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Abstract

In large-scale peer-to-peer (P2P) Video-on-Demand (VdBaming applications, a fundamental challenge is
to quickly locate new supplying peers whenever a VCR commiaridsued, in order to achieve smooth viewing
experiences. For many existing commercial systems whiehtrasker servers for neighbor discovery, the increasing
scale of P2P VoD systems has overloaded the dedicated s¢ovére point where they cannot accurately identify
the suppliers with the desired content and bandwidth. Tadaweerloading the servers and achieve instant neighbor
discovery over the self-organizing P2P overlay, we desigowel method of organizing peers watching a video. The
method features a light-weight indexing architecture topsut efficient streaming and fast neighbor discovery at the
same timelnstantLeapseparates the neighbors at each peer into a streaming peiljgtband a shortcut neighbor
list, for streaming and neighbor discovery respectivelyiolv are maintained loosely but effectively based on random
neighbor list exchanges. Our analysis shows thatantLeapachieves ar)(1) neighbor discovery efficiency upon
any playback “leap” across the media stream in streamingdaygeof any size, and low messaging costs for overlay
maintenance upon peer join, departure, and VCR operatilasalso verify our design with large-scale simulation
studies of dynamic P2P VoD systems based on real-worlchgstti

Index Terms

P2P streaming, video-on-demand, fast neighbor discousagxing overlay

. INTRODUCTION

Peer-to-peer (P2P) Video-on-Demand (MoD) streaming has hemressfully deployed over the Internet [1]—[3],
providing an abundance of online videos to hundreds of thods of users. Unlike the traditional client-server
approach which tends to incur enormous server costs [4], RIP applications allow peers watching the same
video to exchange available media blocks among themsehrebs,can therefore dramatically alleviate the server
load [5]-[7].

Most state-of-the-art P2P VoD streaming applications adoesh-pull based P2P protocols. Each application
typically consists of multiple mesh overlays, each of whidmnects the peers watching the same video. The peers
in an overlay request available video blocks in their loaaffdrs from each other, based on the exchanged buffer
availability bitmaps i(e., buffer maps). The buffer at each peer represents a slidindowi of the video stream,
containing the block it is currently playing (referred toitsplayback positiorhereinafter) and a number of blocks
the peer has just watched or is about to watch in the nearefutur

When compared to P2P live streaming which has more maturécapphs in deployment, P2P VoD streaming
presents a fundamental technical challenge to the desigven a certain video, the users (peers) could be
watching different parts of the video, and may issue VCR camas €.g, pause, random seek) at will to “leap” to
new playback positions (referred to as taeget playback positionswhich leads to a polarization of the buffered
and needed contents among the peers and consequently #ssiteto frequently search for new supplying peers.
In order to provide the user with a smooth playback expeagtitere-buffering delayfrom the time when a VCR
command is issued to the time when playback resumes needs tartimized, to a level comparable to that of
VCR operations with a videocassette recorder, or to therdlawitching delay when watching TV. In existing P2P
VoD systems, this re-buffering delay can be as long as 18nskscon average [8], which certainly needs improving
in the future.



There-buffering delayn P2P VoD streaming is typically composed of the time to de&oc new supplying peers
and the time for downloading and buffering new blocks froranth While existing research work by others have
investigated reducing the block downloading delay usinghsmethods as optimized block scheduling algorithms
[9], this paper aims at minimizing the neighbor discoveriagievhich in most situations is the dominant component
in the re-buffering delay. In particular, we propose theiglef a novel overlay architecture, with which given
any target playback position, a set of new supplying peensbeafound as fast as possible; these supplying peers
(1) have the available blocks around the target playbackiposand (2) can aggregately provide tleaping peer
(i.e., the peer that is switching to a new playback position) witffisient upload bandwidth to match the required
streaming rate.

For neighbor discovery upon playback “leaps”, existing omercial P2P VoD systems have largely resorted to
tracker servers which keep track of the block availabilityaththe peers, and the peers would query the server for
available serving peers. The disadvantages of such a deatrahechanism are: first, the tracker server can easily
become a bottleneck if peers join, depart, and issue VCR amdsfrequently; second, in order to return a set of
serving peers that can provide sufficient upload bandwidth tequesting peer, the load on each individual peer
needs to be periodically reported to the tracker server dis wigich may further overload the server.

A few recent P2P VoD proposals construct different overlaycstires for neighbor discovery in a decentralized
fashion, using DHTs (Distributed Hash Tables) [10]-[12]ndmic skip list [13], and ring-based overlays [14].
These schemes typically involeg(/N) complexity (whereN is the total number of peers) for each lookup of
supplying peers with the required blocks, without takingithupload bandwidth sufficiency into consideration.

In this paper, we proposkstantLeap a new architecture of organizing peers watching the sameovin a
P2P VoD application. The overlay structure is simple but effigisupporting both effective streaming aimdtant
neighbor lookup due to playback “leaps”. InstantLeap peers are grouped according to their playback locality.
Each peer strategically maintains connections to a numbpe@fs with similar playback progress, as well as some
selected peers watching different parts of the video. Thghtirs with similar playback progress provide efficient
streaming of media blocks the peer is currently watching amedreferred to astreaming neighborshe neighbors
watching other parts of the video facilitate fast discovefynew supplying peers with sufficient aggregate upload
bandwidth to serve the leaping peer, which are namedhastcut neighborsThe list of shortcut neighbors is
maintained loosely but effectively based on random neiglibbexchanges, which effectively pushes the neighbor
discovery delay to the shortest possible.

The highlights of our overlay architecture design are aesl

> We show anO(1) efficiency for discovering new supplying neighbors upon peérs and playback leaps
across the video stream. In most cases, the identified sumgplyeers in the target playback position can
provide sufficient aggregate upload bandwidths and are reathansmit media blocks immediately after the
new connections are established.

