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Population Demographic History Can Cause
the Appearance of Recombination Hotspots

Henry R. Johnston1,3 and David J. Cutler2,3,*

Although the prevailing view among geneticists suggests that recombination hotspots exist ubiquitously across the human genome,

there is only limited experimental evidence from a few genomic regions to support the generality of this claim. A small number of

true recombination hotspots are well supported experimentally, but the vast majority of hotspots have been identified on the basis

of population genetic inferences from the patterns of linkage disequilibrium (LD) seen in the human population. These inferences

are made assuming a particular model of human history, and one of the assumptions of that model is that the effective population

size of humans has remained constant throughout our history. Our results show that relaxation of the constant population size assump-

tion can create LD and variation patterns that are qualitatively and quantitatively similar to human populations without any need to

invoke localized hotspots of recombination. In other words, apparent recombination hotspots could be an artifact of variable population

size over time. Several lines of evidence suggest that the vastmajority of hotspots identified on the basis of LD information are unlikely to

have elevated recombination rates.
Introduction

Recombination hotspots—regions of the genome known

to have much higher rates of recombination than the

surrounding areas—have been characterized in yeast and

bacteria.1,2 Mice have been known to have hotspots in

the major histocompatibility complex (MHC) region for

a while.3 Recent research has recently identified genome-

wide hotspots in mice as well.4,5 The existence of hotspots

in humans was first suggested in the b-globin gene cluster

by looking at patterns of linkage disequilibrium in popula-

tions and the patterns of transmission in families of restric-

tion fragment-length polymorphism (RFLP) haplotypes.6

Molecular evidence for the existence of recombination

hotspots in humans comes primarily from sperm-typing

analyses. Two varieties of sperm-typing exist.7 The first,

single-sperm typing, relies on the DNA content of a single

sperm molecule to be amplified with PCR and analyzed.8,9

The second typing technique involves pooling many

sperm from a single donor before beginning the PCR

amplification process.10–16 This latter technique has been

particularly effective at identifying several hotspots located

within the human genome.

Nevertheless, sperm typing is an expensive and chal-

lenging experiment. It is difficult to survey large fractions

of the human genome. Most genome-wide surveys that

have attempted to identify hotspots in humans have relied

on examining patterns of linkage disequilibrium in popu-

lations.6,17 Whole-genome linkage disequilibrium data

from the HapMap project18 is currently the most informa-

tive data for use in this effort. Multiple groups have

published studies of this kind.19,20 These studies use the

pattern of linkage disequilibrium in the genome to infer
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locations with an unusually large number of recombina-

tion events in their history. Required assumptions of

this approach include an absence of significant natural

selection in the region examined and a constant effective

size of the population over time. Under these assumptions,

regions of the genome with a large number of recombina-

tion events in their history are inferred to have higher rates

of recombination per generation. If, however, the under-

lying assumptions of no natural selection and constant

population size are violated, it is unclear whether regions

of the genome with a large number of recombination

events in their history must necessarily also have higher

rates per generation, that is it is unclear whether these

regions are true recombination hotspots or merely

evidence for regions undergoing selection or a sign that

human population size varies over time.

Several paradoxes exist around the true nature of recom-

bination hotspots.7 Linkage disequilibrium (LD)-defined

hotspots are known to be shared across populations,21 so

they must be reasonably old. It has also been shown,

however, that LD-defined hotspots are not shared with

chimpanzees, our closest primate relative.22 This indicates

that apparent hotspots cannot be older than the human-

chimpanzee split. This would provide for only a very small

temporal window for the origin of hotspots in the human

genome.

