut neighbor within a specific destination group afterv times of neighbor list exchanges
is at least(1 − 1

e
)(1

e
)v. Therefore, we can derive the following theorem on the expected number of neighbor list

exchanges a peer needs upon a playback leap, in order to discover a shortcut neighbor in the destination group.

Theorem 4. The expected number of neighbor list exchanges, for a peer which has finished its joining procedure,
to find a shortcut neighbor to a destination group upon any playback leap, isO(1).

Proof: Consider any peerpi in the overlay who makes a playback leap to destination groupk. Let q denote
the average probability that a peer’s shortcut neighbor list includes a peer in the destination group. This probability
equals the ratio of the average size of the shortcut neighborlist at a peer over the total number of groups (i.e.,
m). In the case thatpi’s shortcut neighbor list does not contain such a neighbor, the probability thatpi can obtain
such a peer by one neighbor list exchange with another peerpj , randomly selected from the overlay, isq, i.e., the
probability thatpj has a neighbor in groupk. Therefore, the probability that a peer successfully obtains a neighbor
in the destination group afterv times of random neighbor list exchanges is(1− q)v × q, and the expected number
of exchanges is

∑
∞

v=0 v × (1 − q)v × q = 1−q
q

.
Considering that the peers involved in the exchanges are notnew joiners (i.e., they have all finished their joining

procedures), we haveq ≥ 1− 1
e
, and the expected number of exchanges is1−q

q
≤ 1

e−1 ≈ 0.58. Therefore, in general,
the expected number of neighbor list exchanges upon any playback leap isO(1).

In our analysis, we have assumed that all neighbor list exchanges occur between two peers randomly selected
from the overlay. The random exchange inInstantLeapbetween a peer and one of its randomly selected neighbors
represents the best possible approximation to the expectedrandomness in a practical P2P VoD system.

B. Overlay Maintenance Overhead

The overhead inInstantLeapprotocols is due mainly to the exchange, construction and maintenance of neighbor
lists in case of various peer operations, including peer joins, departures and various VCR operations. We next
analyze such overlay maintenance overhead.

1) Peer Join:As shown in Corollary 3, a new joining peer to the overlay carries out at mostlog(m)+(1− 1
e
)mL

neighbor list exchanges in order to construct its shortcut neighbor list, in whichlog(m) represents the number of
times it requests neighbor lists to obtain at least one neighbor in each of(1 − 1

e
)m groups, and(1 − 1

e
)mL is the

upper bound for further neighbor list exchanges in order to acquire a few more neighbors in each group to satisfy
the SNM condition.

For streaming neighbor list construction, a new joining peer carries out an expected number ofe
e−1 log(m)

neighbor list exchanges in order to obtain at least one neighbor in the group it belongs to, and then a small number
of exchanges to obtain more streaming neighbors, that is much smaller than the total number of streaming neighbors
(i.e., 30–50) a peer can maintain.

2) Continuous Playback:When a peer is continuously playing the video stream, the overlay maintenance
overhead includes sending updates of its group membership to neighbors when it crosses group boundaries, and
updating its neighbor lists to purge outdated neighbor information and adding new neighbors. Such overhead is
generally much smaller than that for new neighbor list construction upon peer joins.

3) Playback Leap:After a peer’s playback “leaps” to a new segment and it is connected to at least one neighbor
in the destination groupk, the peer reconstructs its streaming neighbor list and updates its shortcut neighbor list.
The overhead in streaming neighbor list construction involves a small number of neighbor list exchanges with its
known neighbors in groupk (much smaller than30–50) to obtain sufficient streaming neighbors. The update to
its shortcut neighbor list is little as well, as the peer may only need to take the neighbors in groupk out of its
shortcut neighbor list and place a few of its previous streaming neighbors into the shortcut neighbor list instead.

4) Peer Departure/Failure:In cases of peer departures and failures, the overlay maintenance overhead is pro-
portional to the size of the leaving peer’s streaming and shortcut neighbor lists atO(m), unlessConstructStream-
NeighborListor ConstructShortcutNeighborListis invoked to rebuild the respective list at a neighbor.

C. Tradeoff between Neighbor Discovery Robustness and Overlay Maintenance Overhead

As discussed in Sec. IV-A, for each group a peer’s shortcut neighbors span, it may maintain more than one
shortcut neighbors, in order to provide robustness into theneighbor discovery process in practical systems with
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possibly outdated neighbor group membership information.We now analytically show the tradeoff between such
robustness and neighbor list maintenance overhead in this case.