> We show anO(m) overlay maintenance overhead for dealing with peer dyngmimcluding joins, fail-

ures/departures, and any playback leaps upon various VE@Ratigns, wheren is the number of peer groups.
We show that such an increment of control overhead in a typiesh-pull based P2P VoD protocol is
negligible, as compared to the overhead in the basic prbtoco

> InstantLeap can be seamlessly integrated into the mestpymiticol employed in prevailing P2P VoD systems,

as a simple add-on component for overlay management, whidgmplemented based on random exchanges
of neighbor information to build shortcuts among peers wiatg different parts of a video.

The remainder of this paper is organized as follows. Sec. Hudises related work on P2P VoD streaming and
indexing overlay design. In Sec. lll, we present our netwoddei and the architecture dfistantLeapoverlay. In
Sec. IV , we discuss the detailed protocolslmstantLeap In Sec. V, we analyze the performance and overhead
of the protocols. We evaluat@stantLeapby extensive simulations and comparisons against exisimgmes in
Sec. VI, and conclude the paper in Sec. VII.

Il. RELATED WORK

Riding on the prevailing success of P2P file sharing and liveasting applications, a number of studies have
been proposed to take the advantage of the P2P paradigm idg@knD service. Most existing P2P VoD streaming
protocols fall into two main categories: one of them is tpersh based protocols which organize peers into multiple



multicast trees, and distribute the media streams by pgstata from the tree root downward [15]-[18]. However,
such tree-push based protocols suffer from their low sl to volatile peer dynamics. The other category includes
the mesh-pull based protocols, such as BitOS [19], BASS [Rfst [5], and Redcarpet [21], which are based on
block “swarming” [22] over mesh overlay topologies. PPLive [dJSee [2], and PPStream [3] are early successful
deployments of such mesh-pull based P2P VoD service.

In contrast to P2P live streaming, many problems related & peynchrony and VCR operations in P2P VoD
streaming are more challenging [10], [13], [14], [23], [2@ne of the fundamental challenges is to minimize the
re-buffering delay after a VCR command is issued.

Some studies propose to use prefetching to minimize theffering delay [10], [23], which may require placing
anchors throughout the media stream. VOVO [24] exploresassciation rules between two segments—the one
a user is playing and another one the user might jump to—aefittghes the potential destination segments. In
general, prefetching takes up extra bandwidth which magretise be used to improve streaming quality, which
may not be accurate due to the difficulty in predicting a futsegment to watch. Other efforts on minimizing the
re-buffering delay focus on the improvement of the bloclesgbn and source selection algorithms [9].

For new supplying peer discovery without prefetching, asxiscommercial P2P VoD systems [1]-[3] have largely
resorted to tracker servers. In P2P file sharing applicatiansger only reports to a tracker server when it joins
or departs. In responding to a request for neighbors, ttekdraserver provides a random subset of peers in the
system to the requesting peer, which may work well since g is interested in the entire file. The case in
P2P streaming applications is quite different: to ensurenasimeaming delay, tracker servers have to receive more
frequent updates from all peers in the system on their cugegment availability, in order to provide a refined
list of neighbors to the requesting peers. CollectCast {2%] oStream [18] require peers to report their playback
progress to the tracker server periodically. Kangaroo Eighs an algorithm to estimate the playback progress of
peers, which may introduce inaccuracy. In addition, theéqua does not guarantee that the peers found may have
sufficient upload bandwidth to serve the leaping peer, whicbnie of the focuses in our design.

To alleviate the load on tracker servers, DHT (Distributeishl Table) has been adopted in a number of recent
P2P VoD proposals [10]-[12] to map block locations to pearsgéneral, each DHT lookup takésg(N) steps,
where N is the number of peers in the system, and DHT updates arereequihenever the cached blocks are
changed at the peers as their playback progresses.

A few recent proposals suggest different overlay strusttmemplement neighbor lookup without the complexity
and cost of constructing a DHT. Warg al. [13] utilize a dynamic skip list (DSL) to construct a P2P VoD dagy
where all the peers are connected sequentially accorditigetoplayback progress at the base layer of the skip list,
and each peer may also randomly connect to a few non-adjpeens in the higher layers. lvg(N) complexity
is shown for each lookup over the skip list. Céii al. [26] suggest the use of an AVL tree for peer indexing,
which can achieve a search efficiency sublinear to the numbpeears. Chenget al. [14] propose a ring-assisted
overlay management scheme, where each peer maintains faceetcentric rings with power-law radius and places
neighbors on the rings based on how similar their cachedeatsitare. This overlay structure promises to achieve
an O(log(T'/w)) lookup complexity T andw are the video size and the buffer size, respectively), buga@aus
proof is missing.

RanSub [27] is one of the earliest work to achieve load bateneimong network nodes via random peer
selections. We also make use of the general idea of biasatbmameighbor selection at peers. Nevertheless,
RanSub provides a general scalable mechanism for delivetatg about a random subset of global participants in
large-scale networks, whilmstantLeapmakes use of random peer selection to implement fast neigliscovery
and load balancing at VoD peers at the same time.

In this paper, we aim to design an efficient overlay architecaind associated protocols which can achieye)
lookup efficiency upon any playback leaps, and which can dewufficient streaming bandwidth for any new
playback position with high probability.

I[ll. ARCHITECTURE

Unlike live streaming where a peer’'s playback position cafy anove continuously forward, VoD streaming
allows the users to freely change their playback positioartg random point in the video stream. Such random
playback leapsecessitates quick discovery of new supplying peers whiehable to provide video blocks at



the target playback position and have the upload bandwatctually serve these blocks. To achieve the fastest
possible neighbor discoverinstantLeappresents a simple but efficient P2P overlay architecturegspanding to
the streaming of one video ty peers.