Another question involves whether or not LD hotspots

are sequence based. No motif is both necessary and

sufficient to cause a hotspot, and although at least one

known motif is statistically significantly associated with

hotspots, it is absent frommany hotspots and occurs ubiq-

uitously throughout the genome.23 There is evidence that

a zinc-finger protein, PRDM9, is both capable of binding to
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Figure 1. The Coalescent Process
The rate of coalescence is directly related to the size of the popula-
tion. Going backward in time, the small bottleneck population has
sequences that are rapidly coalescing. Any sequence that does not
coalesce during or before the bottleneck takes much longer to
eventually coalesce. These are the regions of the genome that we
term ‘‘old.’’
this motif and having a regulatory effect on hotspot usage,

but there is no causal link between LD-defined hotspots

and the motif itself.24–28

There are also questions related to studies attempting to

verify hotspot locations in the genome. Attempts to verify

hotspot locations have been done via both family and

sperm-typing approaches. Family-based studies show

only an imperfect correlation between recombination

events and LD-defined hotspots.29,30 Sperm-typing results

are consistent with some LD-defined hotspot locations but

not others.15 The Jeffreys group has successfully character-

ized on the order of 50 hotspots by using the pooled

sperm-typing technique.10–16 LDHat previously identified

most of those as hotspots. Successfully picking and veri-

fying 50 LDHat hotspots with this technique does not in

any way, however, guarantee that the other 30,000 LDHat

identified hotspots are all accurately described. Certainly

neither approach is able to explicitly confirm a majority

of LD-defined hotspots as having elevated recombination

rates.

Finally, although studies have shown dramatic recombi-

nation rate differences between men and women on a

broad scale,31 LD-defined hotspots have been identified

in a gender neutral manner.19 It is unclear how LD-defined

hotspots, theorized to be an identical set in males and

females, could account for this significant difference. As

a result of these and other questions surrounding LD-

defined hotspots, other possible hypotheses to explain

the nature of LD-defined hotspots have been examined.

One such alternative hypothesis will be detailed here. In

this model we assume that recombination rates are

constant throughout a region but that human population

size changes over time. In particular, we assume that there

was a relatively recent severe bottleneck in the human

population size.32–35 One of the effects of this bottleneck

was to divide the genome into regions where four or
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more alleles share a most-recent common ancestor that

predates the bottleneck (old regions), from regions where

three alleles or fewer trace their ancestor past this event

(young regions). In this model, old regions have had

many more recombinations in their history and have

highly different patterns of linkage disequilibrium. Look-

ing at data simulated under this model, we show that the

LDHat program identifies apparent recombination hot-

spots even though the data were simulated with a constant

recombination rate. This demographic model makes

several predictions that can be used to distinguish it from

the hotspot model, including, but not limited to, apparent

hotspots containing more SNPs than the genome-wide

average, apparent hotspots failing to cause significant

breakdown in correlation between SNP counts on either

side of them, and apparent hotspots being enriched on

the edges of windows that recombination events have

been mapped in (Figure 1).
Materials and Methods

A Wright-Fisher coalescent simulator generates the simulated

human population.36,37 A sample of 60 individuals is generated

to match the available HapMap data. Each simulation consists of

300 replications of the history of a 1 Mb region of the genome

in all 60 individuals. Varying sets of input parameters are used,

consisting of the initial population size in individuals, the bottle-

neck size in individuals, the number of generations ago the bottle-

neck begins, the duration of the bottleneck in generations, and the

duration of the exponential growth phase in generations. Each set

of parameters is simulated under two models, one that does not

censor the SNPs and one that is censored first to dbSNP levels of

variation and second to the HapMap 5 kb windows.36 The uncen-

sored simulation permits analysis of population statistics, whereas

the censored simulation matches HapMap data.

To generate simulations with LD patterns that mimic hotspots,

we created a fine-tuned demographic history, consisting of a large

initial equilibrium population, a sharp bottleneck, an extended

holding period, and a short exponential growth phase to modern

population levels. This final model has an initial equilibrium pop-

ulation size of 75,000 individuals that is assumed to have been

stable long enough to reach equilibrium. It collapses into a bottle-

neck of 150 individuals approximately 1,575 generations ago. This

bottleneck persists for 575 generations, at which time exponential

growth occurs for 1,000 generations to reach the current popula-

tion size of 6 billion individuals. In all simulations the mutation

rate is held constant at 2 3 10�8 mutation events per base pair

per generation. For each 1 Mb simulation, the recombination

rate is constant over the entire window. Different 1 Mb regions

were simulated with recombination rates between 1 3 10�10 and

3.6 3 10�8 recombination events per base pair per generation.