Let g denote the probability that a neighborpj peerpi obtains for destination groupk by neighbor list exchanges
can no longer servepi the segment corresponding to groupk, e.g., in cases ofpj ’s playback leap and buffer
replacement, orpj ’s failure from the system. The probability that peerpi has at least one valid neighbor in group
k by maintainingl shortcut neighbors for the group is1 − gl.

To maintain more than one shortcut neighbors for a group, there are additionalL neighbor list exchanges (at
most) at each peer to acquire more neighbors in the group uponpeer join based onAlgorithm 1, andO(l) more
overhead for shortcut neighbor list maintenance in cases ofpeer failure, departure, and playback leaps, when the
number of shortcut neighbors maintained for the group isl.

As outdated neighbor information is mainly caused by unexpected failures of peers and segment replacement in
peers’ buffers, in a system with large buffer sizes (thus lower chances of segment replacement) and a low probability
of unexpected failures (e.g., wired networks), we may choose to maintain fewer shortcut neighbors per group at
the peers; otherwise, more neighbors per group is more desirable. In this way, a best tradeoff between neighbor
discovery robustness and overlay maintenance overhead canbe achieved in systems of different scenarios.

VI. PERFORMANCEEVALUATION

We present evaluations ofInstantLeapbased on a P2P simulator we have developed. The simulator is implemented
using Java, featuring a multi-threaded high-performance architecture, with supports for multiple event-driven time-
outs. All peer dynamics, including playback leaps, joins and departures, are simulated with events scheduled at their
respective times. With careful optimizations, our simulator can simulate large-scale P2P systems with10, 000 or
more simultaneous peers, distinguishing itself from representative existing P2P simulators [30] which may support
3, 000 peers at most.

In our evaluations, the streaming rate of videos via the overlay is 450 Kbps. The upload bandwidth at the peers
ranges between300–10, 000 Kbps, following a Pareto distribution with shape parameterK = 2, which corresponds
to a resource index (RI = average upload capacity per peer

streaming rate ) of 1.3. Peers’ lifetime follows an exponential distribution with
an expected length of30 minutes. Peers join the overlay following a Poisson arrival model, whose inter-arrival
times follow an exponential distribution. The expectation of the inter-arrival times differs across the experiments
where we tried different overlay sizes, in order to keep the total number of online peers at a similar level over
time in each experiment. The interval between two playback leaps at each peer follows an exponential distribution
with an expected length of200 seconds. We experiment with videos of different lengths, varying from 40 minutes
to 200 minutes. Each peer’s buffer can cache media segments up to three minutes of playback. The number of
groups(m) thus ranges from40 to 200, accordingly. By default,β1 = 1

3 , β2 = 2
3 , andT = 10. Other than neighbor

list exchanges upon different peer operations such as playback leap, we also implement periodical exchanges of
neighbor lists among peers to update neighbor status duringa peer’s continuous playback: streaming neighbor lists
are exchanged among streaming neighbors every5 seconds; the default interval for shortcut neighbor list exchanges
and shortcut neighbor status probing among peers is60 seconds. These parameters are carefully selected to be
consistent with the measurement results in some existing representative P2P VoD systems [8], [23].

For streaming blocks scheduling in our simulations, peers exchange buffer maps every5 seconds. A peer requests
blocks needed from its multiple neighbors, following a hybrid deadline-rarest-first block selection policy, as is done
in [5].

A. Performance of Neighbor Discovery

Fig. 2 and Fig. 3 show the average number of neighbor list exchanges upon peer joins and playback leaps,
respectively, in overlays of different sizes and for videosof different lengths. These numbers translate into the
delay for neighbor discovery, when the protocols are implemented in practice. From both figures, we observe
that the numbers of exchanges are fewer than four, and littlechange with the increase of the overlay size. This
clearly confirms thatInstantLeapachieves a constant neighbor discovery performance ofO(1), independent of the
number of peers in the overlay. When a peer joins or its playback leaps, it can get a ready collection of streaming
neighbors in the destination group from its neighbors or itsown shortcut neighbor list. This provides users with
short re-buffering delay and satisfactory viewing experience.
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Fig. 2. Average number of neighbor list exchanges upon peer joins.
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Fig. 3. Average number of neighbor list exchanges upon playback leaps.
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Fig. 4. Average number of neighbor list exchanges upon playback leaps with different resource indices.