A. Peer grouping with playback locality

We partition the video stream inta consecutive segments along the time axis. Each segmenstoosmultiple
media blocks. A peer is marked as a member of groiffits current playback position falls into th&#* segment.
Peers in the same group.§, groups), and those in the two adjacent grougsg( groups: — 1, 7 + 1), may have
overlapping buffer contents and are thus potential supglyieers for one another.

Each peer in group maintains two neighbor lists: the first list (referred to asgstreaming neighbor lijtcontains
a subset of peers within the same graugs well as those in the two adjacent grodps1 andi + 1; the second
list (referred to as thehortcut neighbor ligtincludes peers that are not in groiumor the two groups adjacent to
groupi, the connections to which serve as shortcuts to reach otirés pf the video stream upon playback leaps.
A conceptual model of the overlay design is illustrated in. ABigA). The discovery of peers to be maintained in
the neighbor lists is based on a random exchange protocbk thiscussed in Sec. IV.
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Fig. 1. P2P VoD overlay architecture InstantLeap

The two neighbor lists at a peer facilitate efficient streanfingh neighbors in the same group or adjacent groups,
and meanwhile enable fast discovery of new supplying peecther destination groups whenever a playback leap
occurs, by following connections to the shortcut neighb@&g maintaining neighbors in a random subset of all
groups at each peer, we decouple the complexity of intemgreighbor discovery from the total number of peers
in the overlay,V; the complexity is reduced to at most a simple function ofibenber of segments in the video,

m. What is more, in the following, we show that the complexifyneighbor discovery can be independentrof
as well.

B. Inter-group connectivity

We can represent each group of peers in Fig. 1 (A) by one gragk and merge all the connections across
groups into one; the condensed overlay graph is shown in HiB).1n practical large-scale P2P VoD applications,
a streaming overlay of a video can be populated by thousamusens or more, with a large number of peers in each
group. The node degrees in the condensed overlay graph in f).can be much larger than the number of inter-
group connections at a single peer. Therefore, given a reabkonumber of neighbors at each peer, the condensed
overlay graph can turn out to be a dense graph, or even a ctangtgph. Hence the number of hops between any
two nodes in the condensed graph would tend to be simaJlO(1) with high probability. For a peer currently at
segmenti who initiates a playback leap to a non-adjacent segmetite complexity of finding a neighbor in the
destination group is proportional to the number of hops between the nodes coeddn the condensed graph,



TABLE |
NOTATIONS IN InstantLeagPROTOCOLS

N The total number of peers in the overlay

Di A peer in the overlay; =1,..., N

m The total number of groups

G(k) The set of peers in Group, k € {1,--- ,m}

U(ps) Upload capacity of peep;

Nu(pi) The set of neighborg; is uploading to

Nge(pi) The shortcut neighbor list at;

Ngt(pi) The streaming neighbor list at

R(p;) Streaming bandwidth requirement jat

J651 Minimum fraction of groups a peer’s shortcut neighbors span

o Maximum fraction of groups a peer’s shortcut neighbors span

T Upper limit on the number of times a peer exchanges neighs@rwith others,
in order to discover a peer in a destination group

L Upper limit on the number of times a peer exchanges neighidigrwith others,
in order to obtain more shortcut neighbors in one group

i.e, O(1) with high probability. After a neighbor in the destinatiorogp is located, the leaping peer can acquire
more streaming neighbors that can aggregately provide muffibandwidth for its media streaming, by exchanging
neighbor lists with the established neighbor in the group.

We present the detailed protocols for realizing the archite in the Sec. IV, and extensive analysis of the
protocols in Sec. V, which shows that when each peer has anaalgonumber of shortcut neighboie( O(m)),
anO(1) complexity for discovering supplying peers in any new pkglboposition with sufficient upload bandwidth
can be achieved with high probability.

IV. INSTANTLEAP: PROTOCOLS

InstantLeapassumes a P2P VoD streaming framework similar to that of matg-sf-the-art mesh-pull based P2P
streaming protocolse(g, CoolStreaming [28], UUSee [2], PPLive [8]): New peers are intazdl into a streaming
overlay by a bootstrapping tracker server; they then stri@mmvideo by retrieving needed blocks from neighbors
based on exchanges of buffer maps, and may request neigbtsofrbm each other to learn about more peers in
the overlay.

One of the original features dhstantLeapis the construction of streaming and shortcut neighbos listsed on
simple exchanges of known neighbors among the peers. Thesddcilitate efficient streaming and fast neighbor
discovery upon playback leaps with low additional protoowkrhead. In this section, we first discuss the core
neighbor list construction protocols imstantLeapand then present the detailed procedures to handle peer join
departure, and playback leap.

A. Neighbor List Construction

Based on random neighbor list exchanges between peersothepoocedures of constructing the streaming
neighbor list and the shortcut neighbor list at a peer, respdy, are given inAlgorithm 1. The notations used in
Algorithm 1 and those hereinafter are summarized in Table I.

In InstantLeap the number of neighbors in the streaming neighbor list okarps a constang.g, 30-50, as
typically used in prevailing P2P streaming protocols [1]-[he number of groups the peer has shortcut neighbors
in is in the range of 5ym, Bam|, where0 < 1 < B2 < 1: our ConstructShortcutNeighborLigtrocedure would
stop finding neighbors in new groups when the shortcut neighiive peer has obtained spéym different groups;
this procedure will be restarted when the number of groupsfallen unders,m.