The final model utilizes a tiling pattern based on a rough 5 Mb

sex-averaged map generated from published data30 to accurately

replicate the human genome (Table 1). The genome-wide average

recombination rate is 1 3 10�8 after all of the tiled 1 Mb windows

are averaged together.

The fine-tuning of these parameters was done to match known

human population characteristics as closely as possible. The goals

included achieving an overall human nucleotide diversity
erican Journal of Human Genetics 90, 774–783, May 4, 2012 775



Table 1. Broad Scale Recombination Rate Variation in Our
Simulated Human Genomes

Recombination Rate Number of Megabases

1.0 3 10�10 53.19

1.0 3 10�9 79.79

2.0 3 10�9 42.55

3.0 3 10�9 101.06

4.0 3 10�9 117.02

5.0 3 10�9 138.30

6.0 3 10�9 212.77

7.0 3 10�9 303.19

8.0 3 10�9 196.81

9.0 3 10�9 202.13

1.0 3 10�8 228.72

1.1 3 10�8 117.02

1.2 3 10�8 164.89

1.3 3 10�8 117.02

1.4 3 10�8 148.94

1.5 3 10�8 101.06

1.6 3 10�8 74.47

1.7 3 10�8 74.47

1.8 3 10�8 95.74

1.9 3 10�8 63.83

2.0 3 10�8 47.87

2.1 3 10�8 47.87

2.2 3 10�8 26.60

2.3 3 10�8 42.55

2.4 3 10�8 15.96

2.5 3 10�8 26.60

2.6 3 10�8 37.23

2.7 3 10�8 21.28

2.8 3 10�8 21.28

2.9 3 10�8 21.28

3.0 3 10�8 15.96

3.1 3 10�8 15.96

3.2 3 10�8 15.96

3.3 3 10�8 0.00

3.4 3 10�8 0.00

3.5 3 10�8 5.32

3.6 3 10�8 5.32

Total Mb 3,000

Genome-wide average
recombination rate

1.1 3 10�8

Each recombination rate is present in the simulated genome for the number of
megabases listed.
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(Watterson’s qS)
38 that is approximately .001,18 as well as an

overall nucleotide heterozygosity (Tajima’s qp)
39 of .0008. qS is

the estimate of 4Nu based on the number of segregating sites in

the population, whereas qp is the estimate of 4Nu derived from

nucleotide heterozygosity. Tajima’s D, the statistic that compares

the two values of q, is known to be negative in humans, indicating

a recent rapid population expansion.40–42 Additionally, the frac-

tion of recombination occurring in 10%–15% of the genome has

been estimated to be 50% in humans, and the fraction of recom-

bination occurring in 20% of the genome has been estimated to

be 60%.19

The final selection of parameters attempts tomatch these results

as closely as possible but is in no way the only set of parameters

that is broadly consistent with this pattern of variation. Addition-

ally, we should be clear that this set of parameters is not intended

to imply that we believe that we have accurately or completely

described the full and complex demographic and selective history

of the human population. The true human history is a complex

one, withmultiple expansions, possible contractions, intermittent

waves of migration, and almost surely significant natural selection

at some loci. The full richness of this history is beyond any simple

model. The goal here is modest. It is to determine whether a

simple model of expansion and contraction can explain the broad

patterns of diversity and linkage disequilibrium. The results of the

optimal set of simulations are a population with Watterson’s esti-

mate of q ~.000794 and a slightly negative Tajima’s D of�.000583.

Although this is not a perfect match to the human population, it is

reasonably close, and its differences might very well be due to the

lack of migration, selection, and complexity to the demographic

changes.

