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A Subset-Based Approach Improves Power and
Interpretation for the Combined Analysis of Genetic
Association Studies of Heterogeneous Traits

Samsiddhi Bhattacharjee,1 Preetha Rajaraman,2 Kevin B. Jacobs,3 William A. Wheeler,4

Beatrice S. Melin,5 Patricia Hartge,6 GliomaScan Consortium,7 Meredith Yeager,3 Charles C. Chung,8

Stephen J. Chanock,8 and Nilanjan Chatterjee1,*

Pooling genome-wide association studies (GWASs) increases power but also poses methodological challenges because studies are often

heterogeneous. For example, combining GWASs of related but distinct traits can provide promising directions for the discovery of loci

with small but common pleiotropic effects. Classical approaches for meta-analysis or pooled analysis, however, might not be suitable for

such analysis because individual variants are likely to be associated with only a subset of the traits or might demonstrate effects in

different directions. We propose a method that exhaustively explores subsets of studies for the presence of true association signals

that are in either the same direction or possibly opposite directions. An efficient approximation is used for rapid evaluation of p values.

We present two illustrative applications, one for a meta-analysis of separate case-control studies of six distinct cancers and another for

pooled analysis of a case-control study of glioma, a class of brain tumors that contains heterogeneous subtypes. Both the applications

and additional simulation studies demonstrate that the proposed methods offer improved power and more interpretable results when

compared to traditional methods for the analysis of heterogeneous traits. The proposed framework has applications beyond genetic asso-

ciation studies.
Introduction

Meta-analysis offers a powerful tool for combining distinct

genome-wide association studies (GWASs). Recent

reports1,2 have yielded additional discoveries when the

underlying studies were relatively homogeneous, but

major methodological challenges have emerged as the field

moves toward combining studies from distinctly different

populations and study designs. Most importantly, a new

approach is needed for combining existing GWASs of

distinct but putatively related traits that can provide

insights into pleiotropic effects2–6 of known susceptibility

loci and aid the discovery of novel susceptibility regions

affecting multiple traits. Although standard approaches

to meta-analysis work well when GWASs are combined so

that the average effect of a SNP marker on a single trait

can be measured, these methods are not optimal for the

analysis of distinct traits for which the effect of individual

susceptibility loci manifests only in a specific subset or in

different directions for different traits.

Similar statistical issues arise in the analysis of case-

control studies in which cases comprise distinct subtypes

with heterogeneous genetic architecture. For example, in

recent studies of select cancers,7–9 histologically distinct

subtypes exhibit both shared and different genetic suscep-
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tibilities. Accordingly, an overall ‘‘pooled’’ case-control

analysis reduces the power for detecting susceptibility

loci specific to certain subtypes.10 Restriction of the anal-

ysis to individual subtypes improves the power for detect-

ing specific associations but can lose the opportunity for

examining how loci associate withmore than one subtype.

The tradeoff between combining and separating (‘‘lump-

ing’’ versus ‘‘splitting’’) attains higher specificity at the

cost of a reduction in the sample size. An agnostic

approach that preserves the comprehensive perspective

with the likely specificity of effects would be better.

In this report, we offer an agnostic approach that gener-

alizes standard fixed-effects meta-analysis by allowing

some subset of the studies to have no effect. The method

explores all possible subsets of ‘‘non-null’’ studies to iden-

tify the strongest association signal and then evaluates

the significance of the signal while accounting for multiple

tests required by the subset search. We use modern statis-

tical theory for tail-probability approximation to develop

a multiple-testing adjustment procedure that can effi-

ciently account for correlation among different test statis-

tics without resorting to computationally expensive

resampling techniques. We constructed a one-sided

version of this method by limiting the space of hypotheses

tested, i.e., by only exploring models in which all non-null
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studies have effects in the same direction. We further

developed a two-sided version of the method to allow

non-null studies to have effects in opposite directions.

We also provide a more general formulation of the meth-

odology that allows powerful pooled analysis in the

context of a single case-control study in which cases can

consist of distinct disease subtypes. This permits both

case-control and case-case comparisons (among subsets

of disease subtypes) to detect the strongest association

signals.

We present simulation studies to explore the power of

the proposed method in the presence of heterogeneity.

The results indicate that the proposed method gains

substantial power—sometimes approaching between

100% and 500%—over some of the alternatives. The

method also performs well in distinguishing the subsets

of associated and unassociated traits for a specific variant.

Two illustrative applications of the method are shown.

In the first, we examined secondary effects of established

cancer susceptibility SNPs by using summary results of

GWASs of six distinct cancers involving a total of 21,473

cases and 25,891 controls. The analysis identified a number

of known secondary effects as well as a number of prom-

ising novel secondary effects. In another application, we

analyzed seven known susceptibility SNPs for glioma

(MIM 137800), a form of brain tumor, by using new

GWAS data from 1,856 glioma cases and 4,955 controls

from the GliomaScan Consortium. Compared with stan-

dard case-control analysis, the proposed method, which

accounts for subtype heterogeneity, produced much

stronger evidence of replication for two of the SNPs

(p values decreased by 100- and 10,000-fold, respectively).

We conclude the paper by considering further improve-

ments of the method that could use restricted and/or

weighted subset searches in order to explicitly incorporate

prior plausibility.
Material and Methods

Subset-Based Meta-Analysis
We describe themethods by assuming that summary-level data are

available from individual studies (of possibly heterogeneous traits)

that participate in the meta-analysis. Let ðbk; skÞ; k ¼ 1;.;K

denote the estimates of regression parameter and its standard error

for a given SNP from each of K different studies. In standard fixed-

effect meta-analysis,11 the association for the SNP is tested on the

basis of a weighted combination of the Z statistics, Zk ¼ bk=sk, of

the form Zmeta ¼ PK
k¼1wkZk, in which wk is chosen so that

VarðZÞ ¼ PK
k¼1w

2
k ¼ 1. Under the assumption of a fixed effect of

the SNP across all studies, the optimal weights are given by

wk ¼ ð1=skÞ=
�
1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼11=s
2
k

q �
, which is known to produce a result

that is asymptotically equivalent to that of a pooled analysis of the

studies.

Zmeta ¼
PK
k¼1

Zk=skffiffiffiffiffiffiffiffiffiffi
1=s2k

p
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If covariate adjustments are similar across studies, then

skf1=
ffiffiffiffiffi
nk

p
, where nk is the sample size for the kth study, and

thus, simple weights of the form wk ¼ ffiffiffiffiffi
pk

p
, in which

pk ¼ nk=
PK

k¼1nk, are close to optimal.12 For case-control studies

with unequal numbers of cases and controls, such optimal weights

could be defined in terms of an ‘‘effective sample size,’’ which is

the harmonic mean of the number of cases and controls. If there

are shared subjects among studies, then Zmeta should be appropri-

ately standardized so that the covariance between Z statistics

across studies (see below) can be accounted for.

For the subset-based meta-analysis, we propose evaluating the

evidence of the association for a SNP for any given subset S of

the studies on the basis of the Z statistic

ZðSÞ ¼
X
k˛S

ffiffiffiffiffiffiffiffiffiffiffi
pkðSÞ

p
Zk;

in which pðSÞ ¼ nk=
P

k˛Snk denotes the sample size for the kth

study relative to the total sample size for the given subset S.

