
Newton’s Shell Theorem
Abstract

One of the principal reasons Isaac Newton was motivated to invent the Calculus was to show that in

applying his Law of Universal Gravitation to spherically-symmetric massive bodies (like planets, stars, and the

like), one can regard these bodies as “mass points” with all of their mass concentrated at a point. The key

ingredient in showing this is to show that for a thin mass shell, the gravitational force at a point outside this

shell is the same as if all the mass of this shell is concentrated at its center.

Newton’s Law of Universal Gravitation says that if we have two point masses

m and M separated by a distance r, then the mutual force exerted on each is

given by

F = G
mM

r2
,

where the universal constant is G has approximate value1

G ≈ 6.67× 10−11N ·m2/kg2.

Sometimes, it’s more convenient to measure instead the gravitational field

E resulting from a point with mass M ; measured in units of Newtons per kilogram

it measures the force on a point mass (of 1 kg) placed in this field. Therefore,

E will be directed radially inward toward the initial point mass and have field

strength

E = ||E|| = GM

r2
,

at a distance r (meters) away from the point with mass M .

For an extended massive object with mass M , not concentrated at a point, the

determination of the resulting gravitational field at a given point requires that

the contributions of each component particle of mass dM be integrated into a

final answer. Newton’s Shell Theorem states essentially two things, and has

a very important consequence. First of all, it says that the gravitational field

outside a spherical shell having total mass M is the same as if the entire mass M

is concentrated at its center (center of mass). Secondly, it says that for the same

sphere the gravitational field inside the spherical shell is identically 0. Proving

Newton’s Shell Theorem is the primary objective of this essay.
1The value of G was first measured in 1798 by Henry Cavendish; this was already 71 years after Newton’s death.



As a consequence of Newton’s shell method, one can conclude immediately

that for a spherical homogeneous solid having mass M , the resulting gravitational

field is again the same as if the entire mass were concentrated at a point. A

somewhat more esoteric consequence is that if the spherical homogeneous object

has radius R, then the gravitational field inside the object as a distance r < R

from the center is the same as if total mass within a distance r from the center

were concentrated at the object’s center. (The mass outside the radius r can be

ignored.)
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Figure 1: Point outside the shell

In order to prove the first part of

Newton’s Shell Theorem we consider

a spherical shell of total mass M and

radius R; we shall compute the magni-

tude of the gravitational field at a point

whose distance is r from the center of

the spherical shell. We decompose the

shell into thin circular rings, each at a

(variable) distance s from the point at

which E is to be computed. Since the

mass density of the shell is σ =
M

4πR2
we see that the total mass of the ring (see

Figure 1) is

total mass of ring = σ × area of ring

= σ × 2πR sinφ×Rdφ

=
1

2
M sinφ dφ

Next, note that all of the mass is at a distance s from the point in question;

however, since (by symmetry) the field direction is toward the center of the

spherical shell, the field strength contribution from this thin ring must be

dE =
GM cos θ sinφ dφ

2s2
= −GM cos θ d(cosφ)

2s2
. (1)



Using the Law of Cosines, we have

R2 = s2 + r2 − 2rs cos θ, and s2 = R2 + r2 − 2Rr cosφ.

Therefore,

cos θ =
s2 + r2 −R2

2rs
, and cosφ =

R2 + r2 − s2

2Rr
,

and so

−d(cosφ) =
s

Rr
ds.