The censored simulation output is then run through the LDHat

software. The output comes in the form of estimated recombina-

tion rates between each SNP. Within each simulation there is no

variation in recombination anywhere. Despite this, the presence

of the bottleneck causes LDHat to infer significant rate variation.

LDHat believes that 38% of the recombination occurs in 10% of

the genome, and 50% of the recombination occurs in 20% of

the genome (Figure 2). This is the crucial metric. In simulations

that are otherwise identical in parameters but do not contain

a bottleneck, LDHat identifies ~50% of the recombination as

occurring in ~50% of the genome. The bottleneck causes LDHat

to misinterpret a region with an even recombination rate as one

with dramatic recombination rate changes.

Additional analyses are then performed to roughly determine

the number of hotspots that have been identified by LDHat.

This is complicated by the fact that the simulations are physically

small, 1 megabase each, whereas the actual analysis that was used

to identify hotspots employed much larger contiguous regions.

Therefore, we have elected to find hotspots in as simple a manner

as possible, meaning that we do not attempt to mimic the previ-

ously reported complex approach.19 Any contiguous region of

a simulation with an LDHat estimated recombination rate signifi-

cantly higher than the LDHat estimated mean rate for the entire

simulation is called a hotspot. Using this simplified approach,

our model generates approximately three to four hotspots per

megabase or ~10,000–12,000 per genome, which is somewhat

lower than the estimate of ~32,00043 previously identified. The

intent here is not to attempt to match the number of individual

hotspots identified by LDHat, but instead simply to confirm that

there are multiple recombination peaks in any given simulation.

The other possibility, that there is a single massive rate change

in each simulation, has been ruled out.
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Figure 2. Genome-wide Recombination Rate Comparison
The similarity between the fraction of recombination per fraction
of the genome identified by LDHat in an African population and
in our simulated population.
Additionally, the X chromosome is simulated independently, as

it is assumed to have a population size that is 3/4 that of the total

population throughout history. The X also is assumed to have 1/2

the global recombination rate of the rest of the genome. Simula-

tions of the X chromosome show that it has the same basic

properties as the rest of our simulated genome; 50% of its recom-

bination occurs in 20% of its length. As expected, however, it

has a lower estimated value for q, ~.00035, and a slightly more

negative Tajima’s D of �.0092.
Results

Human demographic history can generate LD patterns

that are largely indistinguishable from those created by

true recombination hotspots. To demonstrate this, a simu-

lated population is generated that matches a wide range of

human population metrics. This simulated population,

although not representative of the vastly complex history

of human demography, provides a model in which it is

evident that the presence of population bottlenecks can

drive the inference of LD-defined recombination hotspots.

LD-defined hotspots do not have elevated rates of recombi-

nation in this model but are instead regions of the genome

that are very old. These regions did not coalesce until after

the bottleneck, giving them ample time to collect addi-

tional SNPs and recombination events that neighboring

regions did not. LDHat, by assuming a constant popula-

tion size, misinterprets the increase in the number of

recombination events as an increased recombination rate

in these regions, tagging them as hotspots. Two competing

models for regions identified as LD-defined hotspots now

exist, and the next step is to identify which model better

explains the available data.

Number of SNPs in a Hotspot

The demographicmodel predicts that LD-defined apparent

hotspots are older than the surrounding regions and there-

fore have had more recombination events in their history.
The Am
They should also have accumulated more mutations in