More generally, the weights for the subset-based meta-analysis

can be taken proportionally to 1=sk as discussed above.We propose

that the overall evidence for the association of the SNP be evalu-

ated on the basis of

Zmax�meta ¼ maxS˛S jZðSÞ j ;

i.e., with the use of themaximum (in absolute value) of the subset-

specific Z statistics over the class S of all possible 2K � 1 subsets of

the K studies. When K is large, the number of possible subsets

grows exponentially. The computation of Zmax�meta, however,

can be done rapidly given that the evaluation of each ZðSÞ simply

involves taking a different weighted sum of precomputed

quantities.

Under the null hypothesis of no association for the SNP in any

of the individual studies, the vector of test statistics ZðSÞ for

different values of S should follow a multivariate normal distribu-

tion with a mean of zero and unit variance for each component

and with covariance between a pair of subsets A and B of the form

CovfZðAÞ;ZðBÞg ¼
X
k˛A;B

ffiffiffiffiffiffiffiffiffiffiffiffi
pkðAÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
pkðBÞ

p
þ

X
l˛AnB

X
m˛BnA

ffiffiffiffiffiffiffiffiffiffiffiffi
plðAÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
pmðBÞ

p
CovðZl;ZmÞ:

If all of the individual studies are independent, i.e., if they don’t

have any shared subjects between them, then the second term in

the above sum disappears. If the individual studies are not inde-

pendent, it is possible to obtain analytic expressions for covari-

ance terms on the basis of information on shared subjects.13 Later

in this section, we provide a general formula for such covariance

terms for case-control studies when cases or/and controls are

shared between certain studies.

Once the multivariate distribution of subset-specific Z statistics

is characterized as above, the next task is to obtain the distribution

of the maximum. In this report, we exploit some recent theory for

tail approximations for multivariate distributions to obtain

analytic but sharp upper bounds for the p values of the proposed

test statistics. The discrete local maxima (DLM) method14 gives

an accurate way of estimating tail probabilities of a test statistic

(e.g., a Z score) that is maximized over a grid. It takes advantage

of the local correlation structure of the statistics over neighboring

grid points. In our application, the grid points represent different

subsets, and two subsets are defined as neighbors if one can be ob-

tained from the other when a single study is added or dropped.
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The DLM-based approximate p value for the one-sided test

with an observed test statistic Zmax�meta ¼ T is given by (see

Appendix B)

PDLM ¼
X
s˛S

ZN
T

2 prðneighboring subsets have absolute Z score

< z jZs ¼ zÞfðzÞdz;

where fð:Þ denotes the standard normal density and S indexes all

possible subsets involved in the maximum. Further invoking the

so-called ‘‘separability’’ assumption,14 which is essentially that

the neighboring subsets are conditionally independent condi-

tional given the current subset, the above p value can be approxi-

mated by

~PDLM ¼
X
s˛S

ZN
T

2
YK
k¼1

prð jZs5k j< z jZs ¼ zÞfðzÞdz:

Separability in this context can be justified by the conservative-

ness of the above approximation (Appendix D). The conditional

probabilities in the last expression can be evaluated with a univar-

iate conditional normal distribution in which covariances

between subsets are calculated on the basis of formulae given in

the next section. For more details on the derivation and discussion

of the assumptions made, see Appendix B. Numerical investiga-

tions with the use of simulation studies demonstrate that the

above procedure can maintain desired type-I error rates for all of

the different subset-based methods considered (Tables S4 and S5,

available online).
Two-Sided Tests
To construct a powerful two-sided statistic for the detection

of effects in opposite directions, we search for subsets of studies

that show the strongest association signals separately in positive

and negative directions to obtain Zmax;þ and Zmax;�, respectively.
We then aim to combine the two statistics by using a chi-square

method. To circumvent the problem of dealing with a complex

negative correlation between jZmax;þj and jZmax;�j, we first

evaluate the p values, namely ~P
þ
DLM and ~P

�
DLM , of the two tests

by conditioning on the observed signs of the Z statistics of the

individual studies. These conditional p values, which are obtained

by a minor modification of the aforementioned DLM method

(see Appendix B), can be shown to be distributed independently

of one another under the assumption that the individual studies

are independent. Thus, they provide a convenient way of

combining the association signals with the use of Fisher’s

method,15 i.e.,

Z
ð2Þ
max�meta ¼ �2

�
log ~P

þ
DLM þ log ~P

�
DLM

�
and

~P
ð2Þ
DLM ¼ P

�
c2
4 > Z

ð2Þ
max�meta

�
:

When all the observed association signals are on one side

(say positive), we use Z
ð2Þ
max�meta ¼ �2 log ~P

þ
DLM and ~P

ð2Þ
DLM ¼ ~P

þ
DLM .
Analysis of Case-Control Studies with Heterogeneous

Disease Subtypes
We adapt the proposed method to account for heterogeneity

among disease subtypes within a single case-control study. We

consider two types of subset-based analysis. In one (‘‘case-

control’’), we compare each subset of the disease subtypes with
The Am
the fixed control group. In another (‘‘case-complement’’), we

compare each subset of the disease subtypes with its complemen-

tary subset that includes the common control group as well as the

other case subtypes. The latter approach is potentially more

powerful given that each subset of cases is being compared with

a larger pool of ‘‘controls.’’ For either of these analyses, it is possible

to characterize the multivariate distribution of Z statistics for all

the different subset-based tests, and one can therefore use the

procedure described above to assess the significance of the

maxima of these subset-based tests. If ZðAÞ and ZðBÞ denote

the Z statistics for the association test for a SNP from case-control

studies A and B with an arbitrary amount of overlap between

subjects, then, under the null hypothesis of no association and

the assumption that there is no covariate adjustment, the correla-

tion between the statistics is given by

CorrfZðAÞ;ZðBÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
ð1Þ
A n

ð0Þ
A

NA

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
ð1Þ
B n

ð0Þ
B

NB

s "
n
ð11Þ
AB

n
ð1Þ
A n

ð1Þ
B

� n
ð10Þ
AB

n
ð1Þ
A n

ð0Þ
B

� n
ð01Þ
AB

n
ð0Þ
A n

ð1Þ
B

þ n
ð00Þ
AB

n
ð0Þ
A n

ð0Þ
B

#
;

where n
ð1Þ
A , n

ð0Þ
A , and NA are the number of cases, controls, and

subjects, respectively, in study A (and in study B with corre-

sponding notation) and n
ðijÞ
AB denotes the number of subjects

with different phenotype categories ði; jÞ˛ð0;1Þ who overlap

between studies A and B. For example, n
ð00Þ
AB denotes the number

of shared controls between studies A and B, and n
ð10Þ
AB denotes

the number of individuals who are treated as cases in study A

but as controls in study B. Similar analytic expressions for

covariances have been derived previously for special cases.13,16

Once the correlation structure between the Z scores for case-

control or case-complement analysis of disease subtypes is ob-

tained as above, the one-sided-subset search procedure is used,

and p values are approximated with the DLM procedure (see

Appendix C).
Restricted and Weighted Subset Search
The proposed testing framework can allow restricted and/or

weighted subset searches that could incorporate prior plausibility

of models. For the analysis of ordered disease subtypes, for

example, one might consider subset searches by cumulatively

collapsing the subtypes in backward and forward directions.

Such restricted analysis can not only improve the power of the

detection of overall association by reducing the number of tests

compared to an agnostic search but also lead to findings that are

easier to interpret. The DLM procedure used for the evaluation

of p values extends to such restricted searches with appropriate

modifications for the ‘‘class of all subsets’’ and the definition of

‘‘neighboring subsets.’’