Fig. 4 further shows the average number of neighbor list exchanges under different resource indices in overlays
of different sizes (withm = 60). Streaming neighbor discovery is faster when the upload bandwidth in an overlay
is more abundant. We observe that even when the upload capacity supply barely meets the demand (RI is around
1), a peer can still find sufficient suppliers with an average of 6times of neighbor list exchanges in large overlays
of up to 10000 peers.

In addition, we have also implemented the Dynamic Skip List (DSL)algorithm [13] for comparison purpose. In
Fig. 2 and 3, the numbers corresponding to the DSL case represent the average numbers of search steps to discover
a supplying peers in a DSL. We observe thatInstantLeapgenerally requires just a few steps for neighbor discovery
as compared to DSL, while DSL apparently requires many more steps with the increase of the overlay size.
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B. Overlay Maintenance Overhead

In this subsection, we show that althoughInstantLeapmaintainsO(m) shortcut neighbors and a constant number
of streaming neighbors at each peer, the additional maintenance traffic incurred is indeed negligible, as compared
to other control overhead and the streaming traffic in a typical mesh-based P2P VoD system.
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Fig. 5. Maintenance overhead upon peer joins.
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Fig. 6. Maintenance overhead upon playback leaps.

1) Overhead at peers:Fig. 5 and Fig. 6 plot the control messaging overhead for overlay maintenance upon peer
joins and playback leaps, which depends on the number of control messages and the sizes of the neighbor list
exchange messages. We have observed that upon peer joins, the total number of message bytes to build both the
streaming neighbor list and the shortcut neighbor list is nomore than a mere1, 000 bytes. A comparison between
Fig.5 and Fig. 6 shows that control messages incurred by a playback leap is much fewer than those caused by a
peer join, as a leaping peer only needs to rebuild its streaming neighbor list while updating its shortcut neighbor
list slightly.

Besides messaging overhead caused by a peer join or leap, Fig.7 shows the messaging overhead incurred by
periodical exchanges of neighbor lists and status probing among the peers. We observe that such messaging overhead
is lower than 2.5 Kbps, equivalent to 0.5% of the streaming rate.

Comparing the overhead ofInstantLeapto that of an existing protocol, such as DSL [13] and the ring-assisted
solution [14], we find by comparing our results with those given in their respective papers, that those protocols
generally incur larger messaging overhead in cases of peer joins and leaps, whileInstantLeaprequires more control
message exchanges for maintenance of the overlay during playback.

2) Load on the tracker server: InstantLeapminimized the requests to tracker servers, which are only used as
the last resort when a peer fails to identify a streaming or shortcut neighbor in the destination group afterT times
of neighbor list exchanges. In our implementation, the tracker server maintains information about100 peers only
in all the overlays of different sizes. Fig. 8 shows that the control messaging overhead on the tracker server is less
than100 Kbps, which is very low indeed.
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Fig. 7. Regular overlay maintenance overhead.
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Fig. 8. Load on the tracker server.

C. Streaming quality
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Fig. 9. Average streaming quality at peers.

We evaluate the streaming quality at the peers inInstantLeapby calculating a continuity index, which represents
the percentage of blocks a peer receives before their respective playback deadlines during playback. In Fig. 9 we
observe that the average continuity index is always larger than0.9, showing that the new neighbors a peer connects
to upon its playback leaps can provide a sufficient streaming bandwidth most of the times.

We are also interested to explore whether the overlay can adapt to severe peer dynamics. In this experiment, we
have a large portion of peers leap to other playback positions simultaneously in an overlay of10, 000 peers while
watching a 60-minute video. In Fig. 10, we see that if10% of all the peers leap concurrently, there is little impact
on the average streaming quality of the peers, as most of themcan find new neighbors very quickly. In the case
that50% of all the peers leap simultaneously, the average continuity index drops to0.8, but picks up quickly again
in less than10 seconds.
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D. Load Balance among Peers
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Fig. 11. Number of occurrence of each peer in other peers’ shortchut neighbor lists (sorted by peer ID).
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Fig. 12. Number of occurrence of each peer in other peers’ shortchut neighbor lists (sorted by the peer’s average upload bandwidth per
receiver).

