
S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 291–302, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Compositional Multiple Policies Operating System
Security Model

Lei Xia, Wei Huang, and Hao Huang

State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology,

Nanjing University, 22 Hankou Road, Nanjing 210093, China
xiaxlei@gmail.com, whuang.nju@gmail.com, hhuang@nju.edu.cn

Abstract. Multilevel security policies aim at only confidentiality assurance, with
less consideration on integrity assurance and weakness in expressing channel
control policies. Besides, the trusted subjects it introduces to handle the infor-
mation flow “downgrade” have many security flaws. Moreover, increasing di-
versity of the computing environments results in various security requirements.
However, current mainstream security models are aiming at only one or few
requirements of them each. The Multi-Policy Views Security Model is presented,
which is based on the MLS model, combining the domain and role attributes to
the model, to enforce the expression power in channel control policies, make
permission management more fine-grained and enhance the ability of confining
the permission of the trusted subjects. Moreover, MPVSM has integrated the
properties and functions of MLS, Domain-Type and Role Based models into one
unified model. It is able to enforce multi-policy views in operating system in a
flexible way.

Keywords: security model, multiple policy views, integrity assurance, confi-
dentiality assurance, least privilege, separation of duties.

1 Introduction

Multilevel Security Model (MLS) [1] is one of the most widely used security model in
various system. MLS aims at confidentiality assurance of the information, preventing
the unauthorized leakage of the data in high security level. However, it rarely considers
the integrity assurance, which is also a very critical security requirement [2,7,11].

Biba model is a mathematical dual of BLP, intending to protect integrity of infor-
mation. However, they are both based on lattice mechanism, and information policies
based on the lattice are transitive. Therefore, MLS models are weak in expressing
channel control policies [22]. A firewall’s control policy is a typical channel control
policy. As an example in Figure 1.1, Information is allowed to flow from the Outside
component to the Inside component via the Access Control, but is forbidden to do so
directly. Such policies are hardly expressed in the MLS models.

292 L. Xia, W. Huang, and H. Huang

Fig. 1. Information channel control in a firewall

In addition, in MLS models, information is not allowed to flow “downward”, such as
from high confidentiality level to lower, or from lower integrity level to higher.
However, in many situations, information flow “downward” is needed. Such an ex-
ample of information flow from lower integrity level to the higher is the system call
between user process and operating system. Data at a higher integrity level is more
accurate and/or reliable than data at a lower integrity level. And the integrity level of
user’s data is usually lower than the operating system’s data. Therefore, according to
multilevel policies, user’s data is not allowed to flow to the operating system data ob-
jects. However, in actual computer system, though user applications are not permitted
to violate the integrity of operating system data, they should be given appropriate ways
to pass the information or parameters to operating system.

To handle these problems, many MLS systems (such as HP-UX/CMW [8]) intro-
duce some special trusted subjects outside the TCB. These special subjects are given
privileges to bypass the MLS access control mechanisms. For they are not controlled by
the access control mechanisms, they have almost all of privileges, which is far more
than what they need to do they jobs. It is obviously a violation to the Principle of Least
Privileges. These subjects turn to be the potential targets for malicious attacks. Once
they are compromised, they can bring huge damages to the system.

Moreover, various security requirements are coming up with the sharply increased
diversity and complexity of the computing environments. To satisfy these security re-
quirements, a variety of security models were proposed in last twenty years. Widely-used
security policies in current mainstream systems include multi-level military security
model (Bell-LaPadula model, BLP) [1] and its variants (Biba [6], Dion model), Domain
and Type Enforcement (DTE) [9], Role-based access control (RBAC) [14], and etc. Each
of these models aims mainly at one or several security requirements, such as BLP aiming
at the confidentiality of the information, Biba aiming at data integrity assurance, DTE
aiming at confining the information flow channels, etc.

Previous trusted operating system usually enforced only one kind of mandatory
access control model, for instance, Multics[3] implemented only BLP model in it.
However, as mentioned above, the security goals in different applications are various.
The different security requirements of applications result in different security models
needed for them. How operating system to support this kind of multiple security model
views--the access control model different applications can perceive in the system is
different.