In our design, a peer may maintain multiple shortcut neighlftom the same group, for two purposes: (1) to
maximally guarantee a sufficient aggregate streaming battkdwihen its playback “leaps” to the destination group,



Algorithm 1 Basic Procedures at Pegrin InstantLeap
1: procedure CONSTRUCTSTREAMNEIGHBORLIST()

2: while my streaming neighbor lisi,(p;) is not full

3: randomly select a peer; € Ny (p;)

4: obtain the streaming neighbor list from, i.e., Ny (p;)

5: merge Ny (p;) into my streaming neighbor lis¥,;(p;)

6: end if

7. end procedure

1: procedure CONSTRUCTSHORTCUTNEIGHBORLIST()

2: while the number of groups my current shortcut neighbors belong smaller thanssm

3 randomly select a peer; from my streaming or shortcut neighbor 3% (p;) U Ny (pi)

4: obtain the shortcut neighbor list fropy, i.e., N.(p;)

5: mergeN,.(p;) into my shortcut neighbor lisV,.(p;)

6: end while

7: for each groupk | have shortcut neighbor(s) in

8: if the SNM Conditionhas not been satisfied and the number of times for neighbareligtests has not
exceeded.

9: randomly select a peer; from my shortcut neighbor list that belongs to grotip

10: obtain the streaming neighbor list from, i.e., Ny (p;)

11: merge N (p;) into my shortcut neighbor lisiV,.(p;)

12: end if

13: end for

14: end procedure

such that the peer can immediately start playback with faatiery smoothness; (2) as our shortcut neighbor lists
are maintained looselyi.€., with a low update frequency in cases of peer departures kyiarck leaps to incur
low maintenance overhead), such a redundancy in shortayhlmas maintained for each group providebustness

in fast neighbor discovery,e., with high probability at least one neighbor can be sucecdlysidentified that still
caches the segment corresponding to the destination group.

The number of shortcut neighbors from the same group that ranpa@tains is decided by: the streaming quality
the peer aims to obtain, the available upload bandwidth efpé&rom the group, and the upper lindit on the
number of neighbor list exchanges a peer can carry out. lticpkar, peerp; decides whether it should obtain
more shortcut neighbors from groépy examining the followingshortcut Neighbor Maintenance Conditi(@NM
Condition:

Ul(p;)
2 TN o = B )
P; EN:c(pi)NG (k) 1+ | Nu(py)]

The left side of inequality (1) represents an estimate of tiggegate upload bandwidth pegrcan obtain from
its current shortcut neighbors if its playback “leaps” togp k£, whereG(k) represents the set of peers in group
k, U(p;) denotes the upload capacity at peer and NV, (p;) is the set of neighborg; is concurrently uploading
to. Here we estimate the available supplying bandwidth fggrto p; by evenly dividing the upload capacity pf
among all its receivers. Information on the upload capaaitg the number of concurrent uploading peers can all
be exchanged among peers with their neighbor list exchaagestatus probing at low frequencids(p;) denotes
the desired streaming bandwidth at pegrFor constant rate video streams, the streaming bandwsdtiquivalent
to the streaming rate of the video; in cases that layeredngodi multiple description coding is employed [29],
R(p;) can be set to different levels according to the number ofridgescriptions the peer may retrieve. Using the
SNM condition, peep; wishes to maximally guarantee a sufficient streaming barttiwidhen its playback “leaps”
to a new group, within the limit of. neighbor exchanges.

By limiting the number of groups and the number of shortcuginigors per group, we aim to achieve a good
tradeoff between neighbor discovery efficiency and mainteaaoverhead. Further discussions and appropriate



Algorithm 2 Join Procedure at Pegr in InstantLeap
1: procedure PEERJOIN(PlayPosition)
2 Calculate group 1Dk corresponding taPlay Position
3: Request a few neighbors from the tracker server and add thieniVi, (p;) and Ns.(p;) according to their
group membership

4 while my streaming neighbor list is emptye., N (p;) == @, and the number of times for neighbor list
requests has not exceedéd

5: Randomly select a pegr; from my shortcut neighbor lisiV,.(p;)

6: Obtain the shortcut neighbor lig¢,.(p;) from peerp;

7: Merge peers inV,.(p;) into my streaming neighbor lisV,(p;) or shortcut neighbor lisiVs.(p;)

8: end while

9 if no neighbor with group 1D has been discovered

10: Request a neighbor with group IBfrom a tracker server

11: end if

12: ConstructStreamNeighborList()

13: ConstructShortcutNeighborList()
14: end procedure

values of these parameters will be presented in Sec. V.

Main protocols inlnstantLeapcan be implemented based on the proceduresigorithm 1.

B. Peer Join

With InstantLeap we seek to minimize the load on the tracker servers. Whenea first joins a streaming
overlay, the number of existing peers assigned to it can tmmadl as one or a few. These bootstrapping peers are
added to the new peer’s streaming or shortcut neighbor Bstsording to their group membership. Following the
procedure ofPeerJoinin Algorithm 2, if none of the assigned neighbors is in the group where tlee'pdesired
playback position falls into, the new peer discovers a peehé destination group by exchanging neighbor lists
with the few known neighbors. Then the new peer execufgdateStreamNeighborList{p obtain more neighbors
with similar playback progress for video streaming, dgpdateShortcutNeighborListfp establish shortcuts to
segments across the entire video stream, as describ&tyanithm 1.

C. Continuous playback

When a peer watches the video continuously, its group meshlpechanges whenever it moves on to play the
next video segment. The peer notifies all its neighbors in tleelists with its new group membership. Nevertheless,
there would be little changes to its streaming neighbor ligten most of its streaming neighbors are pursuing
a continuous playback and they can continue serve medikdlkaceach other. In addition, most of its shortcut
neighbors remain intact as well, except the few that havéched to the streaming neighbor list. Only when the
number of groups its shortcut neighbors span falls betgw: will the ConstructShortcutNeighborLigirocedure
be invoked again.

D. Playback Leap

When there is a playback leap due to a VCR operation, the guoeeof PlaybackLeapin Algorithm 3 is
executed. In the procedure, a peelooks for neighbors in the destination group by exchangieigimbor list with
its existing neighbors. When it still fails to discover sugmeighbor peer aftef’ exchanges of neighbor lists, it
gueries the tracker server as the last resBris a protocol parameter, which represents the maximum noaibe
times a peer exchanges neighbor lists with others, in iergit to discover a supplying peer in the destination
group, before it resorts to the tracker server. We discusgparopriate choice df’ based on our analysis in Sec. V.