We next investigate the load on each peer to serve as shortcutneighbors for peers in other groups. In this
experiment, we stream over an overlay of5, 000 peers watching a 80-minute video, and count the number of
occurrence of each peer in other peers’ shortcut neighbor lists in the entire system. In Fig. 11, we observe that
most peers serve as shortcut neighbors at a similar number ofother peers. As peers with larger IDs join the overlay
later, we also observe from Fig. 11 that peers with longer online time tend to be known by more other peers.

In Fig. 12, we plot the results again, against the average bandwidth that each peer can upload to each of its
receivers. We find that if a peer can allocate more upload bandwidth to each of its streaming neighbors, it tends
to be known by more peers. This helps the leaping peers to find newsupplying peers with sufficient bandwidth
more quickly. We also observe that the average bandwidth perupload link at the majority of peers lies within a
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Fig. 13. Impact of different values ofβ2.

relatively small range, which is due to the effective load balancing using the SNM condition: Based on SNM, peers
tend to select potential shortcut neighbors from those thatare currently uploading at high bandwidth to each of
their streaming neighbors. In this way, a high-capacity peer will have a higher chance to be selected as a shortcut
neighbor and subsequently to serve as a streaming neighbor;with the increase of streaming neighbors, its average
upload bandwidth per link decreases, and thus its chance to be further selected as shortcut and streaming neighbors
decreases, resulting in the relatively similar bandwidth per upload link at the majority of the peers.

E. Impact of parameters

1) Impact of the number of groups maintained:In InstantLeap, we impose a range on the number of groups
spanned by shortcut neighbors at each peer,i.e., [β1m, β2m]. We now investigate whether the number of groups
affects the performance and overhead inInstantLeap. Fig. 13 plots the neighbor discovery performance and overlay
maintenance overhead for different values ofβ2, respectively. In all these experiments, we setβ1 = 0.5β2, and the
size of the overlay is10, 000. We observe that the neighbor discovery performance becomes better when peers have
shortcut neighbors in more groups (with the increase ofβ2), which is at the cost of increased overlay maintenance
overhead. A closer look reveals that the optimal value ofβ2 is achieved at around0.6, where there is a good
balance between the performance and the overhead. This also explains our choice of usingβ2 = 2

3 by default in
all of the experiments.

2) Impact of the number of shortcut neighbors maintained pergroup: We have analyzed the tradeoff between
neighbor discovery performance and overlay maintenance overhead when a peer keeps different numbers of shortcut
neighbors for each group in Sec. V-C. We verify our analysis byexperiment: We stream over an overlay of 10000
peers watching a 40-minute video. There are 40 groups in this overlay and each group contains 250 peers on
average. In Fig. 14, the number of shortcut neighbors shown isthe maximum number of shortcut neighbors a peer
can maintain per group. SNM conditions are applied for dynamic shortcut neighbor maintenance. We observe that
increasing the maximum number of shortcut neighbors per group reduces the re-buffering delay upon playback
leaps and improves the average streaming quality, with slight sacrifice in terms of messaging overhead.
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Fig. 14. Impact of the number of shortcut neighbors in each group

VII. C ONCLUDING REMARKS

This paper proposesInstantLeap, a scalable light-weight indexing architecture to achieveefficient streaming and
fast neighbor discovery for P2P VoD streaming applications.The highlight ofInstantLeapis its neighbor discovery
method which has a performance ofO(1) upon any playback leap with low overlay maintenance overhead. After
each playback leap, the identified supplying peers can provide sufficient aggregate streaming bandwidth to the
leaping peer with high probability, and would be ready to start transmitting media blocks immediately after the
new connections are established.

InstantLeapcan be implemented on top of the basic framework of prevailing mesh-pull based P2P VoD protocols,
by adding the simple function of random neighbor list exchanges to maintain shortcut neighbors. The seemingly
simple protocol achieves unexpectedly good neighbor discovery performance, thus providing good support for
various VCR operations, which is validated by both theoretical analysis and extensive simulations with large-scale
overlays and intense peer dynamics.

In the future, we may extend the current framework to solve the problem of bandwidth imbalance across the
groups. This problem more likely occurs in overlays of small size. During shortcut neighbor list construction, peers
can estimate the bandwidth situation of each group, so that apeer belonging to a group with sufficient bandwidth
can help distribute the blocks belonging to a group with limited bandwidth.
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