their history. Therefore, LD-defined apparent hotspots

should contain more SNPs than similarly matched control

regions, if the demographic hypothesis is correct. Using

the April 2009 Pilot Data release from the 1000 Genomes

Project,44 we find that apparent hotspots have 7.5 SNPs

per kb. Random regions of the genome, matched to

apparent hotspots for length and GC content have 6.5

SNPs per kb. Because of the enormous number of hotspots,

this result is significantly different at p < 10�300. This is

consistent with the argument that LD-defined apparent

hotspots are older regions of the genome. If the recombina-

tion process were highly mutagenic, this could provide

another explanation for our results. We note, however,

that the 1000 Genomes Project Consortium finds no

such increase in divergence around the PRDM9 motif

believed to be associated with recombination.44
Correlation Analysis

Recombination can be thought of as having at least two

interrelated, but easily separable, effects on variation. First

and foremost, recombination creates four-gametes among

diallelic markers, that is if we label the two alleles at two

loci 0 and 1, in the absence of recombination 00, 01, and

10 gametes are possible. Only recombination (or recurrent

mutation) can create the fourth, 11, gamete.45 Recombina-

tion’s effect of creating the fourth gamete is the primary

signal used by LDHat and others20,46 to estimate under-

lying recombination rates.

However, this is not the only signal that can be used.

Recombination also de-couples neighboring coalescent

trees.37 Increased recombination decreases the correlation

between neighboring coalescent trees, which in turn

decreases the correlation between the number of SNPs in

neighboring regions.47 This particular signal of recombina-

tion is not used at all by programs such as LDHat and can

thus be viewed as an independent method of estimating

recombination rates.

LDHat predicts that approximately 47.8% of all recombi-

nation occurs in their predicted hotspots. Because these

hotspots correspond to ~6% of the genome, LDHat

predicts that these hotspots have an average recombina-

tion rate ~7.5 times the genome average. Regions with

these recombination rates ought to see dramatic decorrela-

tion in the number of SNPs found on either side of a hot-

spot. In particular, we know that correlation between the

number of SNPs found in a sample of size two is

correlationðkA; kBÞ ¼ ðc þ 18Þ
ð1þQAÞð1þQBÞðc2 þ 13c þ 18Þ

(Equation 1)

where kA and kB are the observed number of SNPs found in

regions A and B, QA and QB are the expected number of

SNPs in those regions, and c is the scaled recombination

rate. This gives c ¼ 4Nerb, where Ne is the effective popula-

tion size, r is the recombination rate per base in the region
erican Journal of Human Genetics 90, 774–783, May 4, 2012 777



Figure 3. The Correlation between Number of SNPs on Either Side of LD-Defined Hotspots in Individual Genomes
(A–E) Identified LD-based hotspots, shown in dark blue, show correlation levels nearly equal to what would be expected if they had
genome-wide average recombination rates, shown in light blue. This differs dramatically from the expected correlation for regions of
the genome that have a five-fold increased recombination rate above the genome-wide average, shown in light green. (A) The Venter
Genome,50 (B) the Korean SJK genome,51 (C) the Chinese YH genome,52 (D) the African NA18507 genome on Illumina sequencing tech-
nology,53 (E) the African NA18507 genome on SOLiD sequencing technology.54
between A and B, and b is the number of bases between

regions A and B.47

The expectation herein is that if hotspots truly have

elevated recombination rates, the correlation in number

of SNPs found in a sample of size two will break down

across an LDHat-inferred hotspot. Given an average hot-

spot intensity of 7.5-fold over the local recombination

rate, we expect the correlation to drop by a factor of almost

six across a real hotspot when measured at a distance of

10 kb47 (Figures 3A–3E). If on the other hand, the demo-

graphic model is correct, the correlations across LD-

defined hotspot locations will not be dramatically lower

than the correlation predicted by the genome-wide average

recombination rate of 1x10�8 per base.

The recent sequencing of individual genomes has made

the optimal analysis of this prediction possible. The

assumptions made in this analysis require that SNPs

come from a sample of size two. If only heterozygous

SNPs from individual genomes are used, they are a perfect

data set. For each LD-defined hotspot, we form two 10 kb

windows on either side of the hotspot. The distance

between these two windows is varied from 10 kb (5 kb

each from the center of the hotspot), to 20 kb, 30 kb, etc.

Within each window we count the number of heterozy-

gotes seen in a single individual and measure the correla-

tion between those counts across all hotspots. That

correlation is plotted in Figures 3A–3E. The correlation

across a hotspot is nearly identical to the predicted correla-

tion from the genome-wide average recombination rate.