Recently, as a policy neutral security model, RBAC provides a valuable level of
permission abstraction. However, using RBAC to simulate multi-level security level or

Inside

Access
Control

Outside InternetIntranet

Firewall

 A Compositional Multiple Policies Operating System Security Model 293

discretionary access control models [12] is over complex and therefore unpractical in
real-world operating system.

In this paper, a Compositional Multiple Policy Security Model (MPVSM) is pre-
sented. MPVSM is a hybrid security model, which is based on Multi-level Security
models. It combines confidentiality and integrity lattices into a unified security lattice
for confidentiality and integrity assurance. It then divides the subjects and objects in the
same security level into different domains and types, using access control mechanisms
in DTE to make the permission assignment and management more fine-grained and
flexible, meantime enforce the separation of duties between subjects in the same se-
curity level. In addition, using the thought of RBAC, role is added in MPVSM. Roles
are assigned the extra permissions, which are independent of MLS and Domain-Type
parts of the model. MPVSM makes use of the flexible permission assignment and
revocation mechanisms in RBAC to confine the permissions of those special “trusted
subjects”, provides a way to make them do they job out of control range of the MLS and
Domain-type access control parts, but meanwhile prevent them from too powerful to be
potential security holes of the system.

MPVSM has integrated the properties and functions of Multiple Level Security,
Domain-Type and Role Based models into one unified model. By combining the ele-
ments and attributes of DTE and RBAC to the MLS model, MPVSM avoids the
drawbacks of MLS. MPVSM is able to enforce channel control and assured pipelines
policies, with providing fine-grained permissions management. In addition, MPVSM
owns an enhanced ability of policy expression. It can ensure the enforcement of least
privilege to these special “trusted subjects” in the MPVSM model. Moreover, MPVSM
provides a framework to enforce multiple policy views in operating system. It can not
only enforce the equivalent functions of these three kinds of models independently in
the system, but also can enforce multi-policy views between different applications in
system.

The remainder of the paper is organized as follows. Section 2 describes the MPVSM
formally. Section 3 gives the example policy configurations in MPVSM. Section 4 is
the related works. And section 5 is the conclusion.

2 Multiple Policy Security Model

2.1 Overview

The architecture of the MPVSM is shown in figure 2. MPVSM comprises of elements,
relations and mappings. A user in the framework is a system user. A role is a job
function or job title within some associated semantics regarding the authority. Subjects
are active entities in the system, usually processes or transactions. Objects are data
objects as well as resource objects. Domain is a control access attribute associated with
each subject. And type is the other control attribute associated with objects. Two global
matrixes are defined to represent allowed access or interaction modes between domains
and types or domains and domains respectively. Permission is an approval of a par-
ticular mode of access to object or interaction to subject. Security label is a 2-tuple,
containing a confidentiality label and an integrity label.

294 L. Xia, W. Huang, and H. Huang

There are several relations and mappings between elements. The relation between
users and roles are defined in user-role assignment relation. The user-subject relation
gives relation between subjects and users, while subject-role mapping figures out a
subject’s current running role. Permissions in system can be authorized to roles. Roles’
authorized permissions are given in the role-permission authorization relation. Each
role in system can have many authorized domains. Role-domain authorization relation
gives the authorized domains of each role. Each subject has only one running domain,
which is given in subject-domain mapping. Besides, each subject has a security label.
The security labels are assigned to roles, and subject’s security label is determined by
the label of its running role. Each object has a security attribute which includes the type
and security label of that object.

Fig. 2. The MPVSM

The final permissions that a subject gets are based on three kinds of permissions
corresponding to that subject: MLS permissions, Domain permissions and Role-based
permissions. MLS Permissions are coarse-grained base permissions, indicating the
subject has the read-related permission or write-related permission. Domain permis-
sions are the fine-grained permissions based on the MLS Permissions. Role-based
permissions is independent from MLS permissions and domain permissions.