Plugging into Equation (1) yields the field contribution from the thin ring:

dE =
GM(s2 + r2 −R2)

4Rr2s2
ds. (2)

From Equation (2) we conclude that the total gravitational field induced by

the spherical shell is the integral of the contributions of all of the rings:

E =

∫ s=r+R

s=r−R
dE =

GM

4Rr2

∫ s=r+R

s=r−R

s2 + r2 −R2

s2
ds

=
GM

4Rr2

(
s+

R2 − r2

s

) ∣∣∣r+R

r−R
=
GM

4Rr2
× 4R =

GM

r2
,

proving the first part of Newton’s Shell Theorem.
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Figure 2: Point inside the shell

To prove the second part, namely

that the gravitational field inside the

spherical mass shell is 0, note that

the element of field strength dE con-

tributed by a typical thin ring does not

change; see Figure 2. The only change

is that the limits of integration for s are

s = R− s and s = R + s. Therefore,

E =

∫ s=R+r

s=R−r
dE =

GM

4Rr2

∫ s=R+r

s=R−r

s2 + r2 −R2

s2
ds

=
GM

4Rr2

(
s+

R2 − r2

s

) ∣∣∣R+r

R−r
= 0,



exactly as predicted.

Finally, we shall determine the gravitational field induced by a solid homoge-

neous spherical mass (total mass = M), both at points inside and outside the

masses. If r ≥ R, i.e., the point at which we are to determine the gravitational

field is outside (or on the surface of) the spherical mass. Denote the mass density

by

µ =
3M

4πR3
,

and, as above, let r be the distance of the point at which the field is to be com-

puted to the center of the spherical mass. Next divide the sphere into concentric

thin mass shells, each of thickness dρ and radius ρ, making the mass of each

such shell

dM = 4πρ2µdρ =
3Mρ2

R3
dρ.

From the first part of Newton’s Shell Theorem, we have that the field strength

contribution from this shell is

dE =
3GMρ2

r2R3
dρ;

the total field strength is obtained as an integral:

E =

∫ R

0

dE =

∫ R

0

3GMρ2

r2R3
dρ =

GMρ3

r2R3

∣∣∣R
0

=
GM

r2
,

in perfect agreement with our original contention.

Finally, if the point at which we are to compute the field strength is inside

the homogeneous spherical mass (r < R), then by the second part of Newton’s

Shell Theorem, we see that the field contribution by the concentric mass shell of

radius ρ is given by dE =
3GMρ2

r2R3
dρ if 0 ≤ ρ ≤ r,

0 r ≤ ρ ≤ R.

Therefore, the total field contribution is the integral

E =

∫ r

0

dE =

∫ r

0

3GMρ2

r2R3
dρ =

GMr

r3R3
=
GMr3

r2R3
=
G

r2
×total mass of sphere of radius r,



and we’re done!

Try these:

1. Let P be a point and let ` be an infinite line with mass density µ kg/m

(and so ` has infinite mass). Assuming that P has distance r from this line,

compute the gravitational field strength at the point P .2

2. Let P be a point and let Π be an

infinite plane with mass density µ

kg/m2. Compute the gravitational

field strength at the point P . (Hint:

note first that by symmetry, the field

vector will point from P toward to

point on the plane Π closest to P .

Next, by Problem #1 above, the con-

tribution to the field in this direction

is
2Gµ cos θ dx

s2
.


Contribution to field
from strip

= dE= 
2Gµrdx
r2+x2  N/kg

E θ

s

Density of strip
= µdx kg/m2

Density of plane
= µ kg/m2

dx

r x

Now do an integration with respect to x.)3

2Show that

E = Gµr

∫ ∞
−∞

dx

[r2 + x2]3/2
= 2Gµr

∫ ∞
0

dx

[r2 + x2]3/2
=

2Gµ

r
N/kg.

In evaluating the integral, use the trig substitution x = r cos θ.
3You should get E = 2Gπµ N/kg.



3. Here’s another approach to Problem

#2, above. This time, start with a a

circular disk of radius R and mass M

at a distance r from the given point

P .

(a) Show that the field strength at

the given point is

E =
2GM

R2

[
1− r√

r2 +R2

]
.


dρ

 Contribution to field from
thin ring

= dE= 
2GMρcosθdρ

R2s2  N/kg

E θ

s

Mass of thin ring
= 2Mρdρ/R2 kg

Mass of disk = M  kg

dx

r
ρ

(b) Show how letting R→∞ recovers the result of Problem #2.