More importantly, the correlation across LD-defined

hotspots does not come anywhere close to the expected
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correlation for 53 or 103 hotter LD-defined hotspots.

At a distance of 10 kb, the LD-defined hotspots have a

correlation that is five times higher than would be pre-

dicted for 7.53 hotter hotspots. When the observed corre-

lation and Equation 1 are used, the average recombination

rate across hotspots appears to be approximately 1 3 10�8

per base per generation. This is approximately the genome-

wide average recombination rate.31

Comparing LD-Defined Hotspots to Known

Recombination Events in Families

The demographic model predicts that LD-predicted hot-

spots are regions of the genome that have unusually high

levels of variation and have an unusually large number

of recombination events in their histories. The hotspot

model predicts that LD-defined hotspots have unusually

high recombination rates. These two predictions can be

distinguished by looking at recombination events prospec-

tively. The demographic model predicts that future

recombination events are no more likely to happen in

LD-defined hotspots than would be predicted based on

the size of the hotspot and the genome-wide average

recombination rate. The hotspot model predicts that

future recombination events are more likely to occur in

hotspots on average than elsewhere in the genome.

Excellent data30 are available to test these predictions.

These data were generated by mapping recombination

events in a large Hutterite pedigree with SNPs on the Affy-

metrix GeneChip Mapping 500k Array Set. The key limita-

tion to inferring the position of recombination events in

pedigrees involves informative markers. A recombination
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Figure 4. Analysis of Recombination Mapping Windows
(A) Expected location of average recombination event within
mapping windows. In recombination mapping windows30 the
expectation is that, averaged across all windows, the position of
the true recombination event will be in the center of the window
on average.
(B) Competing predictions on the locations where hotspots will
overlap recombination mapping windows. The hotspot model
predicts that LD-defined hotspots would occur more frequently
than expected by chance in the center of recombination windows.
Our demographic model predicts that LD-defined hotspots will
overlap disproportionately on the edges of recombination
mapping windows.

Figure 5. Overlap Pattern of Hotspots onto Mapping Windows
Each recombinationmappingwindow is broken into ten bins. The
overlap of hotspots is summed for each bin across all windows.
LD-defined hotspots overlap greatly on the edges of recombina-
tionmapping windows. The centers of the windows show approx-
imately the genome-wide average number of hotspots, i.e., no
enrichment for hotspots.
event occurs at some position. In order to detect that

event, an informative marker (a marker heterozygous in

the parents) must exist on either side of the event. Thus,

the precise event is not detectable, but instead a window

that contains the event is found. That window includes

the precise position of the recombination event, and

extends 50 and 30 away from that event until an informa-

tive marker is detected. Using a novel phasing algorithm,

we mapped 24,095 crossovers to windows; 12,278 (51%)

mapped to windows of less than 100 kb, and 4,854

(20%) mapped to windows of less than 30 kb. Seventy-

two percent of the recombination events that could be

mapped to windows of 30 kb or less overlap with an LD-

defined recombination hotspot.30 This is far more than

expected by chance and would seem to strongly support

the notion that LD-defined hotspots do in fact have higher
The Am
than average recombination rates. There is, however,

a further detail of the analysis that must not be overlooked.

In our model, LD-defined hotspots are the oldest regions of

the genome and as such have more SNPs. Additionally,

those SNPs are, on average, at higher intermediate

frequency and are thus more likely to be informative.

This would make LD-defined hotspots likely end points

for mapping windows and create an apparent excess of

hotspots on the edges of recombination mapping

windows. On the other hand, one expects the position of

the actual recombination event to be on average near the

center of windows, assuming the distance to the nearest

50 informative marker is on average the same as the

distance to the nearest 30 informative marker. If the LD-

defined hotspots are real, therefore, one would expect to

see hotspots enriched in the centers of recombination

event windows (Figures 4A and 4B).