Correspond to the three kinds of permissions, MPVSM model contains three access
control views: 1)Multi-level Security Access Control. The MLS permissions given to
the subject are based on the security level of the subject and the target object.
2)Domain Access Control. Subjects run in different domains. A subject’s Domain
permissions are based on its running domain and the target objects’ types.
3)Role-Based Access Control. The subject has the permissions of its running role as its
Role-based permissions.

In addition, MPVSM model is also an extensible security model, by adding other
attributes to the role and object, besides the label and domain or type attributes of
current role and object, more functions or properties can be added.

2.2 Formal Definitions

The following definitions formalize the discussion above:

Definition 2.1. Elements Sets
• Users: U
• Subjects: S

Label Label

Subject perms

Role perms ObjectRole

MLS perms

TypeDomain Domain perms

Subject User

Perms

 A Compositional Multiple Policies Operating System Security Model 295

• Objects: O
• Roles: R
• Domains: D
• Types: T
• Confidentiality Labels: C
• Integrity Labels: I
• Security Labels: SL ⊆ C×I
• Access modes: P, containing of two disjointed subsets: Read-related Modes

RP={read(r), execute(e), getattr(g) ... }; Write-related Modes WP={ write(w), ap-
pend(a), create(c), delete(d), setattr(s) ... }; P=RP∪WP.

• Domain transfer operation: transfer(t)�transfer denotes the subject can transfer
from one domain to another domain.

• Role Permissions CAP ⊆ P×O, (p, o)∈CAP denotes the permission to access o in
mode p.

Definition 2.2. US ⊆ U×S，user-subject relation. More than one subject can run on
behalf of one user at the same time. But each subject can only run on behalf of one user,
called its running user.
• user: S→U, mapping from subject to its running user. user(s) =u if and only if u∈U
∧(u, s)∈US.

Definition 2.3. UA ⊆ U×R, user-role assignment relation. Each user can be assigned
many roles and each role can be assigned to many users.
• UR: U→2R, mapping from user to the set of roles assigned to that user. UR(u) ={r
∈R|(u, r)∈UA}.

• SR: S→R, subject-role mapping, from the subject to its running role. Each subject
has a running user and running role at anytime, and the role must have been assigned
to that user: SR(s)∈ UR(user(s)).

Definition 2.4. role’s security label
• RL: R→SL, mapping from role to its security label.
• Ssl: S→SL, mapping from subject to its security label. Subject’s security label is the

same as its running role’s security label: Ssl (s)=RL(SR(s)).

Definition 2.5. RD ⊆ R×D, role-domain authorization relation. Each role has many
authorized domains and each domain can be authorized to many roles.
• RDom: R→2D, mapping from role to its authorized domains set. RDom(r) ={d∈D|(r,

d)∈RD}.
• SDom: S→D, mapping from subject to its running domain. Each subject is running

in only one domain at anytime, and the domain is authorized to that subject’s run-
ning role: SDom(s)∈RDom (SR(s)).

Definition 2.6. object’s security attribute
• OT: O→T, mapping from object to its type.
• OL: O→SL, mapping from object to its security label.

Definition 2.7. RCAP ⊆ R×CAP, role-permission authorization relation. (r1,cap)∈RCAP
denotes that role r1 has the role permission cap.

296 L. Xia, W. Huang, and H. Huang

• Rolecap: R→2CAP, mapping from role to its authorized Role permissions set. Role-
cap(r)={cap|(r,cap)∈RCAP}.

Definition 2.8. Two control matrixes
• DTM: D×T→2P, domain-type access control matrix. p∈DTM(d, t) denotes that the

subjects in domain d can access objects with type t in mode p.
• DDI: D×D→{Φ,{transfer}}, domain-domain interaction control matrix. transfer∈

DDI(d1, d2) denotes that subjects in domain d1 can transfer into domain d2.