In certain applications, one can incorporate prior knowledge,

such as the degree of relatedness among traits, in the proposed

analysis by using a weighted hypothesis-testing framework.17,18

The agnostic subset-based method can be thought of as testing

each subset for association while spending equal type I error for

all subsets. If certain hypotheses (subsets) are more likely to be

true (associated) on the basis of prior knowledge, a natural idea

is to spend type I error differentially so that more plausible subsets

can be tested with the use of more liberal thresholds. More

formally, one can achieve this by defining a weighted test statistic

for each subset as
erican Journal of Human Genetics 90, 821–835, May 4, 2012 823



Table 1. Performance of the Subset-Based Test for Detection of
the Truly Associated Subset of Traits
Ts ¼ ps
ws

¼ 2½1� Fð jZs j Þ�
ws

;

(K, T1, T2)

Sensitivity (True
Positive Probability)

Specificity (True
Negative Probability)

One-Sided Two-Sided One-Sided Two-Sided

5 traits: 100% positive

(5, 1, 0) 0.920 0.986 0.835 0.500

(5, 2, 0) 0.943 0.943 0.886 0.505

(5, 3, 0) 0.934 0.935 0.921 0.477

(5, 4, 0) 0.924 0.925 0.926 0.412

5 traits: 75% positive

(5, 1, 1) 0.502 0.982 0.883 0.721
where, for each subset s, jZsj is the subset-specific meta-analysis

test statistic discussed earlier, ps is the associated nominal p value,

andws is a prespecified weight. Now, an overall test statistic for de-

tecting the strongest signal over different subsets and the corre-

sponding p value can be defined as

T ðwÞ
min ¼ mins˛STs ¼ Ts0 and pðwÞ ¼ pr

�
T

ðwÞ
min < Ts0 jH0

�
;

where s0 ¼ argminSTs. With the use of the definitions above, the

multivariate distribution of the Ts’s can be rewritten in terms of

the associated Z scores, which have amultivariate normal distribu-

tion. Therefore, the p value pðwÞ can again be approximated with

an appropriate modification of the DLM procedure.
(5, 2, 1) 0.621 0.971 0.906 0.745

(5, 3, 1) 0.676 0.950 0.918 0.782

10 traits: 100% positive

(10, 2, 0) 0.942 0.953 0.879 0.563

(10, 3, 0) 0.941 0.944 0.893 0.579

(10, 4, 0) 0.932 0.932 0.914 0.587

(10, 5, 0) 0.926 0.927 0.923 0.573

(10, 6, 0) 0.927 0.927 0.922 0.557

(10, 7, 0) 0.922 0.924 0.933 0.522

10 traits: 75% positive

(10, 1, 1) 0.500 0.978 0.855 0.675

(10, 2, 1) 0.621 0.973 0.877 0.698

(10, 3, 1) 0.672 0.955 0.901 0.739

(10, 3, 2) 0.566 0.934 0.907 0.778

(10, 4, 2) 0.616 0.924 0.915 0.801

(10, 5, 2) 0.656 0.933 0.927 0.825

In each simulation, a total of K ¼ 5 or K ¼ 10 distinct traits are analyzed (each
trait has 2,000 cases and 2,000 controls). A variant of MAF ¼ 0.3 is assumed to
be associated with a subset of size T (<K) of the traits with an odds ratio of 1.15
(see Table S1 for results under heterogeneity of odds ratios). The ‘‘100% posi-
tive’’ sections assume that all of the associations are in the same direction, and
the ‘‘75% positive’’ sections assume that 75% of the associations are positive
and 25% are negative. The two measures of performance that are shown are
(1) sensitivity (the average proportion of associated traits detected) and (2)
specificity (the average proportion of null traits discarded). The following
abbreviations are used: K, total number of traits analyzed (5 or 10); T1, number
of traits that are truly associated in the positive direction; and T2, number of
traits that are truly associated in the negative direction.
Simulation Studies
We conducted simulation studies to evaluate the type I error and

power of the various statistics discussed. In each case-control

simulation, the genotype frequencies in the underlying popula-

tion were assumed to be under a Hardy-Weinberg equilibrium

with a minor allele frequency (MAF) of 0.3. We then induced

the genotype frequencies for the cases and controls by setting

a disease prevalence of 1% and a logistic linear disease model of

the form

logit prðD ¼ 1 jG ¼ gÞ ¼ aþ bg;

where b denotes the log-OR (odds ratio) association parameter.

We considered two different study settings. In the first (Table 1

and Figure 1), we considered a total of K ¼ 5 or K ¼ 10 indepen-

dent case-control studies of possibly heterogeneous traits (each

study had 2,000 cases and 2,000 controls). For each K, we

assumed that a given SNP is associated with the outcome only

for a fraction p (up to rounding) of the studies with p ¼ 1/5, 2/

5, 3/5, 4/5 or 1. Among studies that contained true associations,

the number of studies, T1, with a positive effect of the SNP was set

such that a ¼ T1/K is either 1 (i.e., all effects are in the same direc-

tion) or 3/4 (i.e., some effects are in opposite directions) up to

rounding. In the main simulations, we assumed that the magni-

tude of the effects of a SNP on the associated outcomes was

constant (OR ¼ 1.15), and we obtained the effects in opposite

directions by simply reversing the sign of the log-OR coefficients.

In additional simulations (Table S1 and Figure S1), we allowed

heterogeneity in the effect of a SNP on the associated outcomes.

In this setting, we allowed the genotype OR among positively

associated traits to vary approximately in the range of 1.05 to

1.25 (a mean of 1.15).

In the second setting (Figure 2), we considered a single case-

control study with K¼ 7 distinct case groups (representing disease

subtypes). We assumed that the study included a total of 14,000

cases (2,000 subjects in each case group) and a shared control

group that contained either N0 ¼ 14,000 or 3,000 subjects. We al-

lowed the number of disease subtypes, T1, that are truly associated

with a SNP to vary. For each case type, the genotype OR for a SNP

was fixed at 1 for unassociated subtypes and at 1.15 for associated

subtypes. For both these settings, the type I error (Tables S4 and

S5) was estimated at levels 0.05, 0.01, and 0.001 with 1,000,

5,000 and 50,000 simulation replicates, respectively. Power was

estimated for levels 0.001 and level 10�7 (Figure S3) with 500

replicates.
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Results

We conducted simulation studies to investigate the power

of alternative methods to detect a susceptibility SNP by

combining signals across multiple studies of heteroge-

neous traits. In each simulation, it is assumed that only

a subset of the studies (traits) contains true signals

(Figure 1). When all of the studies that contain true associ-

ation signals (i.e., non-null studies) have effects in the

same direction (Figure 1, upper panel) and when the

number of true studies containing the signal is small
012



Figure 1. Simulation-Based Power comparison of Alternative Methods for Detecting an Overall Association
In each simulation, it is assumed that a total of five or ten distinct traits are analyzed (for each trait, there are 2,000 cases and 2,000
controls). A variant with a MAF ¼ 0.3 is assumed to be associated with a subset of the traits (the number of such traits is shown on
the x axis) and has a fixed OR of 1.15 (see Figure S1 for results under heterogeneity of ORs). The upper panels assume that all of the asso-
ciations are in the same (positive) direction, and the lower panels assume that 75% of the associations are positive and 25% are negative.
In addition to the two-sided (green line) and one-sided (orange line) subset-based tests, power curves are also shown for the overall meta-
analysis (blue line), Fisher’s combined p value method (a multiple-degree-of-freedom [df] chi-square test) (maroon line), and a ‘‘gold-
standard’’ test (black line) that assumes that the subset of non-null traits that are truly associated with the given SNP are known a priori.
All powers are shown at an alpha level of 0.001.
relative to the total number of studies included in the anal-

ysis, we observe that substantial power is gained by both

the one-sided and two-sided tests as well as the multiple-

degree-of-freedom (df) chi-square test (Fisher’s combined

p value method) when they are compared with the stan-

dard fixed-effect meta-analysis method. For example, in

the simulation setting in which ten studies are included

in an analysis but only three contain true association

signals, the power for detection of the SNP was 26.8% for

the standard meta-analysis and was 70.4% and 63.6% for

our proposed one-sided and two-sided tests, respectively.