To analyze this, each recombination event window is

broken into ten equal fragments. For each of the ten frag-

ments, the percentage of each hotspot that overlapped

the fragment is counted. Results are then combined for

all mapped recombination event windows. The result of

this analysis is striking. Edges of recombination event

windows show marked enrichment for LD-defined hot-

spots. The centers of event windows, however, show no

more LD-defined hotspot coverage than the genome-

wide average (Figure 5). This matches the hypothesis of

our demographic model and is not easily explainable in

the context of the hotspot model.

Dissecting the LD-Defined Hotspots

It is possible that there are significant differences among

the 33,000 LD-identified hotspots. To find out, we first

sorted the LD-defined hotspots by the number of SNPs

per base they contain. The top 10% of LD-defined hotspots
erican Journal of Human Genetics 90, 774–783, May 4, 2012 779



Figure 6. Overlap Pattern for top 10% of Hotspots by SNP
Density onto Mapping Windows
(A–B) The top 10% of hotspots by SNP density were selected. All
recombinationmapping windows (A) and those windowsmapped
to less than 30 kb (B) were again broken into ten bins each and the
overlap of this set of hotspots was summed for each bin across all
windows in the set. (A) SNP-rich LD-defined hotspots are dramat-
ically overrepresented on the edges of all recombination mapping
windows. (B) SNP-rich LD-defined hotspots are dramatically over-
represented on the edges of recombination events that can be
mapped to windows less than 30 kb across.

Figures 7. Overlap Pattern for Bottom 10% of Hotspots by SNP
Density onto Mapping Windows
The bottom 10% of hotspots by SNP density were selected. All
recombinationmapping windows (A) and those windowsmapped
to less than 30 kb (B) were again broken into ten bins each and the
overlap of this set of hotspots was summed for each bin across all
windows in the set. (A) SNP-poor LD-defined hotspots are distrib-
uted nearly uniformly and at near the genome-wide average in
recombination mapping windows. (B) SNP-poor LD-defined hot-
spots are distributed at near the genome-wide average in recombi-
nation events that can be mapped to windows less than 30 kb.
There might be a slight humping effect in the center of these
windows suggesting the possibility that some fraction of them
might be actual recombination hotspots.
have 13.16 SNPs per kb. One can call these SNP-rich

LD-defined hotspots. The bottom 10% of hotspots have

3.69 SNPs per kb. One can call these SNP-poor LD-defined

hotspots. SNP-poor LD-defined hotspots have slightly

more than half the number of SNPs per kb that random

spots in the genome have. SNP-rich LD-defined hotspots,

however, have over twice the genome-wide average the

number of SNPs.

When the LD-identified hotspots are sorted in this

manner, SNP-rich LD-defined hotspots have an average

LDHat identified recombination rate of 1.362 3 10�7

recombination events per base. The SNP-poor LD-defined

hotspots have an average recombination rate of 7.02 3

10�8 recombination events per base. Clearly the number

of recombination events being identified by LDHat is

significantly greater in the SNP-rich LD-identified hot-

spots. The natural interpretation is that SNP-rich regions

are older.
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When this sorting is applied to the analysis of recombi-

nation windows, there is a clear difference between the

two groups of hotspots. First, windows contain SNP-rich

LD-defined hotspots preferentially, five times more than

the genome-wide average. These SNP-rich regions fall

significantly more often on the edges of recombination

windows, even in windows that were mapped to less

than 30 kb (Figures 6A and 6B). Very few of SNP-poor

LD-defined hotspots are found in recombination windows,

and among those that are, the distribution is nearly

uniform and is roughly the same rate at which they appear

in the genome (Figures 7A and 7B).