After connecting to discovered peers in the destinatiougrohe peer starts retrieving video blocks right away,
since the shortcut neighbors maintained at each peer miimsarantee a sufficient streaming bandwidth to a



Algorithm 3 Playback Leap Procedure at Pegrin InstantLeap
1: procedure PLAYBACK LEAP(DestPosition)
2 Calculate group 1Dk corresponding tdDest Position
3: while there is no peer with group IR on my shortcut neighbor lisN,.(p;) and the number of times for
neighbor list requests has not exceeded

4: Randomly select a peer; from my streaming neighbor lisV,;(p;) or shortcut neighbor lisiV,.(p;)
5: Obtain the shortcut neighbor ligt,.(p;) from peerp;

6: Merge peers inV,.(p;) into my shortcut neighbor lisiV,.(p;)

7 end while

8: if no neighbor with group 1D has been discovered

9: Request a neighbor with group IBfrom a tracker server

10: end if

11: Clear my streaming neighbor lists;(p;)

12: Add the discovered neighbors with group into my streaming neighbor lis¥:(p;)
13: Start streaming from the current streaming neighbors

14: ConstructStreamNeighborList()

15: ConstructShortcutNeighborList()
16: end procedure

new requesting peer, based on the procedur@aristructShortcutNeighborListeanwhile, the peer execut€on-
structStreamNeighborLigb obtain more new streaming neighbors, dwhstructShortcutNeighborLisb update
its shortcut neighbor list.

The leaping peep; may reside in the streaming or shortcut neighbor lists okofheers. When peer; has
changed its group membership, those peers can still kegpp@etheir respective streaming or shortcut neighbor
lists, as long ap; still caches the segment corresponding to its previouspgrouthis way, a peer which has cached
multiple segments in its local buffer can effectively sepaers in multiple groups, leading to maximal utilization
of peer cache and bandwidth resources.

E. Peer departure and failure

When a peerp; leaves a P2P VoD overlay gracefully, it will notify its streign neighbors and shortcut
neighbors, which remove the peer from their neighbor listd aay invoke ConstructStreamNeighborLisir
ConstructShortcutNeighborList rebuild the respective list when necessary.

When a peep; unexpectedly fails, its information may still be cachedha streaming neighbor lists or shortcut
neighbor lists of some other peers. Such outdated informatitl be purged out of the streaming neighbor list
of a peer when it notices the connection to the streaminghbeigp; has been shut down, and can be removed
from the shortcut neighbor list of a peer when it tries to @®mirto peerp; upon playback leaps. The redundancy
provided byConstructShortcutNeighborLish that typically more than one shortcut neighbor from thme group
is maintained in a peer’s shortcut neighbor list, guarantbere may still be available neighbors to resort to in
case of such lagged updates.

V. ANALYSIS

Although InstantLeapprotocols appear to be simple add-ons to the existing typesh-based streaming
protocols, we show in the following that &n(1) neighbor discovery efficiency can be achieved upon any ptdyba
leap. We also carefully analyze the overlay maintenanceheae upon various peer operationdnstantLeap and
explain the tradeoff between neighbor discovery robustaesl maintenance overhead.

A. Neighbor discovery efficiency

We first show that a peer can obtain shortcut neighbors ac?¢sg groups by only a small number of neighbor
list exchanges. In our analysis, we focus on the simplifie@ daseach peer to obtain one shortcut neighbor from



a group. To acquire more neighbors from the same group, we latanost a constant numbér of neighbor list
exchanges are involved, based Algorithm 1.

Let s! denote the average number of groups the shortcut neigtdt@tlpeer spans (referred to as “group span”
hereinafter) aftet times of random neighbor list exchanges. We first prove a lemma

Lemma 1. Let peerp; and peerp; be two randomly selected peers from all peers in the streaming overlay,
with an initial group span of the shortcut neighbor list f= a and S? = b, respectively. The average group span
of p;’s shortcut neighbor list aftep; exchanges neighbor list with; is s} = st =a+b — axb

J m "

Proof: The average group span of the merged shortcut neighbor ligteisum of the group span of the
shortcut neighbor list op; (i.e., a) and that of the shortcut neighbor list pf (i.e., b), minus the expected number
of overlapping groups which ig- x % X m. ]

Based on Lemma 1, we have the following theorem.

Theorem 2. Assumings! € [K, (1+«)K], whereK > 1 and0 < a < 1, for any peerp; in the streaming overlay.
After ¢ times of shortcut neighbor list exchanges with randomlgateld other peers in the overlay, the average

2t X K

group span of the shortcut neighbor list pfis si>m[l —e™"m |.

Proof: Given that each peer’s shortcut neighbor list has a similang span, based on Lemma 1, the average
group span of shortcut neighbor list at pegrafter one exchange for neighbors with another random peer is

s —2s %

After t + 1 times of exchanges between and other peers, we can derive that
t\2
st =2t B g2,
m

Let Q(t) = st — m. We have

t)2
R r_(Si)_ __lr_ 2__i 2
Qt+1)=s, m = 2s; o m= m[sZ m)* = m[Q(t)]
We then have)(t) = —% =-—m(l— %)2", and thus we derive the expression fr
0
L= Q(t =m[l — (1 - 2)*
st= Q) +m =m[l - (1-1)”]

.0

Sincel — % < e~ with 0 < s9 <'m, we have

S
m
2t x 59 by

>m[l—e "m | >mll —6727711(]
|

Corollary 3. Assuming initiallys) = 1 for any peeri in the streaming overlay, aftdiog(m) times of shortcut
neighbor list exchanges with randomly selected other pabesaverage group span of the shortcut neighbor list
of peeri is 5,8 >(1 — 1)m~0.63m.