In this scenario, it is noteworthy that the one-sided test

gained significant power over both the proposed two-sided

and multiple-df chi-square tests. When non-null studies

contained association signals in opposite directions, the

power loss was more substantial for standardmeta-analysis

than for the alternatives (Figure 1, lower panel). In this

setting, we observe that the proposed two-sided test and

the multiple-df chi-square test perform similarly, and

both can provide substantial gain in power over the one-
The Am
sided test by combining association signals from opposite

directions. Qualitatively similar behavior was observed

for all methods when we allowed for a significant amount

of heterogeneity among the ORs within non-null studies

in the simulations (Figure S1).

It is instructive to compare the power of the proposed

tests with that of the ‘‘gold-standard’’ test, namely one

that assumes the true subset of non-null studies to be

known a priori. It is evident that there is a significant

loss of power for the proposed tests as a result of

a multiple-testing penalty associated with comprehensive

subset searches. The magnitude of such loss depends on

the total number of studies included in the analysis given

that the number of subsets to be explored increases expo-

nentially with the number of studies. For example, in the

setting of Figure 1, where only three studies contain the

true effect, the power of the one-sided test is either

82.8% or 70.4% depending upon whether the studies are

evaluated against a total of 5 or 10 studies, respectively.

When the correlation between different subset analyses is
erican Journal of Human Genetics 90, 821–835, May 4, 2012 825



Figure 2. Simulation-Based Power Comparison
of Alternative Methods in the Analysis of a Case-
Control Study with Heterogeneous Disease
Subtypes
Each simulation includes 14,000 cases equally
distributed over seven subtypes. The left and
right panels correspond to designs with 14,000
and 3,000 controls, respectively. A variant with
a MAF of 0.3 is assumed to be associated with
a subset of the subtypes (the number of such
subtypes is shown on the x axis) and have a fixed
OR of 1.15. The power curves for two alternative
subset-based tests, ‘‘case-control’’ (orange line)
and ‘‘case-complement’’ (green line), are shown
along with those for an overall case-control anal-
ysis (blue line) and a ‘‘gold-standard’’ (black line)
case-complement test that assumes that the
subset of associated subtypes is known a priori.
All powers are shown at an alpha level of 0.001.
accounted for, the penalty associated with multiple testing

is lower than that associated with a standard Bonferroni

procedure (see Figure S2), i.e., multiplication of the p value

of the maximal subset by the total number of subsets. It is

noteworthy that even after adjustment for a large number

of comparisons, the subset-based approach, relative to

standard meta-analysis, can yield a major gain in power.

We evaluate how the proposed methods perform in de-

tecting the correct subset of non-null studies (Table 1).

Regardless of the ratio of the number of null and non-

null studies, the proposedmethods can achieve high sensi-

tivity and specificity as a tool for set selection. For example,

in the setting of Table 1 inwhich five out of ten studies con-

tained true association signals in the same direction, the

proposed one-sided test had a sensitivity of 92.6%and spec-

ificity of 92.7%. In other words, the method on average

included 5 3 0.921 ¼ 4.6 of the non-null and 5 3

(1�0.927) ¼ 0.37 of the null studies in the detected set of

associations. The two-sided test can have higher sensitivity

in the presence of true effects in opposite directions, but it

can also have lower specificity as it attempts to identify two

distinct sets over which the risk of false positives is accumu-

lated. When we allowed for heterogeneity in ORs among

the non-null studies (Table S1), as expected on theoretical

grounds (see AppendixA), the sensitivities of bothmethods

were reduced, but the specificities remained comparable to

those in the absence of heterogeneity.

Simulation studies also illustrate that the subset-based

methods can gain power over standard approaches to the

analysis of case-control studies when the cases contain

etiologically heterogeneous subtypes (Figure 2). For

example, in the left panel of Figure 2, when a SNP is

assumed to be related to only two of seven subtypes,

then the standard case-control analysis has an estimated

power of approximately 13% for detecting the association.

In contrast, for the same setting, the power of the subset-

based analyses was >80%, which is only marginally lower

than the ‘‘gold standard’’ test, which assumes that the

correct subset is already known. The gain in power of the

subset-based analysis over the standard analysis is particu-
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larly remarkable given that the former requires multiple-

testing adjustment for 27�1 ¼ 127 comparisons. We

observe little difference in power between the alternative

‘‘case-control’’ and ‘‘case-complement’’ approaches when

the number of controls is similar to the total number of

cases in the study (Figure 2, left panel). However, in the

alternative setting (Figure 2, right panel), in which the

number of controls is significantly smaller than the total

number of cases, a substantial power advantage is observed

for the ‘‘case-complement’’ approach.

We provide a case study to illustrate the utility of the

method in the investigation of an established association

of rs2736100, a SNP in the TERT (MIM 187270)-CLPTM1L

(MIM 612585) area of chromosomal region 5p15.33, by

using data from GWASs of six different cancers that have

been reported6,9,19–22 previously (see Table S2 for details

on sample sizes). The TERT-CLPTM1L region is known to

be associated with at least seven distinct cancers,23–25 but

rs2736100 (or other strongly correlated SNPs) has been

associated with three cancers (lung adenocarcinoma,

glioblastoma [MIM 137800], and testicular germ cell

tumors [MIM 273300])7,24–27 as well as idiopathic pulmo-

nary fibrosis28 (MIM 178500) and a form of bone-

marrow-failure syndrome dyskeratosis congenita (MIM

613989).29,30 An analysis of this SNP illustrates the oper-

ating characteristics of the method both for evaluating

the overall significance of the association and for the selec-

tion of the associated subsets. A forest plot (Figure 3) shows

that the minor allele for this SNP is positively associated

with one cancer, negatively associated with some others,

and possibly has no effect on a third group. The standard

meta-analysis did not provide significant evidence for an

overall association (p ¼ 0.1432). In contrast, the one-sided

test detected the cluster of cancers of the kidney (MIM

144700) and lung (MIM 211980) to be negatively associ-

ated with the SNP (p ¼ 4.43 3 10�4). The two-sided search

additionally detected pancreatic cancer (MIM 260350) as

positively associated, which has been reported previ-

ously,25,31 and increased the significance of the overall

association substantially (p ¼ 1.23 3 10�5).
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Figure 3. Forest Plot showing the Effect of
a TERT SNP across Cancers at Six Different Sites
A two-sided subset-based test found (1) the
cluster of kidney and lung cancers to be nega-
tively associated, (2) pancreatic cancer to be posi-
tively associated, and (3) the cluster of breast,
prostate, and bladder cancers to have no associa-
tion. The p values for overall association with the
use of standard meta-analysis, one-sided, and
two-sided subset-based tests are shown along
with their respective OR estimates at the bottom
of the figure.
Next, we applied our newmethod to examine secondary

effects for 89 previously reported cancer susceptibility

SNPs in other GWASs32 by using the data set described

above. Here, in the analysis of each SNP, we exclude the

primary cancer (if it was present in our data set) for which

the locus was reported originally. Our two-sided analysis

identified a total of 16 loci that showed statistically signif-

icant secondary effects at a nominal level (p < 0.05)