This leads to a possibility that LD-identified hotspots

comprise two different groups. One, consisting of most

of the LD-identified hotspots, contains regions that are
012



misidentified as hotspots because of their older age. The

second, consisting of SNP-poor regions, might contain

some actual recombination hotspots that truly have

elevated recombination rates. Properly separating these

two groups would be of significant benefit.
Discussion

Regions of the genomewith unusually low linkage disequi-

librium have had more recombination events in their

history than surrounding regions. Such regions have been

identified,19 and we refer to them as LD-defined recombi-

nation hotspots. However, evidence that LD-defined hot-

spots will have more recombination events in the future

(i.e., have higher recombination rates) has always been

limited. We have proposed a model of human demo-

graphic history in an attempt to offer a different hypoth-

esis to explain the nature of LD-defined hotspots. This

hypothesis suggests that LD-defined hotspots are simply

regions of the genome that have a significantly increased

time to common ancestor. Conceptually, these regions

are older than their neighbors.

It is important to note that this analysis does not

preclude the existence of hotspots in the genome.

There are very clearly some regions of the genome, such

as the MHC region,11 that appear to have hotspots in

single-sperm-typing experiments. Other molecularly

identified hotspots also exist.16 Whether such hotspots

exist on the scale surmised by LD-block analysis is as yet

unknown.

Current research indicates that the PRDM9 protein is

likely to play a role in the recombination process.24–28

Part of that role might, in fact, mediate the initiation of

recombination events in the genome. It is useful to note,

however, that the putative binding site for PRDM9 is

ubiquitous throughout the genome with nearly 300,000

copies, distributed nearly uniformly, with an average

distance of approximately 10 kb between them. Thus,

the number of PRDM9 motifs is are an order of magnitude

greater than the number of LD-defined hotspots, and 89%

of those motifs do not occur in LD-defined hotspots. If we

assume for the moment that a PRDM9 binding site is both

necessary and sufficient to initiate a recombination event,

we would conclude from the distribution of PRDM9

binding sites that recombination is nearly uniform

throughout the genome and that LD-defined hotspots

have on average approximately 1.53 times the recombina-

tion rate of genome average, because they are enriched for

PRDM9 motifs by about 50% over genome-wide average

(i.e., nothing like the 7.5-fold increase hypothesized else-

where). Also, unlike LD-defined hotspots, regions

surrounding PRDM9 binding sites are not enriched for

SNP density,44 suggesting that if PRDM9 is responsible

for the initiation of recombination events, those recombi-

nation events are not causing the elevated SNP density

seen in LD-defined hotspots.
The Am
Genetic variation at the PRDM9 locus might further

complicate this picture. Admixture mapping in African

Americans48 confirms a distinct correlation between

a specific PRDM9 allele and apparent recombination hot-

spots in African populations.49 In addition to suggesting

that PRDM9 variants are likely to play a role in the location

of recombination events, this also confirms that identified

recombination hotspots can differ dramatically across pop-

ulations over relatively short timescales. Whatever role

PRDM9 does play, the research surmises that themutability

of the PRDM9 protein might allow the PRDM9 protein to

bind to new motifs even as the recombination process

destroys the original motif in the genome. If this is the

case, 300,000 current PRDM9 motifs might only be the

tip of the iceberg, and historically an even larger fraction

of the genome might have been targets for the initiation

of recombination events, all of which argues in favor of

a relatively uniform recombination rate over evolutionary

timescales.

Analysis of LD patterns, such as that performed by

LDHat, usually assumes that every region of the genome

has the same average time to a common ancestor. Our

model, on the other hand, creates a genome that is a

mixture of regions that share a common ancestor long

before a bottleneck (old regions) and regions that share

an ancestor after a bottleneck (young regions). The older

regions of the genome, in our model, have had many

more recombination events in their histories. As a result,

LDHat infers that because more recombinations have

happened in these regions they must have a higher recom-

bination rate. Our hypothesis is that these regions have

approximately the same recombination rate, but a much

older age. In every analysis for which pertinent data were

available, our demographic model was the better-sup-

ported model. In several analyses, our model was the

only one supported. This allows us to conclude that,

although some LD-defined hotspots might in fact be true

hotspots, most are not.
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