Definition 2.9. Multiply Levels Security rule: MLS_rule: SL×SL→2P, a∈MLS_rule
(ls, lo) implies that subjects with security label ls can access objects with security label
lo in mode a. This rule combines the BLP confidentiality and Biba integrity lattices. Let
ls=(cs, is), lo=(co, io):

• If cs≥co, permit all read-related operations, that is: RP ⊆ MLS_rule(ls, lo).
• If cs＜co, deny all read-related operations, that is: ∀ p∈RP, p∉MLS_rule (ls, lo).
• If is≥io, permit all write-related operations, that is: WP ⊆ MLS_rule(ls, lo).
• If is＜io, deny all write-related operations, that is: ∀ p∈WP, p∉MLS_rule (ls, lo).

2.3 Permission Decision

Definition 2.10
• MLS permission (MLP): a subject’s MLP on an object is determined as follow:

mlp(s, o)={(o, p)|p∈MLS_rule (Ssl(s), OL(o))}
 Domain permission (DP): a subject’s DP on an object is determined as follow: dp(s,

o)={(o, p)|p∈DTM(SDom(s), OT(o))
 Role permission (RP): a subject’s RP on an object is determined as follow: rp(s,

o)={(o, p)|(o, p)∈Rolecap(SR(s))}
A subject’s Final permissions on an object is determined as: fp(s, o)=(mlp(s, o)

∩dp(s, o))∪rp(s, o).

3 Examples of Policy Configuration

3.1 Trusted Subjects’ Permission Confinement

We take the information interaction between user process and operating system as an
example on the information flow from lower integrity level to higher integrity level. As
shown in Figure 3. User data is in lower integrity level, and operating system data in
higher integrity level. In order to satisfy the needs of system calls, User process is
permitted to write to the buffer data space of the operating system, but no permission to
the other data object of the OS. Similarly, operating system writes the data to the buffer
object of the user process.

To enforce the policy described above, each process is assigned a security attribute
{role, domain}, denoting the process’s running role and running domain. And each data
object is assigned a security attribute {(c, i), t}, denoting the object’s confidentiality level
c, integrity level i and type t, as shown in Figure 3. And Rolecap(usr_r)={(w, kerbuffer)},
role usr_r has write permission to the kerbuffer object, its security label is (0,1),

 A Compositional Multiple Policies Operating System Security Model 297

Fig. 3. Information interaction between user process and operating system

Table 1. DTM

 ker_t Kerbuf_t usr_t usrbuf_t

ker_d r,w r w

usr_d r,w r

and its authorized domains set is {usr_d}. Rolecap(ker_r)= Φ, ker_r has no role per-
mission, its security label is (0,2), and its authorized domains set is {ker_d}. The DTM
and DDI between the domains and types are shown in Table 3.1.

We isolate the operating system data and user data from each other by dividing them
into different integrity level. The usrbuffer and usrprivate data objects which are in the
same integrity level are divided into different types, therefore User process can have
different fine-grained permissions to these two objects. According to the MLS policy,
User process has no write permission to the kerbuffer objects for its integrity level is
lower than the object. However, this write permission is necessary for getting job done.
So, we assign write permission on object kerbuffer to the role usr_r, this permission is
independent of MLS and Domain permissions. In this way, the function of system call
is achieved without giving too much permission to the User process to bring potential
security flaws to system.

3.2 Channel Control

We design a simplified firewall system to demonstrate the use of MPVSM in config-
uring channel control policies. The firewall is shown in Figure 4. The security policy of
the firewall is that all information flow from outside network to inside network or in
reverse direction must be checked by the access control component. It can be described
as follow: information is only allowed to flow from the Outside to the Inside or in re-
verse direction via the Access Control. It can not be flowed directly between them.
Besides, all components are permitted to read the Config without modifying it. And all
components can append information to the Log, but can not read it.

Our configurations to enforce this policy are shown in Figure 3.2. The DTM and
DDI between domains and types are shown in Table 3.2. And Rolecap(fw_r) =Φ, role

User process

usrprivate usrbuffer

kerprivate

Kernel process {ker_r, ker_d}

{usr_r, usr_d}

{(0,2),kerbuf_t} {(0,2),ker_t}

{(0,1), usrbuf_t}{(0,1),usr_t

kerbuffer

298 L. Xia, W. Huang, and H. Huang

Fig. 4. Policy configuration of the Firewall

Table 2. The DTM and DDI

 in_t out_t con_t in_d out_d ac_d

in_d r,w r,a

out_d r,w r,a

ac_d r,w r,w r,a

fw_r has no Role permissions. The security label of the fw_r is (1,1), and its authorized
domains are {ac_d, in_d, out_d}, there is no transfer permission between any two of
these three domains.