This corollary tells us that even in the extreme cases thdt paer is assigned with only one neighbor initially,
after a small numberlg¢g(m)) of neighbor list exchanges, the peer can obtain shortcghbers covering more
than half (.63) of all the groups.

log(m) is generally a very small value. Based on the corollary, wenkthat a peer will have a shortcut neighbor
list spanning no less thafl — é)m groups after a few exchanges after joining the overlay. Asla sote, in our
protocol design discussed in Sec. IV-A, paramétecan be set to a value %fconsidering this effect. In addition,
we can set the maximum number of neighbor list exchangesdardo build the shortcut neighbor list, to be
log(m) x = 1) —%5 log(m), representing the expected number of neighbor list exasity order to obtain a
neighbor in each group

In this case, when a peer, which has finished the joining puoegdhitiates a playback leap, the probability that it
already has a neighbor belonging to its destination groaplisastl—%. If there is no such a neighbor, according to
our protocol inAlgorithm 3, the peer will exchange neighbor lists with its current heigrs. The probability it can
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successfully obtain a shortcut neighbor within a specifidgidason group aftew times of neighbor list exchanges
is at least(1 — 1)(1). Therefore, we can derive the following theorem on the exgmeciumber of neighbor list
exchanges a peer needs upon a playback leap, in order toveliseshortcut neighbor in the destination group.

Theorem 4. The expected number of neighbor list exchanges, for a peahwtas finished its joining procedure,
to find a shortcut neighbor to a destination group upon anybpék leap, isO(1).

Proof: Consider any peep; in the overlay who makes a playback leap to destination graupet ¢ denote
the average probability that a peer’s shortcut neighboiridudes a peer in the destination group. This probability
equals the ratio of the average size of the shortcut neigh&toat a peer over the total number of group®.(
m). In the case thap;’s shortcut neighbor list does not contain such a neighiher,probability thaip; can obtain
such a peer by one neighbor list exchange with another peeandomly selected from the overlay,gsi.e., the
probability thatp; has a neighbor in group. Therefore, the probability that a peer successfully olstaimeighbor
in the destination group after times of random neighbor list exchangegis- ¢)" x ¢, and the expected number
of exchanges i$",” v x (1 — ¢)¥ x ¢ = —1.

Considering that the peers involved in the exchanges areewtoiners (e, they have all finished their joining
procedures), we havg> 1— =, and the expected number of exchange‘&i% < —= = 0.58. Therefore, in general,
the expected number of nelghbor list exchanges upon anpatkyleap |sO( ) ]

In our analysis, we have assumed that all neighbor list exgds occur between two peers randomly selected
from the overlay. The random exchangelistantLeapbetween a peer and one of its randomly selected neighbors
represents the best possible approximation to the expeat®ibmness in a practical P2P VoD system.

B. Overlay Maintenance Overhead

The overhead ininstantLeapprotocols is due mainly to the exchange, construction anidter@ance of neighbor
lists in case of various peer operations, including peansjotdepartures and various VCR operations. We next
analyze such overlay maintenance overhead.

1) Peer Join:As shown in Corollary 3, a new joining peer to the overlay iearout at mostog(m)+(1—1)mL
neighbor list exchanges in order to construct its shorteighbor list, in whichlog(m) represents the number of
times it requests neighbor lists to obtain at least one meigin each of(1 — é)m groups, and1 — %)mL is the
upper bound for further neighbor list exchanges in ordercguae a few more neighbors in each group to satisfy
the SNM condition.

For streaming neighbor list construction, a new joining rpearies out an expected number gf; log(m)
neighbor list exchanges in order to obtain at least one beigim the group it belongs to, and then a small number
of exchanges to obtain more streaming neighbors, that isienaller than the total number of streaming neighbors
(i.e,, 30-50) a peer can maintain.

2) Continuous Playback:When a peer is continuously playing the video stream, thelayemaintenance
overhead includes sending updates of its group membershigighbors when it crosses group boundaries, and
updating its neighbor lists to purge outdated neighborrimfition and adding new neighbors. Such overhead is
generally much smaller than that for new neighbor list carsion upon peer joins.

3) Playback Leap:After a peer’s playback “leaps” to a new segment and it is ected to at least one neighbor
in the destination groug, the peer reconstructs its streaming neighbor list and tepdgs shortcut neighbor list.
The overhead in streaming neighbor list construction inesla small number of neighbor list exchanges with its
known neighbors in groug (much smaller thar30-50) to obtain sufficient streaming neighbors. The update to
its shortcut neighbor list is little as well, as the peer majymeed to take the neighbors in groépout of its
shortcut neighbor list and place a few of its previous stiegnmeighbors into the shortcut neighbor list instead.

4) Peer Departure/Failure:In cases of peer departures and failures, the overlay nm@inte overhead is pro-
portional to the size of the leaving peer’s streaming andtshbneighbor lists aO(m), unlessConstructStream-
NeighborListor ConstructShortcutNeighborLiss invoked to rebuild the respective list at a neighbor.

C. Tradeoff between Neighbor Discovery Robustness and &vbthintenance Overhead

As discussed in Sec. IV-A, for each group a peer’s shortcughi®irs span, it may maintain more than one
shortcut neighbors, in order to provide robustness intonbighbor discovery process in practical systems with
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possibly outdated neighbor group membership informatiéfa. now analytically show the tradeoff between such
robustness and neighbor list maintenance overhead in dlsis. ¢

Let g denote the probability that a neighbey peerp; obtains for destination group by neighbor list exchanges
can no longer serve; the segment corresponding to groépe.g, in cases ofp;’s playback leap and buffer
replacement, op;’s failure from the system. The probability that pggrhas at least one valid neighbor in group
k by maintainingl shortcut neighbors for the group is— ¢'.