(Table 2). A number of SNPs that are in the TERT-CLPTM1L

region and that have known effects across multiple cancers

achieved strong statistical significance (false discovery rate

[FDR]-adjusted p value < 0.05). The region generally

showed consistent secondary effects for pancreatic cancer

in one direction and for bladder (MIM 109800), lung,

and kidney cancers in the opposite direction. In the 8q24

region (rs6983267), a SNP that has previously been identi-

fied in GWASs of colon33,34 and prostate35 (MIM 176807)

cancers showed modest secondary effect for breast cancer

(MIM 114480) in one direction and for lung, bladder,

kidney, and pancreatic cancers in the opposite direction.

There was clear evidence of enrichment for secondary

effects of known cancer SNPs even after excluding SNPs

in the known pleiotropic regions of TERT-CLPTM1L and

8q24. A binomial enrichment test comparing the numbers

of observed and expected SNPs below a p value threshold

of 0.05 achieved strong statistical significance (p ¼ 9.6 3

10�5). High statistical significance (FDR-adjusted p value

< 0.05) for specific secondary effects is observed for the

non-Hodgkin-lymphoma-associated region PSORS1C1

(MIM 613525)-CDSN (MIM 602593) in kidney cancer

and for the prostate-cancer-associated SNP rs2660753 (in

chromosomal region 3p12) in kidney and breast cancers.

Other notable results, although of less significance, include

secondary effects of the regionsMSMB (MIM 157145), ABO

(MIM 110300), and HNF1B (MIM 189907), each of which

has been suggested to contribute to multiple cancers or

related traits.

Finally, we applied the proposed subtype-analysis

approach to investigate the association for seven known
The American Journal of
glioma susceptibility loci24,36,37 by using

a new GWAS from GliomaScan, a consor-

tium of 18 studies (Table S3). There were

1,856 cases, including those of all primary

gliomas and those of a limited number of
other neuroepitheliomatous tumors (ICD-O-3 code 9380-

9480 and ICD-O-3 9490-9523), and 4,955 glioma-free

controls at the time of selection. Detailed morphology

and histology codes were requested from all cases when

available. On the basis of this information, glioma cases

were classified into six subgroups that are expected to be

more homogenous because of their histology and

behavior. These classifications were GBM (glioblastoma

[ICDO-3 9440, 9441]), HGG-AST (other high-grade astro-

cytoma [ICDO-3 9401]), LGG-AST (low-grade astrocytoma

[ICDO-3 9381, 9400, 9411, 9420, 9421, and 9424]),

OLIGO (mixed oligoastrocytoma and oligodendroglioma

[ICDO-3 9382, 9450, 9451, and 9460]), OTH (other low-

grade and high-grade glioma [ICDO-3 9383, 9390-9394,

9470-9473, 9500, 9503, 9505, and 9506]), and UNK

(glioma of unknown histology). All analyses were carried

out with individual-level data and included adjustment

for eigenvectors.

Standard case-control analysis via logistic regression

replicated association for three of the regions, TERT,

CDKN2BAS (MIM 613149), and RTEL1 (MIM 608833)-

TNFRSF6B (MIM 603361), at a genome-wide significance

level (p value < 10�7). Moreover, the analysis also repli-

cated the association for two other SNPs, rs4295627 (chro-

mosomal region 8q24.1) and rs2252586 (EGFR [MIM

131550] locus in chromosomal region 7p11.2), at a Bonfer-

roni-adjusted significance level of 0.05/7 ¼ 0.007. For each

of the five SNPs, the new methods that incorporated

subtype information replicated the association at a compa-

rable level of significance. However, for two additional

SNPs in the chromosomal regions 7p11.2 (EGFR) and

11q23.3 (PHLDB1 [MIM 612834]), the proposed methods

provided much stronger evidence of replication, whereas

standard analysis failed to replicate association at the

significance level of 0.05/7. For rs11979158 (EGFR region),

which showed a GBM-specific effect, the p value improved

from 1.21 3 10�2 for overall logistic to 5.85 3 10�4 and

5.10 3 10�4 for the subset-based case-control and case-

complement analyses, respectively. For SNP rs498872
Human Genetics 90, 821–835, May 4, 2012 827



Table 2. Results from Two-Sided Analysis of 89 Established Cancer GWAS Hits Based on Data from Six Cancer Sitesa

Rank SNP
Original
Phenotype(s) MAF Chr

Gene
Neighborhood

Two-Sided
p Value

Significant Phenotype Clustersb

FDR- Adjusted
p Value

Positively
Associated

Negatively
Associated

1 rs401681 basal cell
carcinoma

0.45 5 CLPTM1L 5.99 3 10�8 pancreatic
cancer

bladder and
lung cancers

5.27 3 10�6

2 rs2736100 brain and lung
cancers

0.50 5 TERT 3.61 3 10�4 pancreatic
cancer

kidney cancer 1.08 3 10�2

3 rs6457327 non-Hodgkin
lymphoma

0.36 6 C6orf15,
PSORS1C1, CDSN

3.68 3 10�4 kidney cancer 1.08 3 10�2

4 rs2660753 prostate cancer 0.11 3 LOC285232 3.17 3 10�3 breast and
kidney cancers

6.97 3 10�2

5 rs29232 nasopharyngeal
cancer

0.36 6 GABBR1,
SUMO2P, MOG

6.22 3 10�3 kidney cancer 9.49 3 10�2

6 rs6010620 brain cancer 0.22 20 RTEL1,
TNFRSF6B

6.47 3 10�3 bladder cancer 9.49 3 10�2

7 rs10993994 prostate cancer 0.38 10 MSMB 8.62 3 10�3 bladder and
kidney cancers

1.08 3 10�1

8 rs6983267 prostate and
colorectal
cancers

0.50 8 POU5F1B 1.08 3 10�2 breast cancer bladder, kidney,
lung, and
pancreatic cancers

1.10 3 10�1

9 rs1051730 lung cancer 0.34 15 CHRNA5,
CHRNA3

1.12 3 10�2 bladder and
breast cancers

1.10 3 10�1

10 rs505922 pancreatic
cancer

0.37 9 ABO 1.31 3 10�2 kidney and
lung cancers

1.16 3 10�1

11 rs10411210 colorectal
cancer

0.12 19 RHPN2 1.74 3 10�2 bladder cancer 1.39 3 10�1

12 rs258322 melanoma 0.10 16 CDK10, SPATA2L,
LOC100128862

1.92 3 10�2 kidney cancer 1.41 3 10�1

13 rs9642880 bladder cancer 0.46 8 2.54 3 10�2 breast and
pancreatic
cancers

1.72 3 10�1

14 rs4430796 prostate cancer 0.47 17 HNF1B 4.27 3 10�2 lung cancer 2.51 3 10�1

15 rs4779584 colorectal cancer 0.22 15 SCG5, GREM1 4.63 3 10�2 kidney cancer 2.51 3 10�1