We upgraded the confidentiality level of the Log to make it unreadable to the
components, upgraded the integrity level of the Config to make it unmodifiable by
components. Then we divided the subjects of the same security level to different do-
mains, and objects of the same security level to different types. By controlling the
fine-grained permissions between the domains to types, information channel control
policy between the inside and outside network is enforced.

3.3 Enforcing Multiple Security Policies

Through different configuring ways, Multi-Level security model, DTE and RBAC can
be enforced separately in the MPVSM, and multi-policy views between different user
groups can be enforced too.

3.3.1 Enforcing Multi-level Security model
The way configuring MPVSM to enforce Multi-Level Security model, which based on
both confidentiality and integrity lattices, is described as following:

Inside Outside

Log

Config

InternetIntranet

Firewall {(3,0),con_t}

{(1,1),out_t}{(1,1),in_t

{(0,3),con_t}

{fw_r, out_d} {fw r, in d}

{f_r, ac_d}

Access
Control

 A Compositional Multiple Policies Operating System Security Model 299

1. |R|=|SL|, number of roles in the system is the same as the number of the security
labels. Each role corresponds to one security label.

2. D={gen_d}, T={gen_t}, there are only one domain and one type in the system.
RD={(r, gen_d)|r∈R}, indicates that all roles’ authorized domain is gen_d. The
type of all objects is gen_t: OT={(o, gen_t)| o∈O}.

3. DTM={(d, t, p)|d∈D, t∈T, p∈P}, which indicates domain gen_d have all domain
permissions to type gen_t.

4. Rolecap(r:R)=Φ, no role permission is authorized to every role.

3.3.2 Enforcing DTE
1. R={gen_r}, only one role in system. UA={(u, gen_r)|u∈U}, role gen_r is assigned

to every users.
2. RD={(gen_r, d)|d∈D}, indicates that all domains in system are authorized to the

role gen_r.
3. SL={(Only_C,Only_I)}, only one security label in the system, therefore: RL= {(r,

Only_C, Only_I))|r∈R}.
4. Rolecap(r:R)= Φ.

3.3.3 Enforcing RBAC
1. D={gen_d}, T={gen_t}, only one domain and one type in system. RD={(r, gen_d)|

r∈R}, gen_d is authorized to every role in system. The type of all objects is gen_t,
OT={(o, gen_t)| o∈O}.

2. DTM(gen_d, gen_t)=Φ, denotes subjects in gen_d domain have no domain permis-
sions to objects in type gen_t.

3. SL={(Only_C, Only_I)}, only one security label. RL={(r,(Only_C,Only_I)) |r∈R}.

3.3.4 Enforcing Multiple Model Views
Assume all users in the system can be divided into three groups: Grpa, Grpb and Grpc.
Now we may hope that users in each group can perceive different access control model
views. For instance, users in Grpa think that the security model enforced in system is
MLS, users in Grpb think that is RBAC and users in Grpc think that is DTE. The con-
figuring method that enforces this multi-model views in one system is given as below.

1. U=Grpa∪Grpb∪Grpc, the three sets are disjointed each other.
2. R= mls_rs∪rbac_rs∪{dte_r}. mts_rs is the roles set corresponding to MLS

model. rbac_rs is the roles set corresponding to RBAC model. And dte_r is the
role corresponding to DTE model.

3. D= {mls_d}∪{rbac_d}∪dte_ds.
4. (u, r)∈UA∧(u, r’)∉UA, where u∈Grpa, r∈mls_rs, r’∉mls_rs, the roles in

mls_rs are only permitted to be assigned to users in Grpa. (u, r)∈UA∧(u,
r’)∉UA, where u∈Grpb, r∈rbac_rs, r’∉rbac_rs, the roles in rbac_rs can only
be assigned to users in Grpb. Similarly, (u, dte_r)∈UA∧(u, r)∉UA, where u∈
Grpc, r≠dte_r, every user in Grpc is assigned the only role dte_r.