To maintain more than one shortcut neighbors for a groupethee additionall neighbor list exchanges (at
most) at each peer to acquire more neighbors in the group ppenjoin based oAlgorithm 1, andO(l) more
overhead for shortcut neighbor list maintenance in casgseef failure, departure, and playback leaps, when the
number of shortcut neighbors maintained for the group is

As outdated neighbor information is mainly caused by unetqukfailures of peers and segment replacement in
peers’ buffers, in a system with large buffer sizes (thussloghances of segment replacement) and a low probability
of unexpected failurese(g, wired networks), we may choose to maintain fewer short@ighbors per group at
the peers; otherwise, more neighbors per group is moreatdsirin this way, a best tradeoff between neighbor
discovery robustness and overlay maintenance overheallecachieved in systems of different scenarios.

VI. PERFORMANCEEVALUATION

We present evaluations tistantLeaased on a P2P simulator we have developed. The simulator lisirepted
using Java, featuring a multi-threaded high-performanchitecture, with supports for multiple event-driven time
outs. All peer dynamics, including playback leaps, joind dapartures, are simulated with events scheduled at their
respective times. With careful optimizations, our simoitatan simulate large-scale P2P systems with000 or
more simultaneous peers, distinguishing itself from repngative existing P2P simulators [30] which may support
3,000 peers at most.

In our evaluations, the streaming rate of videos via thelayds 450 Kbps. The upload bandwidth at the peers
ranges betwees00-10, 000 Kbps, following a Pareto distribution with shape paramétes 2, which corresponds
to a resource indexi{l = 2/°'29¢ LboaCeapacly Perehf 1.3, Peers’ lifetime follows an exponential distribution with
an expected length d30 minutes. Peers join the overlay following a Poisson arrivadetipwhose inter-arrival
times follow an exponential distribution. The expectatidrthe inter-arrival times differs across the experiments
where we tried different overlay sizes, in order to keep thtalthumber of online peers at a similar level over
time in each experiment. The interval between two playbaakdeat each peer follows an exponential distribution
with an expected length af00 seconds. We experiment with videos of different lengthsying from 40 minutes
to 200 minutes. Each peer’s buffer can cache media segments upde thinutes of playback. The number of
groups(m) thus ranges from0 to 200, accordingly. By defaultp; = % B = % andT = 10. Other than neighbor
list exchanges upon different peer operations such as gthyleap, we also implement periodical exchanges of
neighbor lists among peers to update neighbor status darjpeer's continuous playback: streaming neighbor lists
are exchanged among streaming neighbors evesgconds; the default interval for shortcut neighbor listh@nges
and shortcut neighbor status probing among pee iseconds. These parameters are carefully selected to be
consistent with the measurement results in some existipgesentative P2P VoD systems [8], [23].

For streaming blocks scheduling in our simulations, perchange buffer maps evebyseconds. A peer requests
blocks needed from its multiple neighbors, following a hghiteadline-rarest-first block selection policy, as is done
in [5].

A. Performance of Neighbor Discovery

Fig. 2 and Fig. 3 show the average number of neighbor list exggsmmpon peer joins and playback leaps,
respectively, in overlays of different sizes and for videdsdifferent lengths. These numbers translate into the
delay for neighbor discovery, when the protocols are imgletad in practice. From both figures, we observe
that the numbers of exchanges are fewer than four, and dittsnge with the increase of the overlay size. This
clearly confirms thatnstantLeapachieves a constant neighbor discovery performana@(af, independent of the
number of peers in the overlay. When a peer joins or its plelyl@aps, it can get a ready collection of streaming
neighbors in the destination group from its neighbors omits shortcut neighbor list. This provides users with
short re-buffering delay and satisfactory viewing expeci
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Fig. 4 further shows the average number of neighbor list exgés under different resource indices in overlays
of different sizes (withm = 60). Streaming neighbor discovery is faster when the uploadiatih in an overlay
is more abundant. We observe that even when the upload tagagply barely meets the demand (RI is around
1), a peer can still find sufficient suppliers with an average tin@s of neighbor list exchanges in large overlays
of up to 10000 peers.

In addition, we have also implemented the Dynamic Skip List (D&gprithm [13] for comparison purpose. In
Fig. 2 and 3, the numbers corresponding to the DSL case repthecaverage numbers of search steps to discover
a supplying peers in a DSL. We observe thetantLeapgenerally requires just a few steps for neighbor discovery
as compared to DSL, while DSL apparently requires many mores stith the increase of the overlay size.
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B. Overlay Maintenance Overhead

In this subsection, we show that althoulgistantLeapmaintainsO(m) shortcut neighbors and a constant number
of streaming neighbors at each peer, the additional manentraffic incurred is indeed negligible, as compared
to other control overhead and the streaming traffic in a typizash-based P2P VoD system.
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1) Overhead at peersFig. 5 and Fig. 6 plot the control messaging overhead for oyeraintenance upon peer
joins and playback leaps, which depends on the number ofaomessages and the sizes of the neighbor list
exchange messages. We have observed that upon peer jartstahnumber of message bytes to build both the
streaming neighbor list and the shortcut neighbor list igmaye than a meré, 000 bytes. A comparison between
Fig.5 and Fig. 6 shows that control messages incurred by a qtayleap is much fewer than those caused by a
peer join, as a leaping peer only needs to rebuild its stregmeighbor list while updating its shortcut neighbor
list slightly.

Besides messaging overhead caused by a peer join or leap/ Blgpws the messaging overhead incurred by
periodical exchanges of neighbor lists and status prohimgng the peers. We observe that such messaging overhead
is lower than 2.5 Kbps, equivalent to 0.5% of the streamirng.ra

Comparing the overhead dfistantLeapto that of an existing protocol, such as DSL [13] and the risgisted
solution [14], we find by comparing our results with those give their respective papers, that those protocols
generally incur larger messaging overhead in cases of paer and leaps, whiltnstantLeaprequires more control
message exchanges for maintenance of the overlay durigbaalk.