16 rs872071 chronic
lymphocytic
leukemia

0.49 6 IRF4 4.90 3 10�2 kidney cancer 2.51 3 10�1

For each SNP, the primary cancer(s) through which the SNP was originally discovered is (are) excluded, and a two-sided subset search is conducted among the
remaining cancers. SNPs significant at a nominal 5% level are shown. The following abbreviations are used: MAF, minor allele frequency; Chr, chromosome; and
FDR, false discovery rate (Benjamini-Hochberg procedure).
aData for this example were obtained from the National Cancer Institute GWASs. See Table S2 for details on sample sizes.
bThose clusters with a corresponding one-sided p value (i.e., pþ or p�) less than or close to 0.05.
(PHLDB1 region), which showed effects on all subtypes

other than GBM, a dramatic improvement in p value was

observed from overall logistic regression (p value ¼
0.046) to subset-based case-control (p ¼ 4.73 3 10�5) and

case-complement (p ¼ 6.75 3 10�6) analyses.
Discussion

We present a flexible and powerful approach to studying

heterogeneous traits, and this approach can account for

subset-specific and bidirectional effects of individual vari-

ants. Simulation studies demonstrate the utility of the

methods both for the detection of susceptibility loci and
828 The American Journal of Human Genetics 90, 821–835, May 4, 2
for the identification of clusters of traits with shared

genetic architecture. An illustrative analysis of secondary

effects for known cancer SNPs via the proposed method

provides preliminary evidence that pleiotropy across a set

of complex phenotypes, such as common cancer sites,

might be more common than previously reported.38

Thus, future analyses of existing GWASs across cancer sites

will be valuable for obtaining new biological insights and

for uncovering novel susceptibility loci.

Subset-based tests that account for phenotypic heteroge-

neity have been previously proposed for linkage39 and

association40,41 analyses. A challenge for their broader

use has been that evaluating the significance of their re-

sulting test statistics can be difficult. In our approach, the
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The Am
simple forms for the test statistics and their correlation

structure enable rapid implementation of the method for

large-scale studies and the evaluation of small p values

that are needed for achieving significance in GWASs. We

have used the DLM method to derive an analytic approxi-

mation of the p values that we have found to be both

computationally and statistically efficient. It is also easy

to implement alternative, possibly more exact methods

for evaluating p values on the basis of the general formula

we provide for the variance-covariance structure of the

underlying Gaussian field for which the proposed test

statistic is amaximum. In particular, stochastic alternatives

such as the R package mvtnorm42 and importance sam-

pling43 and parametric-bootstrap and deterministic alter-

natives such as multiple integration44 are available and

can be implemented for the use of the analytic variance-

covariance formulae we provide.

As one might expect, the greatest gain in power for our

method over standard fixed-effect meta-analysis is

observed when either a fraction of the studies contain

true associations or select studies display effects in opposite

directions (Figure 1); these two scenarios are likely for

a combined analysis of several heterogeneous traits. Also

as expected, there can be a substantial cost when a large

fraction of the studies contain association signals and

have all effects in the same direction (Figure S3). In that

scenario, which might represent the truth for meta-anal-

yses of studies of a single trait across relatively homoge-

neous populations, subset-based analyses can have lower

power than standard meta-analysis. For example, when

ten out ten studies had true effects, the power of meta-

analysis (the same as ‘‘gold standard’’) was 87.6%, whereas

that of the one-sided subset search was 67% (see Figure S3).

The magnitude of this loss increases with the total number

of studies analyzed and the associated penalty due to

multiple testing. Because the standard meta-analysis and

the subset-based approaches have complementary

strengths, it might sometimes be prudent to apply both

of them to protect against loss of power. One can split

the total type I error between the two procedures by using

a weighted hypothesis-testing framework.

Both the simulation study (Table 2) and the illustrative

example (Table 3) demonstrate that the proposed approach

also has a major advantage for the analysis of case-control

studies in the presence of subtype-specific effects for

susceptibility SNPs. In the analysis of the GliomaScan

GWAS, the proposedmethod convincingly replicated asso-

ciations for all known susceptibility SNPs, whereas stan-

dard case-control analysis provided only weak evidence

for some of the same associations. Moreover, a number

of recent independent reports,45–47 which corroborate

some of the subtype-specific effects we detected for SNPs

rs497756 (in CDKN2BAS in chromosomal region 9p21.3),

rs4295627 (in chromosomal region 8q24.1), and

rs2736100 (in TERT in chromosomal region 5p15.33),

provide additional support for the validity and utility of

the method. These results suggest that reanalysis of
erican Journal of Human Genetics 90, 821–835, May 4, 2012 829



existing case-control GWASs with the use of disease

subtype information can discover additional variants. For

study designs with more cases than controls,48 we

observed that the subset-based case-complement approach

that permits both case-case and case-control comparisons

can yield substantial power over similar analysis restricted

to case-control comparisons. These results have implica-

tions for sample-size considerations for future case-control

studies with heterogeneous disease subtypes as well for

studies in which cases have been scanned in anticipation

of comparison to publicly available controls.

An alternative class of tests that can be used for meta-

analysis of heterogeneous studies is the multiple-df chi-

square tests, such as the Fisher’s combined p value

method.15 In their simplest form, these tests sum up indi-

vidual squared association-test statistics or transformed p

values over independent studies to obtain an overall

signal. Such methods have been used for meta-analysis of

linkage studies49 and have also been addressed in the

context of GWASs.50,51 Although such methods and

some other direction invariant tests52 are known to have

superior power over standardmeta-analysis in the presence

of heterogeneity, these methods might lead to difficulty of

interpretation because an overall significant association

could be driven by arbitrary patterns of effects in indi-

vidual studies. In meta-analysis of different studies of the

same trait, for example, an overall significant association

is generally not considered interesting unless the observed

effects are in the same direction.

In our main simulation studies, we have compared the

power of the proposed methods against that of a multiple-

df chi-square test for meta-analysis of independent studies

(Figure 1 and Figures S1 and S3). In additional simulations

(Figures S4 and S5), we compared our method with two

adaptiveversionsof thechi-square test,namely theadaptive

rank truncated product (ARTP)53 and adaptively weighted

(AW) statistics.54 These two versions also explore subsets

of studies for optimization of the underlying statistics. In

these comparisons, we found that, in general, the proposed

method and all chi-square-type tests can have comparable

power for the detection of an overall association in the pres-

ence of heterogeneity, although there are specific scenarios

in which one method can outperform the other. In prin-

ciple, chi-square-type tests can also be adapted to take into

account directional and ordering constraints and possibly

prior weighting for the improvement of the interpretation

of the results, but these extensions require further develop-

ments. Additional methodological developments are also

needed for the application of some of these methods for

meta-analysis of correlated studies and analysis of case-

control studies with heterogeneous disease subtypes. In

some of these methods, however, the evaluation of p values

might necessarily require expensive permutation algo-

rithms because analytic approximations similar to those

for the proposed methods might not be possible.

A recent study proposed the examination of pleiotropic

effects on the basis of the enrichment of p values reaching
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a specific significance threshold across multiple GWASs of

related traits.55 Such enrichment methods, although

appealing as simple screening tools, do not incorporate

the total evidence of association from individual studies.