5. |mls_rs|=|SL|, number of roles in set mls_rs is the same as the number of security
labels in system. Each role in mls_rs corresponds to one security label.
MLS_rule(Ssl(r), tsl)=M, r∈rbac_rs, tsl∈SL, have all of possible MLS permis-

300 L. Xia, W. Huang, and H. Huang

sions to other subjects or objects. MLS_rule(Ssl(dte_r), tsl)=M, tsl∈SL, role
dte_r’s MLS permissions to other subjects or objects include all of possible per-
missions too.

6. The security label of the roles in rbac_rs is the lowest level label of the system, that
is: ∀ r∈rbac_rs, RL(r)=(cs, is), ∀ c∈C, cs≤c and ∀ i∈I, is≤i. the security label of
dte_r is the highese level label of the system, that is: RL(dte_r)=(cs, is), ∀ c∈C,
cs≥c and ∀ i∈I, is≥i.

7. (r, mls_d)∈RD∧(r,d)∉RD, where r∈mls_rs, d≠mls_d, every roles in mls_rs is
authorized the only domain mls_d. (dte_r, d) ∈RD∧(r’, d)∉RD, where r’≠dte_r,
d∈dte_ds, all domains in dte_ds are authorized to role dte_r. Simliarly, (r,rbac_d)
∈RD∧(r,d)∉RD, where r∈rbac_rs, d≠rbac_d, every role in rbac_rs is au-
thorized the only domain rbac_d.

8. (mls_d,t,p)∈DTM,t∈T, p∈P. DDI(mls_d, d)=Φ, d∈D, subjects in domain mls_d
can not transfer to other domains.

9. (rbac_d, t, p)∈DTM, t∈T, p∈P, the subjects in domain rbac_d have all domain
permission to all types’ objects in system. DDI(rbac_d, d)=Φ, d∈D, subjects in
domain rbac_d can not transfer to other domains.

10. For every r∈mls_rs∪{dte_r} and c∈CAP, (r, c)∉RCAP, there is no role per-
mission authorized to roles in set mls_rs and the role dte_r.

4 The Related Works

Bell-LaPadula [1] (BLP) model mainly emphasizes the protection of confidentiality. It
is able to limit flow of information and unauthorized information leakage. However, it
does not care about the integrity, which is also important [2,7,11]. Besides, BLP is
weak in channel control of information flow [22]. Biba Integrity Model [6] is the
mathematical dual of BLP, intending to protect the integrity in system.

Type enforcement is a table-oriented mandatory access control policy for confining
applications and restricting information flows. DTE [9] is an enhanced version of type
enforcement designed to provide needed simplicity and compatibility. Role-based ac-
cess control [14] provides a valuable level of abstraction to promote security admini-
stration at a business level.

The Flask [10] security architecture emphasizes diverse security policies support.
However, it applies only MAC to the Fluke Microkernel. It provides the mechanisms
for diverse policies without giving how to enforce multiple policies in system.

One of the earliest MAC mechanisms in operating system is Lattices [1, 20]. For
instance, LOMAC [13] enforces Biba integrity. CMW [8] can dynamically relabel the
current object for increased flexibility.

Recently, Asbestos [17] provides labeling and isolation mechanisms that can sup-
port applications to express a wide range of policies and make MAC more practical.
KernelSec [18] aims at improving the effectiveness of the authorization model and the
security policies that can be implemented.

In capability-based confinement systems, KeyKOS [21] achieved military-grade
security by isolating processed into compartments and interposing reference monitors
to control the use of capabilities. EROS [19] later successful realized this principles on

 A Compositional Multiple Policies Operating System Security Model 301

the modern hardware. And the Coyotes kernel [5] mainly explores use of software
verification techniques to achieve higher confidence in the correctness and security of
the kernel.