2) Load on the tracker server: InstantLeapinimized the requests to tracker servers, which are ondy s
the last resort when a peer fails to identify a streaming ortsht neighbor in the destination group affértimes
of neighbor list exchanges. In our implementation, thekieaserver maintains information abol@0 peers only
in all the overlays of different sizes. Fig. 8 shows that thet messaging overhead on the tracker server is less
than 100 Kbps, which is very low indeed.
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C. Streaming quality
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Fig. 9. Average streaming quality at peers.

We evaluate the streaming quality at the peerkstantLeapby calculating a continuity index, which represents
the percentage of blocks a peer receives before their ridgpgdayback deadlines during playback. In Fig. 9 we
observe that the average continuity index is always latg@n@®.9, showing that the new neighbors a peer connects
to upon its playback leaps can provide a sufficient streamargltyidth most of the times.

We are also interested to explore whether the overlay captdadaevere peer dynamics. In this experiment, we
have a large portion of peers leap to other playback positgdmultaneously in an overlay af, 000 peers while
watching a 60-minute video. In Fig. 10, we see that(% of all the peers leap concurrently, there is little impact
on the average streaming quality of the peers, as most of danfind new neighbors very quickly. In the case
that50% of all the peers leap simultaneously, the average comyimidex drops td).8, but picks up quickly again
in less thanl0 seconds.
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D. Load Balance among Peers
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We next investigate the load on each peer to serve as shardighbors for peers in other groups. In this
experiment, we stream over an overlay ©000 peers watching a 80-minute video, and count the number of
occurrence of each peer in other peers’ shortcut neighbty in the entire system. In Fig. 11, we observe that
most peers serve as shortcut neighbors at a similar numhmhef peers. As peers with larger IDs join the overlay
later, we also observe from Fig. 11 that peers with longementime tend to be known by more other peers.

In Fig. 12, we plot the results again, against the averagevadtid that each peer can upload to each of its
receivers. We find that if a peer can allocate more upload baitldvto each of its streaming neighbors, it tends
to be known by more peers. This helps the leaping peers to findso@wlying peers with sufficient bandwidth
more quickly. We also observe that the average bandwidthupkerad link at the majority of peers lies within a
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Fig. 13. Impact of different values ¢f..

relatively small range, which is due to the effective loathbaing using the SNM condition: Based on SNM, peers
tend to select potential shortcut neighbors from those adnatcurrently uploading at high bandwidth to each of
their streaming neighbors. In this way, a high-capacityr p&é have a higher chance to be selected as a shortcut
neighbor and subsequently to serve as a streaming neightibrthe increase of streaming neighbors, its average
upload bandwidth per link decreases, and thus its chance torther selected as shortcut and streaming neighbors
decreases, resulting in the relatively similar bandwidth gpload link at the majority of the peers.

E. Impact of parameters

1) Impact of the number of groups maintainelsh InstantLeap we impose a range on the number of groups
spanned by shortcut neighbors at each peer,[31m, fam]|. We now investigate whether the number of groups
affects the performance and overheadristantLeap Fig. 13 plots the neighbor discovery performance and oyerla
maintenance overhead for different valuesggf respectively. In all these experiments, we 8et= 0.53, and the
size of the overlay i40, 000. We observe that the neighbor discovery performance besdetter when peers have
shortcut neighbors in more groups (with the increasg-9f which is at the cost of increased overlay maintenance
overhead. A closer look reveals that the optimal valuesofis achieved at around.6, where there is a good
balance between the performance and the overhead. This»gtns our choice of using, = % by default in
all of the experiments.

2) Impact of the number of shortcut neighbors maintained greup: We have analyzed the tradeoff between
neighbor discovery performance and overlay maintenaneghead when a peer keeps different numbers of shortcut
neighbors for each group in Sec. V-C. We verify our analysigkgyeriment: We stream over an overlay of 10000
peers watching a 40-minute video. There are 40 groups in teslay and each group contains 250 peers on
average. In Fig. 14, the number of shortcut neighbors showimeisnaximum number of shortcut neighbors a peer
can maintain per group. SNM conditions are applied for dyeashortcut neighbor maintenance. We observe that
increasing the maximum number of shortcut neighbors peummeduces the re-buffering delay upon playback
leaps and improves the average streaming quality, witthisBgcrifice in terms of messaging overhead.
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VIlI. CONCLUDING REMARKS

This paper proposdsistantLeap a scalable light-weight indexing architecture to achieffecient streaming and
fast neighbor discovery for P2P VoD streaming applicatidiee highlight ofinstantLeapis its neighbor discovery
method which has a performance ©f1) upon any playback leap with low overlay maintenance ovethédter
each playback leap, the identified supplying peers can peosidficient aggregate streaming bandwidth to the
leaping peer with high probability, and would be ready tatstansmitting media blocks immediately after the
new connections are established.

InstantLeapcan be implemented on top of the basic framework of prevgiiresh-pull based P2P VoD protocols,
by adding the simple function of random neighbor list exgemto maintain shortcut neighbors. The seemingly
simple protocol achieves unexpectedly good neighbor dagoperformance, thus providing good support for
various VCR operations, which is validated by both thecedtanalysis and extensive simulations with large-scale
overlays and intense peer dynamics.

In the future, we may extend the current framework to sohee globlem of bandwidth imbalance across the
groups. This problem more likely occurs in overlays of smik sDuring shortcut neighbor list construction, peers
can estimate the bandwidth situation of each group, so tipatea belonging to a group with sufficient bandwidth
can help distribute the blocks belonging to a group with tédibandwidth.
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