Thus, they are likely to lose power in the presence of

studies that might contain significantly stronger or weaker

individual association signals than those imposed by

a specific p value cutoff. The subset-based approach to

meta-analysis has some similarity with a recent method56

proposed for combining association signals across multi-

variate phenotypes on the basis of weighted-sum test

statistics in which the weights for individual traits are esti-

mated first on the basis of a held-out ‘‘training’’ dataset.

The proposed method assigns 0–1 weights to individual

studies depending on their exclusion or inclusion in

a particular set and then maximizes the test statistics

over all possible such weights to obtain the best association

signal with the use of the entire dataset.

A limitation of standard meta-analysis, multiple-df tests,

and some of the other methods described above is that

they do not readily identify the true subset of traits puta-

tively associated with a specific variant. In a combined

analysis of heterogeneous traits, an important aspect of

inference is the subset identification that is needed both

for the interpretation of results and for replication efforts.

Our simulation studies indicate that the proposed method

performs well in this regard (Table 1 and Table S1). This

capability is also illustrated in an important application

in which the proposed method correctly identified signals

for additional cancers in well-established multiple-cancer

susceptibility regions, such as 8q24 and TERT-CLPTM1L

on 5p15.33 (Table 2). We further show that the proposed

method can be theoretically motivated on the basis of

a likelihood-ratio statistic and is expected to have robust

properties for set selection (See Appendix A).

Another major advantage of the proposed method over

the aforementioned alternatives is its flexibility to enable

improvement of power and interpretation by using

restricted and weighted subset searches. As noted earlier,

the one-sided test is one form of restricted search that

ensures that the overall association is driven by a cluster

of studies with effects in the same direction. Similarly, if

there is a certain ordering among the disease subtypes,

e.g., stages of a cancer or levels of diagnosis for a psychiatric

disorder, then the subset search can be easily restricted so

that the overall association is not driven by biologically

implausible patterns (see Material and Methods). The

proposed method can also take into account less restrictive

constraints, such as prior knowledge of possible clustering

of the traits, by applying continuous weights to subsets. In

studies of cancers that occur at different organ sites, for

example, a prior grouping or a similarity metric can be

defined on the basis of studies of familial aggregation, of

second cancers, and of known effects of shared biologic

pathways or common environmental exposures such as

smoking. A weighted hypothesis-testing framework (see

Material and Methods) allows the incorporation of such
012



information as prior weights in such a way that the overall

type-I-error rate of the procedure does not depend on the

correctness of these weights, and yet power can be gained

when the prior information is reasonable.

In conclusion, the proposed subset-based association-

testing framework has multiple attractive features for

meta-analysis or pooled analysis of heterogeneous studies.

The method not only has robust power for the detection of

overall association but also is appealing because it leads to

readily interpretable results. We provide an analytic

approach for the approximation of p values that can be

evaluated rapidly in large-scale studies. Furthermore, the

generality and flexibility of the framework lend it potential

applicability in a wide variety of settings, such as for both

meta-analysis of heterogeneous traits and subtype analysis

for a single trait. These methods are likely to have other

applications within genomics (such as gene-environment

interaction and gene-expression studies) and, more gener-

ally, even within other contexts involving extensive

heterogeneity of effects. The methods proposed here

have been implemented in a user-friendly R statistical

package called ASSET (association analysis based on

subsets).
Appendix A: Properties of Zmax�meta—Equivalence

with Likelihood Ratio Test and Consistency as

a Variable Selector

Let bbj denote effect-size estimates obtained from indepen-

dent studies that are possibly heterogeneous, and let s2j be

the corresponding standard errors that can be assumed to

be fixed constants for the purposes of this section.

Consider the following underlying model for heteroge-

neity:

bb j � N
�
bgj; s

2
j

�
;gj˛f0; 1g; j ¼ 1;.K;

where gj is a binary indicator of the jth study being ‘‘non-

null.’’ For any fixed values of the gj-s, the MLE (maximum

likelihood estimate) of b is simply given by the inverse-

variance weighted average

bb ¼

PK
j¼1

gj
bb j=s

2
j

PK
j¼1

gj=s
2
j

:

Because the true gj’s are not known, the likelihood needs

to be maximized with respect to b and the gj’s. The corre-

sponding LRT (likelihood ratio test) can thus be derived as

LRTðb;GÞ ¼ max

�
1;maxgs0

supb L
�bb1; bb2;.; bbKrb¼b;G¼g

	
L
�bb1; bb2;.; bbKrb¼0;G¼g

	 


¼ exp

�
Z2
max�meta

2

�
:

The Am
Next, we show that under the above model, Zmax�meta is

a consistent variable selector in the sense that in large

samples, it is guaranteed to bemaximized for the true value

of G ¼ g0 and will therefore correctly identify the subset of

studies that contain true associations. We can write

pr
�
argmaxgZ

�bb;g	sg0

	¼ pr
�

W
gsg0

jZ�bb;g	 j> jZ�bb;g0

	j	
R

X
gsg0

pr
�jZ�bb;g	j> jZ�bb;g0

	j�:
Let bi ¼ EðbbiÞ denote the true population value of the

effect size for the ith study. We assume s2i ¼ s2=ni for

some constant s2 so that the standard error for each study

is inversely proportional to its sample size. We further

assume that ni ¼ n 3 pi so that as the total sample size

increases, the relative proportions of sample sizes between

studies converge to fixed constants. Let ng ¼ P
i˛Sgni

denote the total sample size for Sg. With these notations,

it can be easily seen that the vector fZðbb;gÞ;Zðbb;g0Þg
converges to a bivariate normal distribution that has

a mean vector ðmðnÞ
g ;m

ðnÞ
g0
Þ, unit variances, and covariance

CðnÞ given by

mðnÞ
g ¼

X
i˛Sg

niffiffiffiffiffi
ng

p bi

si

¼
X

i˛SgXSg0

niffiffiffiffiffi
ng

p bi

s
and

CðnÞ ¼
X

i˛SgXSg0

niffiffiffiffiffi
ng

p ffiffiffiffiffiffiffi
ng0

p :

When all bi’s are constant ðbÞ for non-null studies, we

obtain

mðnÞ
g ¼ b

s

ngXg0ffiffiffiffiffi
ng

p ; mðnÞ
g0

¼ b

s

ffiffiffiffiffiffiffi
ng0

p
; and

mðnÞ
g0

� mðnÞ
g ¼ b

s

ngXg0ffiffiffiffiffi
ng

p
� ffiffiffiffiffi

ng

p ffiffiffiffiffiffiffi
ng0

p
ngXg0

� 1

�
:

It can be seen with the Cauchy-Schwartz inequality thatffiffiffiffiffi
ng

p ffiffiffiffiffiffiffi
ng0

p
ngXg0

/q > 1

for some constant q, and m
ðnÞ
g0

� m
ðnÞ
g therefore converges to

positive or negative infinity according to whether b is posi-

tive or negative. Now, given that Zðbb;gÞ and Zðbb;g0Þ have
finite variances and covariances but the difference in their

mean converges to infinity, it can be easily seen that for

each gsg0,

pr
� jZ�bb;g	 jR jZ�bb;g0

	 j 	/0 ; and hence;

pr
�
argmaxgZ

�bb;g	 ¼ g0

	
/1:

Following the above logic, we can further show that even

when the bi’s are not constant across non-null studies,

Zmax�meta is a conservative variable selector in the sense

that for large samples, it will select only non-null studies,

but it is not guaranteed to select all of the non-null studies.