Mandatory access control can also be achieved with unmodified traditional operat-
ing system through virtual machines [16, 4].

5 Conclusions

The Compositional Multiple Policy Security Model is presented, which is based on the
MLS model, combining the domain and type attributes to the model, to eliminate the
limitations of MLS models. It has enforced expression power in channel control poli-
cies, and made permission management more fine-grained and enhanced the ability of
confining the permission of the trusted subjects. MPVSM is also able to enforce mul-
tiple policy views in operating system in a flexible way.

References

1. Bell, D., La Padula, L.: Secure Computer Systems: Mathematical Foundations. Technical
Report MTR-2547, vol. I, MITRE Corporation (1975)

2. Amoroso, E., Nguyen, T., Weiss, J., et al.: Towards an Approach to Measuring Software
Trust. In: 1991 IEEE Symposium on Research in Security and Privacy, pp. 198–218 (1991)

3. Organick, E.: The MULTICS System: An Examination of Its Structure. MIT Press, Cam-
bridge (1972)

4. Karger, P.A., Zurko, M.E., Bonin, D.W., et al.: A VMM security kernel for the VAX ar-
chitecture. In: 1990 IEEE Symposium on Security and Privacy, pp. 2–19 (1990)

5. Shapiro, J., Doerrie, M.S., Northup, E., et al.: Towards a Verified, General-Purpose Oper-
ating System Kernel. In: 1st NICTA Workshop on Operating System Verification (2004)

6. Biba, K.: Integrity Considerations for Secure Computer Systems. Technical Report
MTR-3153, MITRE Corporation (1977)

7. Eswaran, K., Chamberlin, D.: Functional Specifications of Subsystem for Database Integ-
rity. In: The International Conference on Very Large Data Bases (1975)

8. Berger, J.L., Picciotto, J., Woodward, J.P.L., Cummings, P.T.: Compartmented mode
workstation: Prototype highlights. IEEE Transactions on Software Engineering, Special
Section on Security and Privacy 16, 608–618 (1990)

9. Badger, L., Sterne, D.F., Sherman, D.L., et al.: A Domain and Type Enforcement UNIX
Prototype. In: 5th USENIX UNIX Security Symposium (1995)

10. Spencer, R., Smalley, S., Hibler, M., et al.: The Flask Security Architecture: System Sup-
port for Diverse Security Policies. In: 8th USENIX Security Symposium, pp. 123–139
(1999)

11. Lipner, S.: Non-Discretionary Controls for Commercial Applications. In: 1982 Symposium
on Privacy and Security (1982)

12. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information
and System Security 3, 85–106 (2000)

13. Fraser, T.: LOMAC–low water-mark mandatory access control for Linux. In: 9th USENIX
Security Symposium (1999)

302 L. Xia, W. Huang, and H. Huang

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control. IEEE
Computer 29 (1996)

15. Loscocco, P., Smalley, S.: Meeting critical security objectives with security-enhanced
linux. In: Ottawa Linux Symposium 2001 (2001)

16. Goldberg, R.P.: Architecture of virtual machines. In: AFIPS National Computer Confer-
ence, vol. 42, pp. 309–318 (1973)

17. Efstathopoulos, P., Krohn, M., VanDeBogart, S., et al.: Labels and Event Processes in the
Asbestos Operating System. In: 20th Symposium on Operating Systems Principles (2005)

18. Radhakrishnan, M., Solworth, J.A.: Application Support in the Operating System Kernel.
In: ACM Symposium on Information, Computer and Communications Security (2006)

19. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: A Fast Capability System. In: 17th ACM
symposium on Operating systems principles (1999)

20. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer system. Pro-
ceedings of the IEEE 63, 1278–1308 (1975)

21. Key Logic. The KeyKOS/KeySAFE System Design (1989), http://www.agorics.com/
Library/KeyKos/ keysafe/Keysafe.html

22. Rushby, J.: Noninterference, Transitivity, and Channel-Control Security Policies. Technical
Report CSL-92-02, Computer Science Lab, SRI International (1992)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