To see this, we note that, in general, for any given g, we

have m
ðnÞ
g < m

ðnÞ
gXg0

(in absolute value), and the difference

goes to infinity as the sample size increases.
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Appendix B: Discrete Local Maxima

for Subset-Based Meta-Analysis

To evaluate prðjZmaxj ¼ maxgjZðSgÞj > TÞ, the DLM method

relies on the observation that the event {jZðSgÞj > T for

some g} is contained in the union of the events {jZðSgÞj > T

and ZðSg� Þ < ZðSgÞ for g� neighbors of g}. Thus, by applying

Bonferroni to these unions of events, one can write

prð jZmax j ¼ maxg jZðSgÞ j> TÞR
X
g

prð jZðSgÞ j> T and

subset Sg is a local�maximum of jZðSgÞ j Þ ¼ pDLM:

Furthermore, by integrating over possible values Z of ZSg

and observing that terms corresponding to ZSg > T and

ZSg < �T are equal (by symmetry), we get

pDLM ¼
X
g

ZN
T

2 pr
�
jZSg� j< z for all neighbors g� of

g jZSg ¼ z
�
fðzÞdz;

(Equation B1)

where fð:Þ is the standard normal density. By simplifying

and using the ‘‘separability’’ assumption, we get

~PDLM ¼ P
s˛S

ZN
T

2
YK
k¼1

prð jZs;5k j< zrZs ¼ zÞfðzÞdz

¼ P
s˛S

ZN
T

2
YK
k¼1

prðlkðzÞ < Zk < ukðzÞrZs ¼ zÞfðzÞdz;

(Equation B2)

where Zs5k denotes the k
th neighbor of the current subset s

obtained by adding the kth study if it is not already

included and dropping it otherwise. The bounds lk ðzÞ
and uk ðzÞ are simple linear functions of z and meta-anal-

ysis weights (see Appendix D for details). The conditional

probabilities in the above expressions can be easily evalu-

ated with a univariate conditional normal CDF (cumula-

tive distribution function) for which the correlation is

given by the formula described in the main text. In

Appendix D, we show that the separability assumption is

conservative when the individual studies are independent.

For the two-sided meta-analysis, we apply the above

procedure to calculate the p values for the two conditional

one-sided tests,Zmax;þ and Zmax;�. The steps for the calcula-
tions are analogous to those for the one-sided test except

that all of the distributions are evaluated conditionally

on the observed signs of the study-specific Z statistics.
Appendix C: Discrete Local Maxima for Subtype

Analysis

Let N denote the total number of cases. Let ns be the

number of cases in a subset s of the disease subtypes and
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gs be the corresponding sum of genotypes for the ns

subjects. Let nk be the number of cases with the kth subtype

of the disease. We will denote the estimated minor allele

frequency (MAF) of a SNP from all subjects by bp and denote

that from the controls by bp0. It can be shown that in the

absence of covariates and under the null hypothesis of

no association, the Z scores for ‘‘case-control’’ and ‘‘case-

complement analysis’’ for a given subset of disease

subtypes s can be asymptotically represented as

Zsz
gs � 2nsbp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0

spð1� pÞp ; where n0
s ¼ ns

�
1þ ns

n0

�
; and

Zsz
gs � 2nsbpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~nspð1� pÞp ; where ~ns ¼ nsðN � nsÞ

N
;

respectively. With the above representations, it is now easy

to relate the Z scores for neighboring subsets with the

formula

Zs5k ¼
ffiffiffiffiffi
n0
s

p
Zs5

ffiffiffiffiffi
n0
k

p
Zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0
s5nk

�
15

nk

n0

�
52

nsnk

n0

s
for case-control analysis and with the formulae

Zsþk ¼
ffiffiffiffiffi
~ns

p
Zs þ

ffiffiffiffiffi
~nk

p
Zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~ns þ ~nk � 2
nkns

N

r and Zs�k ¼
ffiffiffiffiffi
~ns

p
Zs �

ffiffiffiffiffi
~nk

p
Zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~ns � ~nk þ 2
nk

�
nsnk

	
N

r

for case-complement analysis. Above, Zk ¼ Zfkg corre-

sponds to the Z score associated with a single disease

subtype k. These representations imply that each Zs is

a linear combination of its constituent Zk’s with positive

weights and that Zs5k’s are conditionally independent

given Zs and bp0 (or bp). It is difficult to prove the conserva-

tiveness of the separability assumption for subtype anal-

ysis unconditionally. Using the above facts, the argument

in Appendix D proves this conservativeness conditionally

given bp0 (or bp). Accordingly, one can compute bivariate

integrals in Equation B2 by conditioning on a Z score Z0

corresponding to the departure of bp0 (or bp) from the true

MAF p. However, in our simulations, we observed that

the usual DLM approximation with univariate integrals

provided adequate (i.e., conservative) p values for subtype

analysis.
Appendix D: Conservativeness of the Separability

Assumption

Here, we prove the conservativeness of the ‘‘separability’’

assumption in going from Equation B1 to Equation B2,

and hence, the overall conservativeness of the DLM proce-

dure for one-sided or two-sided analysis of heterogeneous

traits by using independent studies. These arguments

also justify the conservativeness of the separability

assumption conditionally on Z0 (defined in Appendix C)

for the analysis of heterogeneous subtypes.
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Following the notation of Appendices B and C, we note

that conditional on Zs ¼ z, the events fZs5k > �zg
(fZs5k > 0g for a two-sided search) are almost sure events

for large Z. Hence, it suffices to show the conservativeness

for the probabilities pr fZs5k < zckrZs ¼ zg
(pr fZs5k < z ckrZs ¼ z;Z0 ¼ z0g for subtype analysis).

Note that for both meta-analysis of heterogeneous traits

and subtype analysis, the (asymptotic) linearity of the

component Z scores implies

Zs5k ¼ ws$Zs5wk$Zk

for some positive weights ws and wk depending on sample

sizes. Hence, conditional on Zs ¼ z, we can rewrite the

events fZsþk < zg and fZs�k < zg as fZk < uk ðzÞg and

fZk > lk ðzÞg, in which uk ðzÞ ¼ ðð1� wsÞzÞ=ðwkÞ and

lkðzÞ ¼ ððws � 1ÞzÞ=ðwkÞ denote the lower and upper

bounds, respectively. Below, we show that given Zs ¼ z,

the K events fZs5k < zg are either independent or nega-

tively correlated to each other (conditional on Z0 ¼ z0 in

the case of subtype analysis).

Consider the pair of events fZs�k < zg and fZs�k0 < zg,
which correspond to Zk and Zk0 , respectively, being drop-

ped from the current subset. These events translate to

fZk > lk ðzÞg and fZk0 > lk0 ðzÞg, which are negatively corre-

lated events (because Zk and Zk0 are part of the positively

weighted linear combination Zs, which is fixed at z). Simi-

larly, the events fZsþk < zg and fZsþk0 < zg, corresponding
to Zk and Zk0 , respectively, being added to the current

subset translate to fZk < uk ðzÞg and fZk0 < uk0 ðzÞg, respec-
tively. These are independent given that the weighted sum

Zs ¼ z does not involve Zk and Zk0 . Finally, the events

fZsþk < zg and fZs�k0 < zg translate to fZk < uk ðzÞg and

fZk0 > lk0 ðzÞg. Again, these are independent given that

Zs ¼ z does not constrain Zk.

Thus, in each case, either independent or negatively

correlated events are being separated as a product, which

implies that each probability term is being approximated

conservatively.
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